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Abstract

In compositional zero-shot learning, the goal is to recog-

nize unseen compositions (e.g. old dog) of observed visual

primitives states (e.g. old, cute) and objects (e.g. car, dog)

in the training set. This is challenging because the same

state can for example alter the visual appearance of a dog

drastically differently from a car. As a solution, we propose

a novel graph formulation called Compositional Graph Em-

bedding (CGE) that learns image features, compositional

classifiers and latent representations of visual primitives in

an end-to-end manner. The key to our approach is exploit-

ing the dependency between states, objects and their com-

positions within a graph structure to enforce the relevant

knowledge transfer from seen to unseen compositions. By

learning a joint compatibility that encodes semantics be-

tween concepts, our model allows for generalization to un-

seen compositions without relying on an external knowledge

base like WordNet. We show that in the challenging gen-

eralized compositional zero-shot setting our CGE signifi-

cantly outperforms the state of the art on MIT-States and

UT-Zappos. We also propose a new benchmark for this task

based on the recent GQA dataset. Code is available at:

https://github.com/ExplainableML/czsl

1. Introduction

A “black swan” was ironically used as a metaphor in

the 16th century for an unlikely event because the west-

ern world had only seen white swans. Yet when the Eu-

ropean settlers observed a black swan for the first time

in Australia in 1697, they immediately knew what it was.

This is because humans posses the ability to compose their

knowledge of known entities to generalize to novel con-

cepts. Since visual concepts follow a long tailed distribu-

tion [43, 48], it is not possible to gather supervision for

all concepts. Therefore, recognizing shared and discrimi-

native properties of objects and reasoning about their vari-

ous states has evolved as an essential part of human intel-

ligence. Once familiar with the semantic meaning of these

concepts, we can recognize unseen compositions of them

without any supervision. While there is a certain degree
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Figure 1: We aim to build a classifier for a novel state of a

known object (e.g. old dog) given the knowledge of the

shared primitives state and object in the training set.

of compositionality in modern vision systems, e.g. feature

sharing, most models are not compositional in the classifier

space and treat every class as an independent entity requir-

ing training for any new concept.

In this work, we study the state-object compositional-

ity problem also known as Compositional Zero-Shot Learn-

ing (CZSL)[34]. The goal is to learn the compositionality

of observed objects and their states as visual primitives to

generalize to novel compositions of them as shown in fig-

ure 1. Some notable existing works in this field include

learning a transformation network on top of individual clas-

sifiers [34], treating states as linear transformations of ob-

ject vectors [35], learning modular networks conditioned on

compositional classes [39] and learning object embeddings

that are symmetric under different states [28]. However,

these works treat each state-object composition indepen-

dently, ignoring the rich dependency structure of different

states, objects and their compositions. For example, learn-

ing the composition old dog is not only dependent on the

state old and object dog, but also can be supported by

other compositions like cute dog, old car, etc. We

argue that such dependency structure provides a strong reg-

ularization which allows the network to better generalize to

novel compositions. We therefore propose to exploit this

dependency relationship by constructing a compositional

graph to learn embeddings that are globally consistent.

Our contributions are as follows: (1) We introduce a

novel graph formulation named Compositional Graph Em-

bedding (CGE) to model the dependency relationship of vi-

sual primitives and compositional classes. This graph can
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be created independently of an external knowledge base

like WordNet [32]. (2) Observing that visual primitives

are dependent on each other and their compositional classes

(figure 1), we propose a multimodal compatibility learning

framework that learns to embed related states, objects and

their compositions close to each other and far away from the

unrelated ones. (3) We propose a new benchmark called C-

GQA for the task of CZSL. This dataset is curated from the

recent GQA[15] dataset with diverse compositional classes

and clean annotations compared to datasets used in the com-

munity. (4) Our model significantly improves the state of

the art on all the metrics on MIT-States, UT-Zappos and C-

GQA datasets.

2. Related work

Compositionality can loosely be defined as the ability to

decompose an observation into its primitives. These prim-

itives can then be used for complex reasoning. One of the

earliest attempts in computer vision in this direction can be

traced to Hoffman [14] and Biederman [4] who theorized

that visual systems can mimic compositionality by decom-

posing objects to their parts. Compositionality at a fun-

damental level is already included in modern vision sys-

tems. Convolutional Neural Networks (CNN) have been

shown to exploit compositionality by learning a hierarchy

of features[57, 25]. Transfer learning[6, 8, 10, 38] and

few-shot learning[12, 40, 30] exploit the compositionality

of pretrained features to generalize to data constraint envi-

ronments. Visual scene understanding[18, 9, 17, 29] aims

to understand the compositionality of concepts in a scene.

