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I. EQUATION OF MOTION AND RELAXATION OPERATOR

Here, we describe the details of our theoretical modeling of electron dynamics in graphene under laser fields. The
model has been introduced in the previous works [1, 2]. The electron dynamics is described by the following quantum
master equation for the one-body electron density matrix,

d

dt
ρk(t) =

1

i~
[
Hk+A(t)

]
+ D̂ [ρk(t)] , (1)

where Hk+A(t) is the time-dependent Hamiltonian and D̂ [ρk(t)] is a relaxation operator. In this work, we consider
the following 2-by-2 Hamiltonian matrix

Hk+A(t) = vF τzσx [kx +Ax(t)] + vFσy [ky +Ay(t)] +
∆

2
σz, (2)

where σj are the Pauli matrices.
For the relaxation operator, we employ a simple relaxation time approximation [3] in the instantaneous eigenbasis

expression [4, 5]. For this purpose, we first introduce instantaneous eigenstates of the Hamiltonian Hk+A(t)

Hk+A(t)

∣∣ub,k+A(t)

〉
= εb,k+A(t)

∣∣ub,k+A(t)

〉
, (3)

where b is a band index,
∣∣ub,k+A(t)

〉
are instantaneous eigenstates, and εb,k+A(t) are the corresponding single-particle

energies. Note that, since we consider the 2-by-2 Hamiltonian, we have only two bands: one is the valence band
(b = v), and the other is the conduction band (b = c). One can further introduce a unitary matrix Uk+A(t) as

Uk+A(t) =
(∣∣uv,k+A(t)

〉
,
∣∣uc,k+A(t)

〉)
. The introduced unitary matrix diagonalizes the Hamiltonian as

U†k+A(t)Hk+A(t)Uk+A(t) =

(
εv,k+A(t) 0

0 εc,k+A(t)

)
. (4)

Based on the unitary matrix, we further introduce the one-body density matrix in the instantaneous eigenbasis
representation as

ρ̃k(t) =

(
ρvv,k(t) ρvc,k(t)
ρcv,k(t) ρcc,k(t)

)
= U†k+A(t)ρk(t)Uk+A(t). (5)

With the instantaneous eigenbasis representation, we consider the relaxation of the density matrix by introducing
two kinds of relaxation: One is the longitudinal relaxation, which is the relaxation of the diagonal elements of the
density matrix, while the other is the transverse relaxation, which is the relaxation of the off-diagonal elements. To
realize such relaxation in a practical implementation, we introduce the relaxation operator as

D̂ [ρk(t)] = −Uk(t)

 ρvv,k(t)−ρFv,k+A(t)

T1

ρvc,k(t)
T2

ρcv,k(t)
T2

ρcc,k(t)−ρFc,k+A(t)

T1

U†k(t),

(6)
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where T1 and T2 are the time-constants for the longitudinal and transverse relaxations, respectively. In this work, as
a target state of the relaxation, we employ the Fermi-Dirac distribution

ρFb,k =
1

e(εb,k−µ)/kBTe + 1
, (7)

where µ is the chemical potential, Te is the electron temperature. In this work, we fix the electron temperature Te to
80 K.

II. FOCAL SPOT AVERAGE

In realistic experimental configurations, the high-order harmonic generation occurs not only at the center of a
beam-spot but also on the whole focal area. Thus, the generated high-order harmonics from a wide region of the focal
area can be detected. To take into account the macroscopic focal-spot average effect of HHG, we employ the intensity
average procedure according to Ref. [6].

Here, we assume the field strength of laser electric fields has the following Gaussian profile on the sample surface

E(x, y) = E0 exp

[
− 1

σ2

(
x2 + y2

)]
, (8)

where (x, y) are the coordinates on the surface, E0 is the peak field strength, and σ is the beam waist. We further
assume that the beam waist is sufficiently large, and the induced current depends only on the local field strength as
J [E(x, y)](t). Based on these assumptions, the average current within the beam spot can be evaluated as

Jave(t) =
1

πσ2

∫
dxdyJ [E(x, y)] =

∫ 1

0

dα
1

α
J [αE0](t). (9)

Hence the total current on the sample can be evaluated as the intensity average of the induced current. In this work,

we repeatedly perform the simulation by changing the laser field strength E0 =
√
E2

0,x + E2
0,y with fixed ratio of E0,x

and E0,y. Then, we compute the averaged current on the sample Jave(t) with Eq. (9).

