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Planta 3 mòdul 303, 08018 BARCELONA, Spain

3Center for Computational Quantum Physics (CCQ),
Flatiron Institute, 162 Fifth Avenue, New York NY 10010, USA

(Dated: March 4, 2021)

Recently a novel approach to find approximate exchange-correlation functionals in density-
functional theory was presented (U. Mordovina et. al., Journal of Chemical Theory and Com-
putation 15, 5209 (2019)), which relies on approximations to the interacting wave function using
density-matrix embedding theory (DMET). This approximate interacting wave function is con-
structed by using a projection determined by an iterative procedure that makes parts of the reduced
density matrix of an auxiliary system the same as the approximate interacting density matrix. If
only the diagonal of both systems are connected this leads to an approximation of the interacting-
to-non-interacting mapping of the Kohn-Sham approach to density-functional theory. Yet other
choices are possible and allow to connect DMET with other density-functional theories such as
kinetic-energy density functional theory or reduced density-matrix functional theory. In this work
we give a detailed review of the basics of the DMET procedure from a density-functional perspec-
tive and show how both approaches can be used to supplement each other. We do so explicitly
for the case of a one-dimensional lattice system, as this is the simplest setting where we can apply
DMET and the one that was originally presented. Among others we highlight how the mappings of
density-functional theories can be used to identify uniquely defined auxiliary systems and auxiliary
projections in DMET and how to construct approximations for different density-functional theories
using DMET inspired projections. Such alternative approximation strategies become especially im-
portant for density-functional theories that are based on non-linearly coupled observables such as
kinetic-energy density-functional theory, where the Kohn-Sham fields are no longer simply obtain-
able by functional differentiation of an energy expression, or for reduced density-matrix functional
theories, where a straightforward Kohn-Sham construction is not feasible.
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I. INTRODUCTION

Finding the ground state of a multi-electron system is of central importance in several areas of modern physics. Yet
the exponential increase of the dimension of the interacting multi-electron wave function prohibits a direct solution
of the resulting Schrödinger equation in most cases. A possible way to avoid this problem is to reformulate the
multi-electron problem in terms of reduced quantities that can be calculated numerically efficiently. Most prominent
is density-functional theory [1] and its extensions such as one-body reduced density-matrix functional theory [2].
However, the main challenge for density-functional theories is to find accurate yet efficient approximations to the un-
known exchange-correlation functionals. Traditionally these functionals are based on approximate energy expressions
of simple reference systems such as the homogeneous electron gas [1]. It is then necessary to perform a functional
derivative with respect to the reduced quantity to obtain the exchange-correlation potentials of the Kohn–Sham ap-
proach to density-functional theories. However, besides fundamental issues with the differentiability of the involved
functionals [3, 4], it is particularly challenging to construct approximations that also hold for situation with strong
static correlations with such energy-based approximation schemes. Therefore alternative approximation strategies are
highly desirable. Recently, such an alternative approach was presented in Ref. [5], where instead of energy expres-
sions directly an approximation to the interacting wave function based on an auxiliary non-interacting wavefunction
is employed. This is done by using ideas from density-matrix embedding theory (DMET) [6], where an interacting
electronic problem is divided into subsystems (referred to as impurity and environment) that are treated on different
levels of accuracy. The main connection to density-functional theories and the crucial ingredient of DMET is an ap-
proximate projection derived from an auxiliary non-interacting system. This approximate projection is determined by
an iterative procedure that makes parts of the reduced density matrix of the auxiliary system the same as the approx-
imate interacting density matrix. If only the diagonal of both systems are connected this leads to an approximation
of the interacting-to-non-interacting mapping of standard density-functional theory.

The DMET methodology was first presented and benchmarked for one-dimensional and two-dimensional Hubbard
lattices [6] and since then numerous studies and extensions of DMET have been presented on Hubbard lattices [7–9].
Apart from quantum lattice models it has been also applied to ab-initio Hamiltonians to treat certain molecular [10, 11]
and periodic systems [12, 13]. Furthermore, different extensions of DMET have been developed to apply the method
to time-dependent systems [14] and excited states [15], and to coupled electron-phonon models [16, 17]. Also, finite-
temperature systems have already been treated with DMET [18]. Numerical shortcomings of the DMET method can
be improved by semi-definite programming [19], projected DMET [20] and multiconfigurational DMET [21].

In this work we want to elucidate the connection between the two mentioned approaches to the multi-electron prob-
lem, namely density-functional theories and DMET, and highlight how they can be used to supplement each other. To
do so we re-examine the foundations of DMET and provide a comprehensive discussion of the basic ingredients. Since
in DMET not only the M -particle space is relevant (in contrast to most density-functional theories) we discuss in
detail how the different spaces, projectors, Hamiltonians and projected Hamiltonians are connected. We will focus on
the simplest setting of DMET, i.e., finite one-dimensional lattices. This together with a focus on the simplest iteration
procedures (many different have been proposed in the literature) allows us to highlight several subtle issues. Firstly,
by carefully constructing different representations of the electronic Fock space, we show how a Hamiltonian given in
terms of global fermionic creation and annihilation operators differs to a representation in terms of local fermionic
creation and annihilation operators (Sec. II A). This is connected to the fact that in an only locally anti-symmetrized
basis (as is the case for impurity and environment wave functions) the expansions coefficients need to carry the
anti-symmetrization. Furthermore we elucidate how an effective chemical potential arises when a Hamiltonian is
projected onto a smaller Fock space, and point out discrepancies with respect to previous works in the projected
interaction terms (Sec. II B). After discussing in detail the different projections employed in DMET, we highlight the
appearance of the problem of non-interacting v representability of reduced density-matrix functional theory in the
DMET procedure. As a result we find infinitely many non-interacting Hamiltonians with a non-local potential that
can be used for the auxiliary projection of the DMET procedure (Sec. IVB). This implies a certain arbitrariness in
the iteration procedure and the corresponding iterated approximated projections. Furthermore, we show that making
these projections exact by increasing the impurity size to half the full system size (the projector becomes the identity
operator on the full Fock space) requires a non-trivial adaption of the standard DMET procedure (Sec. IVC). We
then highlight how the arbitrariness of the iteration steps can lead to different fixed points of the DMET procedure
without further refinements (Sec. IVD). This problem can persist also when the full embedded (projected) 1RDMs
are made to agree (Sec. IVE). Since we use a general non-local effective potential we can find a similar problem
also for a global (many impurities) iteration (Sec. IVF). We here then make a connection with density-functional
theories, which provide us with mapping and representability theorems to potentially avoid spurious non-uniqueness
and non-representability issues. These theorems suggest to express the exact projection in terms of the auxiliary
and an exchange-correlation projection (Sec. V). Finally we discuss how DMET allows us to approximate density-
functional-type mappings and how we can construct approximations for different density-functional theories (Sec. VI).
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To ease access to readers unfamiliar with DMET we provide an extensive supplement where the many different
concepts are explained with simple examples.

II. THEORETICAL SETTING

Let us, for simplicity and definiteness, choose in our considerations a finite, one-dimensional lattice system. Since we
will be changing Hilbert spaces a lot in the following, let us introduce all of these spaces and how they are connected.
At the same time we will also define the Hamiltonians and discuss their representations in the different spaces. Finally
we will briefly discuss projections of Hamiltonians onto subspaces and some properties of the 1RDM.

A. From single-particle space to the fermionic Fock space

Following the usual construction of quantum physics, we will start with the single-particle space of N sites, which
we denote by

h1 ∼= C
N (1)

with the usual inner product and ∼= meaning isometrically isomorphic. A Hamiltonian ĥ(1) on this space can be rep-

resented in the standard (site) basis |i〉 as a hermitean N ×N matrix h(1)(i, j) = 〈i|ĥ(1)j〉. With the N eigenfunctions
of this matrix 〈i|φµ〉 = φµ(i) and their eigenenergies ǫµ the Hamiltonian can be equivalently represented as

h(1)(i, j) =

N∑

µ=1

ǫµφµ(i)φ
∗
µ(j). (2)

While we will give several explicit examples for spinless fermions in the supplement (to keep the dimensions small),
in general we will consider spin 1/2 particles. All the results in the following will not depend on whether we include
spin or not. The only difference lies in the dimensionalities of the objects that we consider. Since we will keep the
spin dimension (a factor 2) explicit, it is usually easy to infer the spinless dimensions (else we state it explicitly). The
single-particle space including spin we denote by

H1 = h1 ⊗ C
2 ∼= C

2N . (3)

Here the standard (site-spin) basis is denoted as |z〉 ≡ |iσ〉 and a Hamiltonian Ĥ(1) can be represented as a 2N × 2N
hermitean matrix that reads in eigenrepresentation

H(1)(z, z′) =
2N∑

µ=1

ǫµφµ(z)φ
∗
µ(z

′). (4)

So far no statistics of the particles have entered our construction. Now for theM -particle space the fermionic nature of
our electrons will become important. It is common practice to construct theM -particle space in two consecutive steps.
First we define the space of distinguishable particles asHM = H1⊗· · ·⊗H1, which has dimensions (2N)M and standard
basis states of the form |z1...zM ) = |z1〉⊗· · ·⊗|zM 〉. We want to emphasize that we denote the distinguishable-particle
(non-symmetrized) basis with |·) while we later denote the indistinguishable-particle (anti-symmetrized) basis with

|·〉. In this space the non-interacting M -particle Hamiltonian is defined as Ĥ(M) = Ĥ(1) ⊗ 1̂
(1) ⊗ · · · ⊗ 1̂

(1) + · · · +
1̂
(1) ⊗ · · · ⊗ 1̂

(1) ⊗ Ĥ(1), where 1̂(1) is the identity of H1. If we denote |φµ1〉 ⊗ · · · ⊗ |φµM
〉 = |µ1...µM ) it can be

expressed as Ĥ(M) =
∑2N

µ1...µM=1(ǫµ1 + · · ·+ ǫµM
)|µ1...µM )(µ1...µM |, which with the expression in the standard basis

(z1...zM |µ1...µM ) = φµ1(z1)...φµM
(zM ) leads to the eigenrepresentation in the spin-site basis. At this point one could

wonder why we did introduce a space of distinguishable particles, when we anyway want to work with electrons? As
we will show below, in quantum physics we often work explicitly in HM but restrict then the allowed states to the
indistinguishable ones. Nevertheless, we can equivalently work with the Hilbert space of indistinguishable fermions,
as we will also show below. Both approaches look formally similar but have some important differences, that we
need to highlight for completeness and to avoid subtle errors. The first approach is straightforward. We make all
anti-symmetric products for the standard basis

|z1...zM 〉 =
1√
M !

∑

p

σ(p)|p(z1)〉 ⊗ · · · ⊗ |p(zM )〉, (5)
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where the sum goes over all permutations p of the M indices and σ(p) denotes whether the permutation is even (+) or
odd (-). In a similar manner we can do that for any other basis, e.g., the eigenbasis of the non-interacting Hamiltonian

Ĥ(M) is denoted as |µ1...µM 〉. The number of such states is
(
2N
M

)
. If we now look for the eigenstate of Ĥ(M), however,

restricted on this fermionic subspace, we will find all Slater determinants of the non-interacting Hamiltonian, i.e.

Φ̃(z1...zM ) = (z1...zM |k1...kM 〉 (6)

=
1√
M !

∑

p

σ(p)φp(µ1)(z1) . . . φp(µM )(zM ).

Instead of working in the higher-dimensional space HM and then restricting the allowed states, it is also possible to
work directly in the properly anti-symmetrized (fermionic) M -particle Hilbert space

HF
M = H1 ∧ · · · ∧ H1

∼= C(
2N
M ), (7)

which is just the span of all the anti-symmetrized states. The Hamiltonian in this space can then be represented by

Ĥ
(M)
F =

2N∑

µ1=1

. . .

2N∑

µM>µM−1

(ǫµ1 + ...+ ǫµM
) |µ1...µM 〉〈µ1...µM |. (8)

That is, in accordance to the smaller dimension the sums with respect to eigenstates are nested, i.e., µ1 < · · · < µM .
Furthermore, with respect to the anti-symmetrized spin-basis states |z1 . . . zM 〉 the Slater determinants are now

Φ(z1...zM ) = 〈z1...zM |µ1...µM 〉 (9)

=
∑

p

σ(p)φp(µ1)(z1) . . . φp(µM )(zM ).

Since in the following we will work (almost) exclusively with the anti-symmetrized spaces, our Slater determinants

will not have the factor 1/
√
M !.

Let us next go one step further and relax the fixed number of particles restriction. To this end we construct the
Fock space

F =

2N⊕

M=0

HF
M
∼= C

22N , (10)

where the Fock-space dimension is determined by the binomial equality
∑2N

M=0

(
2N
M

)
= 22N . In an overloading of

symbols we also denote |z1...zM 〉 ≡ |∅〉0⊕ . . . |z1...zM 〉M · · ·⊕|∅〉2N , where |∅〉 is the null vector in the respective spaces

and accordingly also |Φ〉 ∈ F . The non-interacting Hamiltonian can be defined straightforwardly by Ĥ =
⊕2N

M=0 Ĥ
(M)
F .

Yet instead of this expression we would like to use creation ĉ†z and annihilation operators ĉz, which obey the usual

anti-commutation relations {ĉz, ĉ†z′} = δzz′ such that |z1...zM 〉 = ĉ†zM ...ĉ
†
z1 |0〉, where |0〉 ∈ HF

0 is the vacuum state.
With these we can then define the creation and annihilation operators for the single-particle eigenstates

φ̂†µ =
2N∑

z=1

φµ(z)ĉ
†
z, (11)

and accordingly for φ̂µ, which allows us to express

Ĥs =

2N∑

µ=1

ǫµ φ̂
†
µφ̂µ =

2N∑

z,z′=1

H(1)(z, z′) ĉ†z ĉz′ . (12)

Here the subindex s indicates in analogy to Kohn-Sham theory a non-interacting Hamiltonian. We will later see how
to introduce interactions, which is the reason why a direct solution for even just the ground state becomes in practice
unfeasible and we need to resort to approximations. Further, for later reference we want to introduce a basis for the
Fock space F by re-labeling as follows (see Supp. SIA for an explicit example):

|F1〉 = |0〉
|F2〉 = ĉ†1↑|0〉
|F3〉 = ĉ†1↓|0〉
..

|F22N 〉 = ĉ†1↑ . . . ĉ
†
N↓|0〉 (13)
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While we did nothing intricate, this basis makes the anti-symmetry of the space implicit due to the fixed ordering
of the creation operators. This implies that the Hamiltonian of Eq. (12) expressed in this basis will look quite
different and the anti-symmetry of the fermionic wave functions will be carried over to the expansion coefficients (see
Supp. SIA). Similar problems arise with a different construction for the Fock space, which uses local Fock spaces

Fi
∼= C4, i.e., Fi = span{|0〉i, | ↑〉i, | ↓〉i, | ↑↓〉i}, such that F ′ =

⊗N
i=1 Fi

∼= F . This allows to use a local site-spin
basis |ν1〉 ⊗ · · · ⊗ |νN 〉 ∈ F ′. Yet again, this basis is not explicitly anti-symmetrized 1. This can also be seen by

the local creation â†iσ and annihilation âiσ operators, which locally anti-commute, i.e., {â†iσ, âiσ′} = δσ,σ′ , yet when

extended to all of F ′ for i 6= i′ actually commute, i.e., [a†iσ, âi′σ′ ] = 0. As a result, the Hamiltonian of Eq. (12) does
not take the same form in terms of the local creation and annihilation operators except for special Hamiltonians like
next-neighbor hopping (Hubbard) Hamiltonians. The connection follows the Jordan-Wigner transformation ĉiσ =

exp(iπ
∑

σ′

∑

k′<i â
†
k′σ′ âk′σ′ ) âiσ and accordingly for the creation operator. Furthermore it implies that for fermionic

wave functions the expansion coefficients in this basis need to carry the missing anti-symmetry. Such an issue will
appear later in our considerations when we want to express a fermionic wave function as an impurity and environment
tensor product.

