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1. Tight-Binding Hamiltonian 

The TB Hamiltonian is described by the single pz-orbital model as 

† †

i i i ij i j

i ij

H c c t c c= +                          (S1) 

where i is the on-site energy and tij is hopping parameter between i-site and j-site. The hopping 

parameter can be expressed as1,2 
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=   d and d is the distance and position-vector 

between i-site and j-site, respectively. For the TBG, i = 0 eV, 0V = 0.48 eV, 0V = −2.7 eV,

0.184 30 0a = , a0=1.42Ả, dc=3.35Ả. For the TBBN, i = 1.9 eV for B and −1.9 eV for N, 0V

= 0.48 eV, 0V  = 3.24 eV, 0.184 30 0a =  , a0=1.45Ả, dc=3.33Ả. In our calculations, the 

intralayer hopping parameter is limited between two nearest-neighbor sites, while the interlayer 

hopping parameter is limited between two sites with d < 6.0Ả. This TB Hamiltonian can 
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reproduce the main band feature calculated by first-principles calculations. Moreover, the bulk 

topological index obtained from this TB Hamiltonian is also consistent with that obtained from 

the first-principles calculations, directly identifying the validity of our TB model (see Fig. S6 

and Fig. S7). 

 

2. Structure Relaxation 

Due to the mismatch between top and bottom twisted layers, a moiré superlattice is formed, 

where different local stacking patterns (AA, AB or BA) appear periodically. The commensurate 

twist-angle is determined by the condition3 2 2cos( ) (3 3 1/ 2) / (3 3 1)n n n n = + + + + , where n is 

an integer. The interlayer distance is variable in real-space, so the classical molecular dynamics 

simulations implemented in LAMMPS4 is performed to relax the moiré superlattice. All atoms 

are relaxed until the forces are smaller than 0.001 eV/ Å. 

 

3. First-Principles Calculations 

Based on the density functional theory (DFT), the first-principles calculations are carried out 

in the framework of generalized gradient approximation with Perdew-Burke-Ernzerhof 

functional using the Vienna Ab initio simulation package (VASP)5. All calculations are 

performed with a plane-wave cutoff of 520 eV on the 331 Monkhorst-Pack k-point mesh. 

The vacuum layer of 20 Å thick is used to ensure decoupling between neighboring slabs.  

 

4. Double Band Inversion  

Recently, a new kind of topological index (quantized fractional corner charge) is proposed to 

distinguish the rotation symmetry protected higher-order topological state with vanishing 

polarization6. Within this framework, the C6z and C3z symmetry protected 2D SOTI can be 

characterized by the topological index Q as:  

(2) (3)

1 16 [M ] / 4 [K ] / 6 mod 1zC Q→ = +                 (S3) 

(3)

23 [K ] / 3 mod 1zC Q =→
                    (S4) 
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Eq. S5 denotes the occupied band-number difference for Cnz symmetry with eigenvalue 

exp[2i(p−1)/n] (p=1, 2 ... n) between the high-symmetric k-point Π and Γ. In the main text, 

we have shown that the topological index Q is nonzero for both TBG and TBBN, demonstrating 

a nontrivial higher-order band topology. It’s well known that the nontrivial Z2 index described 

conventional first-order 2D and 3D topological insulators can be understood in an intuitive 

physical picture, called the band inversion. Here, we found that the topological index Q 

described 2D SOTI for TBG and TBBN can be understood in a similar way, called the double 

band inversion. Recently, the same mechanism has also been reported for the higher-order 

topological state in the Bismuth7. In the following part, we will give a detailed analysis about 

this mechanism. 

 

The polarization of TBG with C6z symmetry is always zero, satisfying the prerequisite for the 

topological index Q. The definition of Q has two terms in Eq. S3, we will consider them one 

by one. Since the C2zT symmetry protected Stiefel-Whitney number () has also been used to 

characterize the bulk topology of TBG8, the calculated 1=0 and 2=1 in the two high-energy 

gaps of TBG indicates that9 

(2) (2) (2)

2 2 2
[M ] # M # even= −  =                      (S6) 

Since (2)

1
[M ]  ( (2)

2
[M ] ) denotes the occupied band-number difference for C2z symmetry with 

eigenvalue +1(−1) between M and Γ point, their summation will satisfy 

(2) (2)

1 2
[M ] [M ] 0=+

                         (S7) 

Combining Eq. S6 and S7, we found that  

(2)

1
[M ] even=

                           (S8) 

Combining Eq. S3 and S8, we will obtain the condition for nonzero value of Q as 
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Eq. S9 indicates that if one wants to tune Q from zero to nonzero, at least a double band 
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inversion is needed. The character table of TBG (space group 177) is shown in Table 1(a). At 

 point, the band for C2z symmetry with eigenvalue +1 is single- or double-degenerate. At M 

point, the band for C2z symmetry with eigenvalue +1 is only single-degenerate. Therefore, the 

double band inversion can be realized by inverting a double-degenerate-band at  point, or by 

inverting two single-degenerate-bands with the same eigenvalue at  and M point 

simultaneously. 