III. DECOMPOSITION OF INTRABAND AND INTERBAND TRANSITIONS

In this work, we define intraband and interband transitions based on the instantaneous eigenbasis representation
[4, 5]. To define the intraband and interband transitions, we first consider the equation of motion of the reduced
density matrix in the instantaneous eigenbasis representation as

d

dt
ρ̃k(t) =

d

dt
U†k+A(t)ρk(t)Uk+A(t) =

dU†k+A(t)

dt
ρk(t)Uk+A(t) + U†k+A(t)

dρk(t)

dt
Uk+A(t) + U†k+A(t)ρk(t)

dUk+A(t)

dt

=
1

i~

[
H̃k+A(t), ρ̃k(t)

]
−

 ρvv,k(t)−ρFv,k+A(t)

T1

ρvc,k(t)
T2

ρcv,k(t)
T2

ρcc,k(t)−ρFc,k+A(t)

T1

 , (10)

where the effective Hamiltonian H̃k+A(t) in the instantaneous eigenbasis representation is given by

H̃k+A(t) =

(
εv,k+A(t) 0

0 εc,k+A(t)

)
+ i~

( 〈∂uv,k+A(t)

∂k

∣∣uv,k+A(t)

〉
· Ȧ(t),

〈∂uv,k+A(t)

∂k

∣∣uc,k+A(t)

〉
· Ȧ(t)〈∂uc,k+A(t)

∂k

∣∣uv,k+A(t)

〉
· Ȧ(t),

〈∂uc,k+A(t)

∂k

∣∣uc,k+A(t)

〉
· Ȧ(t)

)
. (11)

To naturally distinguish the intraband and interband transitions, we rewrite the Hamiltonian with the new gauge
fields, Atra and Ater(t) as

H̃tra−ter
k+A(t) =

(
εv,k+Atra(t) 0

0 εc,k+Atra(t)

)
+ i~

( 〈∂uv,k+Atra(t)

∂k

∣∣uv,k+Atra(t)

〉
· Ȧtra(t),

〈∂uv,k+Atra(t)

∂k

∣∣uc,k+Atra(t)

〉
· Ȧter(t)〈∂uc,k+Atra(t)

∂k

∣∣uv,k+Atra(t)

〉
· Ȧter(t),

〈∂uc,k+Atra(t)

∂k

∣∣uc,k+Atra(t)

〉
· Ȧtra(t)

)
.

(12)

Note that, if Atra(t) = Ater(t) = A(t), the new Hamiltonian H̃tra−ter
k+A(t) in Eq. (12) is identical to the original Hamil-

tonian H̃k+A(t) in Eq. (11). If Atra(t) = A(t) and Ater(t) = 0, the system is adiabatically evolved within the same
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band. Hence the transitions induced by Atra(t) is nothing but the intraband transitions. On the other hand, if
Atra(t) = 0 and Ater(t) = A(t), the system shows only a transition among different bands without the motion in the
k-space. Hence the transitions induced by Ater(t) is nothing but the interband transitions. Note that these definitions
of the intraband and interband transitions with the reduced density matrix are equivalent to those defined with the
Houston expansion in the wavefunction theory [7].

Based on the electron dynamics simulations with the effective Hamiltonian H̃tra−ter
k+A(t), one can elucidate impacts of

intraband and interband transitions. For example, by setting Atra(t) to A(t) and Ater(t) to zero, one can study
the electron dynamics induced solely by the intraband transitions. Likewise, by setting Atra(t) to zero and Ater(t)
to A(t), one can study the electron dynamics induced solely by the interband transitions. Applying this approach
to the HHG in graphene, we evaluated the high-order harmonic intensity induced solely by intraband or interband
transitions. The results are shown in Fig. 2 (e) in the main text.

To investigate detailed roles of nonlinear coupling among intraband and interband transitions, we introduce a
decomposition of the current J(t, E0,x, E0,y) into each nonlinear coupling component. In the above analysis, we intro-
duced the two gauge fields, Atra(t) and Ater(t), to distinguish the intraband and interband transitions. Furthermore,
each gauge field vector consists of two directional components. Hence, the induced current is a function of the field
strength of each component of each gauge field as J tra−ter(t, E0,x,tra, E0,x,ter, E0,y,tra, E0,y,ter). In the main text, we
introduced the following four labels for each kind of transitions. τa: the intraband transitions induced by the x-
component of fields. τb: the interband transitions induced by the x-component of fields. τc: the intraband transitions
induced by the y-component of fields. τd: the interband transitions induced by the y-component of fields. With this
notation, we first define four kinds of current as follows:

Jτa(t) = J tra−ter(t, E0,x,tra, 0, 0, 0), (13)

Jτb(t) = J tra−ter(t, 0, E0,x,ter, 0, 0), (14)

Jτc(t) = J tra−ter(t, 0, 0, E0,y,tra, 0), (15)

Jτd(t) = J tra−ter(t, 0, 0, 0, E0,y,ter). (16)

Each of them corresponds to the current induced solely by a single-directional component of each transition: Jτa(t) is
induced solely by the x-component of intraband transitions, and Jτb(t) is induced solely by the x-component of inter
transitions. Likewise, Jτc(t) is induced solely by the y-component of intraband transitions, and Jτd(t) is induced
solely by the y-component of interband transitions.

