
Electronic Structure

PAPER • OPEN ACCESS

Approximations based on density-matrix embedding theory for density-
functional theories
To cite this article: Iris Theophilou et al 2021 Electron. Struct. 3 035001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 131.169.224.158 on 06/09/2021 at 14:08

https://doi.org/10.1088/2516-1075/ac1660


Electron. Struct. 3 (2021) 035001 https://doi.org/10.1088/2516-1075/ac1660

OPEN ACCESS

RECEIVED

4 March 2021

REVISED

15 June 2021

ACCEPTED FOR PUBLICATION

20 July 2021

PUBLISHED

31 August 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Approximations based on density-matrix embedding theory for
density-functional theories

Iris Theophilou1,∗ , Teresa E Reinhard1,2,∗ , Angel Rubio1,3,∗ and
Michael Ruggenthaler1,∗

1 Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761
Hamburg, Germany

2 Dribia Data Research SL, Carrer Llacuna 162, Planta 3 mòdul 303, 08018 Barcelona, Spain
3 Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, United States of America
∗ Authors to whom any correspondence should be addressed.

E-mail: iris.theophilou@mpsd.mpg.de, teresa@dribia.com, angel.rubio@mpsd.mpg.de and
michael.ruggenthaler@mpsd.mpg.de

Keywords: density functional theory, density matrix embedding theory, reduced density matrix

Abstract
Recently a novel approach to find approximate exchange–correlation functionals in
density-functional theory was presented (Mordovina et al 2019 J. Chem. Theory Comput. 15 5209),
which relies on approximations to the interacting wave function using density-matrix embedding
theory (DMET). This approximate interacting wave function is constructed by using a projection
determined by an iterative procedure that makes parts of the reduced density matrix of an auxiliary
system the same as the approximate interacting density matrix. If only the diagonal of both systems
are connected this leads to an approximation of the interacting-to-non-interacting mapping of the
Kohn–Sham approach to density-functional theory. Yet other choices are possible and allow to
connect DMET with other density-functional theories such as kinetic-energy density functional
theory or reduced density-matrix functional theory. In this work we give a detailed review of the
basics of the DMET procedure from a density-functional perspective and show how both
approaches can be used to supplement each other. We do not present a specific realization of
combining density-functional methods with DMET but rather provide common grounds to
facilitate future developments that encompass both approaches. We do so explicitly for the case of a
one-dimensional lattice system, as this is the simplest setting where we can apply DMET and the
one that was originally presented. Among others we highlight how the mappings of
density-functional theories can be used to identify uniquely defined auxiliary systems and
projections in DMET and how to construct approximations for different density-functional
theories using DMET inspired projections. Such alternative approximation strategies become
especially important for density-functional theories that are based on non-linearly coupled
observables such as kinetic-energy density-functional theory, where the Kohn–Sham fields are no
longer obtainable by functional differentiation of an energy expression, or for reduced
density-matrix functional theories, where a straightforward Kohn–Sham construction is not
feasible.

1. Introduction

Finding the ground state of a multi-electron system is of central importance in several areas of modern physics.
Yet the exponential increase of the dimension of the interacting multi-electron wave function prohibits a direct
solution of the resulting Schrödinger equation in most cases. A possible way to avoid this problem is to refor-
mulate the multi-electron problem in terms of reduced quantities that can be calculated numerically efficiently.
Most prominent is density-functional theory [24] and its extensions such as one-body reduced density-matrix
functional theory [26]. However, the main challenge for density-functional theories is to find accurate yet effi-
cient approximations to the unknown exchange–correlation functionals. Traditionally these functionals are
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based on approximate energy expressions of simple reference systems such as the homogeneous electron gas
[24]. It is then necessary to perform a functional derivative with respect to the reduced quantity to obtain the
exchange–correlation potentials of the Kohn–Sham approach to density-functional theories. However, besides
fundamental issues with the differentiability of the involved functionals [15, 16], it is particularly challenging
to construct approximations that also hold for situation with strong static correlations with such energy-based
approximation schemes. Therefore alternative approximation strategies are highly desirable. Recently, such an
alternative approach was presented in reference [21], where instead of energy expressions directly an approxi-
mation to the interacting wave function based on an auxiliary non-interacting wavefunction is employed. This
is done by using ideas from density-matrix embedding theory (DMET) [13], where an interacting electronic
problem is divided into subsystems (referred to as impurity and environment) that are treated on different
levels of accuracy. The main connection to density-functional theories and the crucial ingredient of DMET is
an approximate projection derived from an auxiliary non-interacting system. This approximate projection is
determined by an iterative procedure that makes parts of the reduced density matrix of the auxiliary system
the same as the approximate interacting density matrix. If only the diagonal of both systems are connected
this leads to an approximation of the interacting-to-non-interacting mapping of standard density-functional
theory.

The DMET methodology was first presented and benchmarked for one-dimensional and two-dimensional
Hubbard lattices [13] and since then numerous studies and extensions of DMET have been presented on Hub-
bard lattices [2, 4, 40]. Apart from quantum lattice models it has been also applied to ab initio Hamiltonians to
treat certain molecular [27, 37] and periodic systems [1, 6]. Furthermore, different extensions of DMET have
been developed to apply the method to time-dependent systems [14] and excited states [34], and to coupled
electron–phonon models [29, 30]. Also, finite-temperature systems have already been treated with DMET
[31]. Numerical shortcomings of the DMET method can be improved by semi-definite programming [39],
projected DMET [38] and multiconfigurational DMET [9].

In this work we want to elucidate the connection between the two mentioned approaches to the multi-
electron problem, namely density-functional theories and DMET, and highlight how they can be used to
supplement each other. We do not focus on a specific combination of density-functional theories with DMET
but rather provide a common basis for future developments encompassing both methods. To do so we re-
examine the foundations of DMET and provide a comprehensive discussion of the basic ingredients. Since in
DMET not only the M-particle space is relevant (in contrast to most density-functional theories) we discuss
in detail how the different spaces, projectors, Hamiltonians and projected Hamiltonians are connected. We
will focus on the simplest setting of DMET, i.e. finite one-dimensional lattices. This together with a focus on
the simplest iteration procedures (many different have been proposed in the literature) allows us to highlight
several subtle issues. Firstly, by carefully constructing different representations of the electronic Fock space, we
show how a Hamiltonian given in terms of global fermionic creation and annihilation operators differs to a
representation in terms of local fermionic creation and annihilation operators (section 2.1). This is connected
to the fact that in an only locally anti-symmetrized basis (as is the case for impurity and environment wave
functions) the expansions coefficients need to carry the anti-symmetrization. Furthermore we elucidate how
an effective chemical potential arises when a Hamiltonian is projected onto a smaller Fock space, and point
out discrepancies with respect to previous works in the projected interaction terms (section 2.2). After dis-
cussing in detail the different projections employed in DMET, we highlight the appearance of the problem of
non-interacting v-representability of reduced density-matrix functional theory in the DMET procedure. As a
result we find infinitely many non-interacting Hamiltonians with a non-local potential that can be used for the
auxiliary projection of the DMET procedure (section 4.2). This implies a certain arbitrariness in the iteration
procedure and the corresponding iterated approximated projections. Furthermore, we show that making these
projections exact by increasing the impurity size to half the full system size (the projector becomes the identity
operator on the full Fock space) requires a non-trivial adaption of the standard DMET procedure (section 4.3).
We then highlight how the arbitrariness of the iteration steps can lead to different fixed points of the DMET
procedure without further refinements (section 4.4). This problem can persist also when the full embedded
(projected) 1RDMs are made to agree (section 4.5). Since we use a general non-local effective potential we can
find a similar problem also for a global (many impurities) iteration (section 4.6). We here then make a con-
nection with density-functional theories, which provide us with mapping and representability theorems to
potentially avoid spurious non-uniqueness and non-representability issues. These theorems suggest to express
the exact projection in terms of the auxiliary and an exchange–correlation projection (section 5). Finally we
discuss how DMET allows us to approximate density-functional-type mappings and how we can construct
approximations for different density-functional theories (section 6).

To ease access to readers unfamiliar with DMET we provide an extensive appendix where the many different
concepts are explained with simple examples.
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2. Theoretical setting

Let us, for simplicity and definiteness, choose in our considerations a finite, one-dimensional lattice system.
Since we will be changing Hilbert spaces a lot in the following, let us introduce all of these spaces and how
they are connected. At the same time we will also define the Hamiltonians and discuss their representations
in the different spaces. Finally we will briefly discuss projections of Hamiltonians onto subspaces and some
properties of the 1RDM.

