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Abstract

In this Letter, we describe how a spectrum of entropic perturbations generated during a period of slow contraction can source a
nearly scale-invariant spectrum of curvature perturbations on length scales larger than the Hubble radius during the transition from
slow contraction to a classical non-singular bounce (the ‘graceful exit’ phase). The sourcing occurs naturally through higher-order
scalar field kinetic terms common to classical (non-singular) bounce mechanisms. We present a concrete example in which, by the
end of the graceful exit phase, the initial entropic fluctuations have become negligible and the curvature fluctuations have a nearly
scale-invariant spectrum with an amplitude consistent with observations.
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1. Introduction.

Observational evidence [1, 2, 3] combined with theoretical
reasoning [4, 5] strongly indicate that the gravitationally bound
structures (galaxies, galaxy clusters, etc.) that comprise our
universe originate from quantum fluctuations of scalar fields
generated on sub-Hubble wavelengths that evolve to induce
classical curvature perturbations with a nearly scale-invariant
and gaussian spectrum on super-Hubble wavelengths. Accord-
ing to the leading paradigms, the relevant quantum fluctuations
are generated during a primordial smoothing phase at energy
densities sufficiently below the Planck density so that the cos-
mological background can be described to leading order by
classical equations of motion.

Two candidates for the smoothing phase are a period of ac-
celerated expansion (ȧ, ä > 0) and a period of slow contraction
(ȧ, ä < 0), where the spacetime geometry during the smoothing
phase is well-described by the Friedmann-Robertson-Walker
(FRW) metric with scale factor a(t) and the dot denotes dif-
ferentiation with respect to the physical FRW time coordinate
t. The key underlying idea is that, in either case, the scale fac-
tor a(t) and the Hubble radius |H−1| ≡ |a/ȧ| evolve at different
rates,

|H−1| ∝ aε , (1)

as determined by the equation of state

ε ≡
3
2

(
1 +

p
%

)
(2)

of the dominant stress-energy component with pressure p and
energy density ρ [6]. During an accelerated expansion (ε <
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1) phase, the Hubble radius stays nearly constant while scalar
field fluctuation wavelengths, which grow in proportion to the
scale factor a, stretch at an ultra-rapid rate to become super-
Hubble. In contrast, the Hubble radius during slow contraction
(ε > 3) shrinks ultra-rapidly while the scale factor is nearly
constant. For example, in a typical slow contraction phase, the
Hubble radius might shrink by a factor of 250 during which the
scale factor decreases by only a factor of two [7]. As a result,
fluctuation wavelengths that were sub-Hubble at the beginning
of the phase evolve to become super-Hubble by the end.

However, generating scalar field fluctuation modes with
super-Hubble wavelengths is necessary but not sufficient to ex-
plain cosmological observations. To explain measurements of
the cosmic microwave background and the power spectrum of
gravitationally bound structures, the scalar field fluctuations
must somehow source a nearly scale-invariant spectrum of co-
moving curvature fluctuations of the metric with the amplitude
of ∼ 10−5.

In general, scalar field fluctuations source two types of met-
ric fluctuations: adiabatic fluctuations on constant mean curva-
ture hypersurfaces; and entropic fluctuations on hypersurfaces
of constant energy density [8, 9]. Notably, scalar fields in back-
grounds undergoing accelerated expansion can generate both
types. If it can be arranged that the metric fluctuations are
purely adiabatic and of the correct small amplitude, they can
potentially account for the observed temperature fluctuations
of the cosmic microwave background. However, accelerated
expansion also inevitably stretches rare, large-amplitude scalar
field fluctuations that source large-amplitude adiabatic fluctu-
ations of the metric. These large metric fluctuations trigger
the well-known quantum runaway problem, an effect that spoils
the spectrum and destroys homogeneity and isotropy altogether
[10, 11, 12]. Slow contraction, on the other hand, can only
amplify entropic modes. Adiabatic modes (as well as gravita-
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tional waves [13]) experience a growing anti-friction due to the
rapidly decreasing Hubble radius which leads to their decay.
This eliminates the quantum runaway problem, an important
and distinctive advantage of the slow contraction scenario. To
date, we do not know of any other smoothing mechanism that
could do the same.