Then, we define the current induced by nonlinear coupling of two of four components as

Jτa,τb(t) = J tra−ter(t, E0,x,tra, E0,x,ter, 0, 0, ) − Jτa(t) − Jτb(t) (17)

Jτa,τc(t) = J tra−ter(t, E0,x,tra, 0, E0,y,tra, 0) − Jτa(t) − Jτc(t) (18)

Jτa,τd(t) = J tra−ter(t, E0,x,tra, 0, 0, E0,y,ter) − Jτa(t) − Jτd(t) (19)

Jτb,τc(t) = J tra−ter(t, 0, E0,x,ter, E0,y,tra, 0) − Jτb(t) − Jτc(t) (20)

Jτb,τd(t) = J tra−ter(t, 0, E0,x,ter, 0, E0,y,ter) − Jτb(t) − Jτd(t) (21)

Jτc,τd(t) = J tra−ter(t, 0, 0, E0,y,tra, E0,y,ter) − Jτc(t) − Jτd(t). (22)

Here, Jτa,τb(t) is induced by the nonlinear coupling of the x-components of the intraband and interband transitions,
Jτa,τc(t) is induced by the nonlinear coupling of the x- and y-components of the intraband transitions, Jτa,τd(t)
is induced by the nonlinear coupling of the x-component of the intraband and the y-component of the interband
transitions, Jτb,τc(t) is induced by the nonlinear coupling of the x-component of the interband and the y-component
of the intraband transitions, Jτb,τd(t) is induced by the nonlinear coupling of the x- and y-components of the interband
transitions, and Jτc,τd(t) is induced by the nonlinear coupling of the y-components of the intraband and intraband
transitions.

In the same way, we define the current induced by nonlinear coupling among three of four field components as

Jτa,τb,τc(t) = J tra−ter(t, E0,x,tra, E0,x,ter, E0,y,tra, 0) − Jτa,τb(t) − Jτa,τc(t) − Jτb,τc(t)

−Jτa(t) − Jτb(t) − Jτc(t) (23)

Jτa,τb,τd(t) = J tra−ter(t, E0,x,tra, E0,x,ter, 0, E0,y,ter) − Jτa,τb(t) − Jτa,τd(t) − Jτb,τd(t)

−Jτa(t) − Jτb(t) − Jτd(t) (24)

Jτa,τc,τd(t) = J tra−ter(t, E0,x,tra, 0, E0,y,tra, E0,y,ter) − Jτa,τc(t) − Jτa,τd(t) − Jτc,τd(t)

−Jτa(t) − Jτc(t) − Jτd(t) (25)

Jτb,τc,τd(t) = J tra−ter(t, 0, E0,x,ter, E0,y,tra, E0,y,ter) − Jτb,τc(t) − Jτb,τd(t) − Jτc,τd(t)

−Jτb(t) − Jτc(t) − Jτd(t). (26)
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Finally, we define the current induced by nonlinear coupling of all of the field components as

Jτa,τb,τc,τd(t) = J tra−ter(t, E0,x,tra, E0,x,ter, E0,y,tra, E0,y,ter) − Jτa,τb,τc(t) − Jτa,τb,τd(t) − Jτa,τc,τd(t) − Jτb,τc,τd(t)

− Jτa,τb(t) − Jτa,τc(t) − Jτa,τd(t) − Jτb,τc(t) − Jτb,τd(t) − Jτc,τd(t)

− Jτa(t) − Jτb(t) − Jτc(t) − Jτd(t). (27)

By construction of the decomposed current in Eqs. (13-27), the total current J(t, E0,x, E0,y) is fully reconstructed
as

J(t, E0,x, E0,y) = Jτa(t) + Jτb(t)Jτc(t) + Jτd(t)

+ Jτa,τb(t) + Jτa,τc(t) + Jτa,τd(t) + Jτb,τc(t) + Jτb,τd(t) + Jτc,τd(t)

+ Jτa,τb,τc(t) + Jτa,τb,τd(t) + Jτa,τc,τd(t) + Jτb,τc,τd(t)

+ Jτa,τb,τc,τd(t). (28)

Note that the decomposition of the current in Eq. (28) is conceptually similar to a decomposition proposed in Ref. [8]
since both decompositions are based on the intraband and interband transitions. In the previous decomposition, the
current is decomposed at each nonlinear order. In contrast, the above decomposition does not rely on the perturbative
expansion but directly decomposes the current, including all order of the nonlinear contributions at once. Hence, the
decomposition of Eq. (28) is suitable for the analysis of the non-perturbative nonlinear phenomena such as HHG in
solids.