2.1. From single-particle space to the fermionic Fock space
Following the usual construction of quantum physics, we will start with the single-particle space of N sites,
which we denote by

h1
∼= C

N (1)

with the usual inner product and ∼= meaning isometrically isomorphic. A Hamiltonian ĥ(1) on this space can
be represented in the standard (site) basis |i〉 as a Hermitian N × N matrix h(1)(i, j) = 〈i|ĥ(1)j〉. With the N
eigenfunctions of this matrix 〈i|φμ〉 = φμ(i) and their eigenenergies εμ the Hamiltonian can be equivalently
represented as

h(1)(i, j) =
N∑

μ=1

εμφμ(i)φ∗
μ(j). (2)

While we will give several explicit examples for spinless fermions in the appendix (to keep the dimensions
small), in general we will consider spin 1/2 particles. All the results in the following will not depend on whether
we include spin or not. The only difference lies in the dimensionalities of the objects that we consider. Since
we will keep the spin dimension (a factor 2) explicit, it is usually easy to infer the spinless dimensions (else we
state it explicitly). The single-particle space including spin we denote by

H1 = h1 ⊗ C
2 ∼= C

2N . (3)

Here the standard (site-spin) basis is denoted as |z〉 ≡ |iσ〉 and a Hamiltonian Ĥ(1) can be represented as a
2N × 2N Hermitian matrix that reads in eigenrepresentation

H(1)(z, z′) =
2N∑
μ=1

εμφμ(z)φ∗
μ(z′). (4)

So far no statistics of the particles have entered our construction. Now for the M-particle space the fermionic
nature of our electrons will become important. It is common practice to construct the M-particle space in
two consecutive steps. First we define the space of distinguishable particles as HM = H1 ⊗ · · · ⊗ H1, which
has dimensions (2N)M and standard basis states of the form |z1 . . . zM ) = |z1〉 ⊗ · · · ⊗ |zM〉. We want to
emphasize that we denote the distinguishable-particle (non-symmetrized) basis with | · ) while we later denote
the indistinguishable-particle (anti-symmetrized) basis with |·〉. In this space the non-interacting M-particle
Hamiltonian is defined as Ĥ(M) = Ĥ(1) ⊗ 𝟙̂(1) ⊗ · · · ⊗ 𝟙̂(1) + · · ·+ 𝟙̂(1) ⊗ · · · ⊗ 𝟙̂(1) ⊗ Ĥ(1), where 𝟙̂(1) is the
identity of H1. If we denote |φμ1〉 ⊗ · · · ⊗ |φμM 〉 = |μ1 . . . μM ) it can be expressed as Ĥ(M) =

∑2N
μ1...μM=1

(εμ1 + · · ·+ εμM )|μ1 . . . μM ) (μ1 . . . μM|, which with the expression in the standard basis
(z1 . . . zM|μ1 . . . μM) = φμ1 (z1) . . . φμM (zM) leads to the eigenrepresentation in the spin-site basis. At
this point one could wonder why we did introduce a space of distinguishable particles, when we anyway want
to work with electrons? As we will show below, in quantum physics we often work explicitly in HM but restrict
then the allowed states to the indistinguishable ones. Nevertheless, we can equivalently work with the Hilbert
space of indistinguishable fermions, as we will also show below. Both approaches look formally similar but
have some important differences, that we need to highlight for completeness and to avoid subtle errors. The
first approach is straightforward. We make all anti-symmetric products for the standard basis

|z1 . . . zM〉 = 1√
M!

∑
p

σ(p)|p(z1)〉 ⊗ · · · ⊗ |p(zM)〉, (5)

where the sum goes over all permutations p of the M indices and σ(p) denotes whether the permutation is
even (+) or odd (−). In a similar manner we can do that for any other basis, e.g. the eigenbasis of the non-
interacting Hamiltonian Ĥ(M) is denoted as |μ1 . . . μM〉. The number of such states is

( 2N
M

)
. If we now look for

the eigenstate of Ĥ(M), however, restricted on this fermionic subspace, we will find all Slater determinants of
the non-interacting Hamiltonian, i.e.

3
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Φ̃(z1 . . . zM) =
(
z1 . . . zM|k1 . . . kM〉

=
1√
M!

∑
p

σ(p)φp(μ1)(z1) . . . φp(μM )(zM). (6)

Instead of working in the higher-dimensional spaceHM and then restricting the allowed states, it is also possible
to work directly in the properly anti-symmetrized (fermionic) M-particle Hilbert space

HF
M = H1 ∧ · · · ∧ H1

∼= C

(
2N
M

)
, (7)

which is just the span of all the anti-symmetrized states. The Hamiltonian in this space can then be represented
by

Ĥ(M)
F =

2N∑
μ1=1

· · ·
2N∑

μM>μM−1

(
εμ1 + · · ·+ εμM

)
|μ1 . . . μM〉〈μ1 . . . μM|. (8)

That is, in accordance to the smaller dimension the sums with respect to eigenstates are nested, i.e. μ1 <
. . . < μM. Furthermore, with respect to the anti-symmetrized spin-basis states |z1 . . . zM〉 the Slater deter-
minants are now

Φ(z1 . . . zM) = 〈z1 . . . zM|μ1 . . . μM〉

=
∑
p

σ(p)φp(μ1)(z1) . . . φp(μM )(zM). (9)

Since in the following we will work (almost) exclusively with the anti-symmetrized spaces, our Slater
determinants will not have the factor 1/

√
M!.

Let us next go one step further and relax the fixed number of particles restriction. To this end we construct
the Fock space

F = ⊕2N
M=0HF

M
∼= C

22N
, (10)

where the Fock-space dimension is determined by the binomial equality
∑2N

M=0

(
2N
M

)
= 22N . In an overload-

ing of symbols we also denote |z1 . . . zM〉 ≡ |∅〉0 ⊕ . . . |z1 . . . zM〉M · · · ⊕ |∅〉2N, where |∅〉 is the null vector in
the respective spaces and accordingly also |Φ〉 ∈ F . The non-interacting Hamiltonian can be defined straight-
forwardly by Ĥ =

⊕2N
M=0Ĥ(M)

F . Yet instead of this expression we would like to use creation ĉ†z and annihi-

lation operators ĉz, which obey the usual anti-commutation relations {ĉz , ĉ†z′ } = δzz′ such that |z1 . . . zM〉 =
ĉ†zM

. . . ĉ†z1
|0〉, where |0〉 ∈ HF

0 is the vacuum state. With these we can then define the creation and annihilation
operators for the single-particle eigenstates

φ̂†
μ =

2N∑
z=1

φμ(z)̂c†z , (11)

and accordingly for φ̂μ, which allows us to express

Ĥs =
2N∑
μ=1

εμφ̂
†
μφ̂μ =

2N∑
z,z′=1

H(1)(z, z′)̂c†z ĉz′ . (12)

Here the subindex s indicates in analogy to Kohn–Sham theory a non-interacting Hamiltonian. We will later
see how to introduce interactions, which is the reason why a direct solution for even just the ground state
becomes in practice unfeasible and we need to resort to approximations. Further, for later reference we want
to introduce a basis for the Fock space F by re-labeling as follows (see appendix A.1.1 for an explicit example):

|F1〉 = |0〉r

|F2〉 = ĉ†1↑|0〉

|F3〉 = ĉ†1↓|0〉

. . .

|F22N 〉 = ĉ†1↑ . . . ĉ†N↓|0〉.

(13)

4
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While we did nothing intricate, this basis makes the anti-symmetry of the space implicit due to the fixed
ordering of the creation operators. This implies that the Hamiltonian of equation (12) expressed in this basis
will look quite different and the anti-symmetry of the fermionic wave functions will be carried over to the
expansion coefficients (see appendix A.1.1). Similar problems arise with a different construction for the Fock
space, which uses local Fock spacesFi

∼= C4, i.e.Fi = span{|0〉i, |↑〉i, |↓〉i, |↑↓〉i}, such thatF′ =
⊗N

i=1Fi
∼= F .

This allows to use a local site-spin basis |ν1〉 ⊗ · · · ⊗ |νN〉 ∈ F′. Yet again, this basis is not explicitly anti-
symmetrized4. This can also be seen by the local creation â†iσ and annihilation âiσ operators, which locally anti-
commute, i.e. {â†iσ , âiσ′} = δσ,σ′ , yet when extended to all of F′ for i �= i′ actually commute, i.e. [a†iσ , âi′σ′] = 0.
As a result, the Hamiltonian of equation (12) does not take the same form in terms of the local creation
and annihilation operators except for special Hamiltonians like next-neighbor hopping (Hubbard) Hamil-
tonians. The connection follows the Jordan–Wigner transformation ĉiσ = exp(iπ

∑
σ′
∑

k′<iâ
†
k′σ′ âk′σ′) âiσ and

accordingly for the creation operator. Furthermore it implies that for fermionic wave functions the expan-
sion coefficients in this basis need to carry the missing anti-symmetry. Such an issue will appear later in our
considerations when we want to express a fermionic wave function as an impurity and environment tensor
product.

2.2. Hamiltonian restricted on Fock subspace
Let us next consider the form of the Hamiltonian of equation (12) restricted to a subspace of F . We will not
consider just any subspace but we choose a different single-particle basis with creation operators ϕ̂†

k̃
and an

M − 2n state |K̃〉 such that we have

E = span{|K̃〉, ϕ̂†
1|K̃〉, . . . , ϕ̂†

4n . . . ϕ̂
†
1|K̃〉} ∼= C

24n
. (14)

Here we have chosen all μ̃ ∈ {1, . . . , 4n} such that ϕ̂μ̃|K̃〉 = 0, and for the explicit example in the appendix
the number of basis functions 4n are 2n without spin. The subspace E is then its own Fock space of lower
dimension with the new vacuum state |0̃〉 = |K̃〉. To determine the Hamiltonian on this subspace we can
define a projector onto E which we denote by PE and then find Ĥ′

s = PEĤsPE . We can either do so by labeling
the states similarly to equation (13) by {|F̃1〉, . . . , |F̃24n〉} and have a representation in an ordered basis (see
appendix A.3) or we use the representation in terms of the anti-symmetrized Fock-state basis |μ̃1 . . . μ̃lK̃〉. In
the latter case, using that we only have contributions for equal number of particles and at most one μ̃ �= μ̃′,
we find with H′(μ̃, μ̃′) =

∑
z1,z2

H(1)(z1, z2)ϕ∗
μ̃(z1)ϕμ̃′(z2) and Δε = 〈K̃|ĤsK̃〉

Ĥ′
s =

4n∑
μ̃,μ̃′=1

H′(μ̃, μ̃′)ϕ̂†
μ̃ϕ̂μ̃′ +

Δε

2n
ˆ̃N. (15)

