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Abstract 23 

When estimating the influence of sentence complexity on reading, researchers typically opt for one of 24 

two main approaches: Measuring syntactic complexity (SC) or transitional probability (TP). 25 

Comparisons of the predictive power of both approaches have yielded mixed results. To address this 26 

inconsistency, we conducted a self-paced reading experiment. Participants read sentences of varying 27 

syntactic complexity. From two alternatives, we selected the set of SC and TP measures, respectively, 28 

that provided the best fit to the self-paced reading data. We then compared the contributions of the SC 29 

and TP measures to reading times when entered into the same model. Our results showed that both 30 

measures explained significant portions of variance in self-paced reading times. Thus, researchers 31 

aiming to measure sentence complexity should take both SC and TP into account. All of the analyses 32 

were conducted with and without control variables known to influence reading times (word/sentence 33 

length, word frequency and word position) to showcase how the effects of SC and TP change in the 34 

presence of the control variables.  35 
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Comparing predictors of sentence self-paced reading times: Syntactic complexity versus 36 

transitional probability metrics 37 

Introduction 38 

The comprehension of written sentences consists of a multitude of low-level and high-level cognitive 39 

processes. During reading, the reader’s overall goal is to integrate incoming words into a coherent 40 

interpretation. The complexity of a sentence influences the speed with which it is read: Complex 41 

sentences are read more slowly than less complex sentences. An important topic in reading research 42 

has been the operationalization of sentential complexity. Previous research has led to two main 43 

approaches for quantifying complexity: in terms of syntactic complexity (SC), which refers to a set of 44 

measures based on hierarchical dependency structures (e.g., [1,2]), and in terms of transitional 45 

probability (TP), which refers to a class of information-theoretical metrics concerning probabilistic 46 

patterns of co-occurrence of linguistic units (e.g., [3,4]). Crucially, previous empirical reports have 47 

provided mixed evidence with regard to the importance of SC and TP in predicting sentence reading 48 

speed. 49 

In the present study, we addressed this inconsistency and conducted a self-paced reading 50 

experiment featuring sentences of varying complexity. We first established for SC and TP separately 51 

the set of measures that best accounted for variability in participants’ sentence reading times. Then we 52 

compared the contributions of selected SC and TP measures to explaining variance in reading times, 53 

when entered into the same analysis. We discuss the implications for and the usefulness of SC and TP 54 

measures for quantifying reading behavior. 55 

 56 

Syntactic complexity 57 

To investigate the effects of sentential complexity on reading behavior, a large body of 58 

psycholinguistic research has focused on specific, more complex or less complex syntactic 59 

constructions, including subject- and object-relative clauses, active and passive sentences, and 60 

syntactic ambiguities ([5–7], for reviews). The study of these constructions has been very popular, as 61 

they allow for tight experimental control. That is, more and less complex syntactic constructions (e.g. 62 
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active and passive sentences) can often be formed using the same lexical materials, enabling 63 

researchers to compare processing costs associated with different syntactic constructions independent 64 

of lexical effects.  65 

Complementary to studying specific sentence constructions, previous research has proposed 66 

measures for operationalizing syntactic complexity in a continuous fashion (e.g., [8–10]). Such 67 

measures of syntactic complexity (SC) capitalize on the fact that words that belong together (i.e., 68 

words that form interconnected syntactic dependencies) often do not appear in adjacent positions, but 69 

are distributed across the sentence. Such dependency structures (e.g., verb phrases, noun phrases, 70 

adjective phrases, etc.), consisting of non-adjacent lexical elements, are referred to as non-local 71 

hierarchical dependencies (e.g., [1,6,11]). 72 

A common way of formalizing SC is the ‘left-branching’/‘right-branching’ (LB/RB) 73 

complexity metric (e.g., [9,12]). In LB structures, one or multiple dependents are encountered before 74 

its head, whereas in RB structures, the head is followed by its dependent(s) (see (1) for examples of 75 

left- and right-branching constructions). 76 

 77 

(1) a. LB: Mydep3 brother’sdep2 frienddep1 arrivedhead. 78 

 b. RB: The dog slepthead ondep1 the doorstepdepd2 ofdep3 the housedep4 in whichdep5 itdep6 79 

liveddep7.  80 

 81 

In both types of structures, open dependencies are created when the reader encounters a new, 82 

non-unified head or dependent. The process of integrating the encountered lexical elements into a 83 

cohesive phrasal (sub-)structure is often referred to as syntactic unification [2,13–16]. Syntactic 84 

unification cost, more commonly referred to as ‘syntactic complexity’ [17,18], increases when 85 

multiple open non-local dependencies need to be simultaneously kept active within working memory. 86 

A compelling body of behavioral studies has reported an association between high syntactic 87 

complexity and increased processing load, as reflected in longer self-paced reading or word fixation 88 

times (e.g., [17,19–24]). Moreover, such effects appear to be stronger for LB compared to RB 89 

dependency structures [8,21–23,25]. 90 
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Tying in with a growing body of studies on the neurobiological mechanisms underlying 91 

syntactic processing (e.g., [26–30]), Uddén et al. [31] investigated functional brain activity associated 92 

with comprehending sentences varying in LB and RB complexity. They conducted a re-analysis of a 93 

functional magnetic resonance imaging dataset from Schoffelen et al. [32], where participants (n = 94 

102) read stimulus sentences (n = 360) of varying syntactic complexity. Uddén et al. reported 95 

evidence for a left-hemispheric fronto-temporoparietal neural network involved in sentence 96 

comprehension that was particularly sensitive to variations in syntactic complexity. Their results also 97 

revealed that the neural effects for LB complexity were more pronounced than for RB complexity. 98 

 99 

Transitional probability 100 

Fostered by the development of powerful computers and the availability of large linguistic corpora, 101 

there has been a rise in using information-theoretical metrics and computational modelling in 102 

linguistic research. Information-theoretic accounts of language processing often consider sentence 103 

comprehension a form of information processing, with individual words conveying specific amounts 104 

of information. The amount of information that is conveyed by a word is assumed to determine the 105 

cognitive load associated with comprehending it and with this word’s contribution to comprehending 106 

the entire sentence [3,33]. 107 

Transitional probability (TP) is a measure that defines word information in terms of 108 

probability characteristics that are based on statistical frequencies of sequential (co-)occurrence of 109 

words or phrases [3,33–36]. These probability measures can be derived from different types of 110 

probabilistic language models. For example, models may be trained on large amounts of input 111 

sequences whose syntactic structure may or may not be provided alongside the written word forms. 112 

As a result, probabilistic models differ as to whether or not they take the syntactic dependency 113 

information into account when calculating probability values for individual words. 114 

