Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Higher-Order Band Topology in Twisted Moiré Superlattice

MPG-Autoren
/persons/resource/persons221904

Xian,  L. D.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;
Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York;
Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.126.066401.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

SM_20210111.pdf
(Ergänzendes Material), 2MB

Zitation

Liu, B., Xian, L. D., Mu, H., Zhao, G., Liu, Z., Rubio, A., et al. (2021). Higher-Order Band Topology in Twisted Moiré Superlattice. Physical Review Letters, 126(6): 066401. doi:10.1103/PhysRevLett.126.066401.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-16C5-1
Zusammenfassung
The two-dimensional (2D) twisted bilayer materials with van der Waals coupling have ignited great research interests, paving a new way to explore the emergent quantum phenomena by twist degree of freedom. Generally, with the decreasing of twist angle, the enhanced interlayer coupling will gradually flatten the low-energy bands and isolate them by two high-energy gaps at zero and full filling, respectively. Although the correlation and topological physics in the low-energy flat bands have been intensively studied, little information is available for these two emerging gaps. In this Letter, we predict a 2D second-order topological insulator (SOTI) for twisted bilayer graphene and twisted bilayer boron nitride in both zero and full filling gaps. Employing a tight-binding Hamiltonian based on first-principles calculations, three unique fingerprints of 2D SOTI are identified, that is, nonzero bulk topological index, gapped topological edge state, and in-gap topological corner state. Most remarkably, the 2D SOTI exists in a wide range of commensurate twist angles, which is robust to microscopic structure disorder and twist center, greatly facilitating the possible experimental measurement. Our results not only extend the higher-order band topology to massless and massive twisted moiré superlattice, but also demonstrate the importance of high-energy bands for fully understanding the nontrivial electronics.