Here Δε ˆ̃N, with ˆ̃N =
∑

μ̃ ϕ̂
†
μ̃ϕ̂μ̃ the particle number operator in E , acts as a chemical potential and takes

into account the energy due to |K̃〉. Alternatively, we could have just used the identity operator on E and just
added Δε𝟙̂E . If we go beyond non-interacting Hamiltonians we usually add a two-particle interaction term of
the form Ŵ =

∑
z1,z2,z2,z1

W (2)(z1, z2, z3, z4)̂c†z1
ĉ†z2

ĉz2 ĉz1 . We first represent the interaction term in creation and

annihilation operators that contain the above ϕ̂†
1 to ϕ̂†

4n, which leads to

W (2)(μ, ν, ξ, o)

=

2N∑
z1,z2=1

ϕ∗
μ(z1)ϕ∗

ν(z2)W (2)(z1, z2, z2, z1)ϕξ(z2)ϕo(z1). (16)

Here μ, ν, ξ, o go from 1 to 2N. The first 4n correspond to the ones used in E and the ones from (4n + 1) to
(2n + 1 + M) build up |K̃〉. Next we rearrange the resulting Ŵ that acts on all of F in sums that go from 1
to 4n and sums that go from 4n + 1 to 2N. Since we have a fixed |K̃〉 in all our states, the terms that have one
index up to 4n and the other three are in (4n + 1) to (2N) (and vice versa) are zero. The projection on E thus
becomes

Ŵ ′ =

4n∑
μ̃,ν̃,ξ̃,̃o=1

W (2)(μ̃, ν̃, ξ̃, õ)ϕ̂†
μ̃ϕ̂

†
ν̃ ϕ̂ξ̃ ϕ̂õ +

〈K̃|ŴK̃〉
2n

ˆ̃N

4 The connection between F and F′ also amounts to fixing an ordering of the i for all objects, e.g. i1 > . . . > iM

5
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+

4n∑
μ̃,ξ̃=1

[
2n+1+M∑
ν=4n+1

(
W (2)(μ̃, ν, ν, ξ̃) − W (2)(μ̃, ν, ξ̃, ν)+ W (2)(ν, μ̃, ξ̃, ν) − W (2)(ν, μ̃, ν, ξ̃)

)]
ϕ̂†
μ̃ϕ̂ξ̃ .

(17)

Let us note here that the terms of the projected interaction that we find here do not agree with the ones
presented in, e.g. equations (16) and (17) of reference [37].

2.3. Properties of the one-body reduced density matrix
Let us finally comment also on some general properties of the 1RDM that will become important. For
any density matrix (mixed state) ρ̂ =

∑
l wl|Ψl〉〈Ψl| with

∑
l wl = 1 and |Ψl〉 ∈ F , the 1RDM is given by

γ(z1, z2) = Tr(ρ̂ĉ†z1
ĉz2 ) =

∑2N
μ=1nμψ

∗
μ(z1)ψμ(z2), where the latter expression is its diagonal representation in

terms of the natural occupation numbers 0 � nμ � 1 and natural orbitals ψμ(z). The diagonal provides

the particle number N =
∑2N

z=1γ(z, z) of the density matrix. Of specific interest are here pure states in the
M-particle sector of F , where one can distinguish between interacting M-particle states |Ψ〉 with usually
0 < nμ � 1 and non-interacting (Slater determinant) wave functions |Φ〉 with n1 = · · · = nM = 1 and the
rest zero. This implies that the natural orbitals are equivalent to the orbitals of the Slater determinant, e.g.
〈μ1 . . . μM |̂c†z1

ĉz2μ1 . . . μM〉 =
∑M

i=1φ
∗
μi

(z1)φμi (z2). Additionally, it also implies that a 1RDM of an interacting
system cannot be reproduced by a single Slater determinant5.

3. Exact embeddings via projections

The basic idea of DMET is that we divide the system into a part that we treat in detail—called the impu-
rity—and a part that while coupled to the impurity is not treated in detail—called the environment. This
division of the system into impurity and environment and the subsequent reformulation of the problem based
on this division is called an embedding. While in practice the impurity is changed consecutively and the calcu-
lation is repeated such that we have treated all parts of the system in detail, the basic ingredient is the treatment
of a single such impurity. In this section, where we discuss how this can be done exactly, we focus on the spe-
cific impurity A which is chosen to consist of the sites i ∈ {1, . . . , n} and the rest we denote by B. Thus the
corresponding spin-site impurity is A = {1, . . . , 2n} and accordingly for B such that H1

∼= A ⊕ B.

3.1. General embedding projections
The original (undivided) problem is usually to solve an M-particle problem on HF

M with a general (usually
interacting) Hamiltonian ĤM

F . For the DMET embedding procedure it then becomes necessary to lift this
problem into Fock space. That is, we consider a Hermitian Hamiltonian of the form

Ĥ =
∑
z1,z2

H(1)(z1, z2)̂c†z1
ĉz2

+
∑
z1,z2

W (2)(z1, z2, z2, z1)̂c†z1
ĉ†z2

ĉz2 ĉz1 . (18)

We would then like to solve for the ground-state |Ψ〉 in the M-particle sector. Without further simplifica-
tions this amounts to a diagonalization of a

( 2N
M

)
×
( 2N

M

)
dimensional matrix, which already for small systems

becomes impossible to perform numerically exactly. We would like to reduce this prohibitively large dimen-
sionality. To do so we assume we would know |Ψ〉 and in a first step make the problem even more intractable
by representing it in some Fock-space basis, e.g.

|Ψ〉 =
22N∑
i=1

Ψi|Fi〉. (19)

5 Let us point out that there is a simple way to reproduce any 1RDM from the ground state of a non-interacting system: one just needs
to make all eigenstates degenerate, i.e. in equation (12) we choose all εμ the same, and then we can choose an arbitrary sum of Slater
determinants as a representative of the degenerate ground-state manifold. However, this ‘trick’ is not useful for any practical purpose as
we will discuss later in section 4.5.

6
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Since each |Fi〉 = |FA
i 〉 ⊗ |FB

i 〉, where |FA
i 〉 ∈ FA

∼= C
22n

and |FB
i 〉 ∈ FB

∼= C
22(N−n)

belong to the impurity A
and the environment B, respectively, we can re-express the ground state in a new basis

|Ψ〉 =
22n∑
i=1

22(N−n)∑
j=1

Ψij|FA
i 〉 ⊗ |FB

j 〉. (20)

Of course, since it is an M-particle problem most contributions in the full Fock space are zero (see appendix
A.2.1 for an explicit example). The expansion coefficients Ψij are then called the connection matrix between
|FA

i 〉 and |FB
j 〉. Alternatively we could also use, e.g. the local basis |ν1〉 ⊗ · · · ⊗ |νN〉 to find such a basis for A

and B, respectively.
We can then in a next step just keep those contributions that are non-zero, re-order and bring equation (20)

in a diagonal form (see appendix A.2.1 for an explicit example). This procedure can be done efficiently with a
singular value decomposition (SVD) [12] of Ψij. Assuming without loss of generality n � (N − n), this leads
to

Ψij =

22n∑
α=1

22(N−n)∑
β=1

UiαΛαβV†
βj. (21)

Here, Uiα and V†
βj are matrix elements of unitary matrices U ∈ C22n × C22n

and V ∈ C22(N−n) × C22(N−n)
, and

Λαβ is a rectangular diagonal (22n × 22(N−n))-dimensional matrix with 2n real values λα on its diagonal.
Plugging equation (21) into equation (20) then yields

|Ψ〉 =
22n∑
i=1

22(N−n)∑
j=1

22n∑
α=1

UiαλαV†
αj|FA

i 〉 ⊗ |FB
j 〉,

=
22n∑
α=1

λα

22n∑
i=1

Uiα|FA
i 〉︸ ︷︷ ︸

=|Aα〉

⊗
22(N−n)∑

j=1

V†
αj|FB

j 〉︸ ︷︷ ︸
=|Bα〉

,

=
22n∑
α=1

λα|Aα〉 ⊗ |Bα〉. (22)

We have thus decomposed the ground-state wave function into the sum of tensor products of two different sets
of wave functions |Aα〉 and |Bα〉. The states |Aα〉 are defined exclusively on the impurity, while the states |Bα〉
are only defined on the environment (see appendix A.2.2 for an explicit example). The new states |Bα〉 (which
are now only 22n as opposed to 22(N−n) in (20)) are then the only ones still considered of the environment
B and constitute what is called a bath for the impurity A. This construction of the impurity plus the bath is
referred to in the DMET literature as the embedded system. If we next define a subspace of this embedded
system span{|Aα〉 ⊗ |Bβ〉|α,β ∈ {1, . . . , 22n}} ∈ F , which by construction contains the M-particle ground
state of interest, and define a corresponding projector

P̂ =

22n∑
α,β=1

|Aα〉 ⊗ |Bβ〉〈Aα| ⊗ 〈Bβ | (23)

we can define a 24n × 24n embedded Hamiltonian by

Ĥ ′ = P̂ĤP̂. (24)

If we now restrict to only the M-particle sector and minimize the energy therein we get back the original wave
function by construction. We note, however, that it is not a priori clear how many M-particle wave functions
are in this subspace and it might be non-trivial to sort these wave functions (see also appendix A.3.1 for an
explicit example). Moreover, since the basis is not properly anti-symmetrized, only properly anti-symmetrized
coefficients are allowed in the ensuing minimization. All of this implies that even with the exact states |Aα〉 and
|Bα〉 this problem might be as hard to solve in practice as the original one if n is not chosen small enough, i.e.
24n �

( 2N
M

)
.