B. Hamiltonian restricted on Fock subspace

Let us next consider the form of the Hamiltonian of Eq. (12) restricted to a subspace of F . We will not consider

just any subspace but we choose a different single-particle basis with creation operators ϕ̂†
k̃
and an M − 2n state |K̃〉

such that we have

E = span{|K̃〉, ϕ̂†
1|K̃〉, . . . , ϕ̂†

4n . . . ϕ̂
†
1|K̃〉} ∼= C

24n . (14)

Here we have chosen all µ̃ ∈ {1, ..., 4n} such that ϕ̂µ̃|K̃〉 = 0, and for the explicit exmaple in the supplement the
number of basis functions 4n are 2n without spin. The subspace E is then its own Fock space of lower dimension with
the new vacuum state |0̃〉 = |K̃〉. To determine the Hamiltonian on this subspace we can define a projector onto E
which we denote by PE and then find Ĥ ′

s = PEĤsPE . We can either do so by labeling the states similarly to Eq. (13)

by {|F̃1〉, . . . , |F̃24n〉} and have a representation in an ordered basis (see Supp. SIC) or we use the representation in

terms of the anti-symmetrized Fock-state basis |µ̃1 . . . µ̃lK̃〉. In the latter case, using that we only have contributions
for equal number of particles and at most one µ̃ 6= µ̃′, we find with H ′(µ̃, µ̃′) =

∑

z1,z2
H(1)(z1, z2)ϕ

∗
µ̃(z1)ϕµ̃′ (z2) and

∆ǫ = 〈K̃|ĤsK̃〉

Ĥ ′
s =

4n∑

µ̃,µ̃′=1

H ′(µ̃, µ̃′)ϕ̂†
µ̃ϕ̂µ̃′ +

∆ǫ

2n
ˆ̃N. (15)

Here ∆ǫ ˆ̃N , with ˆ̃N =
∑

µ̃ ϕ̂
†
µ̃ϕ̂µ̃ the particle number operator in E , acts as a chemical potential and takes into

account the energy due to |K̃〉. Alternatively, we could have just used the identity operator on E and just added

∆ǫ1̂E . If we go beyond non-interacting Hamiltonians we usually add a two-particle interaction term of the form
Ŵ =

∑

z1,z2,z2,z1
W (2)(z1, z2, z3, z4)ĉ

†
z1 ĉ

†
z2 ĉz2 ĉz1 . We first represent the interaction term in creation and annihilation

operators that contain the above ϕ̂†
1 to ϕ̂†

4n, which leads to

W (2)(µ, ν, ξ, o) (16)

=
2N∑

z1,z2=1

ϕ∗
µ(z1)ϕ

∗
ν(z2)W

(2)(z1, z2, z2, z1)ϕξ(z2)ϕo(z1).

Here µ, ν, ξ, o go from 1 to 2N . The first 4n correspond to the ones used in E and the ones from (4n+1) to (2n+1+M)

build up |K̃〉. Next we rearrange the resulting Ŵ that acts on all of F in sums that go from 1 to 4n and sums that

1 The connection between F and F ′ also amounts to fixing an ordering of the i for all objects, e.g., i1 > · · · > iM
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go from 4n+ 1 to 2N . Since we have a fixed |K̃〉 in all our states, the terms that have one index up to 4n and the
other three are in (4n+ 1) to (2N) (and vice versa) are zero. The projection on E thus becomes

Ŵ ′ =
4n∑

µ̃,ν̃,ξ̃,õ=1

W (2)(µ̃, ν̃, ξ̃, õ)ϕ̂†
µ̃ϕ̂

†
ν̃ϕ̂ξ̃ϕ̂õ +

〈K̃|Ŵ K̃〉
2n

ˆ̃N

+

4n∑

µ̃,ξ̃=1

[
2n+1+M∑

ν=4n+1

(

W (2)(µ̃, ν, ν, ξ̃)−W (2)(µ̃, ν, ξ̃, ν)

+W (2)(ν, µ̃, ξ̃, ν)−W (2)(ν, µ̃, ν, ξ̃)
)]

ϕ̂†
µ̃ϕ̂ξ̃. (17)

Let us note here that the terms of the projected interaction that we find here do not agree with the ones presented
in, e.g., Eqs.(16) and (17) of Ref. [10].

C. Properties of the one-body reduced density matrix

Let us finally comment also on some general properties of the 1RDM that will become important. For any density
matrix (mixed state) ρ̂ =

∑

l wl|Ψl〉〈Ψl| with
∑

l wl = 1 and |Ψl〉 ∈ F , the 1RDM is given by γ(z1, z2) = Tr(ρ̂ĉ†z1 ĉz2) =∑2N
µ=1 nµψ

∗
µ(z1)ψµ(z2), where the latter expression is its diagonal representation in terms of the natural occupation

numbers 0 ≤ nµ ≤ 1 and natural orbitals ψµ(z). The diagonal provides the particle number N =
∑2N

z=1 γ(z, z) of
the density matrix. Of specific interest are here pure states in the M -particle sector of F , where one can distinguish
between interacting M -particle states |Ψ〉 with usually 0 < nµ ≤ 1 and non-interacting (Slater determinant) wave
functions |Φ〉 with n1 = · · · = nM = 1 and the rest zero. This implies that the natural orbitals are equivalent to

the orbitals of the Slater determinant, e.g., 〈µ1 . . . µM |ĉ†z1 ĉz2µ1 . . . µM 〉 =
∑M

i=1 φ
∗
µi
(z1)φµi

(z2). Additionally, it also

implies that a 1RDM of an interacting system cannot be reproduced by a single Slater determinant. 2

III. EXACT EMBEDDINGS VIA PROJECTIONS

The basic idea of DMET is that we divide the system into a part that we treat in detail – called the impurity – and
a part that while coupled to the impurity is not treated in detail – called the environment. This division of the system
into impurity and environment and the subsequent reformulation of the problem based on this division is called an
embedding. While in practice the impurity is changed consecutively and the calculation is repeated such that we
have treated all parts of the system in detail, the basic ingredient is the treatment of a single such impurity. In this
section, where we discuss how this can be done exactly, we focus on the specific impurity A which is chosen to consist
of the sites i ∈ {1, . . . , n} and the rest we denote by B. Thus the corresponding spin-site impurity is A = {1, . . . , 2n}
and accordingly for B such that H1

∼= A⊕B.

A. General embedding projections

The original (undivided) problem is usually to solve aM -particle problem onHF
M with a general (usually interacting)

Hamiltonian ĤM
F . For the DMET embedding procedure it then becomes necessary to lift this problem into Fock space.

That is, we consider a hermitean Hamiltonian of the form

Ĥ =
∑

z1,z2

H(1)(z1, z2) ĉ
†
z1 ĉz2 (18)

+
∑

z1,z2

W (2)(z1, z2, z2, z1) ĉ
†
z1 ĉ

†
z2 ĉz2 ĉz1 .

2 Let us point out that there is a simple way to reproduce any 1RDM from the ground state of a non-interacting system: One just needs
to make all eigenstates degenerate, i.e., in Eq. (12) we choose all ǫµ the same, and then we can choose an arbitrary sum of Slater
determinants as a representative of the degenerate ground-state manifold. However, this ”trick” is not useful for any practical purpose
as we will discuss later in Sec. IVE.
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We would then like to solve for the ground-state |Ψ〉 in the M -particle sector. Without further simplifications this

amounts to a diagonalization of a
(
2N
M

)
×
(
2N
M

)
dimensional matrix, which already for small systems becomes impossible

to perform numerically exactly. We would like to reduce this prohibitively large dimensionality. To do so we assume
we would know |Ψ〉 and in a first step make the problem even more intractable by representing it in some Fock-space
basis, e.g.

|Ψ〉 =
22N∑

i=1

Ψi|Fi〉. (19)

Since each |Fi〉 = |FA
i 〉 ⊗ |FB

i 〉, where |FA
i 〉 ∈ FA

∼= C22n and |FB
i 〉 ∈ FB

∼= C22(N−n)

belong to the impurity A and
the environment B, respectively, we can re-express the ground state in a new basis

|Ψ〉 =
22n∑

i=1

22(N−n)
∑

j=1

Ψij |FA
i 〉 ⊗ |FB

j 〉. (20)

Of course, since it is a M -particle problem most contributions in the full Fock space are zero (see Supp. SIB 1 for
an explicit example). The expansion coefficients Ψij are then called the connection matrix between |FA

i 〉 and |FB
j 〉.

Alternatively we could also use, e.g., the local basis |ν1〉 ⊗ · · · ⊗ |νN 〉 to find such a basis for A and B, respectively.
We can then in a next step just keep those contributions that are non-zero, re-order and bring Eq. (20) in a

diagonal form (see Supp. SIB 1 for an explicit example). This procedure can be done efficiently with a singular value
decomposition (SVD) [22] of Ψij . Assuming without loss of generality n ≤ (N − n), this leads to

Ψij =

22n∑

α=1

22(N−n)
∑

β=1

UiαΛαβV
†
βj . (21)

Here, Uiα and V †
αj are matrix elements of unitary matrices U ∈ C22n ×C22n and V ∈ C22(N−n) ×C22(N−n)

, and Λαβ is

a rectangular diagonal (22n × 22(N−n))-dimensional matrix with 2n real values λα on its diagonal. Plugging Eq. (21)
into Eq. (20) then yields

|Ψ〉 =
22n∑

i=1

22(N−n)
∑

j=1

22n∑

α=1

UiαλαV
†
αj |FA

i 〉 ⊗ |FB
j 〉,

=
22n∑

α=1

λα

22n∑

i=1

Uiα|FA
i 〉

︸ ︷︷ ︸

=|Aα〉

⊗
22(N−n)
∑

j=1

V †
αj |FB

j 〉
︸ ︷︷ ︸

=|Bα〉

,

=

22n∑

α=1

λα|Aα〉 ⊗ |Bα〉. (22)

We have thus decomposed the ground-state wave function into the sum of tensor products of two different sets of
wave functions |Aα〉 and |Bα〉. The states |Aα〉 are defined exclusively on the impurity, while the states |Bα〉 are only
defined on the environment (see Supp. SIB2 for an explicit example). The new states |Bα〉 (which are now only 22n as
opposed to 22(N−n) in (20)) are then the only ones still considered of the environment B and constitute what is called
a bath for the impurity A. This construction of the impurity plus the bath is referred to in the DMET literature as the
embedded system. If we next define a subspace of this embedded system span{|Aα〉 ⊗ |Bβ〉 |α, β ∈ {1, . . . , 22n}} ∈ F ,
which by construction contains the M -particle ground state of interest, and define a corresponding projector

P̂ =

22n∑

α,β=1

|Aα〉 ⊗ |Bβ〉〈Aα| ⊗ 〈Bβ | (23)

we can define a 24n × 24n embedded Hamiltonian by

Ĥ ′ = P̂ ĤP̂ . (24)
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If we now restrict to only the M -particle sector and minimize the energy therein we get back the original wave
function by construction. We note, however, that it is not a priori clear how many M -particle wave functions are in
this subspace and it might be non-trivial to sort these wave functions (see also Supp. SIC 1 for an explicit example).
Moreover, since the basis is not properly anti-symmetrized, only properly anti-symmetrized coefficients are allowed
in the ensuing minimization. All of this implies that even with the exact states |Aα〉 and |Bα〉 this problem might be

as hard to solve in practice as the original one if n is not chosen small enough, i.e., 24n ≪
(
2N
M

)
.

B. Embedding projections from non-interacting systems

In the case that the Hamiltonian is non-interacting, i.e., takes the form of Eq. (12), and is non-degenerate we can
express the embedded Hamiltonian in a more compact and simple form. This is due to the fact that also the ground
state takes the much simpler form

|Φ〉 =






2N∑

z=1

φ1(z)
︸ ︷︷ ︸

=Cz1

ĉ†z




 . . .






2N∑

z=1

φM (z)
︸ ︷︷ ︸

=CzM

ĉ†z




 |0〉. (25)

If we use for the (2N ×M)-dimensional matrix Czµ the division

2n

2(N − n)

{

{








CA

CE








︸ ︷︷ ︸

M

= C,

and employ a SVD of the impurity submatrix CA
zµ =

∑2n
x=1

∑M
l=1 U

A
zxΛxlV

A†
lµ , where UA ∈ C

2n × C
2n and V A ∈

CM × CM , we find

2n

2(N − n)

{

{



















2n
︷ ︸︸ ︷

U · λ
M−2n
︷︸︸︷

0

CE



















= C · V = C̃.

Here, due to Λ being a rectangular diagonal 2n ×M matrix (assuming that 2n ≤ M) with 2n entries λx on the
diagonal, we find U · λ ∈ C2n × C2n (see Supp. SIB 2 for an explicit example). Note that we have overloaded the
notation again by choosing the same notation for the matrices in the SVD as before in the Fock-space case. The
differences (dimensions) should be obvious from the context. The rotation of orbitals that we performed implies that for

µ ∈ {1, ..., 2n} the corresponding orbitals C̃zµ have non-zero entries on A and B, while for µ ∈ {2n+1, ...,M} they only
have non-zero entries on B. Based on these new orbitals we can introduce new creation and annihilation operators.
Instead of defining such Fock-space operators for each C̃zk, which would amount to M creation and annihilation
operators, we define 4n+(M − 2n) by further dividing the first 2n orbitals into 2n that have non-zero values only on

A and 2n that have non-zero values only on B. With the norm on A defined as ‖ϕ̃µ‖A = (
∑2n

z=1 |ϕ̃µ(z)|2)1/2 as well

as on B via ‖ϕ̃µ‖B = (
∑2N

z=2n+1 |ϕ̃µ(z)|2)1/2 this leads to

ϕA
µ (z) =

1

‖ϕ̃µ‖A
ϕ̃µ(z)Θ+(2n− z), (26)

ϕB
µ (z) =

1

‖ϕ̃µ‖B
ϕ̃µ(z)Θ+(z − 2n− 1),
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where Θ+(z) is the Heaviside step function which is 1 for z ≥ 0 and zero else. For µ > 2n we have ϕ̃µ(z) = ϕB
µ (z) by

construction. Defining with these states

ϕ̂A,†
µ =

2N∑

z=1

ϕA
µ (z)ĉ

†(z) (27)

ϕ̂B,†
µ =

2N∑

z=1

ϕB
µ (z)ĉ

†(z)

and accordingly ϕ̂†
µ for µ > 2n we can express the non-interacting ground-state wave function as

|Φ〉 =
(

‖ϕ̃1‖Aϕ̂A,†
1 + ‖ϕ̃1‖Bϕ̂B,†

1

)

. . .
(

‖ϕ̃2n‖Aϕ̂A,†
2n + ‖ϕ̃2n‖Bϕ̂B,†

2n

)

ϕ̂†
2n+1 . . . ϕ̂

†
M |0〉. (28)

This leads to 22n terms which are equivalent to the ones from Eq. (22) for a non-interacting wave function. So we
could now re-arrange the sum, express the different states as |Aα〉 ⊗ |Bα〉 and identify the corresponding λα, which
allows us to define a projection of the form of Eq. (23) (see Supp. SIB 2 for an explicit example). Instead we use that
the above defined creation operators of Eq. (27) span a subspace of the form of Eq. (14) and the projection thus leads
to a Hamiltonian of the form of Eq. (15). Since the new non-interacting Hamiltonian can be determined as a 4n× 4n

matrix of the form H ′
s = C†

CASHsCCAS with the CAS matrix

CCAS =

2n

2(N − n)






























1 0 · · · ϕB
1 (1) ϕB

2 (1) · · ·ϕB
2n(1)

0 1 · · · ϕB
1 (2) ϕB

2 (2) · · ·ϕB
2n(2)

...
...