It is well-known that, during smoothing slow contraction, a
non-linear sigma type kinetic interaction between two scalar
fields naturally leads to a nearly scale-invariant and gaussian
spectrum of super-Hubble relative field fluctuations – purely
entropic modes – which are quantum generated long before the
modes leave the Hubble radius [14, 15, 16, 17]. In this Letter,
we demonstrate how these entropic modes can source curvature
perturbations on super-Hubble scales during the ‘graceful exit’
phase, i.e., the transition from slow contraction to the bounce
stage. We show that the sourcing is due to a common feature of
classical (non-singular) bounce models in which higher-order
kinetic terms associated with the scalar matter fields become
important during graceful exit [18, 19]. For concreteness, we
present an example in which the only significant fluctuations at
the beginning of the graceful exit phase are entropic but, by the
end of the phase, the entropic fluctuations have become negligi-
ble and the curvature fluctuations have a nearly scale-invariant
spectrum with an amplitude consistent with observations.

2. Cosmological model

In the scenario that we shall consider the cosmological evo-
lution is sourced by two kinetically-coupled scalar fields φ and
χ both of which are minimally coupled to Einstein gravity. The
corresponding Lagrangian density is defined as

L = 1
2 R− 1

2 (∂µφ)2− 1
2 Σ1(φ)(∂µχ)2+ 1

4 Σ2(φ)(∂µχ)4−V(φ, χ), (3)

where R is the Ricci scalar; Σ1(φ) is the quadratic kinetic cou-
pling function; Σ2(φ) is the quartic kinetic coupling function
and V(φ, χ) is the scalar potential depending on both φ and χ
fields. The potential is steep and negative along the φ direction
while nearly constant along the χ direction. Throughout, we
use reduced Planck units.

Our interest here is analyzing what happens after a period
of slow contraction has already homogenized and isotropized
spacetime well-described by an FRW metric. Varying the ac-
tion given through Eq. (3) with respect to the scalar fields and
evaluating for the FRW background yields the evolution equa-
tions for φ and χ:

φ̈ + 3Hφ̇ + V,φ =
(
Σ1,φ + 1

2 Σ2,φχ̇
2
)

1
2 χ̇

2, (4a)(
1 +

2Σ2χ̇
2

Σ1 + Σ2χ̇2

)
χ̈ +

(
3H +

Σ1,φ + Σ2,φχ̇
2

Σ1 + Σ2χ̇2 φ̇

)
χ̇ = (4b)

= −
V,χ

Σ1 + Σ2χ̇2 .

Note that the symmetries of the FRW space-time geometry lead
to spatially homogeneous background field distributions, i.e.,
φ = φ(t), χ = χ(t).

Variation of Eq. (3) with respect to the metric yields the
stress-energy tensor T µ

ν. On an FRW background, scalar fields
(collectively) act as perfect fluids and can be associated with an
energy density ρ and pressure p being given by the temporal
and spatial components of T µ

ν:

ρ = −T 0
0 = 1

2 φ̇
2 + 1

2

(
Σ1 + 3

2 Σ2χ̇
2
)
χ̇2 + V, (5a)

p = 1
3 T i

i = 1
2 φ̇

2 + 1
2

(
Σ1 + 1

2 Σ2χ̇
2
)
χ̇2 − V. (5b)

With Eq. (2), we can define the effective equation of state asso-
ciated with the ‘fluid’ as follows:

ε = 3 −
1
4

Σ2χ̇
4

H2 −
V
H2 . (6)

Finally, the Friedmann constraint and evolution equation take
the form:

3H2 = ρ = 1
2 φ̇

2 + 1
2

(
Σ1 + 3

2 Σ2χ̇
2
)
χ̇2 + V, (7a)

−2Ḣ = ρ + p = φ̇2 +
(
Σ1 + Σ2χ̇

2
)
χ̇2. (7b)