 TP measures are used to formalize the statistical probability of transitioning from one word to 115 

the next [3,36]. TP is commonly defined in terms of forward and backward TP (FTP and BTP): FTP 116 

refers to the probability that a particular word will follow a preceding context of one or more words. 117 
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Hence, FTP captures how probable each word is given its previously encountered context. 118 

Conversely, BTP quantifies the probability that a certain context preceded the currently encountered 119 

word. Hence, BTP essentially refers to the probability of each word given its following word or string 120 

of words. To give an example, consider the sentence “I wish you a good weekend”: FTP can be used 121 

to quantify the probability that “weekend” will follow “(a) good”, while BTP is concerned with the 122 

probability that “good” has preceded the word “weekend”. 123 

FTP and BTP are akin to the theoretical concepts of entropy and surprisal [3,35,37]. Less 124 

probable word transitions are typically associated with increased processing costs, resulting in higher 125 

(self-paced) reading times. Such effects have been observed frequently for FTP measures [33,36,38–126 

40]. Studies investigating the effects of BTP are sparse and have reported mixed findings (e.g., Frank 127 

[40], found no effects on reading times; but see [41,42]). 128 

 129 

Comparing syntactic complexity and transitional probability metrics 130 

Although studies of SC and TP are rooted in different theoretical assumptions and are operationalized 131 

using different methodologies, one goal of both approaches is to predict sentence comprehension 132 

difficulty. However, in spite of this common goal, previous research has often focused on one of the 133 

two approaches ([21–24]; see Hale [3] for review). 134 

One attempt to assess and compare the predictive quality of SC and TP approaches in 135 

sentence comprehension was made by Frank and Bod [43]. Using fixation data from an eye-tracked 136 

reading experiment (Dundee corpus, [44]), the researchers investigated the degree to which TP 137 

estimates derived from three different types of language models explained word reading times. The 138 

three types of models were trained on materials taken from the Wall Street Journal corpus [45]. The 139 

first type of models were Markov models (also known as n-gram models); the second type of models 140 

were echo state networks (ESNs), a class of recurrent neural network (RNN) models. Both types of 141 

models relied solely on the sequential co-occurrence of words, and had no access to information about 142 

hierarchical syntactic dependencies in the text. The two types of models differed with regard to their 143 

maximal input length in that ESNs have no upper limit to the length of sentential context, whereas 144 

Markov models (by definition) do. The third type of models were probabilistic phrase-structure 145 
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grammar (PSG) models. Unlike the other two model types, PSG models incorporated information 146 

about hierarchical syntactic structure when assigning probability values. The results obtained by 147 

Frank and Bod revealed that PSG models did not account for variance in reading times over and 148 

above the amount of variance explained by the sequential-structure models. 149 

 Using a similar approach in an electrophysiological study, Frank et al. [33] presented 150 

participants with sentences from the UCL corpus of reading times (see [40]). As before, the authors 151 

used three different types of language models to calculate their probability metrics: Markov (i.e., n-152 

gram) models, RNN models, and probabilistic PSG models. As in Frank and Bod [43], only the latter 153 

type of models incorporated hierarchical syntactic dependency information. The results showed that 154 

reading individual words in the electrophysiological study elicited N400 components (event-related 155 

potential commonly associated with semantic processing [46]) that were strongly correlated with 156 

levels of surprisal (akin to FTP). Critically, the TP measures that were obtained from language models 157 

that did not include hierarchical structure (i.e., the Markov and RNN models) fitted the data better 158 

than the PSG models did. Based on these findings, Frank and colleagues concluded that hierarchical 159 

structure did not contribute significantly to explaining variance in the neural effects of sentence 160 

processing, complementing their earlier behavioral work (Frank & Bod, [43]). 161 

In sum, in spite of the extensive body of literature showing effects of SC on reading (e.g., 162 

[17,20–24,47]), there is no consensus about the added value of incorporating information about 163 

hierarchical syntactic information into TP-based language models when predicting sentence 164 

comprehension difficulty. Note that in the studies by Frank and co-workers the measure resulting 165 

from each of the models that incorporated syntactic information (i.e., PSG models) were an 166 

integration of SC and TP. That is, a single value reflected the probability of a word taking into 167 

account syntactic structure and lexical co-occurrence frequency. 168 

In the current study, we operationalized SC and TP as independent sets of measures and 169 

assessed and compared the predictive quality of SC and TP measures in self-paced sentence reading. 170 

This approach had the advantage that we could determine in independent analyses which SC and TP 171 

measures, respectively, provide the best fit to the data before pitting them against each other. 172 

Moreover, we could conduct correlation analyses between SC and TP measures to assess how much 173 
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variance is shared between them—an analysis that is not possible when integrating SC and TP 174 

measures into one measure. 175 

 176 

The current study 177 

We conducted a self-paced reading experiment and presented 73 participants with 160 sentences taken 178 

from the neuroimaging study by Schoffelen et al. [32] (see also Uddén et al. [31]; both did not record 179 

behavioral reading data) to obtain behavioral correlates of sentence reading (i.e., self-paced word 180 

reading times). We used the self-paced reading (SPR) paradigm as it has been used numerous times to 181 

study syntactic processing ([48,49], for reviews). Also, by presenting words in a serial fashion, we 182 

paralleled the setup used by Schoffelen et al. and Uddén et al. [31,32], who used rapid serial visual 183 

presentation in their fMRI study on the neural markers of SC as closely as possible. 184 

We tested how well SC and TP measures predicted variance in participants’ self-paced 185 

reading times. Critically, instead of implementing hierarchical dependencies as part of a TP language 186 

model (as done by Frank and colleagues [33,43]; see also Fossum & Levy [47]), we operationalized 187 

SC and TP as two independent sets of measures, with the latter having no access to information about 188 

hierarchical syntactic structure. We opted for implementations of these measures that have previously 189 

shown effects on sentence reading performance. In particular, we calculated four SC measures: two 190 

left- and two right-branching ones (e.g., [19,20,23]), as well as four TP measures (FTP, BTP), 191 

calculated from an n-gram model trained on unanalyzed word sequences (e.g., [33,43,47]). In 192 

independent analyses, we first identified the sets of SC and TP measures, respectively, that provided 193 

the best fit to our self-paced reading data. Then we assessed the relative contributions of SC and TP 194 

measures to explaining variance in reading behavior by entering these sets into the same model. We 195 

conducted analyses both at the sentence- and the word-level. Although the main focus of the study 196 

was on comparing the effects of SC and TP, for sentence- and word-level analyses, we conducted 197 

models with and without control variables known to influence reading times (sentence/word length, 198 

word frequency, word position [50–53]). Note that most SPR studies focus on word-level analyses of 199 
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reading times. Here, we complemented this approach with sentence-level analyses to capture the 200 

cumulative effects of SC and TP across the whole sentence. 201 

The setup of the current study enabled us to replicate previous experiments investigating the 202 

effects of SC and TP on self-paced reading (e.g., [17,20–24,33,43,47]). Based on these reports, we 203 

predicted positive relationships between LB/RB complexity and reading times. Since we transformed 204 

our TP metrics to a positive scale, we also expected a positive relationship between FTP/BTP and 205 

reading times. Hence, we predicted longer reading times for more complex sentences (i.e., larger SC 206 

and TP values). The crucial question was whether SC would still explain a substantial portion of 207 

variance when entered simultaneously into an analysis with TP. If, as argued by Frank and colleagues 208 