...
...

...
...

0 0 · · · · · · · · ·
0 0 · · · · · · · · · · · ·
0 0 · · · ϕB

1 (2N) ϕB
2 (2N) · · ·ϕB

2n(2N)


















(29)

we see that H ′
s(z1, z2) = Hs(z1, z2) for z1 and z2 restricted to z ∈ A, i.e., on the impurity the Hamiltonian has

the same form (see also Supp. SIC 2 for an explicit example). Restricting now to the 2n particle subspace in the
Fock space E gives back the ground-state wave function of the original problem, provided we also know the form of
|0̃〉 ≡ |K̃〉 in terms of the original Fock space. If we do not know the form of this new vacuum state in terms of the

original basis then we at least still get back the wave function on the impurity A since |K̃〉 has zero contribution
on A. We furthermore see that this procedure, in contrast to the one of Eq. (23), can only work in general for
non-interacting problems. The reason being that an interacting wave function consists of (usually) all possible Slater
determinants that we can construct and hence we cannot discard any of the original 2N orbitals and corresponding
creation operators a priori .
Before we move on, let us highlight that there is a very elegant way to obtain the CAS and the corresponding

matrix CCAS. If we use the previous SVD for Czµ, the 1RDM of the system can be brought into the form

γ(z1, z2) =

M∑

k=1

C∗
z1kCkz2 =

M∑

µ=1

C̃∗
z1µC̃µz2 (30)

=

2n∑

µ=1

ϕ̃∗
µ(z1)ϕ̃µ(z2) +

M∑

µ=2n+1

ϕ̃∗
µ(z1)ϕ̃µ(z2).

Using that in the sub-matrix γenv(z1, z2) of γ(z1, z2), with z1 and z2 in B ≡ {2n + 1, . . . , 2N}, only the ϕ̃µ(z) and
ϕB
µ (z) from Eq. (26) contribute, we find that

γenv(z1, z2) =

2n∑

µ=1

‖ϕ̃µ‖2BϕB,∗
µ (z1)ϕ

B
µ (z2) (31)

+
M∑

µ=2n+1

ϕB,∗
µ (z1)ϕ

B
µ (z2).
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Thus diagonalizing γenv(z1, z2) and only keeping those eigenfunctions ϕB
µ (z) that have eigenvalues (natural occupation

numbers) 0 < nB
µ = ‖ϕ̃µ‖2B < 1 gives us directly the non-trivial entries of the matrix CCAS. See Supp. SIC 2 for

an example of this construction. For later use we define here also the impurity 1RDM γimp(z1, z2), which is the
sub-matrix of γ(z1, z2) with z1 and z2 restricted to A ≡ {1, . . . , 2n}. Furthermore, we define

γemb(z1, z2) =

2n∑

µ=1

‖ϕ̃µ‖2AϕA,∗
µ (z1)ϕ

A(z2)

︸ ︷︷ ︸

=γimp(z1,z2)

(32)

+
2n∑

µ=1

‖ϕ̃µ‖2BϕB,∗
µ (z1)ϕ

B(z2)

the embedded 1RDM, which can also be found by calculating the 2n-particle ground state of the embedded Hamilto-
nian Ĥ ′

s and excluding the orbitals of |K̃〉 = |0̃〉 (also called unentangled occupied/core orbitals).

IV. MEAN-FIELD EMBEDDINGS, SELF-CONSISTENCY AND THE NON-INTERACTING v-

REPRESENTABILITY ISSUE

So far we have only given some basic constituents that are part of the DMET procedure. Let us in the following
connect them and discuss in more detail the fundamental algorithm of DMET. While there are many flavours avail-
able, we want to stick to the essentials and consider the standard choices where 1RDMs are matched in specific ways.
To this end will focus on matching 1RDMs locally (on each impurity).

A. Mean-field embedding via impurity one-body reduced density matrix

As said before, we divide our problem in an impurity A and an environment B. To find the exact projector to
perform the embedding onto A we would first need to solve the original interacting problem of the form of Eq. (18).
This is of course not practical because the DMET procedure was developed to avoid exactly this unfeasible numerical
task. Hence in the following we want to reduce the dimension of our problem which is

(
2N
M

)
. The goal is now to find

an approximate projection P̂ . If we just use any approximate version of the form of Eq. (23) we work in a sub-space
of the full Fock space with the dimension 24n. Already at this point we highlight that the moment we assume the size
of A to be half the system, i.e., 2n = N , nothing is discarded and the projector becomes the identity, i.e., we are back
in needing to solve the original problem. To find the approximate ground state (due to the approximate projection)
we then need to restrict to those states that provide exactly M particles. To identify these states can be cumbersome
(see also Supp. SIC for an explicit example) and hence it is desirable to have an ordering by particle number a priori.
The non-interacting projections provide such an ordering, since they give rise to a new Fock space E and purpose-built
Slater determinants. Hence, in practice a non-interacting projector is used. But instead of just, e.g., the projection
from the Eq. (18) with W (2) ≡ 0, a self-consistency condition is enforced. Which condition and how it is enforced
then connects DMET to different density-functional theories. With a non-interacting projector we therefore have the
dimension

(
4n
2n

)
, where we have assumed above that 2n ≤M holds. However, if 2n > M the dimension becomes

(
4n
M

)

(which as one could verify gives back the original problem in the limit that 2n = N). It is important to note here
that an adaptation of how the approximate projection is determined in general would be needed for 2n > M (see
discussion in Sec. IVC).
A standard self-consistency condition is then

γsimp(z1, z2) = γ′imp(z1, z2), (33)

where γsimp(z1, z2) is the 1RDM on the impurity of the auxiliary non-interacting system that provides the approximate

mean-field projector P̂s, and γ′imp(z1, z2) is the 1RDM on the impurity of the projected interacting problem with

Hamiltonian P̂sĤP̂s in the respective M -particle sector. We note, however, that unless the impurity is half of the
system size 2n = N (where one solves practically the original problem) it is not guaranteed that γ′imp(z1, z2) and

thus also the approximate interacting wave function is close to the exact γimp(z1, z2) and the exact interacting wave
function |Ψ〉.
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B. Non-interacting v-representability: ambiguities in the mean-field projection

In order to attain self-consistency we need to define the mean-field Hamiltonian which gives the approximate
projection iteratively. As we will show by the following construction there are ambiguities in this procedure as there
are infinitely many non-interacting Hamiltonians that reproduce a given impurity 1RDM (see also Supp. SII B for an
explicit example). We then discuss the connection of this result to the problem of the non-interacting v-representability
of 1RDMs.
As an initial guess we can, e.g., solve Eq. (18) without interaction (although there are different choices). The

resulting P̂
(0)
s is then used to solve P̂

(0)
s ĤP̂

(0)
s , from which we can determine γ

(0)
imp(z1, z2). In a next step a non-

interacting system is constructed such that it reproduces the interacting 1RDM submatrix γ
(0)
imp(z1, z2) on the impurity

A. First we diagonalize on A

γ
(0)
imp(z1, z2) =

2n∑

µ=1

‖ϕ̃µ‖2AϕA,∗
µ (z1)ϕ

A
µ (z2), (34)

where we have denoted the corresponding natural occupation numbers and natural orbitals in accordance to Eq. (26).
Now we only need to reverse the steps that led to Eq. (26). Firstly we choose 2n arbitrary states ϕB

µ (z) that are

orthonormalized on B. Since B has a size of (2N − 2n) we have as many choices. With ‖ϕ̃µ‖2B = 1− ‖ϕ̃µ‖2A we then
define for µ ∈ {1, . . . , 2n} states

ϕ̃µ(z) = ‖ϕ̃µ‖AϕA
µ (z) + (1 − ‖ϕ̃µ‖2A)1/2ϕB

µ (z) (35)

(where which state on A goes together with which state on B is again completely arbitrary). Since we have assumed
2n < M we have to choose (M − 2n) further arbitrary orthonormal orbitals ϕB

µ (z) (of course orthogonal to the
previous 2n) and define for µ ∈ {2n+ 1, . . . ,M} states

ϕ̃µ(z) ≡ ϕB
µ (z). (36)

We have thus constructed M orthonormal single-particle states ϕ̃µ(z) with µ ∈ {1, . . . ,M} on H1. Since H1 has a
dimension of 2N , we are left with (2N −M) further orthonormal states that we again order arbitrarily and denote
by ϕ̃µ(z) for µ ∈ {M + 1, . . . , 2N}. As a final step we choose arbitrary energies ǫ̃µ ∈ R such that

ǫ̃1 ≤ · · · ≤ ǫ̃M < ǫ̃M+1 ≤ · · · ≤ ǫ̃2N . (37)

With these ingredients we find a single-particle Hamiltonian

H̃(1)(z, z′) =
2N∑

µ=1

ǫ̃µϕ̃
∗
µ(z)ϕ̃µ(z) (38)

and a corresponding Fock-space Hamiltonian with ˆ̃ϕ†
µ =

∑2N
z=1 ϕ̃µ(z)ĉ

†
z that has as its M -particle ground state

|Φ̃〉 = ˆ̃ϕ†
M . . . ˆ̃ϕ†

1|0〉. And by construction γs(z1, z2) = 〈Φ̃|ĉ†z1 ĉz2Φ̃〉 ≡ γ
(0)
imp(z1, z2) if restricted to z1 and z2 ∈ A.

Let us note that we have just shown that there are infinitely many H̃(1)(z, z′) that reproduce a given impurity
1RDM. Except of ϕA

µ (z) every other part of our construction is completely arbitrary. Yet different choices generate

different projections P̂
(1)
s and corresponding subspaces E(1). And if we now proceed with our iteration, each of this

projector will lead to a different P̂
(1)
s ĤP̂

(1)
s and consequently different |Ψ(1)〉 as well as γ

(1)
imp(z1, z2). This is one

reason why in practice the iteration might not converge. Such an ambiguity with respect to the non-interacting
Hamiltonians is well known in reduced density-matrix functional theories [23, 24]. It is called the non-interacting
v-representability problem. It states that a non-interacting 1RDM can be generated by the ground state of many
different non-interacting Hamiltonians that differ with regard to their non-local potentials v. It stems from the fact
that for a non-degenerate non-interacting 1RDM only the first M orbitals are occupied. If we, however, consider a
single-particle space of dimension 2N > M , the rest of the orbitals are not determined and we can thus have many
Hamiltonians (see Eq. 4) that have the same non-interacting wave function as ground state. This, together with the
fact that a non-degenerate non-interacting Hamiltonian cannot reproduce the 1RDM of an interacting system (see
Sec. II C), prohibits usually the use of an auxiliary non-interacting system in 1RDM functional theory [23, 24]. Instead
one has to enforce representability conditions of the 1RDMs, which except for ensembles increase exponentially with
the dimension of the single-particle space and the number of particles [25]. This will be discussed briefly also in
Sec. VI.
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C. Extension to the exact embedding projection

With regard to the accuracy of projecting the interacting problem with a non-interacting projector we want to
highlight one specific detail. Since we solve for the ground state in the subspace E , we explicitly restrict the CAS
in the M -particle sector to Slater determinants that all share the same (M − 2n) occupied orbitals. These ”frozen”

orbitals form |K̃〉. We expect that the thus constructed approximate interacting ground state is not very accurate if
2n is small compared to M . It is expected that for a more accurate approximation to the interacting ground state
one needs to be close to 2n =M .
Of course, even in the case that 2n = M there is no guarantee that the resulting interacting ground-state wave

function is well approximated. As discussed above Eq. (21), 2n ≤ N (such that the impurity is smaller or equal to the
rest of the system). Only upon increasing the dimension of the complete active space to 2n = N (which corresponds
to impurity being half the system size) one can guarantee to obtain the exact result. For this, however, one needs
to adapt the DMET procedure in general and the projection using the CAS as described in Sec. III B is not possible
anymore. Until now we have assumed that 2n ≤ M while for 2n = M all orbitals contribute to the complete active
space and |0̃〉 ≡ |0〉. This implies that without modifications the above procedure only works for M ≥ N , where the
half-filling case 2n = M = N is still captured. Yet for M < N (which is the usual situation in quantum chemistry,
since we usually approximate an infinite-dimensional problem N → ∞ by some finite value for N) and 2n > M , we
can no longer use the above introduced procedure, since we can at most define 2M orthonormal orbitals by dividing
the full lattice into A and B. Hence, for 2n > M we cannot even resolve the identity on A in this way. In order to
allow for an in principle exact limit of the DMET procedure with a mean-field projection for 2n > M we need to
change the construction. The simplest way is to go back to the general form of the projection defined via Eq. (23).
For a single Slater determinant we know from Eq. (28) that the rank of the connection matrix is at most 2M , i.e.,
only 2M of all the λα are non-zero. Hence only a part of the projection onto a 24n-dimensional subspace of the Fock
space is determined by Φij and the rest is arbitrary. This is why, if we want to control the rest of these dimensions
by some self-consistency condition we need to work with multi-determinant mean-field wave functions. And this can
only happen if the auxiliary non-interacting system is degenerate. Such a system can of course be engineered, yet
becomes rather impractical and again leads to ambiguities. On the one hand, there are many multi-determinant wave
functions that lead to the same impurity 1RDM as it is also the case with single determinant wave functions. By
choosing the auxiliary non-interacting system to have a degenerate ground-state manifold that contains all of the
necessary determinants, these wave functions can be turned into a ground state. Also, each multi-determinant wave
function will lead to a different approximate projection. On the other hand, even then the rank of the connection
matrix is not necessarily 2n. So there might be no clear advantage to enforce this self-consistency condition when
approaching the exact projection for 2n = N .

D. Non-interacting v-representability: ambiguities in the fixed points

Let us next consider the influence of the non-interacting v-representability problem on the fixed points. To do so,
we employ the self-consistency condition of Eq. (33) for the special case where we apply the DMET procedure to a
non-interacting reference system. While in practice not relevant, since one always solves a non-interacting system
numerically exactly, it highlights potential pitfalls that arise due to the non-interacting v-representability issue. We
will highlight in the following that we can find a fixed point that is an excited state of the target Hamiltonian. Still
we see that the self-consistency condition of Eq. (33) is fulfilled, i.e. we have an auxiliary Hamiltonian which shares
the same impurity 1RDM.
Assume that the target Hamiltonian has the form of Eq. (4) and the auxiliary Hamiltonian is given by Eq. (38). But

instead of enforcing that |Φ〉 = φ̂†M . . . φ̂†1|0〉 and |Φ̃〉 = ˆ̃ϕ†
M . . . ˆ̃ϕ†

1|0〉 share the same impurity 1RDM, we choose that

|Φ̃〉 reproduces the impurity 1RDM of |Φ′〉 = φ̂†M+1 . . . φ̂
†
2|0〉. That is, it is not the ground state of the Hamiltonian

of Eq. (4) but an excited state. Furthermore, in the construction that leads to the auxiliary Hamiltonian of Eq. (38)
we choose all ϕB

µ (z) such that

φ1(z) ⊥ span{ϕA
1 (z), . . . , ϕ

B
M (z)}. (39)

If N is large enough, i.e., 2N > 2n +M , this is always possible. The approximate projector P̂s and its subspace E
then exclude the actual ground state |Φ〉 of the M -particle sector of the Hamiltonian of Eq. (4) and a mininmization

leads to |Φ′〉 and the corresponding projection P̂ ′
s. This implies that P̂ ′

sĤP̂
′
s and P̂s

ˆ̃HP̂s share the same impurity
1RDMs and the self-consistency condition of Eq. (33) is fulfilled. And instead of |Φ〉 we find |Φ′〉 at the fixed point
(see also Supp. SII B for an explicit example). Realizing that we can easily construct a fixed-point solution that is even



13

further away from |Φ〉 by choosing the ϕB
µ (z) such that, e.g., all states φµ(z) of |Φ〉 do not appear in |Φ′〉 (provided

2N > 2n+2M), the self-consistency condition does not automatically imply accuracy. We therefore do not only find
multiple fixed points but also the fixed points can be far away from the exact result |Φ〉.
While the example is rather academic, it nicely illustrates a potential pitfall that the non-interacting v-representability

poses also in the context of the DMET procedure. Here the results of density-functional theories and their mapping
theorems can be potentially helpful. We will discuss this point in more detail in Sec. V. Alternatively, to overcome
these ambiguities, the self-consistency condition is adapted or a global iteration is employed instead. We discuss these
two options first.