3.2. Embedding projections from non-interacting systems
In the case that the Hamiltonian is non-interacting, i.e. takes the form of equation (12), and is non-degenerate
we can express the embedded Hamiltonian in a more compact and simple form. This is due to the fact that

7
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also the ground state takes the much simpler form

|Φ〉 =

⎛
⎜⎝ 2N∑

z=1

φ1(z)︸ ︷︷ ︸
=Cz1

ĉ†z

⎞
⎟⎠ . . .

⎛
⎜⎝ 2N∑

z=1

φM(z)︸ ︷︷ ︸
=CzM

ĉ†z

⎞
⎟⎠ |0〉. (25)

If we use for the (2N × M)-dimensional matrix Czμ the division , and

employ an SVD of the impurity submatrix CA
zμ =
∑2n

x=1

∑M
l=1UA

zxΛxlV
A†
lμ , where UA ∈ C2n × C2n and VA ∈

C
M × C

M , we find

Here, due to Λ being a rectangular diagonal 2n × M matrix (assuming that 2n � M) with 2n entries λx on the
diagonal, we find U · λ ∈ C2n × C2n (see appendix A.2.2 for an explicit example). Note that we have overloaded
the notation again by choosing the same notation for the matrices in the SVD as before in the Fock-space case.
The differences (dimensions) should be obvious from the context. The rotation of orbitals that we performed
implies that for μ ∈ {1, . . . , 2n} the corresponding orbitals C̃zμ have non-zero entries on A and B, while for
μ ∈ {2n + 1, . . . , M} they only have non-zero entries on B. Based on these new orbitals we can introduce new
creation and annihilation operators. Instead of defining such Fock-space operators for each C̃zk, which would
amount to M creation and annihilation operators, we define 4n + (M − 2n) by further dividing the first 2n
orbitals into 2n that have non-zero values only on A and 2n that have non-zero values only on B. With the norm
on A defined as ‖ϕ̃μ‖A = (

∑2n
z=1|ϕ̃μ(z)|2)1/2 as well as on B via ‖ϕ̃μ‖B = (

∑2N
z=2n+1|ϕ̃μ(z)|2)1/2 this leads to

ϕA
μ(z) =

1

‖ϕ̃μ‖A
ϕ̃μ(z)Θ+(2n − z),

ϕB
μ(z) =

1

‖ϕ̃μ‖B
ϕ̃μ(z)Θ+(z − 2n − 1),

(26)

where Θ+(z) is the Heaviside step function which is 1 for z � 0 and zero else. For μ > 2n we have ϕ̃μ(z) =
ϕB
μ(z) by construction. Defining with these states

ϕ̂A,†
μ =

2N∑
z=1

ϕA
μ(z)̂c†(z)

ϕ̂B,†
μ =

2N∑
z=1

ϕB
μ(z)̂c†(z)

(27)

and accordingly ϕ̂†
μ for μ > 2n we can express the non-interacting ground-state wave function as

|Φ〉 =
(
‖ϕ̃1‖Aϕ̂

A,†
1 + ‖ϕ̃1‖Bϕ̂

B,†
1

)
. . .
(
‖ϕ̃2n‖Aϕ̂

A,†
2n + ‖ϕ̃2n‖Bϕ̂

B,†
2n

)
ϕ̂†

2n+1 . . . ϕ̂
†
M |0〉. (28)

This leads to 22n terms which are equivalent to the ones from equation (22) for a non-interacting wave
function. So we could now re-arrange the sum, express the different states as |Aα〉 ⊗ |Bα〉 and identify the
corresponding λα, which allows us to define a projection of the form of equation (23) (see appendix A.2.2 for

8



Electron. Struct. 3 (2021) 035001 I Theophilou et al

an explicit example). Instead we use that the above defined creation operators of equation (27) span a subspace
of the form of equation (14) and the projection thus leads to a Hamiltonian of the form of equation (15). Since
the new non-interacting Hamiltonian can be determined as a 4n × 4n matrix of the form H′

s = C†
CASHsCCAS

with the complete active space (CAS) matrix

(29)

we see that H′
s(z1, z2) = Hs(z1, z2) for z1 and z2 restricted to z ∈ A, i.e. on the impurity the Hamiltonian has

the same form (see also appendix A.3.2 for an explicit example). Restricting now to the 2n particle subspace
in the Fock space E gives back the ground-state wave function of the original problem, provided we also know
the form of |0̃〉 ≡ |K̃〉 in terms of the original Fock space. If we do not know the form of this new vacuum state
in terms of the original basis then we at least still get back the 1RDM on the impurity A since |K̃〉 has zero
contribution on A. We furthermore see that this procedure, in contrast to the one of equation (23), can only
work in general for non-interacting problems. The reason being that an interacting wave function consists of
(usually) all possible Slater determinants that we can construct and hence we cannot discard any of the original
2N orbitals and corresponding creation operators a priori.

Before we move on, let us highlight that there is a very elegant way to obtain the CAS and the corresponding
matrix CCAS. If we use the previous SVD for Czμ the 1RDM of the system can be brought into the form

γ(z1, z2) =
M∑

k=1

C∗
z1kCkz2 =

M∑
μ=1

C̃∗
z1μ

C̃μz2

=

2n∑
μ=1

ϕ̃∗
μ(z1)ϕ̃μ(z2) +

M∑
μ=2n+1

ϕ̃∗
μ(z1)ϕ̃μ(z2). (30)

Using that in the sub-matrix γenv(z1, z2) of γ(z1, z2), with z1 and z2 in B ≡ {2n + 1, . . . , 2N}, only the ϕ̃μ(z)
and ϕB

μ(z) from equation (26) contribute, we find that

γenv(z1, z2) =
2n∑
μ=1

‖ϕ̃μ‖2
Bϕ

B,∗
μ (z1)ϕB

μ(z2)

+
M∑

μ=2n+1

ϕB,∗
μ (z1)ϕB

μ(z2). (31)

Thus diagonalizing γenv(z1, z2) and only keeping those eigenfunctions ϕB
μ(z) that have eigenvalues (natural

occupation numbers) 0 < nB
μ = ‖ϕ̃μ‖2

B < 1 gives us directly the non-trivial entries of the matrix CCAS. See
appendix A.3.2 for an example of this construction. For later use we define here also the impurity 1RDM
γimp(z1, z2), which is the sub-matrix of γ(z1, z2) with z1 and z2 restricted to A ≡ {1, . . . , 2n}. Furthermore, we
define

γemb(z1, z2) =
2n∑
μ=1

‖ϕ̃μ‖2
Aϕ

A,∗
μ (z1)ϕA(z2)

︸ ︷︷ ︸
=γimp(z1,z2)

+

2n∑
μ=1

‖ϕ̃μ‖2
Bϕ

B,∗
μ (z1)ϕB(z2) (32)

the embedded 1RDM, which can also be found by calculating the 2n-particle ground state of the embedded
Hamiltonian Ĥ ′

s and excluding the orbitals of |K̃〉 = |0̃〉 (also called unentangled occupied/core orbitals).

9
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4. Mean-field embeddings, self-consistency and the non-interacting
v-representability issue

So far we have only given some basic constituents that are part of the DMET procedure. Let us in the following
connect them and discuss in more detail the fundamental algorithm of DMET. While there are many flavors
available, we want to stick to the essentials and consider the standard choices where 1RDMs are matched in
specific ways. To this end will focus on matching 1RDMs locally (on each impurity).

4.1. Mean-field embedding via impurity one-body reduced density matrix
As said before, we divide our problem in an impurity A and an environment B. To find the exact projec-
tor to perform the embedding onto A we would first need to solve the original interacting problem of the
form of equation (18). This is of course not practical because the DMET procedure was developed to avoid
exactly this unfeasible numerical task. Hence in the following we want to reduce the dimension of our problem
which is

(
2N
M

)
. The goal is now to find an approximate projection P̂. If we just use any approximate ver-

sion of the form of equation (23) we work in a sub-space of the full Fock space with the dimension 24n.
Already at this point we highlight that the moment we assume the size of A to be half the system, i.e. 2n = N,
nothing is discarded and the projector becomes the identity, i.e. we are back in needing to solve the orig-
inal problem. To find the approximate ground state (due to the approximate projection) we then need to
restrict to those states that provide exactly M particles. To identify these states can be cumbersome (see also
appendix A.3 for an explicit example) and hence it is desirable to have an ordering by particle number a pri-
ori. The non-interacting projections provide such an ordering, since they give rise to a new Fock space E
and purpose-built Slater determinants. Hence, in practice a non-interacting projector is used. But instead of
just, e.g. the projection from the equation (18) with W(2) ≡ 0, a self-consistency condition is enforced. Which
condition and how it is enforced then connects DMET to different density-functional theories. With a non-
interacting projector we therefore have the dimension

(
4n
2n

)
, where we have assumed above that 2n � M holds.

However, if 2n > M the dimension becomes
(

4n
M

)
(which as one could verify gives back the original problem

in the limit that 2n = N). It is important to note here that an adaptation of how the approximate projection is
determined in general would be needed for 2n > M (see discussion in section 4.3).

A standard self-consistency condition is then

γs
imp(z1, z2) = γ ′

imp(z1, z2), (33)

where γs
imp(z1, z2) is the 1RDM on the impurity of the auxiliary non-interacting system that provides the

approximate mean-field projector P̂s, and γ ′
imp(z1, z2) is the 1RDM on the impurity of the projected inter-

acting problem with Hamiltonian P̂sĤP̂s in the respective M-particle sector. We note, however, that unless the
impurity is half of the system size 2n = N (where one solves practically the original problem) it is not guaran-
teed that γ ′

imp(z1, z2) and thus also the approximate interacting wave function is close to the exact γimp(z1, z2)
and the exact interacting wave function |Ψ〉.