3. Entropy Modes from Slow Contraction

As an example, we consider a scalar field potential that, dur-
ing the slow contraction phase, is negative and steeply graded
along the φ direction:

V(φ, χ) ≈ −V0eφ/M . (8)

Here V0 > 0 is constant and M is the characteristic mass
scale associated with φ. At low energies, especially during the
smoothing slow contraction phase, higher-order kinetic terms
as well as the χ field’s potential energy density are negligible,
such that the Einstein-scalar system reduces to the simple set of
evolution and constraint equations:

φ̈ + 3Hφ̇ − V0
M eφ/M ≈ 0, (9a)

χ̈ +

(
3H +

Σ1,φ

Σ1
φ̇

)
χ̇ ≈ 0 , (9b)

3H2 ≈ 1
2 φ̇

2 + 1
2 Σ1χ̇

2 − V0eφ/M . (9c)

For Σ1 = eφ/m, where m . M, it is straightforward to show
(see Ref. [17]) that the unique attractor scaling solution of the
Einstein-scalar system of equations (9) is:

φ ≈ −2M × ln (−At) , a ≈ (−t)
1
ε , ε ≈ 1

2

( MPl

M

)2

, (10a)

χ̇ ≈ 0, (10b)

where A = M−1
Pl ε
√

V0/ (ε − 3) and ε is the equation of state as
defined in Eq. (2). The FRW time coordinate t runs from large
negative to small negative values and we normalized a such that
a = 1 at the onset of slow contraction. Apparently, the solu-
tion (10a) is corresponding to the physical situation of smooth-
ing slow contraction with |H−1| ≈ aε shrinking exponentially
faster than the scale factor a. For example, for M/MPl ∼ 0.1,
ε ∼ 50 such that |H−1| shrinks by a factor of 250 while a de-
creases by a factor of 2, the case described in the Introduction.
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A key to the background dynamics during the smoothing
phase is the non-linear σ-type kinetic interaction Σ1(φ)(∂µχ)2

between the φ and χ fields. As can be seen from Eq. (9b), this
contribution changes the Hubble anti-friction term (∝ 3H) into
a friction term

3H +
φ̇

m
≈

2
(−t)

−3
(

M
MPl

)2

+
M
m

 � 0, (11)

if MPl/M > 3(m/MPl). As a result, the two scalar fields ex-
hibit very different dynamics. The χ field is being continuously
damped by the friction in Eq. (9b) until it eventually ‘freezes’
at some constant value χ0. At the same time, the φ field, which
only experiences anti-friction according Eq. (9a), is being blue-
shifted due to the pure Hubble anti-friction and hence keeps
rolling down its negative potential energy curve, rapidly becom-
ing the dominant stress-energy component, which robustly ho-
mogenizes and isotropizes the cosmological background [20].

While the χ-field does not contribute to the background
smoothing, it plays an important role at perturbative order:
quantum fluctuations in the φ field, which experience the same
Hubble anti-friction as the background, blue-shift. The oppo-
site is true for the χ field. Due to the modified damping term as
given in Eq. (11), quantum fluctuations in the χ field ‘see’ a de-
Sitter-like background and red-shift. Consequently, by means
analogous to the case of inflation, they can lead to a nearly
scale-invariant spectrum of χ-fluctuations with super-Hubble
wavelengths.

This becomes particularly clear if we follow the evolution of
the canonically normalized perturbation variable vχ = a

√
Σ1δχ,

where δχ is the linearized field variable associated with χ.
For each Fourier mode with wavenumber k, the corresponding
Mukhanov-Sasaki equation takes the simple form:

v′′χ +

(
k2 −

z′′

z

)
vχ = 0, (12)

where z ≡
√

Σ1a, and prime denotes differentiation w.r.t. the
conformal time coordinate τ defined through dτ = a−1dt. Eval-
uating for the scaling solution as given in Eq. (10a), we find the
variable z as a function of τ:

z ∝ (−τ)
− 1
ε−1

(
M
m ε−1

)
, (13)

and, hence, z′′/z ∝ 1/τ2 turning Eq. (12) into a Bessel equa-
tion. At the onset of slow contraction, the energy density
∼ H2 is small and space-time is leading-order classical, such
that it is natural to assume Bunch-Davies boundary conditions
(vχ = e−ikτ/