E. Mean-field embedding via embedded one-body reduced density matrix

The crucial problem of the self-consistency condition of Eq. (33) is that it has no unique solution due to the
non-interacting v-representability problem. There are many non-interacting systems that produce a given impurity
1RDM. So it seems desirable to avoid this ambiguity. One way that is motivated by the numerical instability of the
above procedure is to use the (in practice) more stable condition

min ‖γsemb − γ′emb‖2, (40)

where γsemb(z1, z2) is the 1RDM of the auxiliary non-interacting system that provides the approximate mean-field

projector P̂s, and γ′emb(z1, z2) is the 1RDM of the projected interacting problem with Hamiltonian P̂sĤP̂s in the
respective M -particle sector (see also Supp. SII B for an explicit example). If the full projector is used then z1 and
z2 are defined on all of 2N . If instead, as is common practice, we build the projection using the CAS space, some
of the bath orbitals (unentangled occupied/cor orbitals) ϕµ(z) for µ ∈ {2n + 1, . . . ,M} are discarded. In this case
z1 and z2 correspond to the original lattice sites, only for z1 and z2 in A (see for an example the embedded 1RDM
in CAS representation in Eq. (S101) and in spatial representation in Eq. (S102) and then compare with the original
Eq. (S73), which is identical with the one of the full projection).3

Which ever way we choose to determine the projection, we first note that we have to slightly modify our DMET
procedure, since now also the ϕB

µ (z) are determined by the self-consistency condition of Eq. (40). The exact solution
of the minimum condition of Eq. (40) is always zero. However, this leads to the impractical case of a highly degenerate
non-interacting system. 4. Restricting instead to only allow for a single Slater determinant for the case of 2n ≤M to
construct γsemb(z1, z2) (in which case the minimum of Eq. (40) is non-zero in general [5, 7, 26]) will again lead to a
large ambiguity. To see this we again consider the case of a non-interacting reference system. If we choose, following
the above considerations, an excited state of the reference system and construct an auxiliary Hamiltonian that has a
ground-state wave function with a CAS that excludes orbitals appearing in the ground state of the reference system,
we have found the minimum (γsemb(z1, z2) = γ′emb(z1, z2)). Yet this is again an undesirable fixed point.
Thus this simple adaptation of the self-consistency condition is not yet enough to avoid potential problems of the

non-interacting v-representability for 1RDMs.

F. Local vs global iterations

So far we have considered the situation of one impurity and investigated the ensuing self-consistency. While this is in
principle enough, in practice several impurities Ax with x ∈ {1, . . . , I} that together constitute the full lattice are used.
This leads to yet a further large number of possible constructions and iteration procedures with different convergence
criteria. It is then usually assumed that iterating locally until convergence and then step successively through all the
impurities leads to the same result as when performing the iterations for all the impurities simultaneously [10].

Firstly, even though we can find for every Ax potentially many auxiliary non-interacting Hamiltonian H̃
(1)
x (z, z′)

that have the same 1RDM (from a non-degenerate ground state) on Ax as the projected interacting problem, there
is no procedure that somehow connects all of these auxiliary Hamiltonians and enforces that the interacting and
non-interacting projected 1RDMs agree on the full lattice (for a non-degenerate ground state). The reason being,
as discussed in Sec. II C, that interacting and non-interacting Hamiltonians cannot share the same 1RDM. Instead,

3 This common practice of expressing our Hamiltonian in the CAS subspace corresponds to discarding the chemical-potential term ∆ǫ in
Eq. (15) and ignoring that |0̃〉 does correspond to |K̃〉. So one effectively uses a 2n-particle problem to approximate an M -particle one.

4 Given any interacting 1RDM γ′
emb

(z1, z2) we can always construct a completely degenerate non-interacting system such that the ground-
state solution in the M -particle sector is any combination of M -particle Slater determinants. This amounts to using multiple degenerate
Slater determinants akin to the extension of the DMET procedure for 2n > M discussed above. In general this means that we will have
to keep all orbitals and thus we might not find any dimensional reduction for the interacting system, which leaves this approach rather
impractical.
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similar to Sec. IVE, one can try to minimize the difference between the 1RDMs globally. This leads to a completely
degenerate auxiliary system and in general there is no dimensional reduction. If we further enforce that we only allow
for a single Slater determinant we will again find many fixed points. The reasoning is similar to the previous section.
We can consider the case of two non-interacting systems on the full lattice, and can construct projectors that single
out some excited state of the target system, and then build (following roughly the construction in Sec. IVD) an
auxiliary system that has this state as its ground state (and generates the chosen projection). This underlines that
all ambiguities due to the non-interacting v-representability that we encountered locally are also present globally.

V. USING DENSITY-FUNCTIONAL MAPPINGS IN DENSITY-MATRIX EMBEDDING THEORY:

DIFFERENT UNIQUE AUXILIARY SYSTEMS AND PROJECTIONS

There are two main reasons for the discussed ambiguities. First, if we allow for a general non-local Hamiltonian
of the form of Eq. (12), different such non-interacting Hamiltonians can have the same ground-state 1RDM. Second,
unless we assume total degeneracy (which is rather impractical), a non-interacting system cannot reproduce the
full 1RDM of an interacting system. These non-interacting v-representability issues are also the reason why there
is no Kohn–Sham construction for 1RDM functional theory. A possible way to avoid theses ambiguities is to use
the mapping theorems of density-functional theories that indicate that certain observables are representable in an
interacting and a non-interacting system uniquely. For instance, instead of working with the 1RDM, we can consider
only its diagonal, i.e., the (one-body spin) density. And following the usual mapping theorems we need to do this
globally. In this case we can rely on the Hohenberg–Kohn mapping theorems that guarantee that there is only one
auxiliary system that generates a specific density. And based on this uniqueness we have a unique auxiliary non-
interacting system associated to any interacting one, at least for the global system. While this does not imply that
the auxiliary projection is more accurate (for this we would need to consider the norm difference between the exact
projection and the auxiliary one), we avoid the above ambiguities and can use this as a unique starting point for
refinements.
The trick is thus to restrict to the density n(z) = γ(z, z) as well as the form of possible auxiliary systems. So far

the auxiliary system allowed for any non-local single-particle Hamiltonian H(1)(z, z′), which introduced the above
discussed ambiguities. Yet to have the lattice analogue of the Hohenberg–Kohn mapping theorem we need to restrict
to

H(1)(z, z′) = T (1)(z, z′) + v(z)δ(z, z′), (41)

where we fix the hopping/kinetic term T (1)(z, z′) to the one of the interacting reference system and we only allow to
change the (spin-dependent) single-particle potential v(z). We note that the case of finding a projector based on the
density together with the restriction to only local potentials is therefore not just a special case of the usual DMET
procedure. Firstly, the basic local impurity construction of Sec. IVB is no longer possible. This is because the local
potential cannot change the non-local hopping term and hence the density on the impurity depends also on (at least)
the bath. So we can only follow the construction presented in Sec. IVE or directly enforce the same density globally,
similar to Sec. IVF. Secondly, we avoid the major drawback of having a completely degenerate auxiliary system and
do not need to enforce to only allow a single Slater determinant in the minimization. Further, the simple examples
for multiple fixed points are ruled out. We (fortunately) lack the flexibility of the non-local auxiliary Hamiltonians.
While the restriction to only the density n(z) has been used and discussed in the DMET literature [7], the ongoing

discussion highlights that this case is special. The relation between DMET and density-based embedding theory is
similar as the relation between 1RDM functional theory and density-functional theory. They are closely connected,
yet call for quite different practical procedures and approximations. The use of auxiliary non-interacting systems in
1RDM functional theory is usually avoided, while in density-functional theory it is very natural and unambiguous.
Similarly, the use of a non-interacting auxiliary system for the density-based procedure seems perfectly suited, while a
procedure based on the 1RDM can lead to ambiguities as highlighted above. Indeed, borrowing from density-functional
theory on a lattice, we know we can uniquely identify an auxiliary non-interacting system Ĥs[n] and its corresponding
Kohn–Sham ground state Φ[n] (with the exact non-interacting projector Ps[n]) from which we can (in principle)

uniquely construct the exact interacting ground state Ψ[n] and consequently the exact projector P̂ [n]. And this holds
irrespective of the size of the impurity. So, while in the general DMET procedure only increasing the impurity size
can improve the reliability and accuracy, in the density-based embedding theory one can make the procedure exact
for any impurity size. And similarly to the usual Kohn–Sham approach we can find the exact projection with

P̂ [n] = P̂s[n] + P̂Hxc[n], (42)

where P̂Hxc[n] = P̂ [n] − P̂s[n]. While this does not have immediate practical consequences, since we do not know

how to approximate P̂Hxc[n] and find the standard density-based procedure with setting P̂Hxc[n] ≡ 0, it gives an
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indication how to proceed towards interacting projections. Also, while using the general interacting projector of
Eq. (23) leads to the aforementioned practical issues (symmetrization and unknown number ofM -particle states), the
non-interacting projection and its associated subspace E can be more practically adapted. For instance, one could
aim at approximating the correlatedM -particle states |Aα〉⊗ |Bα〉 directly from E . In this way one has direct control
over symmetry and the number of particles.
Besides the standard density-based functional theories there are also extensions that consider in addition to the

density more complex objects, such as the current density or the kinetic-energy density. These objects are all related to
parts of the full 1RDM and highlight that besides its diagonal one can potentially influence further parts of the 1RDM
in an interacting as well as a non-interacting system. This then leads to new auxiliary non-interacting systems, whose
auxiliary projections are potentially a better first guess to the exact projection than just connecting the density. The
quantity we look at here specifically is the kinetic-energy density (for a definition of a Hubbard-type of Hamiltonian
see Ref. [27] and in a continuum setting Ref. [28] (Chapter 8)). The kinetic-energy density for a Hamiltonian of the
type of Eq. (18) would be

K(z1, z2) = 〈Ψ|T (1)(z1, z2)ĉ
†
z1 ĉz2Ψ〉+ c.c., (43)

where we used the decomposotion of Eq. (41). While this quantity is closely related to the 1RDM, we note that there
are two main differences: (i) the T (1)(z1, z2) (which for a Hubbard-type of Hamiltonian amounts to next-neighbour
hopping term) is included and (ii) z1 and z2 do not take all the possible values but only the ones that appear
in T (1)(z1, z2) (for example in the standard Hubbard it will be only the next neighbors that appear). Then one
only allows specific non-local potentials (of the same freedom as the interacting ones) by introducing a mean-field
Hamiltonian of the type:

H
(1)
ke (z, z′) = T

(1)
ke (z, z′) + vke(z)δ(z, z

′). (44)

Thus the target of the DMET procedure could be adapted so that the auxiliary system is constructed in such a
way as to reproduce the density n and the kinetic-energy density K of the interacting system. The advantage of
the kinetic-energy density with respect to the 1RDM is that it does not suffer from the idempotency issue, i.e. in
general a non-interacting system can share the same ground-state kinetic-energy density as an interacting one [27].
However, the second question to make such a procedure well-defined is, whether the mapping between density and
kinetic-energy density and local as well as non-local potential is one-to-one, i.e.

(

T
(1)
ke (z, z′), vke(z)

)

↔ (K(z, z′), n(z)) . (45)

The complication in showing that there is such a mapping lies in the fact that we consider a quantity K(z, z′) that
now includes the external control field Tke(z, z

′) as well as internal quantities, e.g., in the usual Hubbard case the
first off-diagonal of the 1RDM. We therefore no longer have a simple linear structure as in density-functional theory,
where external control field v(z) and the internal control objective n(z) are separate entities and are connected via a
Legendre-Fenchel transformation [29, 30]. This also makes the construction of approximations much more complicated.
And it is for such problems, where density-functional methods can benefit strongly from the DMET procedure as we
will discuss in Sec. VI. Although there is no general answer to the question whether the mapping of Eq. (45) exists,
recent numerical considerations indicate that this might be the case under certain conditions [27]. Hence in analogy
to the density-functional based approach, one could apply a kinetic-energy-density based approach where the exact
projector is

P̂ [K,n] = P̂s[K,n] + P̂Hxc[K,n]. (46)

It seems reasonable to assume that, since now the interacting and the non-interacting systems share more properties,
also the zeroth order approximation to the mapping, i.e., P̂Hxc[K,n] ≡ 0, is more accurate than the one from the
density-functional based approach. Following this logic one can try to identify further potential mappings between
the interacting and the auxiliary non-interacting system that allow to make both systems more and more alike. For
instance, by including a Peierls phase in the hopping, corresponding to an external magnetic field, also the link current
becomes potentially controllable [31].
Finally, there is yet a different direct way to overcome the ambiguities associated with the 1RDMs. If instead

of zero temperature and definite number of particles one considers a (grand-)canonical setting, the inclusion of the
entropy in the (grand-)canonical potential allows to reproduce any interacting (grand-)canonical ensemble by a unique
non-interacting one [24]. The expressions for the non-interacting auxiliary system in the case of the grand-canonical
situation are even analytical (see Ref. [24] in Sec. 2.4). This is in accordance to recent extensions of DMET to the
(grand-)canonical setting [18].
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VI. USING DENSITY-MATRIX EMBEDDING THEORY IN DENSITY-FUNCTIONAL THEORIES: A

NOVEL APPROXIMATION SCHEME

Up until now we have focused on the DMET procedure and how we can understand certain subtleties connected
to the non-interacting v-representability from a density-functional perspective. Having realized how the mappings of
density-functional approaches appear in DMET provides us with a very interesting possibility. We can use the DMET
methodology to directly approximate the interacting-to-non-interacting mapping that is the basis of the Kohn–Sham
approach. Instead of indirectly connecting the interacting reference system with the auxiliary non-interacting system
via the energy, we instead can directly connect a non-interacting wave function to an approximate interacting wave
function that have the same target observable, e.g., in density-functional theory the density.
This idea has been realized in Ref. [5] for the standard case of density-functional theory. From the v-representability

of the density in both (interacting and auxiliary non-interacting) systems we have

v(z)
EΨ=Ĥ[v]Ψ←→ n(z)

EsΦ=Ĥs[vs]Φ←→ vs(z). (47)

We can of course also express this with the help of the exact embedded Hamiltonians Ĥ ′[v] and Ĥ ′
s[vs], respectively.