4.2. Non-interacting v-representability: ambiguities in the mean-field projection
In order to attain self-consistency we need to define the mean-field Hamiltonian which gives the approximate
projection iteratively. As we will show by the following construction there are ambiguities in this procedure
as there are infinitely many non-interacting Hamiltonians that reproduce a given impurity 1RDM (see also
appendix B.2 for an explicit example). We then discuss the connection of this result to the problem of the
non-interacting v-representability of 1RDMs.

As an initial guess we can, e.g. solve equation (18) without interaction (although there are different choices).
The resulting P̂(0)

s is then used to solve P̂(0)
s ĤP̂(0)

s , from which we can determine γ(0)
imp(z1, z2). In a next step a

non-interacting system is constructed such that it reproduces the interacting 1RDM submatrix γ(0)
imp(z1, z2) on

the impurity A. First we diagonalize on A

γ(0)
imp(z1, z2) =

2n∑
μ=1

‖ϕ̃μ‖2
Aϕ

A,∗
μ (z1)ϕA

μ(z2), (34)

where we have denoted the corresponding natural occupation numbers and natural orbitals in accordance to
equation (26). Now we only need to reverse the steps that led to equation (26). Firstly we choose 2n arbitrary
states ϕB

μ(z) that are orthonormalized on B. Since B has a size of (2N − 2n) we have as many choices. With
‖ϕ̃μ‖2

B = 1 − ‖ϕ̃μ‖2
A we then define for μ ∈ {1, . . . , 2n} states

ϕ̃μ(z) = ‖ϕ̃μ‖Aϕ
A
μ(z) + (1 − ‖ϕ̃μ‖2

A)1/2ϕB
μ(z) (35)

10
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(where which state on A goes together with which state on B is again completely arbitrary). Since we
have assumed 2n < M we have to choose (M − 2n) further arbitrary orthonormal orbitals ϕB

μ(z) (of course
orthogonal to the previous 2n) and define for μ ∈ {2n + 1, . . . , M} states

ϕ̃μ(z) ≡ ϕB
μ(z). (36)

We have thus constructed M orthonormal single-particle states ϕ̃μ(z) with μ ∈ {1, . . . , M} on H1. Since H1

has a dimension of 2N, we are left with (2N − M) further orthonormal states that we again order arbitrarily
and denote by ϕ̃μ(z) for μ ∈ {M + 1, . . . , 2N}. As a final step we choose arbitrary energies ε̃μ ∈ R such that

ε̃1 � · · · � ε̃M < ε̃M+1 � · · · � ε̃2N . (37)

With these ingredients we find a single-particle Hamiltonian

H̃(1)(z, z′) =
2N∑
μ=1

ε̃μϕ̃
∗
μ(z′)ϕ̃μ(z) (38)

and a corresponding Fock-space Hamiltonian with ˆ̃ϕ†
μ =
∑2N

z=1ϕ̃μ(z)̂c†z that has as its M-particle ground state

|Φ̃〉 = ˆ̃ϕ†
M . . . ˆ̃ϕ†

1|0〉. And by construction γs(z1, z2) = 〈Φ̃|̂c†z1
ĉz2Φ̃〉 ≡ γ(0)

imp(z1, z2) if restricted to z1 and z2 ∈ A.

Let us note that we have just shown that there are infinitely many H̃(1)(z, z′) that reproduce a given impurity
1RDM. Except of ϕA

μ(z) every other part of our construction is completely arbitrary. Yet different choices gen-

erate different projections P̂(1)
s and corresponding subspaces E (1). And if we now proceed with our iteration,

each of this projector will lead to a different P̂(1)
s ĤP̂(1)

s and consequently different |Ψ(1)〉 as well as γ(1)
imp(z1, z2).

This is one reason why in practice the iteration might not converge. Such an ambiguity with respect to the
non-interacting Hamiltonians is well known in reduced density-matrix functional theories [8, 33]. It is called
the non-interacting v-representability problem. It states that a non-interacting 1RDM can be generated by the
ground state of many different non-interacting Hamiltonians that differ with regard to their non-local poten-
tials v. It stems from the fact that for a non-degenerate non-interacting 1RDM only the first M orbitals are
occupied. If we, however, consider a single-particle space of dimension 2N > M, the rest of the orbitals are not
determined and we can thus have many Hamiltonians (see equation (4)) that have the same non-interacting
wave function as ground state. This, together with the fact that a non-degenerate non-interacting Hamilto-
nian cannot reproduce the 1RDM of an interacting system (see section 2.3), prohibits usually the use of an
auxiliary non-interacting system in 1RDM functional theory [8, 33]. Instead one has to enforce representabil-
ity conditions of the 1RDMs, which except for ensembles increase exponentially with the dimension of the
single-particle space and the number of particles [11]. This will be discussed briefly also in section 6.

4.3. Extension to the exact embedding projection
With regard to the accuracy of projecting the interacting problem with a non-interacting projector we want
to highlight one specific detail. Since we solve for the ground state in the subspace E , we explicitly restrict the
CAS in the M-particle sector to Slater determinants that all share the same (M − 2n) occupied orbitals. These
‘frozen’ orbitals form |K̃〉. We expect that the thus constructed approximate interacting ground state is not very
accurate if 2n is small compared to M. It is expected that for a more accurate approximation to the interacting
ground state one needs to be close to 2n = M.

Of course, even in the case that 2n = M there is no guarantee that the resulting interacting ground-state
wave function is well approximated. As discussed above equation (21), 2n � N (such that the impurity is
smaller or equal to the rest of the system). Only upon increasing the dimension of the CAS to 2n = N (which
corresponds to impurity being half the system size) one can guarantee to obtain the exact result. For this,
however, one needs to adapt the DMET procedure in general and the projection using the CAS as described
in section 3.2 is not possible anymore. Until now we have assumed that 2n � M while for 2n = M all orbitals
contribute to the CAS and |0̃〉 ≡ |0〉. This implies that without modifications the above procedure only works
for M � N, where the half-filling case 2n = M = N is still captured. Yet for M < N (which is the usual situation
in quantum chemistry, since we usually approximate an infinite-dimensional problem N →∞ by some finite
value for N) and 2n > M, we can no longer use the above introduced procedure, since we can at most define
2M orthonormal orbitals by dividing the full lattice into A and B. Hence, for 2n > M we cannot even resolve
the identity on A in this way. In order to allow for an in principle exact limit of the DMET procedure with
a mean-field projection for 2n > M we need to change the construction. The simplest way is to go back to
the general form of the projection defined via equation (23). For a single Slater determinant we know from
equation (28) that the rank of the connection matrix is at most 2M, i.e. only 2M of all the λα are non-zero.
Hence only a part of the projection onto a 24n-dimensional subspace of the Fock space is determined by Φij

and the rest is arbitrary. This is why, if we want to control the rest of these dimensions by some self-consistency
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condition we need to work with multi-determinant mean-field wave functions. And this can only happen if
the auxiliary non-interacting system is degenerate. Such a system can of course be engineered, yet becomes
rather impractical and again leads to ambiguities. On the one hand, there are many multi-determinant wave
functions that lead to the same impurity 1RDM as it is also the case with single determinant wave functions.
By choosing the auxiliary non-interacting system to have a degenerate ground-state manifold that contains
all of the necessary determinants, these wave functions can be turned into a ground state. Also, each multi-
determinant wave function will lead to a different approximate projection. On the other hand, even then the
rank of the connection matrix is not necessarily 2n. So there might be no clear advantage to enforce this self-
consistency condition when approaching the exact projection for 2n = N.

4.4. Non-interacting v-representability: ambiguities in the fixed points
Let us next consider the influence of the non-interacting v-representability problem on the fixed points. To do
so, we employ the self-consistency condition of equation (33) for the special case where we apply the DMET
procedure to a non-interacting reference system. While in practice not relevant, since one always solves a non-
interacting system numerically exactly, it highlights potential pitfalls that arise due to the non-interacting v-
representability issue. We will highlight in the following that we can find a fixed point that is an excited state
of the target Hamiltonian. Still we see that the self-consistency condition of equation (33) is fulfilled, i.e. we
have an auxiliary Hamiltonian which shares the same impurity 1RDM.

Assume that the target Hamiltonian has the form of equation (4) and the auxiliary Hamiltonian is given
by equation (38). But instead of enforcing that |Φ〉 = φ̂†

M . . . φ̂†
1|0〉 and |Φ̃〉 = ˆ̃ϕ†

M . . . ˆ̃ϕ†
1|0〉 share the same

impurity 1RDM, we choose that |Φ̃〉 reproduces the impurity 1RDM of |Φ′〉 = φ̂†
M+1 . . . φ̂

†
2|0〉. That is, it is

not the ground state of the Hamiltonian of equation (4) but an excited state. Furthermore, in the construction
that leads to the auxiliary Hamiltonian of equation (38) we choose all ϕB

μ(z) such that

φ1(z) ⊥ span{ϕA
1 (z), . . . ,ϕB

M(z)}. (39)

If N is large enough, i.e. 2N > 2n + M, this is always possible. The approximate projector P̂s and its subspace
E then exclude the actual ground state |Φ〉 of the M-particle sector of the Hamiltonian of equation (4) and

a minimization leads to |Φ′〉 and the corresponding projection P̂′
s. This implies that P̂′

sĤP̂′
s and P̂s

ˆ̃HP̂s share
the same impurity 1RDMs and the self-consistency condition of equation (33) is fulfilled. And instead of |Φ〉
we find |Φ′〉 at the fixed point (see also appendix B.2 for an explicit example). Realizing that we can easily
construct a fixed-point solution that is even further away from |Φ〉 by choosing the ϕB

μ(z) such that, e.g. all
states φμ(z) of |Φ〉 do not appear in |Φ′〉 (provided 2N > 2n + 2M), the self-consistency condition does not
automatically imply accuracy. We therefore do not only find multiple fixed points but also the fixed points can
be far away from the exact result |Φ〉.