Nevertheless, these approaches still requires collecting data

for new classes.

Zero-Shot Learning aims at recognizing novel classes

that are not observed during training [24]. This is ac-

complished by using side information that describes novel

classes e.g. attributes [24], text descriptions [41] or word

embeddings [44]. Some notable approaches include learn-

ing a compatibility function between image and class em-

beddings [1, 58] and learning to generate image features

for novel classes [52, 59]. Graph convolutional net-

works (GCN) [21, 46, 19] have shown to be promising for

zero-shot learning. Wang et al. [46] propose to directly

regress the classifier weights of novel classes with a GCN

operated on an external knowledge graph (WordNet [32]).

Kampffmeyer et al.[19] improve this formulation by intro-

ducing a dense graph to learn a shallow GCN as a remedy

for the laplacian smoothing problem [27].

Graph Convolutional Networks are a special type of

neural networks that exploit the dependency structure of

data (nodes) defined in a graph. Current methods [21]

are limited by the network depth due to over smoothing at

deeper layers of the network. The extreme case of this can

cause all nodes to converge to the same value [27]. Sev-

eral works have tried to remedy this by dense skip connec-

tions [53, 26], randomly dropping edges [42] and applying

a linear combination of neighbor features [49, 23, 22]. A

recent work in this direction from Chen et al.[33] combines

residual connections with identity mapping.

Compositional zero-shot learning stands at the intersec-

tion of compositionality and zero-shot learning and focuses

on state and object relations. We aim to learn the compo-

sitionality of objects and their states from the training set

and are tasked with generalizing to unseen combination of

these primitives. Approaches in this direction can be di-

vided into two groups. The first group is directly inspired

by [14, 4]. Some notable methods including learning a

transformation upon individual classifiers of states and ob-

jects [34], modeling each state as a linear transformation

of objects [35], learning a hierarchical decomposition and

composition of visual primitives[54] and modeling objects

to be symmetric under attribute transformations[28]. An al-

ternate line of works argues that compositionality requires

learning a joint compatibility function with respect to the

image, the state and the object[2, 39, 47]. This is achieved

by learning a modular networks conditioned on each com-

position [39, 47] that can be “rewired” for a new composi-

tions. Finally a recent work from Atzmon et al. [2] argue

that achieving generalization in CZSL requires learning the

causality of visual transformation through a causal graph

where the latent representation of primitives are indepen-

dent of each other.

Our proposed method lies at the intersection of sev-

eral discussed approaches. We learn a joint compatibil-

ity function similar to [2, 39, 47] and utilize a GCN sim-

ilar to [46, 19]. However, our approach exploits the de-

pendency structure between states, objects and composi-

tons which has been overlooked by previous CZSL ap-

proaches [2, 39, 47]. Instead of using a predefined knowl-

edge graph like WordNet [32] to regress pretrained clas-

sifiers of the seen classes [46, 19], we propose a novel

way to build a compositional graph and learn classifiers for

all classes in an end-to-end manner. In contrast to Atz-

mon et al.[2] we explicitly promote the dependency be-

tween all primitives and their compositions in our graph.

This allows us to learn embeddings that are consistent

with the whole graph. Finally, unlike all existing meth-

ods [34, 35, 2, 39, 47, 54], we do not rely on a fixed image

feature extractor and train our pipeline end-to-end.

3. Approach

We consider the image classification task where each

image is associated with a label that is composed of a

state (e.g. cute) and an object (e.g. dog). The goal of

compositional zero-shot learning (CZSL) [34] is to recog-

nize the compositional labels that are not observed during
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Figure 2: Compositional Graph Embed (CGE) learns a globally consistent joint embedding space between image features and

classes of seen and unseen compositions from a graph. In our novel graph formulation, nodes are connected if a dependency

exists in form of a compositional label e.g. old, car and old car. We backpropagate the classification loss through the seen

compositional nodes to the GCN G and the feature extractor F . Hence, the representation of e.g. the dog is compatible with

its different states and the representation of old dog aggregates the knowledge from old, dog, cute dog, old car etc.

training. This is particularly challenging as the states signif-

icantly change the visual appearance of an object hindering

the performance of the classifiers.