√
2k for τ → −∞). The corresponding solution to

the Bessel equation (12) then takes the well-known form:

vχ =

√
π

4
(−τ)H(1)

ν (−kτ), (14)

where H(1)
ν is a Hankel function of the first kind, and

ν2 =
1
4

+ τ2 z′′

z
=

1
4

1 + 2
M
m ε − 1
ε − 1

2

. (15)

On large scales (−kτ � 1), the modes have the following
asymptotic:

vχ ∝ (−τ)−ν−
1
2 · k−ν. (16)

such that the spectral tilt of the χ perturbations is given by

ns − 1 = 3 − 2ν = 2
1 − M

m ε − 1
ε − 1

 . (17)

Note that strictly equal mass scales (M = m) lead to an exactly
scale-invariant spectrum (ns − 1 = 0). However, if the mass M
is slightly greater than the scale m associated with the kinetic
interaction (e.g., M = 1.02m), the spectrum is slightly red in
agreement with microwave background observations (ns − 1 '
−0.04).

It has been common to identify fluctuations in χwith entropy
perturbations because, in field space, the χ field defines a direc-
tion perpendicular to the adiabatic background trajectory; see,
e.g., Ref. [21]. However, this geometric interpretation has lim-
ited applicability: it is only valid in cases where all scalar matter
fields have canonical kinetic energy density; see Ref. [22]. A
more general and precise statement is that δχ sources (macro-
scopic) entropy modes,

S ≡ H
(
δp
ṗ
−
δρ

ρ̇

)
≡ H

δpnad

ṗ
, (18)

provided it generates a non-zero pressure contribution on hy-
persurfaces of constant density, i.e.,

δpnad ≡ δp −
ṗ
ρ̇
δρ , 0. (19)

As we will show next, this occurs naturally during graceful
exit from slow contraction to the onset of the bounce stage.
Furthermore, we demonstrate that the same entropy modes
source super-Hubble curvature modes consistent with cosmic
microwave background observations.

4. Sourcing Curvature Modes during Graceful Exit

The smoothing slow contraction phase comes to an end when
the scalar field kinetic energy increases relative to the potential
energy such that ε → 3. The phase that connects to the bounce
stage is called ‘graceful exit.’ In scenarios where the cosmolog-
ical bounce occurs at high yet sub-Planckian energies, this in-
termediate stage is dominated by the kinetic energy of the fields.
In particular, this is precisely where one expects higher-order
kinetic terms to start playing a role; see, e.g. Refs. [18, 19, 23].
As we will see, this naturally leads to the sourcing of super-
Hubble curvature modes by the fluctuations in χ generated dur-
ing the smoothing phase.

In Ref. [22], we have shown that, on large scales (k � a|H|),
the conservation of stress-energy leads to a simple relation de-
scribing the evolution of curvature fluctuations R as a function
of the entropy modes:

Ṙ ≈ −3H
ṗ
ρ̇
S = H

δpnad

ρ + p
. (20)
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In spatially-flat gauge, the co-moving curvature perturbation
can be expressed as a function of the perturbed scalars as fol-
lows:

R ≡ H
φ̇δφ +

√
Σ1 + Σ2χ̇2χ̇δχ

φ̇2 +
(
Σ1 + Σ2χ̇2) χ̇2

, (21)

and, for our model as described in Eq. (3), the non-adiabatic
pressure contribution is given by

δpnad ≈ 2c2
S

[
− Σ2χ̇

3φ̇ × Ḟ (22)

+
((

Σ1 + Σ2χ̇
2)(V,φ + 1

4 Σ2,φχ̇
4) χ̇ − V,χφ̇ − Σ2χ̇

3φ̈
)
× F

]
.