While the example is rather academic, it nicely illustrates a potential pitfall that the non-interacting v-
representability poses also in the context of the DMET procedure. Here the results of density-functional
theories and their mapping theorems can be potentially helpful. We will discuss this point in more detail in
section 5. Alternatively, to overcome these ambiguities, the self-consistency condition is adapted or a global
iteration is employed instead. We discuss these two options first.

4.5. Mean-field embedding via embedded one-body reduced density matrix
The crucial problem of the self-consistency condition of equation (33) is that it has no unique solution due to
the non-interacting v-representability problem. There are many non-interacting systems that produce a given
impurity 1RDM. So it seems desirable to avoid this ambiguity. One way that is motivated by the numerical
instability of the above procedure is to use the (in practice) more stable condition

min ‖γs
emb − γ ′

emb‖2, (40)

where γs
emb(z1, z2) is the 1RDM of the auxiliary non-interacting system that provides the approximate mean-

field projector P̂s, and γ ′
emb(z1, z2) is the 1RDM of the projected interacting problem with Hamiltonian P̂sĤP̂s

in the respective M-particle sector (see also appendix B.2 for an explicit example). If the full projector is used
then z1 and z2 are defined on all of 2N. If instead, as is common practice, we build the projection using the
CAS space, some of the bath orbitals (unentangled occupied/core orbitals) ϕμ(z) for μ ∈ {2n + 1, . . . , M}
are discarded. In this case z1 and z2 correspond to the original lattice sites, only for z1 and z2 in A (see for
an example the embedded 1RDM in CAS representation in equation (B.30) and in spatial representation in
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equation (B.31) and then compare with the original equation (B.2), which is identical with the one of the full
projection)6.

Which ever way we choose to determine the projection, we first note that we have to slightly modify our
DMET procedure, since now also the ϕB

μ(z) are determined by the self-consistency condition of equation (40).
The exact solution of the minimum condition of equation (40) is always zero. However, this leads to the imprac-
tical case of a highly degenerate non-interacting system7. Restricting instead to only allow for a single Slater
determinant for the case of 2n � M to construct γs

emb(z1, z2) (in which case the minimum of equation (40)
is non-zero in general [2, 21, 38]) will again lead to a large ambiguity. To see this we again consider the case
of a non-interacting reference system. If we choose, following the above considerations, an excited state of
the reference system and construct an auxiliary Hamiltonian that has a ground-state wave function with a
CAS that excludes orbitals appearing in the ground state of the reference system, we have found the minimum
(γs

emb(z1, z2) = γ ′
emb(z1, z2)). Yet this is again an undesirable fixed point.

Thus this simple adaptation of the self-consistency condition is not yet enough to avoid potential problems
of the non-interacting v-representability for 1RDMs.

4.6. Local vs global iterations
So far we have considered the situation of one impurity and investigated the ensuing self-consistency. While
this is in principle enough, in practice several impurities Ax with x ∈ {1, . . . , I} that together constitute the
full lattice are used. This leads to yet a further large number of possible constructions and iteration procedures
with different convergence criteria. It is then usually assumed that iterating locally until convergence and then
step successively through all the impurities leads to the same result as when performing the iterations for all
the impurities simultaneously [37].

Firstly, even though we can find for every Ax potentially many auxiliary non-interacting Hamiltonian
H̃(1)

x (z, z′) that have the same 1RDM (from a non-degenerate ground state) on Ax as the projected interacting
problem, there is no procedure that somehow connects all of these auxiliary Hamiltonians and enforces that
the interacting and non-interacting projected 1RDMs agree on the full lattice (for a non-degenerate ground
state). The reason being, as discussed in section 2.3, that interacting and non-interacting Hamiltonians can-
not share the same 1RDM. Instead, similar to section 4.5, one can try to minimize the difference between
the 1RDMs globally. This leads to a completely degenerate auxiliary system and in general there is no dimen-
sional reduction. If we further enforce that we only allow for a single Slater determinant we will again find
many fixed points. The reasoning is similar to the previous section. We can consider the case of two non-
interacting systems on the full lattice, and can construct projectors that single out some excited state of the
target system, and then build (following roughly the construction in section 4.4) an auxiliary system that has
this state as its ground state (and generates the chosen projection). This underlines that all ambiguities due to
the non-interacting v-representability that we encountered locally are also present globally.

5. Using density-functional mappings in density-matrix embedding theory: different
unique auxiliary systems and projections

There are two main reasons for the discussed ambiguities. First, if we allow for a general non-local Hamiltonian
of the form of equation (12), different such non-interacting Hamiltonians can have the same ground-state
1RDM. Second, unless we assume total degeneracy (which is rather impractical), a non-interacting system
cannot reproduce the full 1RDM of an interacting system. These non-interacting v-representability issues are
also the reason why there is no Kohn–Sham construction for 1RDM functional theory. A possible way to avoid
theses ambiguities is to use the mapping theorems of density-functional theories that indicate that certain
observables are representable in an interacting and a non-interacting system uniquely. For instance, instead
of working with the 1RDM, we can consider only its diagonal, i.e. the (one-body spin) density. And following
the usual mapping theorems we need to do this globally. In this case we can rely on the Hohenberg–Kohn
mapping theorems that guarantee that there is only one auxiliary system that generates a specific density. And
based on this uniqueness we have a unique auxiliary non-interacting system associated to any interacting one,

6 This common practice of expressing our Hamiltonian in the CAS subspace corresponds to discarding the chemical-potential term Δε
in equation (15) and ignoring that |0̃〉 does correspond to |K̃〉. So one effectively uses a 2n-particle problem to approximate an M-particle
one.
7 Given any interacting 1RDM γ

′
emb(z1, z2) we can always construct a completely degenerate non-interacting system such that the ground-

state solution in the M-particle sector is any combination of M-particle Slater determinants. This amounts to using multiple degenerate
Slater determinants akin to the extension of the DMET procedure for 2n > M discussed above. In general this means that we will have
to keep all orbitals and thus we might not find any dimensional reduction for the interacting system, which leaves this approach rather
impractical.
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at least for the global system. While this does not imply that the auxiliary projection is more accurate (for this
we would need to consider the norm difference between the exact projection and the auxiliary one), we avoid
the above ambiguities and can use this as a unique starting point for refinements.

The trick is thus to restrict to the density n(z) = γ(z, z) as well as the form of possible auxiliary systems.
So far the auxiliary system allowed for any non-local single-particle Hamiltonian H(1)(z, z

′
), which introduced

the above discussed ambiguities. Yet to have the lattice analogue of the Hohenberg–Kohn mapping theorem
we need to restrict to

H(1)(z, z′) = T(1)(z, z′) + v(z)δ(z, z′), (41)

where we fix the hopping/kinetic term T(1)(z, z′) to the one of the interacting reference system and we only allow
to change the (spin-dependent) single-particle potential v(z). We note that the case of finding a projector based
on the density together with the restriction to only local potentials is therefore not just a special case of the
usual DMET procedure. Firstly, the basic local impurity construction of section 4.2 is no longer possible. This
is because the local potential cannot change the non-local hopping term and hence the density on the impurity
depends also on (at least) the bath. So we can only follow the construction presented in section 4.5 or directly
enforce the same density globally, similar to section 4.6. Secondly, we avoid the major drawback of having a
completely degenerate auxiliary system and do not need to enforce to only allow a single Slater determinant in
the minimization. Further, the simple examples for multiple fixed points are ruled out. We (fortunately) lack
the flexibility of the non-local auxiliary Hamiltonians.

While the restriction to only the density n(z) has been used and discussed in the DMET literature [2], the
ongoing discussion highlights that this case is special. The relation between DMET and density-based embed-
ding theory is similar as the relation between 1RDM functional theory and density-functional theory. They
are closely connected, yet call for quite different practical procedures and approximations. The use of auxiliary
non-interacting systems in 1RDM functional theory is usually avoided, while in density-functional theory it is
very natural and unambiguous. Similarly, the use of a non-interacting auxiliary system for the density-based
procedure seems perfectly suited, while a procedure based on the 1RDM can lead to ambiguities as highlighted
above. Indeed, borrowing from density-functional theory on a lattice, we know we can uniquely identify an
auxiliary non-interacting system Ĥs[n] and its corresponding Kohn–Sham ground state Φ[n] (with the exact
non-interacting projector Ps[n]) from which we can (in principle) uniquely construct the exact interacting
ground state Ψ[n] and consequently the exact projector P̂[n]. And this holds irrespective of the size of the
impurity. So, while in the general DMET procedure only increasing the impurity size can improve the reliabil-
ity and accuracy, in the density-based embedding theory one can make the procedure exact for any impurity
size. And similarly to the usual Kohn–Sham approach we can find the exact projection with

P̂[n] = P̂s[n] + P̂Hxc[n], (42)

where P̂Hxc[n] = P̂[n] − P̂s[n]. While this does not have immediate practical consequences, since we do not
know how to approximate P̂Hxc[n] and find the standard density-based procedure with setting P̂Hxc[n] ≡ 0,
it gives an indication how to proceed toward interacting projections. Also, while using the general interacting
projector of equation (23) leads to the aforementioned practical issues (symmetrization and unknown number
of M-particle states), the non-interacting projection and its associated subspace E can be more practically
adapted. For instance, one could aim at approximating the correlated M-particle states |Aα〉 ⊗ |Bα〉 directly
from E . In this way one has direct control over symmetry and the number of particles.