We propose a novel formulation to the problem, namely

Compositional Graph Embedding (CGE), which constructs

a compositional graph and adopts a graph convolutional net-

work to learn the dependency structure between labels. An

overview of our approach is shown in Figure 2. It builds

on the compatibility learning framework that learns a class-

agnostic scoring function between an image and a composi-

tional label. The input image is encoded with an image fea-

ture extractor F , while the classifier weights for the compo-

sitional label are learned by a composition function G. The

key insight of our approach is that leveraging the depen-

dency relationship between states, objects and their compo-

sitions is beneficial for recognizing unseen compositions.

3.1. Compatibility Learning Framework for CZSL

Task formulation. We formalize the CZSL task as follows.

Let T = {(x, y)|x ∈ X , y ∈ Ys} where T stands for the

training set, x denotes an image in the RGB image space

X and y is its label belonging to one of the seen labels Ys.

Each label is a tuple y = (s, o) of a state s ∈ S and an

object o ∈ O with S and O being the set of states and

objects respectively. The task of CZSL is to predict a set of

novel labels Yn that consists of novel compositions of states

S and objects O i.e., Ys ∩ Yn = ∅. Following [39, 51], we

study this problem in the generalized compositional zero-

shot setting where the test set includes images from both

seen and novel compositional labels Y = Ys ∪ Yn.

Compatibility function. Learning state and object classi-

fiers separately is prone to overfit to labels observed dur-

ing training because states and objects are not independent

e.g. the appearance of the state sliced varies signifi-

cantly with the object (e.g. apple or bread). Therefore,

we chose to model them jointly by learning a compatibility

function f : X × S × O −→ R that captures the compati-

bility score between an image, a state and an object. Given

a specific input image x, we predict its label y = (s, o) by

searching the state and object composition that yields the

highest compatibility score:

f(x, s, o) = F(x;W ) · G(s, o; Θ) (1)

where F(x;W ) ∈ R
d is the image feature extracted from

a pretrained feature extractor, G(s, o; Θ) ∈ R
d is a func-

tion that outputs the label embedding of the state-object pair

(s, o), (W ,Θ) are respectively the learnable parameters of

F and G, and (·) is the dot product. The compatibility func-

tion assigns high scores to the correct triplets i.e., image x

and its label (s, o), and low scores to the incorrect ones.

The label embedding can be also interpreted as the classi-

fier weights for the label (s, o) and we use the two terms

interchangeably.

Our compatibility learning framework is closely related

to [34, 39]. LabelEmbed [34] parameterizes the com-

positional embedding function with a multi-layer percep-

tron and computes the compositions from the word em-

beddings (e.g. word2vec [31]) of states and objects, while

TMN [39] adopts a modular network as the image feature

extractor and a gating network as the compositional embed-

ding function. We argue that there exists a complex de-

pendency structure between states, objects and their com-

positions and learning this dependency structure is crucial.

To this end, we propose to integrate the compositional em-

bedding function G as a graph convolutional neural net-

work (GCN) which adds an inductive bias to the inherent

structure between states, objects, and their combination de-

fined by our compositional graph introduced next.
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3.2. Compositional Graph Embedding (CGE)

We propose the Compositional Graph Embedding (CGE)

framework integrating the Graph Convolutional Net-

works (GCN) [21] to the compositional embedding function

G(s, o) that learns the label embedding for each composi-

tional label y = (s, o) ∈ Y in an end to end manner. The

GCN network exploits the dependency structure in a pre-

defined compositional graph from states, objects and their

compositions (including both seen and unseen labels). In

the following, we first define the compositional graph, then

introduce the node features and finally explain how to learn

a GCN for the CZSL task.

Compositional graph. Our graph consists of K = |S| +
|O|+ |Y| nodes that represent states S , objects O and com-

positional labels Y . Two nodes are connected if they are

related. The key insight of our graph is that each composi-

tional label y = (s, o) ∈ Y defines a dependency relation-

ship between the state s, object o and their composition y.

To this end, we build the edges of the graph by connecting

(s, o), (s, y) and (o, y) for every y = (s, o) ∈ Y . In ad-

dition, each node is also connected to itself. Note that the

edges in our graph are unweighted and undirected, leading

to a symmetric adjacency matrix L ∈ R
K×K where ele-

ment Lij = 1 if there is a connection between nodes i and

j otherwise Lij = 0. Despite its simplicity, we find that

our compositional graph provides the accurate dependency

structure to recognize unseen compositional labels.