This mapping directly defines the exact Hxc potential of density-functional theory by

vHxc[n] = vs[n]− v[n]. (48)

If we now approximate the embedded Hamiltonians via a self-consistent mean-field projection that makes n′(z) = ns(z)
on the whole lattice we find the approximate mapping

v(z)
Ψ′

←→ n′(z)
Φ←→ vs(z), (49)

where the first part v(z)→ n′(z) and the interacting wave function Ψ′ is now only an approximation to v(z)→ n(z)
and Ψ. This means that we have now a new interacting mapping v → n′ that we connect with the non-interacting
system and we thus have the approximate Hxc potential

v′Hxc[n
′] = vs[n

′]− v′[n′]. (50)

Here we have indicated by v′ that we now have a different interacting mapping (since we use the exact mean-field
projection the non-interacting mapping vs is still exact) and with n′ that we have in general also a different density at
self consistency when compared to the exact density n. However, as has been demonstrated in Ref. [5], by increasing
the size of the impurities Ax the difference in density ‖n − n′‖ → 0. This implies that we can consistently increase
the accuracy of the approximate v′Hxc even for strongly correlated problems. And we have access to an approximate
interacting wave functions which allows to approximate many non-trivial observables that are hard to access in normal
density-functional theory [32, 33].
The above described procedure is a novel alternative to the usual way of obtaining density functionals. The common

approach is to approximate the energy expression E[n]− Es[n] and then obtain the corresponding Hxc potential via
functional derivative with respect to n(z). However, for the case of certain more complex functional variables like
the kinetic-energy density K(z, z′), the usual approach via the energy is no longer viable [27]. In this case the above
procedure becomes instrumental to go beyond the few simple approximations known. Hence by using the approximate
mappings

(

T (1)(z, z′), v(z)
)

Ψ′

←→ (K ′(z, z′), n′(z))
Φ←→
(

T
(1)
ke (z, z′), vke(z)

)

, (51)

induced by the approximate projection we find

T ′(1)
xc [K ′, n′] = T

(1)
ke [K ′, n′]− T ′(1)[K ′n′] (52)

v′Hxc[K
′, n′] = vke[K

′, n′]− v′[K ′, n′]. (53)

This allows to determine approximately the self-consistent effective hopping term (effective local mass) T (1)+T
(1)
xc as

well as the effective local potential v + vHxc in the corresponding generalized Kohn–Sham equations

ǫµϕµ(z) =

2N∑

z′=1

[

T (1)(z, z′) + T (1)
xc ([K,n]; z, z′) + (v(z) + vHxc([K,n]; z)) δ(z, z

′)
]

ϕµ(z
′), (54)



17

with K(z, z′) =
∑M

µ=1(T
(1)(z, z′) + T

(1)
xc ([K,n]; z, z′))ϕ∗

µ(z)ϕµ(z
′) + c.c. and n(z) =

∑M
µ=1 ϕ

∗
µ(z)ϕµ(z).

Finally, let us discuss how DMET can be used in density-matrix functional theories to find new approximation
schemes. In all the above cases we do not only have access to the reduced variable under investigation, i.e., the
density or the kinetic-energy density, but more importantly to an approximate interacting wave function Ψ′. With
this we also have access to approximate interacting 1RDMs and two-body reduced density matrices (2RDMs). In this
regard the DMET procedure provides a direct approximation to parts of the 2RDM and the corresponding interaction
energy as well as to parts of the 1RDM and the corresponding kinetic energies. This is not as trivial as it initially
sounds. In 1RDM and 2RDM functional theories it is exceedingly hard to guarantee that a trial density matrix, which
is used to minimize the energy functional, corresponds to a physical interacting wave function. This crucial point has
several layers of complexity attached. Firstly, while there are simple necessary and sufficient conditions known for a
1RDM to be representable by an ensemble of wave functions (ensemble N -representability) [34], for the 2RDM these
conditions are infeasible in practice [35] and one hence uses rather only a subset [36]. To restrict the search space to
only pure states, also for the 1RDM the conditions for pure-state N -representability become infeasible in practice [25].
Finally, if we only want to consider states that are due to the solution of an interacting Schrödinger-typ equation
(v-representability) then no specific conditions are known in general. Yet using the DMET procedure we can use
directly the approximate interacting 1RDMs and 2RDMs associated with Ψ′ to minimize the energy as a functional of
the respective reduced density matrices. Such an approach would suggest to adopt the usual DMET update procedure
and not necessarily use a self-consistency condition. Specifically, after having made an initial guess for the auxiliary

system and the corresponding auxiliary projection P̂
(0)
s we obtain approximate 1RDMs and 2RDMs. For instance in

the case of a Hubbard system with next-neighbor interaction and Hubbard on-site interaction already small impurities
Ax are enough to have access to all the necessary parts of the 1RDM and the 2RDM to calculate the energy. By,
for instance, a downhill-simplex method [37] one then finds a modified 2RDM and the corresponding 1RDM that has
lower energy. Since we have just done so by hand we are not guaranteed that it really corresponds to a wave function.
If we construct a non-interacting system that shares some of the properties of this modified reduced density matrices

we can use the resulting projection P̂
(1)
s to find new physical reduced density matrices, which potentially have lower

energy than the previous physical ones. In this way we can perform a minimization over v-representable 1RDMs and
corresponding 2RDMs.

VII. CONCLUSION AND OUTLOOK

In this work we have highlighted how density-matrix embedding theory (DMET) and different density-functional
theories can be used to supplement each other. For the simplest setting of one-dimensional finite lattices we have
given a detailed review of the basics of DMET, which allowed us to directly connect this method with different
density-functional-type theories. Certain ambiguities that appear in the DMET procedure could be traced back to
well-known issues such as the non-interacting v-representability issue for one-body reduced density-matrix functional
theory. This suggested to overcome these problems by employing appropriate mappings of density-functional theories,
which guarantee unique auxiliary systems. On the other hand we could show that DMET can be used to approximate
the interacting-to-non-interacting mapping fundamental to the Kohn–Sham construction directly, which provides an
approximate interacting wave function from which advanced functional observables can be determined. Furthermore,
the DMET procedure suggests itself as a new way to devise approximations in reduced density-matrix functional
theories.

While our results are geared towards a specific setting and stay on a rather abstract level, we think that they show
the potential in combining both approaches to the many-electron problem. The on-the-fly-construction of approximate
interacting wave functions provides a novel paradigm in density(-matrix)-functional approximations. While in density-
functional theories it is usually an energy expression that is approximated in terms of the functional variable or
Kohn–Sham orbitals, we have seen here that DMET allows to approximate directly the interacting-to-non-interacting
mapping. Considering the long and arduous history of devising more accurate density-functional approximations that
also work for strongly-correlated systems this approach is promising. The approximate interacting wave functions and
their reduced density matrices could also overcome in certain situations the drawback of density-matrix functional
theories to enforce numerically expensive representability conditions. The main problem in both cases is of course
how to treat more realistic many-electron problems in three spatial dimensions. But with the advances in the DMET
procedure together with novel inversion schemes for the non-interacting mapping [38–41] it seems worthwhile to
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further explore a combination of DMET and density-functional-type theories.
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Supplemental material for: Approximations based on density-matrix embedding
theory for density-functional theories

SHORT GUIDE TO THIS SUPPLEMENTAL MATERIAL

In this supplement we want to accompany the general discussion of the main text with simple, yet pedagogical
examples. While the main text stays on an abstract level, we find it helpful to follow the discussion to a large part
with explicit examples. This allows to focus on the essentials of the different ingredients of the DMET procedure, which
for the simple systems presented in this supplement boil down to elementary matrix manipulations of relatively small
matrices. Further, it allows to highlight further subtle issues, such as the proper anti-symmetrization of the physical
wave function in different basis representations or that one cannot approximate the wave function of the original
problem without the discarded core orbitals even on the impurity, by explicit calculations. For further convenience
all of the presented results can be re-calculated with a publicly available code that can be found on GitHub.

In the following we will consider spinless fermions, i.e., the dimension of the different objects discussed here and
in the main text differ by a factor of 2 in various places. In the main text we have always kept this factor explicit.
This allows to directly compare with the abstract (spin-dependent) objects in the main text. In Supp. SI we start
with a five-site example, give a simple non-interacting Hamiltonian and determine the three-particle ground state
in different basis representations. We then present the different ways to perform the projections of the exact wave
function (Supp. SIB) and of the Hamiltonian (Supp. SIC) to calculate the embedded system. We finally exemplify
why for interacting systems only the projection in Fock space is applicable straightforwardly (Supp. SID).

In Supp. SII we then consider a six-site example and then highlight first that we can find infinitely many different
non-interacting Hamiltonians for a given impurity 1RDM. In Supp. SII B we then demonstrate that we can construct
arbitrary fixed points of the DMET procedure if only the 1RDM on the impurity are matched.

SI. EXEMPLIFICATION OF THE DIFFERENT PROJECTIONS, SUBSPACES AND PROJECTED

HAMILTONIANS

A. The basic spaces, Hamiltonians and ground-state representations

Following the construction discussed in Sec. II A we first set-up the single-particle Hamiltonian. In our case of
spinless particles on a five-site lattice the single-particle space is H1 ∼= h1 ∼= C5. The single-particle Hamiltonian
includes in our case only next-neighbour hopping terms (with zero boundary conditions) and is expressed in the
standard sites basis |i〉 with i ∈ {1, . . . , 5} as

H(1) ∼= h(1) =








0 −1 0 0 0
−1 0 −1 0 0
0 −1 0 −1 0
0 0 −1 0 −1
0 0 0 −1 0







. (S1)

Diagonalizing the matrix H(1)(i, j) we find five five-dimensional orthonormal eigenvectors φµ(i), which allows to

express Ĥ(1)(i, j) =
∑5

µ=1 ǫµφµ(i)φ
∗
µ(j). Furthermore, they allow us to build the anti-symmetrized M -particle space

HF
M of dimension

(
5
M

)
by constructing all possible M -particle Slater determinants as well as to setup the (non-

interacting) M -particle Hamiltonians in this space. To be specific, for the three-particle case a Slater determinant in
the non-symmetrized three-particle site basis |i, j, k) = |i〉 ⊗ |j〉 ⊗ |k〉 becomes

Φ̃(i, j, k) = (i, j, k|µ, ν, ξ〉

=
1√
3!

det

∣
∣
∣
∣
∣
∣

φµ(i) φµ(j) φµ(k)
φν(i) φν(j) φν(k)
φξ(i) φξ(j) φξ(k)

∣
∣
∣
∣
∣
∣

(S2)

This is only non-zero if µ 6= ν 6= ξ, which means we have
(
5
3

)
= 10 such wave functions. Alternatively, we can construct

the three-particle Slater determinants in the non-symmetrized basis |i, j, k) of the anti-symmetrized site basis |i′, j′, k′〉

https://github.com/iris-theof/DMET_SCF_appendix
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as

(i, j, k|i′, j′, k′〉 = 1√
3!

det

∣
∣
∣
∣
∣
∣

δii′ δji′ δki′
δij′ δjj′ δkj′
δik′ δjk′ δkk′

∣
∣
∣
∣
∣
∣

. (S3)

We therefore find the above Slater determinant in the anti-symmetrized basis with i < j < k as

Φ(i, j, k) = 〈i, j, k|µ, ν, ξ〉

= det

∣
∣
∣
∣
∣
∣

φµ(i) φµ(j) φµ(k)
φν(i) φν(j) φν(k)
φξ(i) φξ(j) φξ(k)

∣
∣
∣
∣
∣
∣

. (S4)

Let us next introduce the Fock space of the spinless five-site problem. If we sum over all possible Slater determinants
from M = 0 to M = 5, the dimension of the resulting Fock space is 25. Defining the anti-commuting creation and

annihilation operators {ĉi, ĉ†j} = δij , we can create upon acting on the vacuum state |0〉 an orthonormal basis of 25

states. For instance, we have

ĉ†kĉ
†
j ĉ

†
i |0〉 = |∅〉0 ⊕ |∅〉2 ⊕ |i, j, k〉3 ⊕ |∅〉4 ⊕ |∅〉5 ≡ |i, j, k〉, (S5)

where we indicate the null vector in the respective subspace by |∅〉M and we have overloaded the symbol |i, j, k〉 as
referring to the three-particle state of Eq. (S3) as well as to the three-particle Fock state of Eq. (S5). Dimensionally
these two states are different since they belong to different spaces. While |i, j, k〉 ∈ HF

3 is a
(
5
3

)
-dimensional vector

with a single non-zero entry, |i, j, k〉 ∈ F is a 25-dimensional vector with a single non-zero entry.
Next we construct the many particle Hamiltonian by summing over all M -particle Hamiltonians, e.g., the three-

particle Hamiltonian reads
∑5

µ=1

∑5
ν>µ

∑5
ξ>ν(ǫµ + ǫν + ǫξ)|µ, ν, ξ〉〈µ, ν, ξ|. Expressing the eigenstates in the anti-

symmetrized site basis |i, . . . , k〉 we find the Fock-space Hamiltonian of Eq. (S3) in the concise form of

Ĥ = −
∑

〈i,j〉
(ĉ†i ĉj + ĉ†j ĉi), (S6)

where 〈i, j〉 indicates summation only over next neighbours. If we then consider the three-particle subspace, the
minimal-energy solution is simply

|Φ〉 =
3∏

µ=1

φ̂†µ|0〉 = φ̂†1φ̂
†
2φ̂

†
3|0〉, (S7)

where every orbital creation operator is defined by

φ̂†µ =

5∑

k=1

φµ(k)
︸ ︷︷ ︸

=Ckµ

ĉ†k. (S8)

More compactly this reads as

|Φ〉 =
3∏

µ=1

5∑

k=1

Ckµĉ
†
k|0〉, (S9)

where Ckµ are the overlap elements between the two different bases 〈k|µ〉 ≡ φµ(k). In other words, Ckµ gives the
value the orbital µ has on site k, e.g., here we find

C =









1√
12
−0.5 1√

3

0.5 −0.5 0
1√
3

0 − 1√
3

0.5 0.5 0
1√
12

0.5 1√
3









. (S10)
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The three lowest eigenvalues of (S1) are (−
√
3, -1,0), so the ground state energy of the three particle system is

E = −
√
3− 1. We note that |Φ〉 as defined in Eq. (S9) is defined only in Fock space. Only upon projecting onto the

three-particle subspace do we find a wave function of the form of Eq. (S4). Yet we in the following denote both wave
functions with the same symbol |Φ〉 since they correspond to the same physical object just represented in different
spaces. Where the difference matters we will comment on it.
The issue of different spaces becomes even more clear once we choose to label the above Fock-state basis functions

in a specific order similarly to Eq. (13). For instance we can define
|F1〉 = |0〉
|F2〉 = ĉ†1|0〉
|F3〉 = ĉ†2|0〉
..

|Fi〉 = ĉ†l ĉ
†
j ĉ

†
k..|0〉

..

|F25〉 = ĉ†1ĉ
†
2ĉ

†
3ĉ

†
4ĉ

†
5|0〉. (S11)

However, the basis functions that will have non-zero contributions to |Φ〉 will be only 10, as it is in the three-particle
subspace of the whole Fock space. Then the wave function |Φ〉 in Fock space can be written as a linear combination
of the basis functions |Fi〉 similarly to Eq. (19) as

|Φ〉 =
25∑

i=1

Φi|Fi〉 =
10∑

i=1

Φ′
i|F ′

i 〉 (S12)

where we have used the prime to denote only the three-particle basis functions |F ′
i 〉 in Fock space:

|F ′
1〉 = ĉ†1ĉ

†
2ĉ

†
3|0〉

|F ′
2〉 = ĉ†1ĉ

†
2ĉ

†
4|0〉

|F ′
3〉 = ĉ†1ĉ

†
2ĉ

†
5|0〉

|F ′
4〉 = ĉ†1ĉ

†
3ĉ

†
4|0〉

|F ′
5〉 = ĉ†1ĉ

†
3ĉ

†
5|0〉

|F ′
6〉 = ĉ†1ĉ

†
4ĉ

†
5|0〉

|F ′
7〉 = ĉ†2ĉ

†
3ĉ

†
4|0〉

|F ′
8〉 = ĉ†2ĉ

†
3ĉ

†
5|0〉

|F ′
9〉 = ĉ†2ĉ

†
4ĉ

†
5|0〉

|F ′
10〉 = ĉ†3ĉ

†
4ĉ

†
5|0〉 (S13)

In this basis we can find a different expression for the Fock-space Hamiltonian of Eq. (S6), which is implicitly restricted

to the three-particle subspace. Diagonalizing the resulting 10x10 matrix with matrix elements 〈F ′
i |Ĥ |F ′

j〉 leads to the
following expansion coefficients Φ′

i that appear in Eq. (S12):

Φ′
1 = Φ′

10 = 0.10566 (S14)

Φ′
2 = Φ′

3 = Φ′
6 = Φ′

7 = Φ′
9 = 0.28867

Φ′
4 = Φ′

8 = 0.39434

Φ′
5 = 0.5

To see that this agrees with the definition of Eq. (S9), we compare with Ckµ. To do so we carry out the sum and the
product appearing in Eq. (S9) and the wave function is then expressed in the Fock space basis (S13). We find that

Φ′
i = det

∣
∣
∣
∣
∣
∣

Cj,1 Cj,2 Cj,3

Ck,1 Ck,2 Ck,3

Cl,1 Cl,2 Cl,3

∣
∣
∣
∣
∣
∣

. (S15)

which is the coefficient associated to a basis function |F ′
i 〉, with the sites j, k, l occupied. For instance, for |Φ′

2〉 we have
j=1, k=2, l=4. Carrying out this procedure for all the terms appearing in Eq. (S9) one can verify that it is the same
wave function as in Eq. (S12). Here we point out that as long as we work with the creation and annihilation operators,
which take into account the anti-symmetry by construction, we do not need to anti-symmetrize the coefficients Ckµ.
Once we have fixed a basis, e.g., |Fi〉, the coefficients need to be anti-symmetrized, e.g., Eq. (S15). Moreover,
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diagonalizing (S6) in the Fock space basis gives again the same ground-state energy E as the sum of the three lowest

orbital energies of (S1), i.e. E = −
√
3− 1.