Besides the standard density-based functional theories there are also extensions that consider in addition
to the density more complex objects, such as the current density or the kinetic-energy density. These objects
are all related to parts of the full 1RDM and highlight that besides its diagonal one can potentially influence
further parts of the 1RDM in an interacting as well as a non-interacting system. This then leads to new auxiliary
non-interacting systems, whose auxiliary projections are potentially a better first guess to the exact projection
than just connecting the density. The quantity we look at here specifically is the kinetic-energy density (for
a definition of a Hubbard-type of Hamiltonian see reference [32] and in a continuum setting reference [7]
(chapter 8)). The kinetic-energy density for a Hamiltonian of the type of equation (18) would be

K(z1, z2) = 〈Ψ|T(1)(z1, z2)̂c†z1
ĉz2Ψ〉+ c.c., (43)

where we used the decomposition of equation (41). While this quantity is closely related to the 1RDM, we note
that there are two main differences: (i) the T(1)(z1, z2) (which for a Hubbard-type of Hamiltonian amounts to
next-neighbour hopping term) is included and (ii) z1 and z2 do not take all the possible values but only the
ones that appear in T(1)(z1, z2) (for example in the standard Hubbard it will be only the next neighbors that
appear). Then one only allows specific non-local potentials (of the same freedom as the interacting ones) by
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introducing a mean-field Hamiltonian of the type:

H(1)
ke (z, z′) = T(1)

ke (z, z′) + vke(z)δ(z, z′). (44)

Thus the target of the DMET procedure could be adapted so that the auxiliary system is constructed in such a
way as to reproduce the density n and the kinetic-energy density K of the interacting system. The advantage of
the kinetic-energy density with respect to the 1RDM is that it does not suffer from the idempotency issue, i.e. in
general a non-interacting system can share the same ground-state kinetic-energy density as an interacting one
[32]. However, the second question to make such a procedure well-defined is, whether the mapping between
density and kinetic-energy density and local as well as non-local potential is one-to-one, i.e.(

T(1)
ke (z, z′), vke(z)

)
↔
(
K(z, z′), n(z)

)
. (45)

The complication in showing that there is such a mapping lies in the fact that we consider a quantity K(z, z′) that
now includes the external control field Tke(z, z′) as well as internal quantities, e.g. in the usual Hubbard case the
first off-diagonal of the 1RDM. We therefore no longer have a simple linear structure as in density-functional
theory, where external control field v(z) and the internal control objective n(z) are separate entities and are
connected via a Legendre–Fenchel transformation [17, 25]. This also makes the construction of approxima-
tions much more complicated. And it is for such problems, where density-functional methods can benefit
strongly from the DMET procedure as we will discuss in section 6. Although there is no general answer to
the question whether the mapping of equation (45) exists, recent numerical considerations indicate that this
might be the case under certain conditions [32]. Hence in analogy to the density-functional based approach,
one could apply a kinetic-energy-density based approach where the exact projector is

P̂[K , n] = P̂s[K , n] + P̂Hxc[K , n]. (46)

It seems reasonable to assume that, since now the interacting and the non-interacting systems share more
properties, also the zeroth order approximation to the mapping, i.e. P̂Hxc[K , n] ≡ 0, is more accurate than the
one from the density-functional based approach. Following this logic one can try to identify further potential
mappings between the interacting and the auxiliary non-interacting system that allow to make both systems
more and more alike. For instance, by including a Peierls phase in the hopping, corresponding to an external
magnetic field, also the link current becomes potentially controllable [10].

Finally, there is yet a different direct way to overcome the ambiguities associated with the 1RDMs. If instead
of zero temperature and definite number of particles one considers a (grand-)canonical setting, the inclusion of
the entropy in the (grand-)canonical potential allows to reproduce any interacting (grand-)canonical ensemble
by a unique non-interacting one [8]. The expressions for the non-interacting auxiliary system in the case of the
grand-canonical situation are even analytical (see reference [8] in section 2.4). This is in accordance to recent
extensions of DMET to the (grand-)canonical setting [31].

6. Using density-matrix embedding theory in density-functional theories: a novel
approximation scheme

Up until now we have focused on the DMET procedure and how we can understand certain subtleties con-
nected to the non-interacting v-representability from a density-functional perspective. Having realized how
the mappings of density-functional approaches appear in DMET provides us with a very interesting possibil-
ity. We can use the DMET methodology to directly approximate the interacting-to-non-interacting mapping
that is the basis of the Kohn–Sham approach. Instead of indirectly connecting the interacting reference system
with the auxiliary non-interacting system via the energy, we instead can directly connect a non-interacting
wave function to an approximate interacting wave function that have the same target observable, e.g. in
density-functional theory the density.

This idea has been realized in reference [21] for the standard case of density-functional theory. From the
v-representability of the density in both (interacting and auxiliary non-interacting) systems we have

v(z)
EΨ=Ĥ[v]Ψ←→ n(z)

EsΦ=Ĥs[vs]Φ←→ vs(z). (47)

We can of course also express this with the help of the exact embedded Hamiltonians Ĥ ′[v] and Ĥ′
s[vs],

respectively. This mapping directly defines the exact Hxc potential of density-functional theory by

vHxc[n] = vs[n] − v[n]. (48)
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If we now approximate the embedded Hamiltonians via a self-consistent mean-field projection that makes
n′(z) = ns(z) on the whole lattice we find the approximate mapping

v(z)
Ψ′
←→ n′(z)

Φ←→ vs(z), (49)

where the first part v(z) → n′(z) and the interacting wave function Ψ′ is now only an approximation to
v(z) → n(z) and Ψ. This means that we have now a new interacting mapping v → n′ that we connect with
the non-interacting system and we thus have the approximate Hxc potential

v′Hxc[n′] = vs[n′] − v′[n′]. (50)

Here we have indicated by v′ that we now have a different interacting mapping (since we use the exact mean-
field projection the non-interacting mapping vs is still exact) and with n′ that we have in general also a different
density at self consistency when compared to the exact density n. However, as has been demonstrated in refer-
ence [21], by increasing the size of the impurities Ax the difference in density ‖n − n′‖ → 0. This implies that
we can consistently increase the accuracy of the approximate v′Hxc even for strongly correlated problems. And
we have access to an approximate interacting wave functions which allows to approximate many non-trivial
observables that are hard to access in normal density-functional theory [19, 36].

The above described procedure is a novel alternative to the usual way of obtaining density functionals. The
common approach is to approximate the energy expression E[n] − Es[n] and then obtain the corresponding
Hxc potential via functional derivative with respect to n(z). However, for the case of certain more complex
functional variables like the kinetic-energy density K(z, z′), the usual approach via the energy is no longer
viable [32]. In this case the above procedure becomes instrumental to go beyond the few simple approximations
known. Hence by using the approximate mappings

(
T(1)(z, z′), v(z)

) Ψ′
←→
(
K ′(z, z′), n′(z)

) Φ←→
(

T(1)
ke (z, z′), vke(z)

)
, (51)

induced by the approximate projection we find

T ′(1)
xc [K ′, n′] = T(1)

ke [K ′, n′] − T ′(1)[K ′n′] (52)

v′Hxc[K ′, n′] = vke[K ′, n′] − v′[K ′, n′]. (53)

This allows to determine approximately the self-consistent effective hopping term (effective local mass)
T(1) + T(1)

xc as well as the effective local potential v + vHxc in the corresponding generalized Kohn–Sham
equations

εμϕμ(z) =
2N∑

z′=1

[
T(1)(z, z′) + T(1)

xc ([K , n]; z, z′) + (v(z) + vHxc([K , n]; z)) δ(z, z′)
]
ϕμ(z′), (54)

with K(z, z′) =
∑M

μ=1(T(1)(z, z′) + T(1)
xc ([K , n]; z, z′))ϕ∗

μ(z)ϕμ(z′) + c.c. and n(z) =
∑M

μ=1ϕ
∗
μ(z)ϕμ(z).

Finally, let us discuss how DMET can be used in density-matrix functional theories to find new approximation
schemes. In all the above cases we do not only have access to the reduced variable under investigation, i.e.
the density or the kinetic-energy density, but more importantly to an approximate interacting wave function
Ψ′. With this we also have access to approximate interacting 1RDMs and two-body reduced density matrices
(2RDMs). In this regard the DMET procedure provides a direct approximation to parts of the 2RDM and
the corresponding interaction energy as well as to parts of the 1RDM and the corresponding kinetic energies.
This is not as trivial as it initially sounds. In 1RDM and 2RDM functional theories it is exceedingly hard to
guarantee that a trial density matrix, which is used to minimize the energy functional, corresponds to a physical
interacting wave function. This crucial point has several layers of complexity attached. Firstly, while there are
simple necessary and sufficient conditions known for a 1RDM to be representable by an ensemble of wave
functions (ensemble N-representability) [5], for the 2RDM these conditions are infeasible in practice [18] and
one hence uses rather only a subset [20]. To restrict the search space to only pure states, also for the 1RDM
the conditions for pure-state N-representability become infeasible in practice [11]. Finally, if we only want to
consider states that are due to the solution of an interacting Schrödinger-type equation (v-representability)
then no specific conditions are known in general. Yet using the DMET procedure we can use directly the
approximate interacting 1RDMs and 2RDMs associated with Ψ′ to minimize the energy as a functional of
the respective reduced density matrices. Such an approach would suggest to adapt the usual DMET update
procedure and not necessarily use a self-consistency condition. Specifically, after having made an initial guess
for the auxiliary system and the corresponding auxiliary projection P̂(0)

s we obtain approximate 1RDMs and
2RDMs. For instance in the case of a Hubbard system with next-neighbor interaction and Hubbard on-site
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interaction already small impurities Ax are enough to have access to all the necessary parts of the 1RDM and
the 2RDM to calculate the energy. By, for instance, a downhill-simplex method [28] one then finds a modified
2RDM and the corresponding 1RDM that has lower energy. Since we have just done so by hand we are not
guaranteed that it really corresponds to a wave function. If we construct a non-interacting system that shares
some of the properties of this modified reduced density matrices we can use the resulting projection P̂(1)

s to
find new physical reduced density matrices, which potentially have lower energy than the previous physical
ones. In this way we can perform a minimization over v-representable 1RDMs and corresponding 2RDMs.