[33,43], sentence comprehension difficulty is primarily explained by TP, this should not be the case. 209 

If, however, SC does contribute to explaining variance in sentence reading over and above TP, we 210 

should observe SC effects as main effects of the SC measures (in addition to main effects of TP). 211 

 212 

Method 213 

Participants 214 

We tested 73 participants (60 female, mean age: 22.73). All participants were recruited from the 215 

participant pool of the Max Planck Institute for Psycholinguistics. Sixty participants were enrolled in 216 

(or had finished) university education, eleven were enrolled in higher vocational education (HBO) and 217 

two in intermediate vocational education (MBO). All participants were non-dyslexic native Dutch 218 

speakers and had normal or corrected-to-normal vision. All participants were naïve to the goal of the 219 

experiment. Written informed consent was obtained at the beginning of the session. As compensation 220 

for their participation, participants received 6 Euros. The ethics board of the Faculty of Social 221 

Sciences at Radboud University provided ethical approval to conduct the study. 222 

 223 

Materials 224 

We selected 160 Dutch sentences from the stimuli used by Schoffelen et al. and Uddén et al. [31,32], 225 

that featured variable sentence length (ranging 9 - 15 words, average length: 11.46 words). The 226 

sentences were unconstrained in terms of syntactic structure and showed substantial variation in 227 
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syntactic complexity. Note that we did not a priori control for the relationships between our measures 228 

of interest and/or the control variables. Instead, our focus was on obtaining a ‘natural’ spread in 229 

sentence length and complexity. Ninety-three sentences contained a relative clause. Capitals indicated 230 

the start of each sentence. The sentences did not contain punctuation or a full stop at the end. 231 

 232 

Syntactic complexity measures 233 

Uddén et al. [31] formalized the LB and RB dependency structures based on dependency trees that 234 

were generated by an automated parser (FROG parser; [54]). These dependency trees were checked 235 

manually and adjusted if they contained errors. We used the per-word LB and RB values as calculated 236 

by Uddén et al., and calculated two additional syntactic complexity measures: the number of per-word 237 

left- and right-branching unifications (LB_unif and RB_unif). The dependency trees of two example 238 

sentences and an explanation of the calculation of the SC measures are provided in the supplementary 239 

materials. 240 

LB and RB. The LB complexity value for each word was operationalized (see also Uddén et 241 

al. [31]) as the number of left-branching dependencies that were (1) opened, (2) unified (i.e., closed) 242 

or (3) remained open at that particular point in the sentence. That is, as the sentence unfolded from 243 

left to right, a word’s LB value was equivalent to the number of dependents that had been encountered 244 

and that could not yet be attached to a verbal head. The LB measure thus incorporated all syntactic 245 

dependencies of a given word in a sentence and the processing costs associated with them. 246 

Analogously to the LB measure, each word’s RB complexity value was operationalized as the number 247 

of right-branching dependencies that were opened, unified or remained open at the occurrence of that 248 

word in the sentence. 249 

LB_unif and RB_unif. Both unif measures were subsets of their respective LB and RB 250 

counterparts. The LB_unif measure reflected the number of left-branching unifications that occurred 251 

at each word (if any) in the sentence. Thus, this measure differed from the LB measure in that it only 252 

considered dependencies that were unified at a given word, and neglected the dependencies that were 253 

opened or remained open. Analogously, a word’s RB_unif value reflected the number of right-254 

branching dependencies that were unified at that word in the sentence. The inclusion of both unif 255 
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measures was motivated by previous reports that showed substantial processing costs associated 256 

specifically with the operation of unifying a syntactic head with its dependent(s) (see [19,24,30]). 257 

As described above, we performed sentence-level and word-level analyses. The dependent 258 

variable in the sentence-level analysis was obtained by summing the reading times of all words in a 259 

given sentence. We operationalized the LB, RB, LB_unif and RB_unif complexity values for each 260 

sentence as the sum of the values of all words in that sentence. Figures 2 and 3 show the (Pearson) 261 

correlation heatmaps for all predictors at the sentence- and word-level, respectively. As can be seen, 262 

LB and LB_unif as well as RB and RB_unif were quite highly correlated, which is to be expected 263 

given that one is a subset of the other. Correlations between left- and right-branching measures (also 264 

for the unif measures) were negative, indicating that high left-branching complexity often coincided 265 

with low right-branching complexity and vice versa. Note also that word- and sentence-level 266 

correlations were quite different. For example, at the word-level, the positive correlations between 267 

LB/RB and their respective unif measures were less strong. Moreover, while the correlation between 268 

LB and RB changed slightly from the sentence- (r = 0.09) to the word-level (r = 0.23), it flipped for 269 

the correlation between LB_unif and RB_unif (sentence: r = -0.44, word: r = 0.31). 270 

 271 

Transitional probability measures 272 

Our TP measures included bigram and trigram forward and backward TP, obtained from an n-gram 273 

model that was trained on unanalyzed word sequences and did not incorporate information about 274 

hierarchical sentential syntax ([55]). In line with previous studies (e.g., [4,33,36]), the four TP 275 

measures were operationalized as the logarithm of each word’s occurrence probability. 276 

Forward and backward bigram TP. Bigram TP refers to the probability of transitioning from 277 

one word to another. Forward bigram TP (bigram FTP), more specifically, refers to the probability of 278 

encountering the current word given its preceding (one-word) context. Backward bigram TP (bigram 279 