Node features. GCN [21, 33] operates on node features in

a neighborhood defined by the graph. Therefore, after ob-

taining the compositional graph, we need to represent each

node with a proper feature embedding. We chose to use the

word embeddings [31, 5] pretrained on a large text corpus

e.g. Wikipedia, because they capture rich semantic similar-

ities among words i.e., dog is closer to cat than to car

in the word embedding space. Specifically, every state or

object node in the compositional graph is represented by

the word embedding associated to its corresponding state or

object name. We compute the node features of the the com-

positional label (e.g. cute dog) by averaging the word

embeddings of the corresponding state (e.g. cute) and ob-

ject (e.g. dog) names. As indicated in [31], by adding word

embeddings we achieve compositionality in the semantic

space. We represent the input node features with a matrix

E ∈ R
K×P where K is the total number of nodes and each

row denotes the P -dim feature of a graph node.

Graph convolutional network for CZSL. GCN [21] is

an efficient multi-layer network to learn new feature rep-

resentation of nodes for a downstream task that are consis-

tent with the graph structure. Here, we apply the GCN to

tackle the CZSL task by directly predicting the composi-

tional label embeddings. The input of our GCN consists of

the compositional graph, represented by the adjencency ma-

trix L ∈ R
K×K and the node feature matrix E ∈ R

K×P .

Specifically, each GCN layer computes the hidden repre-

sentation of each node by convolving over neighbor nodes

using a simple propagation rule [21] also known as a spec-

tral convolution,

H(l+1) = σ(D−1LH(l)Θ(l)) (2)

where σ represents the non-linearity activation function

ReLU, H(l) ∈ R
K×U denotes the hidden representations

in the lth layer with H(0) = E and Θ ∈ R
U×V is the

trainable weight matrix with V learnable filters operating

over U features of H(l). D ∈ R
K×K is a diagonal node

degree matrix which normalizes rows in L to preserve the

scale of the feature vectors. By stacking multiple such lay-

ers, the GCN propagates the information through the graph

to obtain better node embeddings for both the seen and un-

seen compositional labels. For example, our GCN allows

an unseen compositional label e.g. old dog to aggregate

information from its neighbor nodes e.g. old, dog, cute

dog, and old car that are observed (see Figure 2).

Objective. As the objective of the GCN is to predict the

classifier weights of the compositional labels, the node em-

bedding of the output layer in the GCN has the same di-

mentionality as the image feature F(x). This indicates that

our compositional embedding function becomes G(s, o) =

H
(N)
y where H(N) is the output node embedding matrix and

H
(N)
y denotes the row corresponding to the compositional

label y = (s, o). We then optimize the following cross-

entropy loss to jointly learn the image feature extractor and

GCN in an end-to-end manner,

min
W,Θ

1

|T |

|T |∑

i=1

−log(
exp f(xi, si, oi)∑

j∈Ys

exp f(xi, sj , oj)
) (3)

where f is the compatibility function defined in Equation 1,

y = (si, oi) is the ground truth label of image xi, label

y′ = (sj , oj) denotes any seen compositional class, W and

Θ are the learnable parameters of the feature extractor and

the GCN respectively. Intuitively, the cross-entropy loss en-

ables the compatibility function to assign the high scores for

correct input triplets.

Inference. At test time, given an input image x, we derive a

prediction by searching the compositional label that yields

the highest compatibility score,

argmax
y=(s,o)∈Y

f(x, s, o). (4)

It is worth noting that our model works in the challenging

generalized CZSL setting [39], where both seen and unseen

compositional classes (i.e. Y = Ys ∪ Yn) are predicted.

Discussion. To the best of our knowledge, our Composi-

tional Graph Embedding (CGE) is the first end-to-end learn-

ing method that jointly optimizes the feature extractor F
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Training Validation Test

Dataset s o sp i sp up i sp up i

MIT-States[16] 115 245 1262 30k 300 300 10k 400 400 13k

UT-Zappos[55] 16 12 83 23k 15 15 3k 18 18 3k

C-GQA (Ours) 453 870 6963 26k 1173 1368 7k 1022 1047 5k

Table 1: Dataset statistics for CZSL: We use three datasets

to benchmark our method against the baselines. C-GQA

(ours): our proposed dataset splits from Stanford GQA

dataset [15]. (s: # states, o: # objects, sp: # seen com-

positions, up: # unseen compositions, i: # images)

and the compositional embedding function G for the task of

compositional zero-shot learning.