B. The different projections of the exact wave function

In the previous part of the supplement we have highlighted the connections between the single-particle, the multi-
particle and the Fock-space perspectives. Now we will employ the above different representations of the same physical
object, i.e., the three-particle wave function, to perform the exact projection onto an impurity subspace. To do so
we choose the impurity to be A = {1, 2}, i.e., the first two sites. We then want to find a representation of the wave
function such that only two orbitals have a contribution on A. This representation will then be used to define the
exact projected Hamiltonian on a smaller Fock space E .

1. Projection via singular-value decomposition in Fock-space basis

First we show the projection of the exact wave function performed in a Fock-space basis. We will do so via a SVD
in the connecting matrix that involves the Fock-space basis functions on the impurity and the corresponding ones
on the environment. We can recast our wave function similarly to Eq. (20) in a way that it will comprise of basis
functions |FA

i 〉 that belong only to the impurity and |FB
i 〉 that will belong only to the environment. The number of

linearly independent |FA
i 〉 that we get is 22, while for |FB

i 〉 is 23. For this we define two new vacua |0〉A and |0〉B and

define ĉ†1 and ĉ†2 only on |0〉A (which leads to a Fock space FA) and accordingly for sites 3, 4 and 5 that constitute B
and FB. By dimensional correspondence we find F ∼= FA ⊗FB. The Fock states of the respective Fock spaces are

|FA
1 〉 = |0〉A
|FA

2 〉 = ĉ†2|0〉A
|FA

3 〉 = ĉ†1|0〉A
|FA

4 〉 = ĉ†1ĉ
†
2|0〉A (S16)

and

|FB
1 〉 = |0〉B
|FB

2 〉 = ĉ†3|0〉B
|FB

3 〉 = ĉ†4|0〉B
|FB

4 〉 = ĉ†5|0〉B
|FB

5 〉 = ĉ†3ĉ
†
4|0〉B

|FB
6 〉 = ĉ†3ĉ

†
5|0〉B

|FB
7 〉 = ĉ†4ĉ

†
5|0〉B

|FB
8 〉 = ĉ†3ĉ

†
4ĉ

†
5|0〉B (S17)

Similar to the local creation and annhihilation operators (see Sec. II A), while the operators in each class A and B
anti-commute, operators of different classes commute. So there is no automatic anti-symmetry of combined wave
functions, i.e., when representing the three-particle wave function of F

|Φ〉 =
22∑

i=1

23∑

j=1

Φi,j |FA
i 〉 ⊗ |FB

j 〉 (S18)

the coefficients need to take care of the proper symmetry. The induced basis of F then corresponds to the previously
introduced basis of Eq. (S11). This means that the coefficients Φi,j are identical with the coefficients Φi that appear
in Eq. (S12). This means that there will be only 10 non-zero entries of Φi,j . Recasting now Eq. (S18) in terms of only



5

its non-zero entries we find that

|Φ〉 =
Φ′

10
︷︸︸︷

Φ1,8

|F ′
10〉

︷ ︸︸ ︷

|FA
1 〉 ⊗ |FB

8 〉+
Φ′

7
︷︸︸︷

Φ2,5

|F ′
7〉

︷ ︸︸ ︷

|FA
2 〉 ⊗ |FB

5 〉+
Φ′

8
︷︸︸︷

Φ2,6

|F ′
8〉

︷ ︸︸ ︷

|FA
2 〉 ⊗ |FB

6 〉+
Φ′

9
︷︸︸︷

Φ2,7

|F ′
9〉

︷ ︸︸ ︷

|FA
2 〉 ⊗ |FB

7 〉+
Φ′

4
︷︸︸︷

Φ3,5

|F ′
4〉

︷ ︸︸ ︷

|FA
3 〉 ⊗ |FB

5 〉+
Φ′

5
︷︸︸︷

Φ3,6

|F ′
5〉

︷ ︸︸ ︷

|FA
3 〉 ⊗ |FB

6 〉+
Φ′

6
︷︸︸︷

Φ3,7

|F ′
6〉

︷ ︸︸ ︷

|A3〉 ⊗ |FB
7 〉+

Φ′
1

︷︸︸︷

Φ4,2

|F ′
1〉

︷ ︸︸ ︷

|FA
4 〉 ⊗ |FB

2 〉+
Φ′

2
︷︸︸︷

Φ4,3

|F ′
2〉

︷ ︸︸ ︷

|A4〉 ⊗ |FB
3 〉+

Φ′
3

︷︸︸︷

Φ4,4

|F ′
3〉

︷ ︸︸ ︷

|FA
4 〉 ⊗ |FB

4 〉 (S19)

where the matrix elements Φ′
i are given by Eq. (S15). Having written the wave function of our example in the form

of Eq. (20), we proceed in performing the SVD on the connecting matrix Φ with entries Φi,j defined just above (all
the other entries that this matrix has are zero)

Φ =






0 0 0 0 0 0 0 Φ′
10

0 0 0 0 Φ′
7 Φ′

8 Φ′
9 0

0 0 0 0 Φ′
4 Φ′

5 Φ′
6 0

0 Φ′
1 Φ′

2 Φ′
3 0 0 0 0




 . (S20)

The connecting matrix for our example reads

Φ =






0 0 0 0 0 0 0 0.10566
0 0 0 0 0.28868 0.39434 0.28868 0
0 0 0 0 0.39434 0.5 0.28868 0
0 0.10566 0.28868 0.28868 0 0 0 0




 . (S21)

Rotating with U and V
†, which are defined in Eq. (22) and the discussion after it, we obtain the following states on

the impurity

|A1〉 = −0.62978|FA
2 〉 − 0.77678|FA

3 〉 (S22)

|A2〉 = −|FA
4 〉 (S23)

|A3〉 = −|FA
1 〉 (S24)

|A4〉 = 0.77678|FA
2 〉 − 0.62978|FA

3 〉 (S25)
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and on the bath:

|B1〉 =− 0.54283|FB
5 〉 − 0.70812|FB

6 〉 (S26)

− 0.451557|FB
7 〉 (S27)

|B2〉 =− 0.25056|FB
2 〉 − 0.6846|FB

3 〉
− 0.6846|FB

4 〉
|B3〉 =− |FB

8 〉 (S28)

|B4〉 =− 0.48654|FB
5 〉 − 0.17310|FB

6 〉 (S29)

+ 0.85634|FB
7 〉

|B5〉 =− 0.43646|FB
2 〉 − 0.32517|FB

3 〉 (S30)

+ 0.48493|FB
4 〉+ 0.46861|FB

5 〉 − 0.46861|FB
6 〉

+ 0.171523|FB
7 〉

|B6〉 =− 0.64638|FB
2 〉 − 0.08858|FB

3 〉 (S31)

+ 0.32517|B4〉 − 0.46861|FB
5 〉+ 0.46861|FB

6 〉
− 0.171523|FB

7 〉
|B7〉 =− 0.57351|FB

2 〉+ 0.64638|FB
3 〉 (S32)

− 0.43646|FB
4 〉+ 0.17152|FB

5 〉 − 0.17152|FB
6 〉

+ 0.06278|FB
7 〉

|B8〉 =|FB
1 〉 (S33)

and a new connecting matrix which is diagonal

Λ =






0.89919 0. 0. 0. 0. 0. 0. 0.
0. 0.4217 0. 0. 0. 0. 0. 0.
0. 0. 0.10566 0. 0. 0. 0. 0.
0. 0. 0. 0.04955 0. 0. 0. 0.




 (S34)

The wave function after the SVD reads

|Φ〉 =
4∑

i=1

λi|Ai〉 ⊗ |Bi〉 (S35)

=0.89919 ·
|A1〉

︷ ︸︸ ︷

(−0.62978|FA
2 〉 − 0.77678|FA

3 〉)

⊗
|B1〉

︷ ︸︸ ︷

(−0.54283|FB
5 〉 − 0.70812|FB

6 〉 − 0.45156|FB
7 〉)

+ 0.4217 ·
|A2〉

︷ ︸︸ ︷

(−|FA
4 〉)

⊗
|B2〉

︷ ︸︸ ︷

(−0.25056|FB
2 〉 − 0.68455|FB

3 〉 − 0.68455|FB
4 〉)

+ 0.10566 ·
|A3〉

︷ ︸︸ ︷

(−|FA
1 〉)⊗

|B3〉
︷ ︸︸ ︷

(−|FB
8 〉)

+ 0.04955 ·
|A4〉

︷ ︸︸ ︷

(0.77678|FA
2 〉 − 0.629778|FA

3 〉)

⊗
|B4〉

︷ ︸︸ ︷

(−0.48654|FB
5 〉 − 0.17310|FB

6 〉+ 0.85634|FB
7 〉) (S36)

If we compare to Eq. (S19), we see that this is of course the same wave function.
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2. Projection via singular-value decomposition in the impurity submatrix

Here we perform the projection via a SVD for the non interacting system on the orbital coefficient matrix of the
creation operators. Due to our choice of A we have

C
A =

( 1√
12
−0.5 1√

3

0.5 −0.5 0

)

, (S37)

which corresponds to the first two lines of the matrix defined in Eq. (S10). Performing a SVD on C
A we get the

factorization for its matrix elements

CA
kµ = Ck,∈µ(k ∈ A) =

2∑

k=1

3∑

ν=1

UkiΛiνV
†
νµ (S38)

where U (size: 2× 2) and V (size: 3× 3) are both orthonormal matrices and Λ is a 2× 3 matrix with only 2 entries
non-zero on the diagonal. These matrices for our example read:

U =

(
−0.77678 −0.62978
−0.62978 0.77678

)

(S39)

Λ =

(
0.99317 0. 0.

0. 0.42460 0.

)

(S40)

V =





−0.54283 0.48654 −0.68455
0.70812 −0.17310 −0.68455
−0.45156 −0.85634 −0.25056



 (S41)

The matrix V is now the sought-after rotation matrix, which rotates the orbitals into a new basis. In this new basis,
only the first two orbitals have overlap with the first two impurity sites.

C̃ = C ·V

=









1√
12
−0.5 1√

3

0.5 −0.5 0
1√
3

0 − 1√
3

0.5 0.5 0
1√
12

0.5 1√
3
.









·





−0.54283 0.48654 −0.68455
0.70812 −0.17310 −0.68455
−0.45156 −0.85634 −0.25056





=








−0.77147 −0.26741 0
−0.62548 0.32982 0
−0.05270 0.77531 −0.25056
0.08264 0.15672 −0.68455
−0.06335 −0.44050 −0.68455








(S42)

As V is a unitary matrix its determinant is one, which results in leaving the Slater determinant of the original wave
function unchanged and the new ”rotated” orbitals still orthonormal. Thus the impurity-projected representation of
Eq. (S9) is

|Φ〉 =
3∏

µ=1

5∑

k=1

C̃kµĉ
†
k|0〉 (S43)

=

(
2∏

µ=1

5∑

k=1

C̃kµĉ
†
k

)(
5∑

k=3

C̃k3ĉ
†
k

)

︸ ︷︷ ︸

= ˆ̃ϕ†
3

|0〉

= ˆ̃ϕ†
1
ˆ̃ϕ†
2
ˆ̃ϕ†
3|0〉

We see in this basis that the third orbital is zero on A, i.e. the third orbital belongs purely to the environment (or
it is an occupied entangled environment orbital as it is called in the DMET literature) and we hence denote it in

accordance to Eq. (27) by ˆ̃ϕ†
3 = ϕ̂B,†

3 .
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The first two orbitals have still contributions on the impurity and the environment. To construct the missing further
two bath orbitals (we should have 3) we remove the part that belongs to the impurity and renormalize the resulting
vectors and creation operators as

ϕ̂B,†
µ =

5∑

k=3

ĉ†k
C̃kµ

√
∑5

l=3 |C̃lµ|2
=

5∑

k=3

ĉ†k
C̃kµ

‖ϕ̃µ‖B
︸ ︷︷ ︸

=ϕB
µ (k)

. (S44)

The normalization factors that appear in the denominator of Eq. (S44) read

‖ϕ̃1‖B =

√
√
√
√

5∑

l=3

|C̃l1|2 = 0.11670 (S45)

‖ϕ̃2‖B =

√
√
√
√

5∑

l=3

|C̃l2|2 = 0.90538

such that

ϕ̂B,†
1 = −0.45156ĉ†3 + 0.70812ĉ†4 − 0.54283ĉ†5 (S46)

ϕ̂B,†
2 = 0.85634ĉ†3 + 0.17310ĉ†4 − 0.48654ĉ†5 (S47)

In a similar manner (see Eq. (27)) we can define the renormalization factors ‖ϕ̃1‖A = 0.99317, ‖ϕ̃2‖A = 0.42460 and
the 2 impurity orbitals as

ϕ̂A,†
1 = −0.77678ĉ†1 − 0.62978ĉ†2 (S48)

ϕ̂A,†
2 = −0.62978ĉ†1 + 0.77677ĉ†2 (S49)

If we now express Φ in these new orbitals (that are no longer normalized on the full lattice A + B but only on the
respective sub-lattices) we find with the corresponding normalization coefficients

|Φ〉 =

ˆ̃ϕ†
1

︷ ︸︸ ︷
(

‖ϕ̃1‖Aϕ̂A,†
1 + ‖ϕ̃1‖Bϕ̂B,†

1

)

·

ˆ̃ϕ†
2

︷ ︸︸ ︷
(

‖ϕ̃2‖Aϕ̂A,†
2 + ‖ϕ̃2‖Bϕ̂B,†

2

)

ϕ̂B,†|0〉

= ‖ϕ̃1‖A‖ϕ̃2‖Aϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉

+ ‖ϕ̃1‖A‖ϕ̃2‖Bϕ̂A,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉

+ ‖ϕ̃1‖B‖ϕ̃2‖Aϕ̂B,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉

+ ‖ϕ̃1‖B‖ϕ̃2‖Bϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉 (S50)

Since we have now four terms in accordance to Eq. (S35), we can individually compare. Firstly we find that
‖ϕ̃1‖A‖ϕ̃2‖A = 0.42170 = λ2 (S51)

and the corresponding vectors can be associated as (note the anti-symmetrization)

ϕ̂A,†
1 ϕ̂A,†

2 |0〉 = (ϕA
1 (1)ϕ

A
2 (2)− ϕA

2 (1)ϕ
A
1 (2))