BTP), on the other hand, refers to the probability with which a certain one-word context has preceded 280 

the current word. Bigram TP could not be calculated for the first word in each sentence. 281 
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Forward and backward trigram TP. To capture slightly longer stretches of text, we included 282 

trigram TPs, where forward trigram TP (trigram FTP) refers to the probability of the current word 283 

given the preceding two-word context and backward trigram TP (trigram BTP) refers to the 284 

probability that a certain two-word context has preceded the current word. Trigram TP was not 285 

calculated for the first two words in each sentence. 286 

For the sentence-level analyses, the four TP measures were summed for all words in a given 287 

sentence. All TP measures were provided on a positive scale, with larger values reflecting more 288 

improbable (i.e., unexpected/surprising) word transitions. 289 

As shown in Figures 2 and 3, forward bigram and trigram TP were moderately to strongly 290 

correlated, both at the sentence- and word-level, as were backward bigram and trigram TP. This is to 291 

be expected given that bigrams are included in trigrams. Furthermore, the two bigram and the two 292 

trigram measures were strongly correlated at the sentence-level (due to summation), but not at the 293 

word-level. 294 

 295 

Control variables  296 

In addition to the four SC and four TP measures, we included multiple control variables in our 297 

sentence-level and word-level analyses. For the sentence-level analyses, we included the number of 298 

words (NWords) and summed word frequency of all words in a given sentence (SumFreq; retrieved 299 

from SUBTLEX-NL [56], and converted to the Zipf scale [57]). At the word-level, we included word 300 

length (operationalized as number of letters; NLetters (e.g., [58]), word frequency (Zipf) and word 301 

position (running word number within the sentence). 302 

Table 1 shows the descriptive statistics of all predictors at the sentence-level, summed across 303 

all words per sentence. Table 2 provides the same overview for the word-level predictors (except 304 

word position). 305 

  306 
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Table 1. Descriptive statistics of sentence-level predictors (n = 160; all measures summed per sentence). 307 

Measure Mean SD Range 
NWords 11.46 1.32 9 - 15 
SumFreq 61.79 8.35 45.41 – 86.93 
LB 20.51 7.24 8 – 41 
RB 14.91 4.71 7 – 30 
LB_unif 6.54 1.39 4 – 11 
RB_unif 3.86 1.30 2 – 7 
Forward bigram TP 30.93 4.53 19.21 – 43.85 
Forward trigram TP 17.92 3.97 9.11 – 27.99 
Backward bigram TP 29.27 4.65 16.59 – 40.23 
Backward trigram TP 44.75 7.10 30.38 – 63.95 

   308 
 309 

Table 2. Descriptive statistics of word-level predictors. 310 

Measure Mean SD Range 
NLetters 4.96 2.51 1 – 13 
Zipf 5.39 1.62 1.30 – 7.60 
LB 1.79 1.31 0 – 6 
RB 1.30 0.72 0 – 4 
LB_unif 0.57 0.82 0 – 4 
RB_unif 0.34 0.48 0 – 1 
Forward bigram TP 2.97 1.41 0 – 7.67 
Forward trigram TP 1.90 1.44 0 – 6.56 
Backward bigram TP 2.81 1.63 0.03 – 7.68 
Backward trigram TP 4.74 1.75 0.39 – 7.68 

 311 

 312 

Procedure 313 

The experiment was carried out at the Max Planck Institute for Psycholinguistics. Participants were 314 

tested individually, seated in an experiment booth, in front of a computer screen. They were instructed 315 

to read the sentences silently as fast as possible while still being able to comprehend their contents. 316 

Each sentence was presented word by word, using a non-cumulative, stationary window self-paced 317 

reading paradigm. Each word appeared in the center of the screen. The participants pressed the space 318 

bar to bring up the next word, which replaced the previous word. Reading times (RTs; the difference 319 

between onset of word presentation and the button press) were recorded for each word in every 320 

sentence. 321 
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To ensure that participants kept focus while reading the sentences, 20% (32 out of 160) of the 322 

sentences were followed by a yes/no question. The questions focused on the wording of the sentence 323 

(e.g., “was the word X mentioned?”), or the semantic content (e.g., “was person A angry with person 324 

B?”). The correct answer was ‘yes’ for half of the questions. 325 

All participants read all 160 sentences. The order of sentences was random and different for 326 

each participant. After reading a sentence, participants pressed the Enter key to start the next sentence. 327 

The entire task consisted of four blocks (each containing 40 trials), which were divided by small 328 

breaks. In total, the experiment took approximately 25 minutes. 329 

 330 

Data pre-processing 331 

Prior to statistical analysis, we excluded two participants whose accuracy on the yes/no questions was 332 

below 80% (same criterion as [33,58]). Subsequently, the RT data were screened for outliers. In line 333 

with previous literature [58,59], all sentence trials that contained word RTs shorter than 100 ms or 334 

longer than 2,000 ms were excluded. This led to the exclusion of 2.68% of all trials. The RTs of all 335 

words were log-transformed. For the sentence-level analyses, all word RTs were summed (and then 336 

log-transformed) to obtain one RT per sentence per participant. 337 

We plotted the average RT by word position over all participants (Figure 1). This plot 338 

revealed that the first word in each sentence was read substantially more slowly (i.e., on average by 339 

more than 100 ms) than the following words. As the SC and TP measures for the first word in a 340 

sentence are naturally very low or even undefined, such outlier RTs could confound our analyses. We 341 

therefore excluded the first word of each sentence from all subsequent analyses. This did not affect 342 

any of the TP measures, as the sentence-initial words had not been included in the measures (see 343 

‘Transitional probability measures’ section). With regard to the SC measures and word frequency, 344 

there were some minimal changes to the sentence-level means (LB: M = 19.52, RB: M = 14.68, no 345 

change for LB_unif and RB_unif, SumFreq: M = 55.39). Similarly, the word-level means changed 346 

slightly as compared to the means reported in Table 2 (LB: M = 1.87, RB: M = 1.40, LB_unif: M = 347 

0.63, RB_unif: M = 0.37, Word Zipf: M = 5.30). 348 
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 349 

Figure 1: Average word RTs by word position. Black dots represent average RTs for each word position. Gray dots 350 
represent average RTs per word per sentence. Note that only five sentences had a length of fifteen words. 351 

 352 

Results 353 

The average response accuracy to the yes/no comprehension questions (after exclusion of two 354 

participants) was 93.1%. After outlier removal, the average reading time per sentence (over all 355 

participants) was 4529 ms (SD = 1621, range = 1747 – 15490 ms). Across all sentences and all 356 

participants, the average per-word reading time was 385 ms (SD = 170, range 100 – 1984). The 357 

heatmaps in Figure 2 and 3 contain the correlations between sentence and word RTs and the various 358 

predictors. 359 

The heatmaps show that the strongest correlations were observed between sentence/word RTs and 360 

Nwords/NLetters and SumFreq/Zipf (i.e., the control variables). Note that at the sentence-level 361 

SumFreq and sentence RT correlated positively, whereas a negative correlation would be expected 362 