Compared to prior CZSL works [39, 28, 34, 35] our

CGE does not overfit while optimizing the CNN back-

bone of F (see supplementary) as it is regularized by the

compositional graph that defines the dependency relation-

ship between classes making the end-to-end training benefi-

cial. Compared to previous GCN work [46, 19] that utilizes

GCNs to regress the fixed classifier weights to learn clas-

sifiers of novel classes, we directly use image information

to learn classifiers for both seen and novel classes. More-

over, while [46, 19] rely on a known knowledge graph like

WordNet[32] describing the relation of novel classes to seen

classes, our CGE cannot rely on existing knowledge graphs

like WordNet[32] because they do not cover compositional

labels. Therefore, we propose to construct the graph by ex-

ploiting the dependency relationship defined in the compo-

sitional classes. We find that propagating information from

seen to unseen labels through this graph is crucial for boost-

ing the CZSL performance.

4. Experiments

After introducing our experimental setup, we compare

our results with the state of the art, ablate over our design

choices and present some qualitative results.

Datasets. We perform our experiments on three datasets

(see detailed statistics in Table 1). MIT-States[16] consists

of natural objects in different states collected using an older

search engine with limited human annotation leading to sig-

nificant label noise [2]. UT-Zappos[55, 56] consists of im-

ages of a shoes catalogue which is arguably not entirely

compositional as states like Faux leather vs Leather are ma-

terial differences not always observable as visual transfor-

mations. We use the GCZSL splits from [39].

To address the limitations of these two datasets,we pro-

pose a split built on top of Stanford GQA dataset [15] orig-

inally proposed for VQA and name it Compositional GQA

(C-GQA) dataset (see supplementary for the details). C-

GQA contains over 9.5k compositional labels making it the

most extensive dataset for CZSL. With cleaner labels and a

larger label space, our hope is that this dataset will inspire

further research on the topic. Figure 4 shows some samples

from the three datasets.

Metrics. As the models in zero-shot learning problems are

trained only on seen Ys labels (compositions), there is an

inherent bias against the unseen Yn labels. As pointed out

by [7, 39], the model thus needs to be calibrated by adding

a scalar bias to the activations of the novel compositions to

find the best operating point and evaluate the generalized

CZSL performance [39] for a more realistic setting.

We adopt the evaluation protocol of [39] and report the

Area Under the Curve (AUC) (in %) between the accu-

racy on seen and unseen compositions at different operat-

ing points with respect to the bias. The best unseen ac-

curacy is calculated when the bias term is large leading to

predicting only the unseen labels, also known as zero-shot

performance. In addition, the best seen (base class) perfor-

mance is calculated when the bias term is negative leading

to predicting only the seen labels. As a balance between the

two, we also report the best harmonic mean. To emphasize

that this is different from the traditional zero-shot learning

evaluation, we add the term “best” in our results. Finally,

we report the state and object accuracy on the novel labels

to show the improvement in classifying the visual primi-

tives. We emphasize that the dataset splits we propose for

C-GQA and use from [39] for MIT-States and UT-Zappos

do no not violate the zero-shot assumption as results are ab-

lated on the validation set. Some works in CZSL use older

splits that lack a validation set and thus use indirect full la-

bel supervision[51] by ablating over the test set. We there-

fore advice future works to rely on the new splits.

Training details. To be consistent with the state of the art,

we use a ResNet18 [13] backbone pretrained on ImageNet

as the image feature extractor F . For a fair comparison with

the models that use a fixed feature extractor, we introduce

a simplification of our method named CGEff . We learn

a 3 layer fully-connected (FC) network with ReLU[36],

LayerNorm[3] and Dropout[45] while keeping the feature

extractor fixed for this baseline. We use a shallow 2-layer

GCN with a hidden dimension of 4096 as G (detailed abla-

tion on this is presented in section 4.2). On MIT-States, we

initialize our word embeddings with a concatenation of pre-

trained fasttext[5] and word2vec models[31] similar to [50].

On UT-Zappos and C-GQA, we initialize the word embed-

dings with word2vec(ablation reported in supplementary).

We use Adam Optimizer[20] with a learning rate of 5e−6

for F and a learning rate of 5e−5 for G. We implement our

method in PyTorch[37] and train on a Nvidia V100 GPU.