Here

F ≡

(
φ̇χ̇

φ̇2 + Σ1χ̇2 + Σ2χ̇4

) (
δχ

χ̇
−
δφ

φ̇

)
(23)

describes the relative field fluctuations; and the formal quantity

c2
S ≡

φ̇2 + Σ1χ̇
2 + Σ2χ̇

4

φ̇2 + Σ1χ̇2 + 3Σ2χ̇4
(24)

denotes the propagation speed of the adiabatic mode. The de-
tailed dynamics of R and S can be determined by integrating
the closed system of Eqs. (A.3-A.4) under spatially-flat gauge
conditions, as detailed in the Appendix.

During slow contraction, δpnad ≈ 0, as can be seen when
evaluating Eq. (22) for the scaling attractor solution for which
χ̇ ≈ 0. During graceful exit, on the other hand, χ̇ is non-zero
and Σ2 is non-negligible. In contrast to the smoothing phase,
the relative field fluctuations F lead to a non-zero non-adiabatic
pressure which, in turn, sources super-Hubble co-moving cur-
vature modes.

Since the curvature perturbations R are sourced by S on
super-Hubble scales, as indicated in Eq. (20), R automatically
inherits the nearly scale-invariant form of the entropic spec-
trum.

A particular example illustrating the sourcing of R(t) by S(t)
is presented in Fig. 1. In this example, the kinetic coupling
functions in the action, Eq. (3), have a simple exponential form:
Σ1 = eφ/m, Σ2 = eφ/m2 , with m = 0.67 and m2 = −0.5. We have
also taken the dependence of the potential on φ in this transi-
tion phase after slow contraction to be negligible and on χ to
be small: V(φ, χ) = V0χ, with V0 = 2 × 10−13 such that V(φ, χ)
is small compared to the total kinetic energy density through-
out the bounce phase (from the end of slow contraction at time
t = ti = −3×104 to the bounce itself at t = t f = −102, expressed
in reduced Planck time units), as expected when approaching a
bounce. The background initial conditions are the following:
φi = −7.5, φ̇i = 2.7 · 10−5, χi = 0, χ̇i = −2.3 · 10−6. These
background conditions were chosen such that the energy den-
sity in φ dominates over the energy density in χ at the end of the
slow contraction phase, as expected in bouncing scenarios: that
is Ωφ/Ωχ|t=ti � 1. Conversely, the initial ratio of the curvature
perturbation is set to be negligible compared to the entropic per-
turbation ((R/S)2 ≈ 10−4 � 1), as expected when first ending
the slow contraction phase because the adiabatic fluctuations
are not amplified during slow contraction.

|S(t)|

|R(t)|

t

10-5

10-6

5 x10-6

5 x10-7

t
10-8

10-7

10-5

-30 000 -20 000 -10 000

-30 000 -20 000 -10 000

10-6

Figure 1: A plot of the magnitude of the curvature perturbation on co-moving
hypersurfaces, |R(t)| (top), and the entropy perturbation, |S(t)| (bottom), as a
function of time t (expressed in reduced Planck units) for the example discussed
in the text.

The evolution of R(t) and S(t) for a super-Hubble radius
mode with k/a|H| � 1 is shown in Fig. 1 as obtained from nu-
merical integration of Eqs. (A.3-A.4) in the spatially-flat gauge.
As anticipated, beginning from a negligible curvature pertur-
bation, the sourcing of R by the entropic perturbation causes
R � 10−5 to grow to an amplitude consistent with observations
(see Fig. 2), R ≈ 10−5. The total curvature perturbation power
spectrum amplitude is then〈
R2 (x)

〉
=

∫
d3k

(2π)3

(
R

kν

)2

=

∫
dk
k

(
R2

2π2

)
k3−2ν =

∫
dk
k

∆2
R

(k) .

(25)
Taking the R obtained from the numerical integration to corre-
spond to k∗ = 0.002 Mpc−1 , we obtain

∆2
R

(k) |t=t f = 2.5 · 10−9 with ns ' 0.96, (26)

in accord with current observations [1]. Over the same period of
evolution, Fig. 2 shows that (R/S)2 grows to be greater than 106

such that the fractional contribution of isocurvature perturba-
tions to the total power spectrum βiso becomes negligible, also
in accord with current observations.