(frequent words leading to shorter RTs). The positive correlation is most likely an artifact of the 363 

summation of Zipf values. 364 

At the sentence-level, all of our measures of interest showed moderate to strong positive 365 

correlations with sentence RTs. At the word-level, LB_unif, forward and backward bigram TP 366 

showed the strongest positive correlation ranging between r = 0.2 and r = 0.29. 367 

 368 

Figure 2: Heatmap showing the Pearson correlations between all sentence-level predictors and sentence RTs. 369 

 370 

Figure 3: Heatmap showing the Pearson correlations between all word-level predictors and word RTs. Note: the TP 371 
measures contained some missing values, as by definition, the first word of a sentence is not defined in bigrams and the first 372 
two words are not defined in trigrams. Hence, bigram and trigram measures did not contain values for the first (and second) 373 
word(s) of each sentence. 374 

 375 

Control measures 376 

Prior to assessing the contribution of the predictors of interest, we assessed the contribution of the 377 

control variables to explaining variance in RTs. To that end, we fitted two linear-mixed effects 378 

models: one sentence-level and one word-level model in R (R Development Core Team, 2011), using 379 
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the lme4 package [60]. The sentence-level model contained ‘participant’ and ‘sentence’ as random 380 

effects; at the word-level, these were ‘participant’ and ‘word’ (all random effects had random 381 

intercepts). The dependent variable was log-transformed sentence/word RTs. 382 

At the sentence-level, the model additionally contained NWords and SumFreq as continuous 383 

predictors; at the word-level the model contained NLetters, Zipf and word position. All continuous 384 

predictors were scaled and centered. Given the sample size of our dataset and the number of items 385 

each participant read, we consider t-values larger than +/- 2 to be statistically significant [61]. 386 

As shown in Table 3, at the sentence-level we observed significant contributions of both 387 

NWords and SumFreq. That is, longer sentences and sentences composed of less frequent words 388 

resulted in longer RTs than sentences containing fewer and more-frequent words. At the word-level, 389 

NLetters and word position showed significant positive effects, such that word RTs were longer for 390 

longer than for shorter words and such that words later in the sentence (larger word position value) 391 

were read more slowly than words earlier in the sentence. Zipf frequency did not contribute 392 

significantly to word RTs. 393 

 394 

Table 3. Results of the mixed-effects model with only control predictors. 395 

Sentence-level: Number of obs.: 11055, groups: Sentence, 160; Participant, 71. 396 
Word-level: Number of obs.: 115583, groups: Word, 1673; Participant, 71. 397 
 398 

Syntactic complexity 399 

To estimate the variance explained by SC measures (LB/RB vs. LB_unif/RB_unif) in addition to that 400 

explained by the control variables and to determine which set of SC measures provided the best fit to 401 

the data, we fitted four linear mixed-effects models (two word- and two sentence-level models), 402 

which were identical in structure to the previous models, but additionally contained one of the two 403 

sets of SC variables (either LB and RB or LB_unif and RB_unif, scaled and centered). 404 

 Sentence-level Word-level 
Predictor Estimate SE t Estimate SE t 
(Intercept) 3.634 0.013 280.81 2.554 0.013 191.77 
NWords / 
NLetters 

0.064 0.003 19.91 0.006 0.001 6.25 

SumFreq / Zipf -0.018 0.003 -5.51 -0.001 0.001 -1.33 
word position - - -  0.008  0.001  13.29 
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Table 4 summarizes the results of the four SC models. As in the previous sentence-level 405 

model, we observed significant effects of NWords and SumFreq, with longer sentences and sentences 406 

composed of less frequent words resulting in longer RTs than shorter sentences and sentences 407 

containing frequent words. With regards to the SC measures, we found that LB showed a marginal 408 

effect, with sentences containing more complex left-branching structures being read more slowly than 409 

sentences with less complex left-branching structures. RB showed a negative effect suggesting that 410 

sentences with larger RB values were read faster. Neither LB_unif nor RB_unif showed a significant 411 

effect at the sentence-level. 412 

In the word-level analyses, the control variables NLetters and word position showed 413 

significant positive effects (i.e., longer RTs for longer words and words later in the sentence). While 414 

LB did not contribute significantly to explaining variance in word RTs, RB showed a negative effect 415 

with words with larger right-branching values (right-branching dependencies being opened, kept open 416 

or closed) being read faster than words with fewer right-branching dependencies. In contrast, the 417 

model that contained the two unif measures revealed a positive effect of LB_unif such that words 418 

where more left-branching dependencies were closed (i.e., unified) were read more slowly than words 419 

where fewer left-branching dependencies were closed. RB_unif showed no effect. 420 

It should be highlighted that while the SC predictors showed some significant effects, the bulk 421 

of variance in both sentence- and word-level RTs was explained by the control variables (i.e., 422 

sentence/word length, frequency and word position), as reflected in the estimates in Table 4. Given 423 

that the SC measures were moderately correlated with the control variables (see heatmaps in Figures 2 424 

and 3), multicollinearity could have been an issue. Including multiple correlated predictors in the 425 

same model may result in biased coefficients [62]. In fact, in some cases, multicollinearity may even 426 

reverse the directionality of effects: Recall that – based on previous research – we predicted positive 427 

effects (larger SC values associated with longer RTs), but that at the sentence- and word-level, RB 428 

had negative effects in the models described above. 429 

To assess to what extent multicollinearity was an issue in our four models, we calculated 430 

variance inflation factor (VIF) values of our predictors (see Table 4). VIF values reflect the degree to 431 

which the variance explained by one predictor is inflated due to multicollinearity effects. Generally, 432 
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predictors with VIF values that exceed 5 are regarded as problematic in linear models [63,64], and it 433 

is advised to remove them as the information they code is redundantly contained. We found high VIF 434 

values at the sentence-level for NWords and for SumFreq. 435 

To assess the contributions of the SC predictors (our measures of interest) to RTs, 436 

independent of the control variables, we re-ran the models described above. To facilitate the 437 

comparison between sentence- and word-level models, we re-fitted all four models, removing the 438 

control variables. The results are shown in Table 5. At the sentence-level, both sets of SC measures 439 

showed significant positive effects: larger LB/RB/LB_unif/RB_unif values were associated with 440 

longer RTs. The estimates of the unif measures were larger than those of the corresponding LB/RB 441 

measures. At the word-level, both unif measures had significant positive effects. The effects of LB 442 

and RB were both negative; the effect of LB was not significant. 443 

The results of the SC-only models show that multicollinearity influenced (some of) the effects 444 

of the SC predictors. Given the fact that the unif measures showed more consistent effects throughout 445 

the various models (with and without control variables) and had larger estimates, we selected LB_unif 446 

and RB_unif for our ‘full-model’ analysis, where we compared the predictive power of SC and TP 447 

predictors.448 



Table 4. Results of the mixed-effects models concerning syntactic complexity (SC). 449 