For state-of-the-art comparisons, we use the authors’ imple-

mentations where available. The code for our method and

the new dataset C-GQA will be released upon acceptance.

957



MIT-States UT-Zap50K C-GQA

Method
AUC Best AUC Best AUC Best

Val Test HM Seen Unseen s o Val Test HM Seen Unseen s o Val Test HM Seen Unseen s o

AttOp[35] 2.5 1.6 9.9 14.3 17.4 21.1 23.6 21.5 25.9 40.8 59.8 54.2 38.9 69.6 0.9 0.3 2.9 11.8 3.9 8.3 12.5

LE+[34] 3.0 2.0 10.7 15.0 20.1 23.5 26.3 26.4 25.7 41.0 53.0 61.9 41.2 69.2 1.2 0.6 5.3 16.1 5.0 7.4 15.6

TMN[39] 3.5 2.9 13.0 20.2 20.1 23.3 26.5 36.8 29.3 45.0 58.7 60.0 40.8 69.9 2.2 1.1 7.7 21.6 6.3 9.7 20.5

SymNet[28] 4.3 3.0 16.1 24.4 25.2 26.3 28.3 25.9 23.9 39.2 53.3 57.9 40.5 71.2 3.3 1.8 9.8 25.2 9.2 14.5 20.2

CGEff (ours) 6.8 5.1 17.2 28.7 25.3 27.9 32.0 38.7 26.4 41.2 56.8 63.6 45.0 73.9 3.6 2.5 11.9 27.5 11.7 12.7 26.9

CGE (ours) 8.6 6.5 21.4 32.8 28.0 30.1 34.7 43.2 33.5 60.5 64.5 71.5 48.7 76.2 5.0 3.6 14.5 31.4 14.0 15.2 30.4

Table 2: Comparison with the state of the art: We compare our Compositional Graph Embed (CGE) with the state of the

art on Validation and Test AUC (in %); best unseen, seen and harmomic mean (HM) accuracies (in %) as well as state (s) and

object (o) prediction accuracies (in %) on widely used MIT-States and UT-Zappos datasets as well as our proposed C-GQA

dataset.

4.1. Comparing with the State of the Art

We compare our results with the state of the art in Ta-

ble 2 and show that our Compositional Graph Embed(CGE)

outperforms all previous methods by a large margin and es-

tablishes a new state of the art for Compositional Zero-shot

Learning. Our detailed observations are as follows.

Generalized CZSL performance. Our framework demon-

strates robustness against the label noise on MIT-States

noted previously in [2]. For the generalized CZSL task, our

CGE achieves a test AUC of 6.5% which is an improvement

of over 2× compared to the last best 3.0% from SymNet.

Similarly, as our method does not only improve results on

seen labels but also unseen labels, it significantly boosts the

state of the art harmonic mean, i.e. 16.1% to 21.4%. When

it comes to state and object prediction accuracy, we observe

an improvement from 26.3% to 30.1% for states and 28.3%

to 34.7% for objects. Although our results significantly im-

prove the state of the art on all metrics, the state and object

accuracies are quite low, partially due to the label noise for

this dataset.

Similar observations are confirmed on UT-Zappos,

where we achieve a significant improvement on the state

of the art with an AUC of 33.5% compared to 29.3% from

TMN. An interesting observation is that SymNet, i.e. the

state of the art on MIT States, with an AUC of 23.9% does

not achieve the best performance in the generalized CZSL

setting on UT Zappos. We conjecture that this is because the

state labels in this dataset are not entirely representing vi-

sual transformations, something this method was designed

to exploit. In this dataset, our fully compositional model

improves the best harmonic mean wrt the state of the art

significantly (45.0% with TMN vs 60.5% ours). Note that,

this is due to a significant accuracy boost achieved on un-

seen compositions (60.0% vs 71.5%).

Finally on the proposed splits of the GQA dataset [15],

i.e. C-GQA dataset, we achieve a test AUC of 3.6% out-

performing the closest baseline by a 2×. Note that, since

C-GQA has a compositional space of over 9.3k concepts,

it is significantly harder than MIT-States and UT-Zappos

while being truly compositional and containing cleaner la-

bels. The state and the object accuracies of our method are

15.2% and 30.4%, i.e. significantly higher than the state of

the art. However these results also indicate the general dif-

ficulty of the task. Similarly, our best seen and best unseen

accuracies (31.4% and 14.0%) indicate a large room for im-

provement on this dataset, which may encourage further re-

search with our C-GQA dataset on the CZSL task.