We evaluated the harmonic intensity with each decomposed current. Figures S1-S3 show the 7th-order harmonic
intensity I7thy as a function of ellipticity for various decomposed current. Here, we employed the same conditions as
those of Fig. 2 (f) of the main text. In Fig. S1, the results of the current induced sorely by a single transition, Jτ ,
are shown. In Fig. S2, the results of the current induced by the nonlinear coupling between two of four kinds of
transitions, Jτσ, are shown. In Fig. S3, the results of the current induced by the nonlinear coupling among three of
four transitions, Jτσδ, and among all of four transitions, Jτa,τb,τc,τd(t), are shown. In these figures, the result of the
full transitions is also shown as the black-solid line.
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FIG. S1: The 7th-order HHG from graphene under elliptically polarized light. Here, the contributions from each
single transition Jτ in Eqs. (13-16) are shown.

IV. FIELD STRENGTH DEPENDENCE AND OTHER ORDER HARMONICS

In the main text, we studied the 7th-order harmonics with the peak field strength
√
E2

0,x + E2
0,y of 6.5 MV/cm.

As seen from Fig. 1 (a) in the main text, the corresponding simulation fairly reproduces the experimental results
[9]. Note that the estimated experimental field strength is about 20 MV/cm, and our field strength of 6.5 MV/cm
is consistent with the experimental field strength. Hence, our simulations are performed with realistic condition.
Although the previous theoretical simulation [9] also reproduced the experimental results fairly well, the relation of
the experimental and simulation parameters is unclear.
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FIG. S2: The 7th-order HHG from graphene under elliptically polarized light. Here, the contributions from
nonlinear coupling of two of four transitions Jτσ in Eqs. (17-22) are shown.
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FIG. S3: The 7th-order HHG from graphene under elliptically polarized light. Here, the contributions from
nonlinear coupling of three of four transitions Jτσδ in Eqs. (23-26) are shown. The contribution from the nonlinear
coupling of all of the transitions Jτa,τb,τc,τd(t) in Eq. (27) is also shown.

To confirm the robustness of the enhancement of the HHG in graphene by elliptically polarized light, we performed

the simulation with higher field strength
√
E2

0,x + E2
0,y of 21 MV/cm. Figure S4 shows the computed 7th-order

harmonic intensity as a function of ellipticity. In the simulation the same conditions were employed as Fig. 1 (a) in
the main text exept the field strength. As seen from the figure, the clear enhancement of the harmonic intensity by
elliptically polarized light can be confirmed. Hence, the enhancement is robust against to the field strength change.

Next, we investigate the ellipticity dependence of the HHG in other orders. Figure S5 shows the harmonic intensities
for different harmonic orders as functions of ellipticity. In this analysis, we employed the same conditions as Fig. 1 (a)
in the main text. Therefore, the result of the 7th harmonics in Figure S5 (b) is identical to that of Fig. 1 (a). As seen
from Figs S5 (a)-(c), the elliptically polarized light enhances the harmonic intensity at the 5th, 7th, and 9th order.
Thus, we can confirm that the enhancement of the HHG in graphene by elliptically polarized light is not only for the
7th-order harmonics but rather general phenomena.
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FIG. S4: The 7th-order harmonic intensity from graphene as a function of ellipticity.
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(b) 7th harmonics
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(c) 9th harmonics
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FIG. S5: Ellipticity dependence of the harmonic intensity. The results for different harmonic orders are shown: (a)
5th, (b) 7th, and (c) 9th order harmonics.
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[2] S. A. Sato, P. Tang, M. A. Sentef, U. D. Giovannini, H. Hübener, and A. Rubio, New Journal of Physics 21, 093005 (2019).
[3] T. Meier, G. von Plessen, P. Thomas, and S. W. Koch, Phys. Rev. Lett. 73, 902 (1994).
[4] W. V. Houston, Phys. Rev. 57, 184 (1940).
[5] J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986).
[6] I. Floss, C. Lemell, G. Wachter, V. Smejkal, S. A. Sato, X.-M. Tong, K. Yabana, and J. Burgdörfer, Phys. Rev. A 97,

011401 (2018).
[7] S. A. Sato, M. Lucchini, M. Volkov, F. Schlaepfer, L. Gallmann, U. Keller, and A. Rubio, Phys. Rev. B 98, 035202 (2018).
[8] C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).
[9] N. Yoshikawa, T. Tamaya, and K. Tanaka, Science 356, 736 (2017).