Model 1: sentence-level: LB & RB. Number of obs: 11055, groups: Sentence, 160; Participant, 71. 450 
Model 2: sentence-level: LB_unif & RB_unif. Number of obs: 11055, groups: Sentence, 160; Participant, 71. 451 
Model 3: word-level: LB & RB. Number of obs: 115583, groups: Word, 1673; Participant, 71. 452 
Model 4: word-level: LB_unif & RB_unif. Number of obs: 115583, groups: Word, 1673; Participant, 71.453 

  Sentence-level Word-level 
Model Predictor Estimate SE t VIF Estimate SE t VIF 
LB & RB complexity (Intercept) 3.633 0.013 280.92  2.55 0.013 191.77  
 NWords / NLetters 0.062 0.003 19.20 8.14 0.006 0.001 6.08 2.92 
 SumFreq / Zipf -0.014 0.003 -4.31 8.22 -0.001 0.001 -1.36 2.97 
 word position - - -  0.008 0.001 13.12 1.06 
 LB 0.003 0.001 1.92 1.48 -0.001 0.001 -0.71 1.19 
 RB -0.004 0.002 -2.65 1.87 -0.002 0.001 -4.06 1.06 

LB_unif & RB_unif (Intercept) 3.634 0.013 280.91  2.55 0.013 191.77  
 NWords / NLetters 0.064 0.005 12.37 20.79 0.006 0.001 6.15 2.91 
 SumFreq / Zipf -0.014 0.003 -4.38 8.09 <0.001 0.001 0.14 3.11 
 word position - - -  0.007 0.001 11.76 1.19 
 LB_unif -0.001 0.004 -0.11 13.25 0.003 0.001 5.40 1.33 
 RB_unif -0.006 0.004 -1.54 11.46 <0.001 0.001 0.10 1.31 



Table 5. Results of the mixed-effects model with only SC predictors. 454 

Sentence-level: LB/RB: Obs.: 11055, groups: Sentence, 160; Participant, 71. 455 
Sentence-level: unifs: Obs.: 11055, groups: Sentence, 160; Participant, 71. 456 
Word-level: LB/RB: Obs.: 115583, groups: Word, 1673; Participant, 71. 457 
Word-level: unifs: Obs.: 115583, groups: Word, 1673; Participant, 71. 458 
 459 
 460 
Transitional probability 461 

To estimate the contribution of the TP measures to sentence and word RTs and to determine which set 462 

of TP measures (bigram or trigram) provided the best fit to the data, we adopted a similar approach as 463 

for the SC measures. As a first step, we fitted four models, two sentence- and two word-level models, 464 

which contained control and TP predictors. Table 6 summarizes the results. In all four models, we 465 

observed large positive effects of length (NWords and NLetters, respectively), a negative effect of 466 

frequency and – at the word-level – a positive effect of word position. Regarding our measures of 467 

interest, we observed a significant positive effect of bigram and trigram BTP (i.e., longer reading 468 

times for more unexpected backward-looking transitions), both at the sentence-level and the word-469 

level. In both sentence-level models, forward TP showed trends for a negative effect; in the word-470 

level models, these negative effects were statistically significant suggesting that words with larger 471 

forward bigram/trigram TP were read faster than words with lower forward TP. 472 

As for the SC models, we calculated VIF values for the predictors in our four TP models. We 473 

found that in both sentence-level models the control variables had VIF values far above 5. Moreover, 474 

in the bigram sentence-level model, forward and backward TP predictors also had values above 5. 475 

None of the predictors in the word-level models were affected by multicollinearity. 476 

As for the SC analyses, we re-ran the four TP models to estimate the contributions of TP 477 

predictors independent of the control variables. As in the SC-only models, removing the control 478 

variables drastically changed the effects of the TP predictors. Forward and backward bigram TPs 479 

 Sentence-level Word-level 
Predictor Estimate SE t VIF Estimate SE t VIF 
(Intercept) 3.634 0.013 274.58  2.554 0.013 191.73  

LB 0.027 0.003 8.74 1.01 -0.001 0.001 -0.55 1.05 
RB 0.023 0.003 7.71 1.01 -0.003 0.001 -4.12 1.05 

(Intercept) 3.634 0.013 279.77  2.554 0.013 191.75  
LB_unif 0.048 0.002 26.71 1.23 0.006 0.001 8.54 1.10 
RB_unif 0.037 0.002 20.67 1.23 0.003 0.001 5.35 1.10 
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showed significant positive effects, both at the sentence- and the word-level. While backward trigram 480 

TP had a significant positive effect on sentence RTs, there was no hint of an effect of forward trigram 481 

TP. Both trigram measures had significant negative effects in the word-level analysis. Thus, given the 482 

more consistent effects of bigram TP, we selected these measures for the full-model analysis that 483 

compared the contributions of SC and TP directly.484 



Table 6. Results of the mixed-effects models concerning transitional probability (TP). 485 
  Sentence-level Word-level 

Model Predictor Estimate SE t VIF Estimate SE t VIF 
Bigram BTP & FTP (Intercept) 3.634 0.013 280.86  2.55 0.013 191.89  
 NWords / NLetters 0.061 0.004 14.64 12.97 0.007 0.001 8.22 2.95 
 SumFreq / Zipf -0.017 0.004 -4.82 9.38 -0.008 0.001 -7.20 4.83 
 word position - - - - 0.007 0.001 13.78 1.01 
 Bigram FTP -0.004 0.003 -1.44 6.02 -0.005 0.001 -5.29 2.86 
 Bigram BTP 0.007 0.003 2.71 5.62 0.011 0.001 20.18 1.18 

Trigram BTP & FTP (Intercept) 3.634 0.013 280.88  2.56 0.013 193.69  
 NWords / NLetters 0.058 0.004 15.41 10.66 0.007 0.001 7.23 2.98 
 SumFreq / Zipf -0.015 0.003 -4.57 8.58 -0.012 0.001 -10.17 4.28 
 word position - - - - 0.006 0.001 9.99 1.02 
 Trigram FTP -0.004 0.002 -1.97 2.57 -0.007 0.001 -10.97 1.41 
 Trigram BTP 0.008 0.002 3.22 4.48 0.010 0.001 12.18 2.26 

Model 1: sentence-level: bigram. Number of obs: 11055, groups: Sentence, 160; Participant, 71. 486 
Model 2: sentence-level: trigram. Number of obs: 11055, groups: Sentence, 160; Participant, 71. 487 
Model 3: word-level: bigram. Number of obs: 115167, groups: Word, 1667; Participant, 71. 488 
Model 4: word-level: trigram. Number of obs: 104248, groups: Word, 1509; Participant, 71. 489 