We also make an interesting observation on all three

datasets. While SymNet uses an object classifier that is

trained independently from the compositional pipeline, our

method consistently outperforms it on object accuracy. We

conjecture that this is because a compositional network sen-

sitive to the information about the states is also a better ob-

ject classifier, since it disentangles what it means to be an

object from the state it is observed in, preventing biases to

properties like textures [11]. This insight can be an avenue

for future improvement in object classification.

Impact of feature representations. To quantify the im-

provement of our graph formulation on the same feature

representations as the state of the art, we also present results

of our CGE with a fixed feature extractor (Resnet18), i.e.

denoted by CGEff , in Table 2. We see that this version of

our model also consistently outperforms the state of the art

by a large margin on MIT-States and C-GQA while match-

ing the performance on UT-Zappos. Especially on MIT-

States, the improvement over the state of the art is remark-

able, i.e. 5.1% test AUC vs 3.0% test AUC with SymNet.

In summary, this shows that our method benefits from both

the knowledge propagation in the compositional graph and

from learning better image representations.

For a fair comparison, we also allowed the previous base-
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Connections in Graph AUC Best HM

a) Direct Word Embedding 5.9 19.4

b) (s,y) and (o,y), no self-loop on y 7.6 18.6

c) (s,y) and (o,y) 8.1 22.7

d) CGE: (s,y), (o,y) and (s,o) 8.6 23.3

e) Extra WordNet hierarchy on O 7.9 22.0

Table 3: Ablation over the graph connections validates

the structure of our proposed graph on the validation set of

MIT-States dataset. We start from directly using the word

embeddings as classifier weights to learning a globally con-

sistent embedding from a GCN as the classifier weights (s:

states, o: objects, y: compositional labels).

lines to train end-to-end with F . However, this results in a

significant performance drop indicating they are unable to

jointly learn the feature extractor against the RGB space.

To address this limitation, some works[52, 47] have pro-

posed to use a generative network to learn the distribution

of image features in zero-shot problems. We, on the other

hand, don’t need to rely on an expensive generative network

and jointly learn the image representations and the compo-

sitional classifiers in an end-to-end manner.

4.2. Ablation study

In this section we ablate our CGE model with respect to

the graph connections, the graph depth and graph convolu-

tion variants.

Graph connections. We perform an ablation study with re-

spect to the various connections in our compositional graph

on the validation set of MIT-States and report results in Ta-

ble 3. In the Direct Word Embedding variant, i.e. row (a)

our label embedding function G is an average operation of

state and object word embeddings. We see that, directly

using word embedding of compositional labels as the clas-

sifier weights leads to an AUC of 5.9. In row (b) we rep-

resent a graph with connections between states (s) to com-

positional labels (y) and objects to compositional labels (y)

but remove the self connection for the compositional label.

In this case, the final representation of compositional labels

from the GCN only combines the hidden representations of

states and objects leading to an AUC of 7.6.

Row (c) represents the graph that has self connections

from each compositional label in addition to the connec-

tions between states and compositional labels as well as ob-

jects and compositional labels as in row (b). We see that

this variant achieves an AUC of 8.1 indicating that the hid-

den representation of compositional classes is beneficial.

Row (d) is our final model where we additionally in-

corporate the connections between states and objects in a

pair to model the dependency between them. We observe

2 4 6 8

Number of Layers

7

8

9

A
U
C

GCN Type

GCN GCNII

Figure 3: Graph convolution and depth: We compare the

spectral convolution GCN[21] with the recent GCNII[33]

that aims to address the over smoothing issue at increasing

depth. We perform the comparison at various depths of the

GCN network on the validation set of MIT-States.

that learning a representation that is consistent with states,

objects and the compositional labels increases the AUC

from 8.1 to 8.6 validating our choice of connections in the

graph. We again emphasize that in the absence of an exist-

ing knowledge graph for compositional relations, our sim-

ple but well designed graph structure is able to capture the

dependencies between various concepts.

While our final CGE does not employ an external knowl-

edge graph, we can utilize an existing graph like Word-

Net [32] to get the hierarchy of the object classes similar

to some baselines in zero-shot learning [46, 19]. Row (e)

represents a model that exploits object hierarchy in addition

to our compositional graph discussed earlier. This leads to

additional 418 nodes to model the parent child relation of

the objects. We see that this results in a slight performance

drop with an AUC of 7.9 because this graph may not be

compatible with the compositional relations.