5. Conclusion

Scalar field perturbations of quantum origin can source adia-
batic or entropic fluctuations on super-Hubble scales. Entropic
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(R/S)2

t

t

104

102

100

10-2

10-4

106

10-2

10-4

10-6

1

βiso

-30000 -20000 -10000

-30000 -20000 -10000

Figure 2: A plot of [R(t)/S(t)]2 (top) for the example discussed in the text. At
the end of the slow contraction phase and entering the bounce phase, |R| � S is
negligible; but, by the time the bounce would occur (t ≈ −100 in this example),
the sourcing of the curvature perturbation by the entropic perturbation leads to
|R| � S. Consequently, the fractional contribution of the entropy modes to
the total power spectrum, |βiso(t)| ≡ S2/(R2 + S2), is nearly one entering the
bounce phase but negligibly small by the time the bounce occurs, consistent
with current observations.

fluctuations on super-Hubble scales can source curvature modes
on super-Hubble scales as a consequence of stress-energy con-
servation. If our universe has undergone a phase of slow con-
traction that connects to the current expanding phase through
a cosmological bounce, adiabatic and gravitational wave fluc-
tuations from the smoothing phase decay and therefore cannot
contribute to the observed fluctuation spectra of the cosmic mi-
crowave background. Rather, we would expect that the tem-
perature anisotropies stem from super-Hubble entropy modes
generated during slow contraction that sourced curvature modes
before the onset of decelerated expansion.

In this paper, we described a scenario for how this mech-
anism might naturally occur during graceful exit when slow
contraction ended but the bounce has not yet occurred. Fur-
thermore, we presented an explicit example that generates a
spectrum of primordial perturbations that agrees with current
cosmological observations.

The key ingredients of this new mechanism are:

- a non-linear σ-type kinetic interaction between two scalar
fields that acts as a friction term (typical of de Sitter-like
expansion) on one of the fields which it ‘freezes,’ leading

to a nearly scale-invariant spectrum of this field’s quantum
fluctuations;

- a higher-order quartic kinetic term that typically comes to
dominate at the end of slow contraction and at the onset of
the classical (non-singular) bounce stage. This term natu-
rally leads to a non-adiabatic pressure contribution, sourc-
ing super-Hubble curvature modes before the bounce oc-
curs.

This novel kinetic sourcing mechanism opens up several new
avenues for future research. For example, it will be interesting
to see if different graceful exit and bounce mechanisms leave
different detectable imprints on the spectrum when the curva-
ture modes are being sourced by entropy modes during graceful
exit.
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Appendix A. Evolving the linearized scalars δφ and δχ

In this Appendix, we derive the evolution equations for the
perturbed scalars δφ and δχ that we used to numerically com-
pute the example presented in Figs. 1 and 2 above.

Scalar variables of the linearly perturbed line element for a
spatially-flat Friedmann-Robertson-Walker (FRW) space-time
are given by

ds2 = −(1 + 2α)dt2 + 2a (t) ∂iβdtdxi (A.1)
+ a2 (t)

[
(1 − 2ψ) δi j + 2∂i∂ jE

]
dxidx j,

where α and β are the linearized lapse and (scalar) shift pertur-
bations, respectively, and −ψδi j + ∂i∂ jE is the scalar part of the
linearized spatial metric.