︸ ︷︷ ︸

=−1

ĉ†1ĉ
†
2|0〉

≡ |A2〉, (S52)

and

ϕ̂B,†
3 |0〉 =

(

−0.25056ĉ†3− 0.68455ĉ†4 − 0.68455ĉ†5

)

|0〉
≡|B2〉. (S53)
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We note here again that the left-hand sides of the above equivalence relations are vectors that are defined on a Fock
space of the full lattice, while the right-hand sides are defined on Fock spaces of sub-lattices. Consequently they are
not the same vectors since they are defined on dimensionally different spaces, yet they describe the same physical
states. This allows us to associate

‖ϕ̃1‖A‖ϕ̃2‖Aϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉 ≡ λ2|A2〉 ⊗ |B2〉 (S54)

while dimensionally (and also physically) ‖ϕ̃1‖A‖ϕ̃2‖Aϕ̂A,†
1 ϕ̂A,†

2 |0〉 ⊗ ϕ̂B,†
3 |0〉 would not make sense. This highlights

again the subtleties that arise when mixing different representations of the same physical state. We can then proceed
by associating the other states in a similar manner. Since ‖ϕ̃1‖A‖ϕ̃2‖B = 0.89919 = λ1,

ϕ̂A,†
1 |0〉 =

(

−0.77677ĉ†1 − 0.62978ĉ†2

)

|0〉
≡ |A1〉 (S55)

and

ϕ̂B,†
2 ϕ̂B,†

3 |0〉 =
(
ϕB
2 (3)ϕ

B
3 (4)− ϕB

2 (4)ϕ
B
3 (3)

)

︸ ︷︷ ︸

=−0.54283

ĉ†3ĉ
†
4|0〉

+
(
ϕB
2 (3)ϕ

B
3 (5)− ϕB

2 (5)ϕ
B
3 (3)

)

︸ ︷︷ ︸

=−0.70812

ĉ†3ĉ
†
5|0〉

+
(
ϕB
2 (4)ϕ

B
3 (5)− ϕB

2 (5)ϕ
B
3 (4)

)

︸ ︷︷ ︸

=−0.45156

ĉ†4ĉ
†
5|0〉

≡ |B1〉.

we have ‖ϕ̃1‖A‖ϕ̃2‖Bϕ̂A,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉 ≡ λ1|A1〉 ⊗ |B1〉. Further, since ‖ϕ̃1‖B‖ϕ̃2‖A = 0.04955 = λ4,

ϕ̂A,†
2 |0〉 =

(

0.77678ĉ†2 − 0.62978ĉ†1

)

|0〉 ≡ |A4〉 (S56)

and

ϕ̂B,†
1 ϕ̂B,†

3 |0〉 =
(
ϕB
1 (3)ϕ

B
3 (4)− ϕB

1 (4)ϕ
B
3 (3)

)

︸ ︷︷ ︸

=0.48654

ĉ†3ĉ
†
4|0〉

+
(
ϕB
1 (3)ϕ

B
3 (5)− ϕB

1 (5)ϕ
B
3 (3)

)

︸ ︷︷ ︸

=0.17309

ĉ†3ĉ
†
5|0〉

+
(
ϕB
1 (4)ϕ

B
3 (5)− ϕB

1 (5)ϕ
B
3 (4)

)

︸ ︷︷ ︸

=−0.85634

ĉ†4ĉ
†
5|0〉

≡ −|B4〉,

we have ‖ϕ̃1‖B‖ϕ̃2‖Aϕ̂B,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉 ≡ λ4|A4〉 ⊗ |B4〉. Finally, since ‖ϕ̃1‖B‖ϕ̃2‖B = 0.10566 = λ3,

|0〉 ≡ −|A3〉 (S57)

and

ϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉 = det

∣
∣
∣
∣
∣
∣

ϕB
1 (3) ϕB

1 (4) ϕB
1 (5)

ϕB
2 (3) ϕB

2 (4) ϕB
2 (5)

ϕB
3 (3) ϕB

3 (4) ϕB
3 (5)

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=1

ĉ†3ĉ
†
4ĉ

†
5|0〉

≡ |B3〉,

we have ‖ϕ̃1‖B‖ϕ̃2‖Bϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉 ≡ λ3|A3〉 ⊗ |B3〉. Thus we have explicitly verified that performing the SVD

in the orbital coefficient matrix with a subsequent division in impurity and environment orbitals is equivalent to
performing the SVD in the connecting matrix in the Fock-space representation.
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C. The different constructions of the exact embedded system

Next we construct the exact embedded system. We do so first by using the Fock-space projection and then we use the
single-particle projection. While the first is the only possibility for doing the exact projection for an interacting system
(see also Supp. SID), the latter approach is the one that is employed in practice and is only exact for non-interacting
systems.

1. Exact embedded Hamiltonian via the Fock-space projection

The Fock-space projection according to Eq. (23) reads in our case

P̂ =
∑4

α=1

∑4
β=1 |Aα〉 ⊗ |Bβ〉〈Aα| ⊗ 〈Bβ |, (S58)

with |Aα〉 given by Eqs. (S22)-(S25) and |Bβ〉 given by Eqs. (S26)-(S29). It is instructive, however, to see how this
projection looks like using the impurity plus bath orbitals (and also the environment one). Since we have already
associated these states with each other in the previous section, we readily can associate

P̂ ≡ ϕ̂A,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂B,†

1 ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2 ϕ̂

B
1 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂B,†

1 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
1 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2 ϕ̂

A
2 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
A
2 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

B
1 ϕ̂

A
2 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
1 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
1 ϕ̂

A
2 ϕ̂

A
1

+ ϕ̂B,†
3 |0〉〈0|ϕ̂B

3

+ ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2

+ ϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

B
1

+ ϕ̂B,†
1 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
1

+ ϕ̂A,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

A
2

+ ϕ̂A,†
2 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

A
2

+ ϕ̂A,†
2 ϕ̂B,†

1 ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2 ϕ̂

B
1 ϕ̂

A
2

+ ϕ̂A,†
2 ϕ̂B,†

1 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
1 ϕ̂

A
2 (S59)

In this projection appear different terms that project to subspaces with a different number of particles. Since the
Hamiltonian is particle-number conserving, contributions like 〈ϕA

1 ϕ
B
2 ϕ

B
3 |ĤϕA

1 ϕ
B
3 〉 are zero, yet we still have non-zero

contributions within different particle-number subspaces. If we do not restrict at this point to only the three-particle
subspace, a minimization of the projected Hamiltonian will lead to a different ground state with different number
of particles. In this approach we therefore have to restrict by hand to those states such that the correct projector
becomes

P̂ ′ = |A1〉 ⊗ |B1〉〈B1| ⊗ 〈A1|
+ |A2〉 ⊗ |B2〉〈B2| ⊗ 〈A2|
+ |A3〉 ⊗ |B3〉〈B3| ⊗ 〈A3|
+ |A4〉 ⊗ |B4〉〈B4| ⊗ 〈A4|
+ |A1〉 ⊗ |B4〉〈B4| ⊗ 〈A1|
+ |A4〉 ⊗ |B1〉〈B1| ⊗ 〈A4| (S60)

This yields a 6 × 6 Hamiltonian matrix P̂ ′ĤP̂ ′ (see the jupyter notebook for the explicit matrix). Diagonalizing

provides its lowest eigenvalue as E = −
√
3− 1 with the eigenstate Φ = −0.89919|A1〉 ⊗ |B1〉 − 0.42170|A2〉 ⊗ |B2〉 −
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0.10566|A3〉 ⊗ |B3〉 − 0.04955|A4〉 ⊗ |B4〉. This agrees with Eq. (S35). Alternatively we could have also restricted the
projection further to only the states |Aα〉⊗ |Bα〉 with α ∈ {1, 2, 3, 4} (leading to a 4× 4 Hamiltonian) and would have
found the same ground state.

2. Exact embedded Hamiltonian via the single-particle projection

Since the above projection needs to be further restricted by hand to only the right particle sector, it is advantageous if
one can directly construct the correct projector without further filtering. This can be done for non-interacting systems
on the single-particle level as discussed in Sec. III B. Since one uses in practice always a non-interacting projection
the following is the standard way in DMET to construct the embedded system.
We start from the non-interacting Hamiltonian of the full system, i.e., Eq. (S1) and construct the non-interacting

1RDM in the site basis from the three lowest energy orbitals (which are the ones that form the Slater determinant
Φ). This will be a 5× 5 (the number of sites) matrix

γ(i, j) = 〈Φ|ĉ†j ĉi|Φ〉 =
3∑

µ=1

CT
jµCiµ

As this is a non-interacting 1RDM its eigenvalues are 1 or 0. Next we consider a submatrix of this 1RDM which consists
only of the sites that belong to the bath B. For our example this is the matrix defined above with i, j ∈ B ≡ {3, 4, 5}

γenv(i, j) =

3∑

µ=1

CT
jµCiµ with i, j ∈ B (S61)

Diagonalizing this 3× 3 submatrix gives

n1 = 0.01362 ≡ ‖ϕ̃1‖2B
ϕB
1 = −0.45156|3〉+ 0.70812|4〉 − 0.54283|5〉
n2 = 0.81971 ≡ ‖ϕ̃2‖2B
ϕB
2 = 0.85634|3〉+ 0.17310|4〉 − 0.48654|5〉
n3 = 1 ≡ ‖ϕ̃3‖2B
ϕB
3 = 0.25056|3〉+ 0.68455|4〉+ 0.68455|5〉

where we have introduced the notation ĉ†i |0〉 = |i〉. The orbital ϕB
3 with occupation number 1 is called in the DMET

literature unentangled occupied environmental orbital. It agrees with ϕ̃3 ≡ ϕB
3 from Supp. SIB 2. The two orbitals

that have eigenvalues (occupations) between 0 and 1 are called the bath orbitals and agree with the corresponding
ones from Sec. SI B 2.
Since they have zero contribution on the impurity A ≡ {1, 2} we need two further states (the size of the impurity)

that are non-zero only on the impurity to express a 5× 5 matrix. While we could use ϕA
1 and ϕA

2 from Sec. SIB 2, we
can equivalently use

ϕA
1 = |1〉,
ϕA
2 = |2〉.

Discarding the unentangled occupied environmental orbital ϕB
3 that constitutes the vacuum state |0̃〉 = ϕ̂B,†

3 |0〉 of the
Fock space E (see also Sec. II B), we are left with the 4 orbitals of the complete active space (CAS), i.e., ϕCAS

1 = ϕA
1 ,

ϕCAS
2 = ϕA

2 , ϕ
CAS
3 = ϕB

1 and ϕCAS
4 = ϕB

2 . The corresponding 5 × 4 CAS matrix CCAS
kµ ≡ ϕCAS

µ (k) takes the form of

Eq. (29). With this the embedded single-particle Hamiltonian becomes

h
′
s
= [CCAS]ThsC

CAS (S62)

=






0.0 −1.0 0.0 0.0
−1.0 0.0 0.45156 −0.856338
0.0 0.45156 1.40829 −0.08973
0.0 −0.85634 −0.08973 −0.12802
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While here we do not gain much in dimensionality, in the case that the impurity is much smaller than the original
lattice, this leads indeed to a large reduction. The eigenvalues and eigenvectors of this single-particle embedded
Hamiltonian are

ǫ′1 = −1.37256
ϕ′
1 = −0.51387ϕCAS

1 − 0.70532ϕCAS
2

+ 0.09910ϕCAS
3 − 0.47817ϕCAS

4

ǫ′2 = −0.07922
ϕ′
2 = 0.63451ϕCAS

1 + 0.05027ϕCAS
2

− 0.06164ϕCAS
3 − 0.76881ϕCAS

4

ǫ′3 = 1.0

ϕ′
3 = −0.5ϕCAS

1 + 0.5ϕCAS
2

− 0.62547ϕCAS
3 − 0.32982ϕCAS

4

ǫ′4 = 1.73205

ϕ′
4 = −0.28868ϕCAS

1 + 0.5ϕCAS
2

+ 0.77147ϕCAS
3 − 0.26741ϕCAS

4

Lifting the single-particle Hamiltonian to the Fock-space E we have (see also Eq. (15))

Ĥ ′ =
4∑

k̃=1

4∑

k̃′=1

h′s(k̃, k̃
′)ϕ̂CAS,†

k̃
ϕ̂CAS
k̃′ +

∆ǫ

2

4∑

k̃=1

ϕ̂CAS,†
k̃

ϕ̂CAS
k̃

(S63)

=

4∑

µ=1

ǫ′µϕ̂
′†
µ ϕ̂

′
µ +

∆ǫ

2

4∑

µ=1

ϕ̂′†
µ ϕ̂

′
µ (S64)

Because we have discarded the unentangled occupied environmental orbital the sought-after ground state is given by

the lowest two-particle eigenstate of Ĥ ′ which leads to E′ = ǫ′1 + ǫ′2 = −1.45179 and |Φ′〉 = ϕ̂
′†
1 ϕ̂

′†
2 |0̃〉. Because in our

case ∆ǫ = 〈0̃|Ĥ 0̃〉 = E − E′ = −1.28026. For the orbitals we find

ϕ′
1 = 0.51387|1〉+ 0.70532|2〉+
+ 0.45422|3〉+ 0.01260|4〉 − 0.17885|5〉,

ϕ′
2 = 0.63451|1〉+ 0.05027|2〉+
− 0.63053|3〉 − 0.17673|4〉+ 0.40752|5〉.

If we again disregard the unentangled occupied environmental orbital then the resulting Slater determinant is

Φ̃′(k, l) =
1√
2
(ϕ′

1(k)ϕ
′
2(l)− ϕ′

1(l)ϕ
′
2(k)) . (S65)

While it gives the right impurity 1RDM, it does not give the wave function even on the impurity. Because the
only non-trivial term is Φ̃′(1, 2) = −0.298187 we can compare to, e.g.,

∑5
k=3 Φ̃(1, 2, k) = 0.683012 or some arbitrary

combination with k of Eq. (S2). However, if we also use that we know the discarded orbital, i.e., the form of the
vacuum state |0̃〉, we find instead

Φ̃(i, j, k) = (i, j, k|1, 2, 3〉

=
1√
3!

det

∣
∣
∣
∣
∣
∣

ϕ′
1(i) ϕ′

1(j) ϕ′
1(k)

ϕ′
2(i) ϕ′

2(j) ϕ′
2(k)

ϕ′
3(i) ϕ′

3(j) ϕ′
3(k)

∣
∣
∣
∣
∣
∣

(S66)

and have recovered the full wave function.
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D. Interacting systems: Why the projection via the impurity submatrix does not work

Let us next see explicitly, why for an interacting system only the (less convenient) projection in Fock space works.
The simplest wave function that exhibits the main feature of an interacting many-body wave function (multi-reference
character) is the linear combination of two Slater determinants. Here we will use two Slater determinants build from
orbitals of the non-interacting Hamiltonian of Eq. (S1),

|Φ1〉 = φ̂†1φ̂
†
2φ̂

†
3|vac〉, (S67)

|Φ2〉 = φ̂†1φ̂
†
4φ̂

†
5|vac〉. (S68)

Our model interacting wave function is then

|Ψ〉 = ν1|Φ1〉+ ν2|Φ2〉 (S69)

with (real) ν21 + ν22 = 1. We can define, similar to the coefficient matrix C in Eq. (S10), the coefficient matrix of the
multi-determinant wave function as

D =









1√
12
−0.5 1√

3
−0.5 1√

12

0.5 −0.5 0 0.5 −0.5
1√
3

0 − 1√
3

0 1√
3

0.5 0.5 0 −0.5 −0.5
1√
12

0.5 1√
3

0.5 1√
12









, (S70)

where the last two columns correspond to φ4 and φ5. With this we can determine the 1RDM of the interacting wave
function

γ(i, j) = 〈Ψ|ĉ†j ĉi|Ψ〉 (S71)

= ν21 〈Φ1|ĉ†j ĉi|Φ1〉+ ν22〈Φ2|ĉ†j ĉi|Φ2〉

= ν21

3∑

µ=1

DT
j,µDi,µ + ν22(D

T
j2Di2 +DT

j4Di4 +DT
j5Di5).