Table 7. Results of the mixed-effects model with only TP predictors. 490 

Sentence-level: bigram: Obs.: 11055, groups: Sentence, 160; Participant, 71. 491 
Sentence-level: trigram: Obs.: 11055, groups: Sentence, 160; Participant, 71. 492 
Word-level: bigram: Obs.: 115167, groups: Word, 1667; Participant, 71. 493 
Word-level: trigram: Obs.: 104248, groups: Word, 1509; Participant, 71. 494 
 495 

 496 

Full-model: SC versus TP 497 

To assess the relative contributions of SC and TP measures to explaining variance in self-paced 498 

reading times, we fitted one sentence-level and one word-level model, containing the (summed) 499 

LB_unif, RB_unif, bigram FTP and bigram BTP measures. The full sentence-level model contained 500 

NWords and SumFreq, and the full word-level model contained word length, Zipf and word position 501 

as control predictors (all scaled and centered). Both models had ‘participant’ and ‘sentence’/‘word’ 502 

(both with random intercepts) as random effects. 503 

Table 8 summarizes the results of the two models. As in the previous models, we observed 504 

that sentence/word length and frequency had effects in the expected directions. Also, as before, word 505 

position had a positive effect at the word-level, such that words later in the sentence were read more 506 

slowly than words early in the sentence. With regards to our measures of interest, at the sentence-507 

level, there was a significant positive effect of bigram BTP and a trend for a negative effect of bigram 508 

FTP. Neither LB_unif nor RB_unif had a significant effect. At the word-level, bigram BTP showed a 509 

significant positive effect, whereas bigram FTP showed a significant negative effect. The two unif 510 

measures did not show a substantial contribution to explaining word RTs. 511 

As in the previous analyses, the sentence-level control predictors had VIF values larger than 512 

five. To complement the previous analyses and to compare the contributions of SC and TP measures 513 

independent of any influence from the control predictors, we re-ran the ‘full’ model containing only 514 

 Sentence-level Word-level 
Predictor Estimate SE t VIF Estimate SE t VIF 
(Intercept) 3.634 0.013 276.21  2.554 0.013 191.84  

Bigram FTP 0.013 0.006 2.11 5.07 0.006 0.001 9.93 1.05 
Bigram BTP 0.026 0.006 4.41 5.07 0.009 0.001 13.85 1.05 
(Intercept) 3.634 0.013  278.37  2.555 0.013 193.69  

Trigram FTP 0.002 0.003  0.76 2.04 -0.004 0.001 -5.18 1.27 
Trigram BTP 0.042 0.003  13.98 2.04 -0.002 0.001 -2.02 1.27 



24 
 

the variables of interest. The results of this model are listed in Table 9. Removing the control 515 

variables had again dramatic effects on the contributions of SC and TP measures: With one exception 516 

(bigram FTP at the sentence-level), all SC and TP predictors showed significant positive effects 517 

(higher complexity/more improbable word combinations associated with longer RTs) in both 518 

sentence-and word-level analyses. 519 

 520 

Table 8. Results of the ‘full’ model at the sentence-level and word-level. 521 
 Sentence-level Word-level 

Predictor Estimate SE t VIF Estimate SE t VIF 
(Intercept) 3.634 0.013 280.93  2.554 0.013 191.89  
NWords 0.063 0.006 10.72 27.20 0.007 0.001 8.19 2.96 
SumFreq -0.015 0.004 -4.29 9.70 -0.008 0.001 -6.39 5.99 

word position - - - - 0.007 0.001 12.66 1.19 
LB_unif <0.001 0.004 0.04 13.33 0.001 0.001 0.18 1.53 
RB_unif -0.005 0.004 -1.26 11.78 < -0.001 0.001 -0.06 1.34 

Bigram FTP -0.004 0.003 -1.63 6.04 -0.005 0.001 -4.90 3.27 
Bigram BTP 0.006 0.003 2.21 5.78 0.011 0.001 19.34 1.27 

Sentence-level: obs: 11055, groups: Sentence, 160; Participant, 71. 522 
Word-level: obs: 115167, groups: Word, 1667; Participant, 71. 523 
 524 

 525 

Table 9. Results of the ‘full’ model, without control predictors. 526 
 Sentence-level Word-level 

Predictor Estimate SE t VIF Estimate SE t VIF 
(Intercept) 3.634 0.013 280.07  2.554 0.013 191.86  
LB_unif 0.039 0.002 16.35 2.56 0.004 0.001 6.45 1.17 
RB_unif 0.032 0.002 16.45 1.68 0.004 0.001 6.83 1.11 

Bigram FTP 0.001 0.003 0.23 5.29 0.005 0.001 8.52 1.11 
Bigram BTP 0.010 0.004 2.92 5.44 0.008 0.001 14.07 1.06 

Sentence-level: obs: 11055, groups: Sentence, 160; Participant, 71. 527 
Word-level: obs: 104248, groups: Word, 1667; Participant, 71. 528 
 529 

 530 

Discussion 531 

The main goal of the present study was to assess the relative contributions of SC and TP to explaining 532 

variance in reading times. We conducted a self-paced reading experiment where native Dutch 533 

participants read sentences of varying complexity. We conducted mixed-effects model analyses at the 534 



25 
 

sentence- and word-level and identified, in independent analyses, which set of SC and TP measures, 535 

respectively, provided the best fit to the data. 536 

These analyses revealed significant contributions of the SC measures to explaining variance 537 

in RTs. Our results thus replicate earlier research showing that SC, operationalized in a continuous 538 

fashion, predicts sentence reading difficulty (e.g., [17,20–24,47]). Moreover, these results 539 

complement the neurobiological work by Uddén et al. [31], who reported evidence for a left-540 

hemispheric fronto-temporoparietal neural network involved in sentence comprehension that was 541 

sensitive to variations in syntactic complexity. Apart from answering occasional comprehension 542 

questions, the participants in Uddén et al.’s study did not carry out a behavioral task. Since we used a 543 

subset of their materials and a similar design (rapid serial visual presentation in the fMRI study and 544 

non-cumulative stationary window self-paced reading in the present study), the present results fill that 545 

gap and demonstrate an association between SC and behavioral processing costs in reading. Note, 546 

however, that Uddén et al.’s analyses were based on the LB and RB and not the unif measures. As 547 

explained in the Introduction, another goal of the present study was to compare LB/RB with the unif 548 

measures. Our analyses revealed that the unif measures provided a better and more consistent fit to the 549 

data (across multiple analyses) than the LB/RB measures. In other words, SC measures indexing the 550 

number of syntactic unifications occurring at a given word were better predictors than measures 551 

indexing the sum of various syntactic operations (i.e., the number of opened, unified and kept open 552 

dependencies). This is an interesting finding as it suggests that unifying syntactic dependencies plays 553 

a pivotal role in predicting sentence comprehension difficulty (see also [19]). Since Uddén et al. did 554 

not report any analyses involving unif measures, it is unclear how well these would predict 555 

participants’ neural activity. Future research could address this question. 556 

With regards to TP, our analyses showed that bigram TP (i.e., the probability of transitioning 557 

from one word to another in a forward or backward fashion) was a better predictor of self-paced 558 

reading times than trigram TP. The importance of bigram TP for reading has previously been 559 

highlighted in research using eye-tracking during reading ([65], see also [66]). Moreover, bigram TP 560 

has ties to the concept of ‘association strength’, either operationalized through free association tasks 561 