 

Next, we turn to the second term of the topological index Q in Eq. S3. Due to the C6z symmetry 

of TBG, we have  

(3) (3)#K #K , 1,2,3p p p= =                     (S10) 

where K and K are two nonequivalent K points, and (3)#K p
  denotes the occupied band-

number for C3z symmetry with eigenvalue exp[2i(p−1)/3]. Moreover, due to the time-reversal 

symmetry, we also have  

(3) (3)

2 3# K # K=
                          (S11) 

Combining Eq. S10 and S11, one obtains  

(3) (3)

2 3# K # K=                           (S12) 

Similar to Eq. S7, we have the following relation   

(3) (3) (3)

1 2 3[K ] [K ] [K ] 0+ + =
                    (S13) 

where (3)

1
[K ]  ( (3)

2
[K ] , (3)

3
[K ] ) denotes the occupied band-number difference for C3z symmetry 

with eigenvalue +1 (exp(i2/3), exp(i4/3)) between K and Γ point. Combining Eq. S12 and 

S13, we found that 

(3) (3)

1 2[K ] 2[K ] 0+ =
                        (S14) 

Therefore 

(3)

1[K ] even=
                          (S15) 

Combining Eq. S3 and S15, we will obtain the condition for nonzero value of Q as 
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Eq. S16 indicates that if one wants to tune Q from zero to nonzero, at least a double band 

inversion is needed. As shown in Table 1(a), the band for C3z symmetry with eigenvalue +1 is 

single-degenerate at  and K points. Therefore, the double band inversion can be realized by 

inverting two single-degenerate-bands with the same eigenvalue at  and K point 

simultaneously. 

 

Lastly, the analysis for C3z symmetry protected topological index Q in Eq. S4 is similar to the 

above process if the related polarization is zero, we will obtain the condition for nonzero value 

of Q as 

(3)

2

(3)

2

[K ]

[K ]

0, 3,6,9

0, 1,2,4
Q
= =

 =                     (S17) 

Eq. S17 indicates that if one wants to tune Q from zero to nonzero, at least a single band 

inversion is needed. The character table of TBBN (space group 150) is shown in Table 1(b). 

The bands for C3z symmetry with eigenvalue exp(i2/3) and exp(i4/3) are degenerate at both 

 and K points, forming a double-degenerate-band with different eigenvalues. However, only 

the eigenvalue exp(i2/3) is accounted for the topological index Q. Therefore, the two bands 

are inverted but the effective inverted component is only one band. Here, we still call it the 

double band inversion to make it consistent with the case of C6z symmetry. 

 

5. Domain-Wall State 

Along the rotation-invariant line preserving the C2y symmetry in the first Brillouin zone of 

TBG, the rotation winding number is well defined, which is ±=1 for each rotation sector with 

eigenvalue C2y=1.10 Physically, the nonzero rotation winding number will induce a pair of 

helical edge states on rotation symmetric boundary in TBG, propagating along opposite 

directions in each rotation sector. If the boundary of TBG is incompatible with C2y symmetry, 

the corresponding helical edge states will be gapped by a mass-term, otherwise, they are still 

gapless. For the rhombus TBG cluster studied in our work, the edges are gapped as the 
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boundary does not consistent with C2y symmetry, and the mass-term vanishes at the C2y 

symmetric corners. Therefore, in the basis of the gapless helical edge states, the effective edge 

Hamiltonian and two rotation symmetries can be written as H=kz, C2x=x and C2y=y. 

Consequently, the symmetry allowed mass-term will be mx, which is incompatible with H and 

C2y. At the 120 corner of TBG, the two gapped edges are connected by C2y symmetry. Since 

C2y(mx) C2y
-1=− mx, the mass sign is inverted crossing the 120 corner, forming a domain 

wall at the corner and resulting in the in-gap corner states. Similarly, at the 60 corner of TBG, 

the two gapped edges are connected by C2x symmetry. Since C2x(mx) C2x
-1=mx, the mass 

sign is not inverted crossing the 60 corner. Therefore, there is no in-gap corner states. 

 

Therefore, the Hamiltonian of two gapped topological edge states on 120 corner of TBG can 

be written as 

1

2

z x

z x

H k m

H k m

 

 

= +

= −
                         (S18)  

where m is the mass-term, as shown in Fig. S2(a). We can solve Eq. S18 by discretizing it to a 

one-dimensional lattice model. The mass-term is inverted crossing the 120 corner. The 

corresponding discrete energy-levels of Eq. S18 is shown in Fig. S2(b). Obviously, there are 

two degenerate in-gap states at the zero-energy. The spatial distribution of this in-gap state is 

shown in the inset of Fig. S2(b), which is localized at the corner region, exhibiting the 

characterized feature of a domain-wall state. Similarly, the Hamiltonian of two gapped 

topological edge states on 60 corner of TBG can be written as [Fig. S2(c)] 

1

2

z x

z x

H k m

H k m

 

 

= +

= +
                         (S19)  

The mass-term is not inverted crossing the 60 corner. Therefore, there is no in-gap domain-

wall states at the zero-energy, as shown in Fig. S2(d).  