If we then fix the missing values, e.g., ν1 = 0.8 and ν2 = 0.6, we can calculate numerically the 1RDM and determine
its environmental submatrix γenv(i, j) which would correspond to i, j ∈ {3, 4, 5}. The eigenvalues and eigenvectors of
γenv(i, j) are

n1 = 0.36530 ≡ ‖ϕ̃1‖2B
ϕB
1 = −0.45153|3〉+ 0.67886|4〉 − 0.57902|5〉

n2 = 0.59150 ≡ ‖ϕ̃2‖2B
ϕB
2 = 0.88905|3〉+ 0.28734|4〉 − 0.35641|5〉

n3 = 0.81653 ≡ ‖ϕ̃3‖2B
ϕB
3 = 0.07558|3〉+ 0.67570|4〉+ 0.73329|5〉

While before we did go on by discarding the orbital with n = 1, here we do not find such an unentangled occupied
environmental orbital. Thus the procedure that uses the impurity submatrix does in general not work for interacting
systems.

SII. NON-INTERACTING v-REPRESENTABILITY ISSUES: NON-UNIQUENESS OF MEAN-FIELD

PROJECTION AND OF THE DMET FIXED POINT

In the following we will demonstrate explicitly in accordance to the non-interacting v-representability problem that
we do have multiple approximate projections for a given impurity 1RDM (see also general discussion in Sec. IVB).
Since this is an integral part of the DMET iteration procedure it is not surprising that we can also show explicitly
that we have multiple fixed points as well (see general discussion in Sec. IVD). As discussed in the main text we need
to have enough flexibility in the system to construct the different projections and fixed points. We therefore in this
part of the supplement consider a slightly larger grid and take N = 6. We still consider only M = 3 spinless fermions.
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A. Non-uniqueness of the mean-field projection

Here we show explicitly non-uniqueness of the approximate projection by constructing two non-interacting system
that have the same impurity 1RDM γsimp(i, j) but different orbitals and thus projections.
We first make a random choice for a non-interacting system. Let us consider a translation invariant Hubbard

system, i.e., we have only next-neighbor hopping with periodic boundary conditions:

hs =










0 −1 0 0 0 −1
−1 0 −1 0 0 0
0 −1 0 −1 0 0
0 0 −1 0 −1 0
0 0 0 −1 0 −1
−1 0 0 0 −1 0










(S72)

Diagonalizing it leads to six eigenstates {φ1, ..., φ6}, and choosing the three lowest eigenstates leads {φ1, φ2, φ3}
with ground-state energy E = −4. The 1RDM

γs =










0.5 0.33333 0 −0.16666 0 0.33333
0.33333 0.5 0.33333 0 −0.16666 0

0 0.33333 0.5 0.33333 0 −0.16666
−0.16666 0 0.33333 0.5 0.33333 0

0 −0.166666 0 0.33333 0.5 0.333333
0.333333 0 −0.166666 0 0.333333 0.5










. (S73)

The resulting impurity 1RDM on A ≡ {1, 2} is then

γs
imp =

(
0.5 0.33333

0.33333 0.5

)

. (S74)

To then construct a different system with the same impurity 1RDM as its three-particle ground state we first diago-
nalize γs

imp of Eq. (S74) and get the eigenvalues and the eigenvectors of the impurity 1RDM as

nimp
1 = 0.16666 ≡ ‖ϕ̃1‖2A
ϕA
1 = 0.70711|1〉 − 0.70711|2〉. (S75)

nimp
2 = 0.83333 ≡ ‖ϕ̃2‖2A
ϕA
2 = 0.70711|1〉+ 0.70711|2〉 (S76)

Since B is four-dimensional we have four basis functions. We can choose problem adopted ones by just diagonalizing
the environment 1RDM of the original γs(i, j) of Eq. (S73) and use two of them to build our CAS space, i.e.,

γs
env =






0.5 0.33333 0 −0.16666
0.33333 0.5 0.33333 0

0 0.33333 0.5 0.333333
−0.166666 0 0.333333 0.5




 . (S77)

This leads to

n1 = 0 ≡ ‖ϕ̃1‖2B (S78)

ϕB
1 = −0.31623|3〉+ 0.63246|4〉 − 0.63246|5〉+ 0.31623|6〉 (S79)

n2 = 0.16666 ≡ ‖ϕ̃2‖2B (S80)

ϕB
2 = 0.63246|3〉 − 0.31623|4〉 − 0.31623|5〉+ 0.63246|6〉
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n3 = 0.83333 ≡ ‖ϕ̃3‖2B (S81)

ϕB
3 = −0.63246|3〉 − 0.31623|4〉+ 0.31623|5〉+ 0.63246|6〉 (S82)

n4 = 1.0 ≡ ‖ϕ̃4‖2B
ϕB
4 = 0.31623|3〉+ 0.63246|4〉+ 0.63246|5〉+ 0.31623|6〉. (S83)

We can construct the CAS orbitals that would be used in the auxiliary projection of the target Hamiltonian (where
for the purpose of the example is not interacting but in a real application one would be interested in interacting
Hamiltonians). The first two CAS orbitals can be always chosen as

ϕCAS
1 = |1〉, (S84)

ϕCAS
2 = |2〉. (S85)

Alternatively, we could have used the two orbitals φA of the impurity submatrix as we have discussed in the previous
part of the supplement. Because the fourth eigenvector of the environment submatrix is discarded in the usual
approximate projection (unentangled occupied/core orbital) and the first orbital is perpendicular to the subspace of
the three lowest orbitals, we build the other CAS (environmental) orbitals from the remaining orbitals as

ϕCAS
3 = ϕB

2 , (S86)

ϕCAS
4 = ϕB

3 . (S87)

While we do not need this CAS orbitals in this section, they will become important in the next. Further, they will
show that we get a very different projection when we compare to the CAS from the different Hamiltonian that we
construct next.
If we now take ϕB

3 and ϕB
4 and define

ϕ̃′
1 =

√

nimp
1 ϕA

1 +

√

1− nimp
1

︸ ︷︷ ︸

=
√
0.83333

ϕB
1 (S88)

ϕ̃′
2 =

√

nimp
2 ϕA

2 +

√

1− nimp
2

︸ ︷︷ ︸

=
√
0.16666

ϕB
4 (S89)

as well as

ϕ̃′
3 = ϕB

2 (S90)

ϕ̃′
4 = ϕB

3 . (S91)

Since we have now four orthogonal vectors we would still need to choose two orthonormal ones to fill up all of
the six dimensional space. However, since we only want to construct a Hamiltonian that has the same impurity
1RDM in the ground-state three-particle sector we leave them undefined but instead choose a set of random numbers
ǫ′1 ≤ ǫ′2 ≤ ǫ′3 < ǫ′4 ≤ ǫ′5 = ǫ′6 = 0. For definiteness, we choose ǫ′1 = −4, ǫ′2 = −3, ǫ′3 = −2, ǫ′4 = −1 and ǫ′5 = ǫ′6 = 0.
With this the new Hamiltonian is

hs
new =

4∑

µ=1

ǫ′µϕ̃
′
µ(i)ϕ̃

′∗
µ(j) =










−1.58333 −0.91667 −0.58333 0.16667 −1.16667 0.08333
−0.91667 −1.58333 0.08333 −1.16667 0.16667 −0.58333
−0.58333 0.08333 −1.58333 0.76667 −0.16667 −0.11667
0.16667 −1.16667 0.76667 −1.83333 1.03333 −0.16667
−1.16667 0.16667 −0.16667 1.03333 −1.83333 0.76667
0.08333 −0.58333 −0.11667 −0.16667 0.76667 −1.58333










(S92)

If we diagonalize the Hamiltonian and take the lowest three eigenvectors we find the three-particle ground-state 1RDM

γs
new =










0.50000 0.33333 0.16667 0.00000 0.33333 0.00000
0.33333 0.50000 0.00000 0.33333 0.00000 0.16667
0.16667 0.00000 0.50000 −0.33333 0.00000 0.33333
0.00000 0.33333 −0.33333 0.50000 −0.16667 0.00000
0.33333 0.00000 0.00000 −0.16667 0.50000 −0.33333
0.00000 0.16667 0.33333 0.00000 −0.33333 0.50000










(S93)
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and the corresponding ground-state energy is E′ = ǫ′1 + ǫ′2 + ǫ′3 = −9. By construction the 1RDM agrees on the
impurity but the rest is different. Also, the CAS orbitals that are used in the projection will be different. In our case
they become (besides the first two that are always the same)

ϕ′CAS
3 = ϕB

4 , (S94)

ϕ′CAS
4 = ϕB

1 . (S95)

in contrast to the ones of Eqs. (S86) and (S87). However, ϕB
4 and ϕB

1 were orbitals that did not belong to the original
CAS. That means that also the projection constructed from the hamiltonian hs

new will look very different from the
one of hs of Eq. (S72). Thus in this example we have highlighted that by the requirement that the impurity 1RDM
is the same there is the possibility to construct completely different projections even in a very simple setting where
also the target system is non-interacting and we just consider only a few sites.

B. Non-uniqueness of DMET fixed point

Next we are going to demonstrate that besides the projection also the fixed point is arbitrary and that it can be
arbitrarily far away from the ”exact result”. In our case the ”exact result” is the three-particle ground state of the
following ”target” Hamiltonian

ĥtar ≡
6∑

µ=1

ǫtarµ φtarµ (i)φtarµ (j) ≡










0.91667 −0.583333 0.166667 −0.083333 −0.583333 −0.833333
−0.583333 0.916667 −0.833333 −0.583333 −0.083333 0.166667
0.166667 −0.833333 −0.233333 −0.033333 −0.633333 0.566667
−0.083333 −0.583333 −0.033333 −0.683333 1.016667 −0.633333
−0.583333 −0.083333 −0.633333 1.016667 −0.683333 −0.033333
−0.833333 0.166667 0.566667 −0.633333 −0.033333 −0.233333










(S96)

where we have defined the orthogonal set of eigenfunctions as

{φtar1 = ϕB
1 , φ

tar
2 = φ1, φ

tar
3 = φ2, φ

tar
4 = φ3, φ

tar
5 =

1

|φ4 − 〈φtar1 |φ4〉φtar1 |
(φ4 − 〈φtar1 |φ4〉φtar1 ),

φtar6 =
1

|φ5 − 〈φtar1 |φ5〉φtar1 |
(φ5 − 〈φtar1 |φ5〉φtar1 ) +

1

|φ5 − 〈φtar5 |φ5〉φtar5 |
(φ5 − 〈φtar5 |φ5〉φtar5 )} (S97)

and {φ1, ..., φ5} are the five lowest eigenstates of Eq. (S72). Further we have chosen

ǫtar1 = −2, ǫtar2 = −1, ǫtar3 = −0.5, ǫtar4 = 0.5, ǫtar5 = 1, ǫtar6 = 2.

For this Hamiltonian the three-particle ground-state energy is Etar = −3.5 and the corresponding 1RDM is

γtar =










0.49796 0.35483 0.02354 −0.16463 −0.02150 0.30980
0.35483 0.27354 0.08537 −0.02150 0.05980 0.24796
0.02354 0.08537 0.32850 0.10980 0.44796 0.00483
−0.16463 −0.02150 0.10980 0.89796 −0.04517 0.22354
−0.02150 0.05980 0.44796 −0.04517 0.67354 −0.11463
0.30980 0.24796 0.00483 0.22354 −0.11463 0.3285










(S98)

with the impurity 1RDM as

γtar
imp =

(
0.49796 0.35483
0.35483 0.27354

)

. (S99)

Next we assume that a DMET iteration step led us to an auxiliary Hamiltonian of the form of Eq. (S72). So we
follow the DMET procedure and determine the CAS of this auxiliary Hamiltonian (see Eqs. (S84) to (S87)) and define
the embedded Hamiltonian

h
′tar = [CCAS]Thtar

C
CAS (S100)






0.00000 −1.0000 −0.63246 0.63246
−1.00000 0.0000 −0.63246 0.63246
−0.63246 −0.63246 0.60000 0.00000
0.63246 −0.63246 0.00000 −0.60000




 ,



17

with C
CAS the 6 × 4 matrix constructed from these orbitals. Diagonalizing this Hamiltonian and keeping only the

two lowest (embedded) orbitals we obtain an embedded 1RDM of the target Hamiltonian in the CAS basis as

γ′tar
CAS ≡

2∑

k=1

ϕemb
k (µ)ϕemb

k (ν) (S101)

≡






0.50000 0.33333 0.26352 0.26352
0.33333 0.50000 0.26352 0.26352
0.26352 0.26352 0.16667 0.00000
−0.26352 0.26352 0.00000 0.83333






where ϕemb
µ are the two lowest eigenstates of Eq. (S100). Transforming the 1RDM into the site basis by

γ′taremb(i, j) =

4∑

µ,ν=1

γ′tarCAS(µ, ν)ϕ
CAS
µ (i)ϕCAS

ν (j) (S102)

leads to

γ′tar
emb =










0.5 0.33333 0.00000 −0.16667 0. 0.33333
0.33333 0.5 0.33333 0.00000 −0.16667 0.00000
0.00000 0.33333 0.40000 0.13333 −0.20000 −0.26667
−0.16667 0.00000 0.13333 0.1 −0.06667 −0.2

0. −0.16667 −0.2 −0.06667 0.1 0.13333
0.33333 0.00000 −0.26667 −0.20000 0.13333 0.40000










(S103)

We notice that the 1RDM γ′tar
emb constructed from the embedded Hamiltonian of Eq. (S100) does not agree with the

target 1RDM γtar even on the impurity A. That is, the approximate impurity 1RDM is

γ′tar
imp =

(
0.5 0.33333

0.33333 0.5

)

, (S104)

while the ”exact” impurity 1RDM is given in Eq. (S99). Yet it does agree with the 1RDM γimp of the auxiliary
Hamiltonian of Eq. (S72) on the impurity. So we have attained the convergence criterion

γs
imp = γ′tar

imp, (S105)

and thus our DMET iteration is finished. Besides that we find completely wrong 1RDMs, also the energy estimate is
not necessarily good. To demonstrate this we are going to use the following formula to calculate first the energy of
the fragment A:

ǫexactf =
∑

i=1,2,j=1−6

htar
i,j γ

tar(j, i) = −0.55242 (S106)

where the expression for the fragment energy is taken from [S10] (Eq. (25)) However, because in practice we do not
have the correct 1RDM that corresponds to this Hamiltonian available we need to calculate the fragment energy using
the embedded 1RDM:

ǫemb
f =

∑

i=1,2,j=1−6

htar
i,j γ

′tar
emb(j, i) = −0.43816 (S107)

Following the same procedure after adding to embedded 1RDM the environment orbital that we had originally
discarded (so as to have three particles)

γtar,totemb (j, i) = γ′tar
emb(j, i) + φ∗B4 (j)φB4 (i) (S108)

we obtain the same wrong fragment energy as in (S107).
The reason why we can construct such a ”bad” fixed point is that we can instead of the ground state of a target

Hamiltonian (in our case the three lowest orbitals of the Hamiltonian of Eq. (S96)) end up in an excited state (in
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our case a Slater determinant that excludes the lowest-energy orbitals φtar1 ). We can engineer that by defining an
auxiliary system that has the same impurity 1RDM as the excited state and a CAS that excludes the ground state
of the system (in our case the CAS of Eqs. (S84) to (S87) is orthonormal to φtar1 ≡ ϕB

3 ). We therefore see that by
changing the eigenenergies of our auxiliary Hamiltonian in an almost arbitrary fashion as well as by choosing different
eigenstates (yet still the CAS needs to be orthonormal to the lowest orbital φtar1 ≡ ϕB

3 ) we can find even find many
auxiliary systems that lead to this ”bad” fixed point. Moreover, we can of course generate other ”bad” fixed points
by changing the excited state we target and construct the corresponding auxiliary systems.
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