With φ = φ (t) + δφ (t, x), χ = χ (t) + δχ (t, x) denoting small
inhomogeneities in the scalar fields around the homogeneous
background, the linearized action (3) takes the form:

L = a3
(
− 3ψ̇2 + k2

a2ψ
2 − 2 k2

a2σsh

(
ψ̇ + Hα

)
− 2

(
3Hψ̇ + k2

a2ψ
)
α

+
(
φ̇δφ +

(
Σ1 + Σ2χ̇

2) χ̇δχ)(3ψ̇ + k2

a2σsh

)
−

(
3H2 − 1

2 φ̇
2 − 1

2
(
Σ1 + 3Σ2χ̇

2) χ̇2
)
α2

−
(
φ̇δφ̇ +

( 1
2 Σ1,φχ̇

2 + 3
4 Σ2,φχ̇

4 + V,φ
)
δφ

)
α

−
((

Σ1 + 3Σ2χ̇
2) χ̇δχ̇ + V,χδχ

)
α

+ 1
2δφ̇

2 − 1
2

k2

a2 δφ
2 + 1

2

(
1
2 Σ1,φφχ̇

2 + 1
4 Σ2,φφχ̇

4 − V,φφ

)
δφ2

+ 1
2

(
Σ1 + 3Σ2χ̇

2
)
δχ̇2 − 1

2

(
Σ1 + Σ2χ̇

2
)

k2

a2 δχ
2 − 1

2 V,χχδχ
2

+
(
Σ1,φχ̇ + Σ2,φχ̇

3
)
δφδχ̇ − V,φχδφδχ

)
,

(A.2)
where σsh ≡ a

(
aĖ − β

)
is the scalar part of the linearized shear.
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Variation of Eq. (A.2) with respect to α and β leads to the
linearized Hamiltonian and momentum constraints:

−2 k2

a2

(
ψ + Hσsh

)
=
(
6H2 − φ̇2 − Σ1χ̇

2 − 3Σ2χ̇
4
)
α (A.3a)

+6Hψ̇ + φ̇δφ̇ +
(
Σ1 + 3Σ2χ̇

2
)
χ̇δχ̇

+
(

1
2 Σ1,φχ̇

2 + 3
4 Σ2,φχ̇

4 + V,φ

)
δφ + V,χδχ ,

Hα + ψ̇ = 1
2

(
φ̇δφ +

(
Σ1 + Σ2χ̇

2
)
χ̇δχ

)
. (A.3b)

Varying Eq. (A.2) with respect to δφ and δχ yields the evolu-
tion equations for the perturbed scalar fields:

δφ̈ + 3Hδφ̇ +
(

k2

a2 + V,φφ −
1
2 Σ1,φφχ̇

2 − 1
4 Σ2,φφχ̇

4
)
δφ (A.4a)

−
(
φ̈ + 3Hφ̇ − 1

2 Σ1,φχ̇
2 − 3

4 Σ2,φχ̇
4 − V,φ

)
α

−φ̇
(
α̇ + 3ψ̇ + k2

a2σsh

)
−

(
Σ1,φ + Σ2,φχ̇

2
)
χ̇δχ̇ + V,φχδχ = 0 ;(

Σ1 + 3Σ2χ̇
2
)(
δχ̈ + 3Hδχ̇

)
+

(
Σ1 + 3Σ2χ̇

2
).
δχ̇ (A.4b)

+
(
Σ1 + Σ2χ̇

2
)

k2

a2 δχ + V,χχδχ

−
(
Σ1 + 3Σ2χ̇

2
)(
χ̈ + 3Hχ̇

)
α −

(
Σ1 + 3Σ2χ̇

2
).
χ̇α + V,χ α

−
(
Σ1χ̇ + 3Σ2χ̇

3
)
α̇ −

(
Σ1χ̇ + Σ2χ̇

3
) (

3ψ̇ + k2

a2σsh

)
+

(
Σ1,φ + Σ2,φχ̇

2
)
χ̇δφ̇ + V,φχδφ

+
(
Σ1,φ + Σ2,φχ̇

2
)(
χ̈ + 3H

)
δφ +

(
Σ1,φ + Σ2,φχ̇

2
).
χ̇δφ = 0.

In spatially-flat gauge (ψ, E ≡ 0), the evolution and con-
straint equations (A.3-A.4) together with the background equa-
tions (4, 7) yield a closed system for the dynamical variables δφ
and δχwhich we used above to numerically compute the gauge-
invariant quantities S and R defined in Eqs. (18) and (21), re-
spectively.
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