 

To explore the transport properties of the gapped edge states crossing the corner, based on the 

above discretized one-dimensional lattice model, we present a NEGF calculation, where a 

linear mass inversion is used in the scattering region (corner region), as shown in Fig. S5(a). 
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The calculated conductance (G) and 1/(1-G) as a function of energy (E) and length of scattering 

region (L) is shown in Fig. S5(b) and S5(c), respectively. For a fix energy above the gap, one 

can see the periodic conductance oscillation with the increasing length of corner region, 

demonstrating the feature of resonance-tunneling. Physically, the mass inversion in two gapped 

edge states will make their wavefunciton mismatch with each other. However, by tuning the 

length of the corner region, one can control the degree of this mismatch. Generally, if the 

condition kL=n is satisfied, a resonance-tunneling will be realized, corresponding to the 

maximum conductance with a best matched wavefunction. Moreover, for a fixed length of L, 

the conductance of the edge state also varies with the changing energy, which is dramatically 

different to conventional gapless edge state induced quantized conductance. These behaviors 

are expected to be detected by the transport measurement, deserving to be investigated in the 

future works. 

 

6. Twisted Bilayer SiC 

Besides TBBN, the twisted bilayer SiC is also confirmed to be a 2D SOTI. For twist-angle 

=7.3, its band structure and bulk topological index obtained from the DFT calculations is 

shown in Fig. 8(a) and 8(b), respectively. The nonzero Q in both upper and lower gaps clearly 

demonstrates a higher-order band topology in these two high-energy gaps, which is comparable 

to that in TBBN. Additionally, since the low-energy band structure of transition metal 

dichalcogenide (TMD) is also described by the massive Dirac equation, the twisted TMD is 

expected to be another big family of higher-order topological materials.  
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Table 1. The character table of (a) TBG and (b) TBBN at different high-symmetric k points. 
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Figure S1: Edge and corner topology of TBG for =1.8. (a) and (b) Semi-infinite spectral 

function of TBG along the edge cutting through AA-stacking region in the upper and lower 

gap. (c) and (d) Spatial distribution of in-gap topological corner states around the 120corner 

in the upper and lower gap. The circle size denotes the weighting factor of corner states. These 

results are consistent with those for =2.1 in Fig. 3. The structure in (c) and (d) is the corner 

part of the whole TBG cluster, where only the top region is a real corner. 
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Figure S2: (a) and (c) Mass-term of the topological edge states at 120 and 60 corner of TBG. 

(b) and (d) Discrete energy-levels of (a) and (c). The inset in (b) is the spatial distribution of 

the in-gap domain-wall state at zero-energy. 
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Figure S3: The twist-center of TBG is chosen at single-atom for =2.1. (a) and (b) Semi-

infinite spectral function of TBG along the edge cutting through AA-stacking region in the 

upper and lower gap. (c) and (d) Spatial distribution of in-gap topological corner states around 

the 120 corner in the upper and lower gap. The circle size denotes the weighting factor of 

corner states. The structure in (c) and (d) is the corner part of the whole TBG cluster, where 

only the top region is a real corner. 
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Figure S4: TB band structure of TBBN with different twist-angles. (a) =9.4, (b) =7.3, (c) 

=6.0, (d) =5.1 and (e) =4.4. 
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Figure S5: Conductance of the gapped edge state crossing the corner. (a) One dimensional 

discretized lattice of the edge Hamiltonian. The mass-term (m) is linearly inverted in the center 

scattering region. Each lattice site has a pseudo-spin degree of freedom denoted by two 

different colors. The mass-term has the opposite sign in the left and right lead region. (b) 

Conductance (G) vs. energy (E) and scattering region length (L). L denotes the number of lattice 

site in the scattering region. m=1 is used in our calculations. (c) To show the conduction 

oscillation more clearly at higher energy, 1/(1-G) vs. E and L is plotted. 
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Figure S6: (a) and (b) TB and DFT band structure of TBG for =5.1. (c) and (d) TB and DFT 

bulk topological index of TBG for =5.1. #1
(2) (#M1

(2)) denotes the band number below the 

energy gap for C2z symmetry with eigenvalue 1 at  (M) point. #1
(3) (#K1

(3)) denotes the band 

number below the energy gap for C3z symmetry with eigenvalue 1 at  (K) point. 

[M1
(2)]=#M1

(2)−#1
(2), [K1

(3)]=#K1
(3)−#1

(3) and Q=[M1
(2)]/4+[K1

(3)]/6 mod 1 
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Figure S7: (a) and (b) TB and DFT band structure of TBBN for =9.4. (c) and (d) TB and DFT 

bulk topological index of TBBN for =9.4. #2
(3) (#K2

(3)) denotes the band number below the 

energy gap for C3z symmetry with eigenvalue exp(i2/3) at  (K) point. [K2
(3)]= #K2

(3)−#2
(3), 

and Q= [K2
(3)]/3 mod 1 
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Figure S8: (a) DFT band structure of twisted bilayer SiC for =7.3. (b) DFT bulk topological 

index of twisted bilayer SiC for =7.3. The labels have the same meaning as those in Fig. S7. 