[67] or latent semantic analysis [68]. Associations are assumed to play an important role both in 562 
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language comprehension (e.g., [69,70]) and cognitive processing [71] more broadly. The present 563 

analyses corroborate the role of bigram TP in language comprehension and showed that two-word 564 

contexts provided a better fit to reading times than three-word contexts. One may have predicted that 565 

a longer context may contain more information than a shorter context and that trigrams therefore 566 

should influence reading times more consistently than bigrams. Among others, effects of trigram TP 567 

have previously been reported in self-paced story reading [72]. One possibility is that bigrams were 568 

more important than trigrams in the present experiment because our participants read disconnected, 569 

isolated sentences rather than a semantically coherent story. Future research could explore under 570 

which conditions readers place more weight on bigrams and trigrams, respectively. 571 

In our final analysis, we assessed the contributions of LB_unif, RB_unif, and forward and 572 

backward bigram TP to reading times when included in the same model. In doing so, we addressed 573 

the question whether SC measures explain variance in reading behavior over and above the TP 574 

measures (cf. [33,43]). Indeed, we observed some evidence suggesting significant contributions of 575 

both SC and TP predictors to explaining sentence and word reading times (cf. [47]). 576 

 Before discussing the implications of SC and TP effects in more detail, it is important to 577 

highlight the role of the control variables. As it turned out, the control variables had consistent effects 578 

in all analyses and explained the bulk of variance in reading times: Participants took more time to read 579 

longer sentences (composed of more words) and longer words (composed of more letters) compared 580 

to shorter sentences and words. Word frequency had a negative effect with higher frequency resulting 581 

in shorter word reading times (see [73] for discussion of the effects of frequency in word processing). 582 

The strong length and frequency effects demonstrate that much of the variance in word reading times 583 

is associated with low-level word characteristics (rather than higher-level syntactic dependencies and 584 

lexical co-occurrence frequencies, cf. [51–53]). 585 

At the word-level, we had additionally included position within the sentence as a control 586 

predictor (see Mak & Willems [50] for a similar approach). We observed that words later in the 587 

sentence were read more slowly than words at the beginning of the sentence. One account for this 588 

finding is that participants briefly scanned words at the beginning of a sentence, pressed the button 589 

quickly to bring up the next word, and took more time later in the sentence as they read the words and 590 
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integrated the preceding lexical material into a sentence-model. Some support for this notion comes 591 

from reading research using electroencephalography. Van Petten and Kutas [74] found that words in a 592 

sentence, presented in rapid serial visual presentation at a fixed rate of 900 ms (200 on, 700 ms off), 593 

elicited smaller N400 components when occurring later as compared to earlier in the sentence. The 594 

authors took the inverse relationship between N400 amplitude and word position to reflect the 595 

growing influence of sentential constraints on word processing as a sentence builds up. The finding 596 

from the present analyses that word position consistently contributed to explaining variance in reading 597 

times highlights the need for including this measure as a control variable. In a way, these analyses 598 

also lend support for operationalizing the sentence-level RTs as a sum of word reading times, as such 599 

a measure may capture the cumulative effects of sentential constraints better than a dependent 600 

variable based, for example, on a minimum or maximum RT. 601 

On a technical note, our analyses revealed important limitations when estimating the 602 

contributions of correlated predictors to a dependent variable. As became clear across the various 603 

analyses, the effects of our measures of interest changed drastically (in terms of size and 604 

directionality) when the control variables were included in the same model leading to 605 

multicollinearity (see e.g. [75] for a similar observation). To address the main goal of the present 606 

study (pitting SC and TP against each other), we ran models that only contained the measures of 607 

interest. Our final sentence- and word-level models, containing LB_unif, RB_unif, forward and 608 

backward bigram TP, revealed that all of the four variables contributed positively to reading times (at 609 

the sentence-level, the effect of bigram FTP failed to reach statistical significance). Taken together, 610 

the data thus provide evidence for the claim that SC and TP jointly influence self-paced reading. 611 

However, when both sets of measures are included in models together with the control variables, the 612 

contributions of SC and TP appear to be dominated by the control variables. 613 

Although the effects of SC and TP were smaller than those of the control variables, they must 614 

not be overlooked. The central question of this study was whether SC would explain variance over 615 

and above that of TP. The answer to this question appears to be ‘yes’. The picture that emerges is one 616 

where readers are sensitive to both more ‘global’ hierarchical information (i.e., syntactic dependencies 617 

distributed across the sentence) and local transitions between adjacent words during sentence 618 



28 
 

comprehension. Thus, both SC and TP contribute to determining sentence-reading difficulty. Such a 619 

multiple-cue account of sentence reading resonates well with proposals for other aspects of sentence 620 

comprehension (e.g., prediction [76,77]), where various cues contribute to comprehension and where 621 

the context in which language processing takes place determines how much weight is placed on which 622 

cue. 623 

 624 

Conclusion 625 

The current study demonstrated independent effects of SC and TP on self-paced reading times, both at 626 

the sentence-level and at the word-level. With regards to SC, we observed that measures reflecting the 627 

number of a word’s syntactic unifications were better predictors than measures reflecting a multitude 628 

of syntactic operations (opening, closing and tracking an open dependency). In terms of TP, we 629 

showed an advantage of bigram over trigram measures in predicting variance in self-paced reading 630 

times. Throughout all analyses, we found strong effects of the control variables (e.g. sentence/word 631 

length, word frequency and word position), which explained the bulk of variance in our models. We 632 

conclude that SC and TP jointly influence sentence reading difficulty, albeit that compared to the 633 

control variables, both have small effects. We recommend that future research takes both approaches 634 

into account when operationalizing sentence complexity and quantifying reading behavior. 635 
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