Graph architecture. We ablate over the architecture of the

graph at various depths from 2-8 layers to quantify the de-

gree of knowledge propagation needed to achieve best per-

formance. From Figure 3 we observe that a shallow archi-

tecture at 2 layers achieves the best AUC of 8.6 outperform-

ing the deeper configuration. This is an established problem

for the spectral graph convolution and is caused by lapla-

cian smoothing across deeper layers[27]. To study if we are

limited by a shallow representation, we use a more recent

formulation of graph convolution named GCNII[33]. This

method introduces a few key improvements like skip con-

nections that remedy the laplacian smoothing problem. We

see that while GCNII suffers less from the smoothing prob-

lem and maintains performance at deeper architectures, It

only achieves an AUC of 7.2 for the best performing model.

Since our graph is exploiting close relations between the

states, objects and the compositions introduced by the dense

connections for visual primitives, we are not held back by

the shallow architecture. We advice future works to explore

richer graphs that can facilitate deeper models.
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Figure 4: Qualitative results. Left: We show the top-3 predictions of our model for some examples. We observe from the

first four columns that all the predictions of the model are meaningful, but the model is only incentivized when it matches

the label. The task of CZSL is a multi label one and future datasets need to account for this. The last column shows some

examples of suboptimal labels and wrong predictions. Right: We show good candidates for retrival on all three dataset and

then we perform cross-dataset retrieval for a unseen composition across C-GQA and MIT-States.

4.3. Qualitative results

We show some qualitative results for the novel composi-

tions with their top-3 predictions in Figure 4 (left). The first

three columns present some instances where the top pre-

diction matches the label. For MIT-States and C-GQA, we

notice that the remaining two answers of the model contain

information visually present in the image but not in the la-

bel highlighting a limitation of current CZSL benchmarks.

Different groups of states like color, age, material etc. can

represent different information for the same object and are

thus not mutually exclusive.

For example in column 4, row 1 the image of the cat con-

sist of a size, surface texture and age all present in the label

space of the dataset and the output of the model. However

the label for this image only contains its surface texture.

This puts an upper limit on compositional class accuracy

dependent on the number of groups associated with an ob-

ject in the label space. Specifically, column 4 of Figure 4

(left) counts as a wrong prediction but all of the top 3 pre-

dictions represent correct visual information for MIT-States

and C-GQA. Unless the model learns the annotator bias,

it can not achieve a perfect accuracy. Finally in column

5, we show some instances of sub-optimal and wrong la-

bels. Specifically, the image in row 1 is entirely missing the

thawed meat represented in the label, the image in row 2

can not sufficiently communicate the material information

while the label in row 3 does not contain the dominant in-

formation in the image.

In Figure 4 (right) we first show image retrieval results

from seen and unseen compositions. We can see that for

all three datasets our method returns the correct top images

for the query. We then perform cross-dataset retrieval be-

tween MIT-States and C-GQA for an unseen composition.

We show a representative image from the original dataset

and the top-3 retrievals from the cross dataset. While the

datasets have a distribution shift between them, we see that

retrievals are still meaningful. On MIT-States 2/3 retrieved

images match a Mossy pond while the 3rd image is a grass

field confused with the query. Similar trend is observed for

the model trained on C-GQA for retrieval of a puffy pizza.

The model confuses the top retrieval with a casserole fol-

lowed by two images of pizzas. Nevertheless, the cross

dataset retrieval shows promise towards further generaliza-

tion for future works.

5. Conclusion

We propose a novel graph formulation for Compositional

Zero-shot learning in the challenging generalized zero-shot

setting. Since our graph does not depend on external knowl-

edge bases, it can readily be applied to a wide variety of

compositional problems. By propagating knowledge in the

graph against training images of seen compositions, we

learn classifiers for all compositions end-to-end. Our graph

also acts like a regularizer and allows us to learn image rep-

resentations consistent with the compositional nature of the

task. We benchmark our method against various baselines

on three datasets to establish a new state of the art in CZSL

in all settings. We also highlight the limitations of existing

methods and knowledge bases. We encourage future works

to explore datasets with structured compositional relations

and richer graphs that will allow for deeper graph models.
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