7. Conclusion and outlook

In this work we have highlighted how DMET and different density-functional theories can be used to supple-
ment each other. For the simplest setting of one-dimensional finite lattices we have given a detailed review of the
basics of DMET, which allowed us to directly connect this method with different density-functional-type theo-
ries. Certain ambiguities that appear in the DMET procedure could be traced back to well-known issues such as
the non-interacting v-representability issue for one-body reduced density-matrix functional theory. This sug-
gested to overcome these problems by employing appropriate mappings of density-functional theories, which
guarantee unique auxiliary systems. On the other hand we could show that DMET can be used to approximate
the interacting-to-non-interacting mapping fundamental to the Kohn–Sham construction directly, which
provides an approximate interacting wave function from which advanced functional observables can be deter-
mined. Furthermore, the DMET procedure suggests itself as a new way to devise approximations in reduced
density-matrix functional theories.

While our results are geared toward a specific setting and stay on a rather abstract level, we think that they
show the potential in combining both approaches to the many-electron problem. The on-the-fly-construction
of approximate interacting wave functions provides a novel paradigm in density(-matrix)-functional approx-
imations. While in density-functional theories it is usually an energy expression that is approximated in terms
of the functional variable or Kohn–Sham orbitals, we have seen here that DMET allows to approximate directly
the interacting-to-non-interacting mapping. Considering the long and arduous history of devising more accu-
rate density-functional approximations that also work for strongly-correlated systems this approach is promis-
ing. The approximate interacting wave functions and their reduced density matrices could also overcome in
certain situations the drawback of density-matrix functional theories to enforce numerically expensive repre-
sentability conditions. The main problem in both cases is of course how to treat more realistic many-electron
problems in three spatial dimensions. But with the advances in the DMET procedure together with novel
inversion schemes for the non-interacting mapping [3, 22, 23, 35] it seems worthwhile to further explore a
combination of DMET and density-functional-type theories.
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Appendix A. Short guide to this appendix

In this appendix we want to accompany the general discussion of the main text with simple, yet pedagogical
examples. While the main text stays on an abstract level, we find it helpful to follow the discussion to a large
part with explicit examples. This allows to focus on the essentials of the different ingredients of the DMET
procedure, which for the simple systems presented in this appendix boil down to elementary matrix manip-
ulations of relatively small matrices. Further, it allows to highlight further subtle issues, such as the proper
anti-symmetrization of the physical wave function in different basis representations or that one cannot approx-
imate the wave function of the original problem without the discarded core orbitals even on the impurity, by
explicit calculations. For further convenience all of the presented results can be re-calculated with a publicly
available code that can be found on GitHub.
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In the following we will consider spinless fermions, i.e. the dimension of the different objects discussed
here and in the main text differ by a factor of 2 in various places. In the main text we have always kept this
factor explicit. This allows to directly compare with the abstract (spin-dependent) objects in the main text. In
appendix A.1 we start with a five-site example, give a simple non-interacting Hamiltonian and determine the
three-particle ground state in different basis representations. We then present the different ways to perform
the projections of the exact wave function (appendix A.2) and of the Hamiltonian (appendix A.3) to calculate
the embedded system. We finally exemplify why for interacting systems only the projection in Fock space is
applicable straightforwardly (appendix A.4).

In appendix B we then consider a six-site example and then highlight first that we can find infinitely many
different non-interacting Hamiltonians for a given impurity 1RDM. In appendix B.2 we then demonstrate
that we can construct arbitrary fixed points of the DMET procedure if only the 1RDM on the impurity are
matched.

A.1. Exemplification of the different projections, subspaces and projected Hamiltonians
A.1.1. The basic spaces, Hamiltonians and ground-state representations

Following the construction discussed in section 2.1 we first set-up the single-particle Hamiltonian. In our
case of spinless particles on a five-site lattice the single-particle space is H1 ∼= h1

∼= C5. The single-particle
Hamiltonian includes in our case only next-neighbour hopping terms (with zero boundary conditions) and is
expressed in the standard sites basis |i〉 with i ∈ {1, . . . , 5} as

H(1) ∼= h(1) =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0 0
−1 0 −1 0 0
0 −1 0 −1 0
0 0 −1 0 −1
0 0 0 −1 0

⎞
⎟⎟⎟⎟⎠ . (A.1)

Diagonalizing the matrix H(1)(i, j) we find five five-dimensional orthonormal eigenvectors φμ(i), which allows

to express Ĥ(1)(i, j) =
∑5

μ=1 εμφμ(i)φ∗
μ(j). Furthermore, they allow us to build the anti-symmetrized M-

particle space HF
M of dimension

(
5
M

)
by constructing all possible M-particle Slater determinants as well as

to setup the (non-interacting) M-particle Hamiltonians in this space. To be specific, for the three-particle case
a Slater determinant in the non-symmetrized three-particle site basis |i, j, k ) = |i〉 ⊗ |j〉 ⊗ |k〉 becomes

Φ̃(i, j, k) = (i, j, k|μ, ν, ξ〉

=
1√
3!

det

∣∣∣∣∣∣
φμ(i) φμ(j) φμ(k)
φν(i) φν(j) φν(k)
φξ(i) φξ(j) φξ(k)

∣∣∣∣∣∣ . (A.2)

This is only non-zero if μ �= ν �= ξ, which means we have
( 5

3

)
= 10 such wave functions. Alternatively, we can

construct the three-particle Slater determinants in the non-symmetrized basis |i, j, k ) of the anti-symmetrized
site basis |i′ , j′, k′〉 as

(i, j, k|i′, j′, k′〉 = 1√
3!

det

∣∣∣∣∣∣
δii′ δji′ δki′

δij′ δjj′ δkj′

δik′ δjk′ δkk′

∣∣∣∣∣∣ . (A.3)

We therefore find the above Slater determinant in the anti-symmetrized basis with i < j < k as

Φ(i, j, k) = 〈i, j, k|μ, ν, ξ〉

= det

∣∣∣∣∣∣
φμ(i) φμ(j) φμ(k)
φν(i) φν(j) φν(k)
φξ(i) φξ(j) φξ(k)

∣∣∣∣∣∣ . (A.4)

Let us next introduce the Fock space of the spinless five-site problem. If we sum over all possible Slater
determinants from M = 0 to M = 5, the dimension of the resulting Fock space is 25. Defining the anti-
commuting creation and annihilation operators {ĉi, ĉ†j } = δij, we can create upon acting on the vacuum state
|0〉 an orthonormal basis of 25 states. For instance, we have

ĉ†kĉ†j ĉ†i |0〉 = |∅〉0 ⊕ |∅〉1 ⊕ |∅〉2 ⊕ |i, j, k〉3 ⊕ |∅〉4 ⊕ |∅〉5 ≡ |i, j, k〉, (A.5)

where we indicate the null vector in the respective subspace by |∅〉M and we have overloaded the symbol
|i, j, k〉 as referring to the three-particle state of equation (A.3) as well as to the three-particle Fock state
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of equation (A.5). Dimensionally these two states are different since they belong to different spaces. While
|i, j, k〉 ∈ HF

3 is a
( 5

3

)
-dimensional vector with a single non-zero entry, |i, j, k〉 ∈ F is a 25-dimensional vector

with a single non-zero entry.
Next we construct the many particle Hamiltonian by summing over all M-particle Hamiltonians, e.g. the

three-particle Hamiltonian reads
∑5

μ=1

∑5
ν>μ

∑5
ξ>ν(εμ + εν + εξ)|μ, ν, ξ〉〈μ, ν, ξ|. Expressing the eigenstates

in the anti-symmetrized site basis |i, . . . , k〉 we find the Fock-space Hamiltonian in the concise form of

Ĥ = −
∑
〈i,j〉

(̂c†i ĉj + ĉ†j ĉi), (A.6)

where 〈i, j〉 indicates summation only over next neighbors. If we then consider the three-particle subspace, the
minimal-energy solution is simply

|Φ〉 =
3∏

μ=1

φ̂†
μ|0〉 = φ̂†

1φ̂
†
2φ̂

†
3|0〉, (A.7)

where every orbital creation operator is defined by

φ̂†
μ =

5∑
k=1

φμ(k)︸ ︷︷ ︸
=Ckμ

ĉ†k. (A.8)

More compactly this reads as

|Φ〉 =
3∏

μ=1

5∑
k=1

Ckμ ĉ†k|0〉, (A.9)

where Ckμ are the overlap elements between the two different bases 〈k|μ〉 ≡ φμ(k). In other words, Ckμ gives
the value the orbital μ has on site k, e.g. here we find

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
12

−0.5
1√
3

0.5 −0.5 0
1√
3

0 − 1√
3

0.5 0.5 0
1√
12

0.5
1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.10)

The three lowest eigenvalues of (A.1) are (−
√

3, −1, 0), so the ground state energy of the three particle system
is E = −

√
3 − 1. We note that |Φ〉 as defined in equation (A.9) is defined only in Fock space. Only upon

projecting onto the three-particle subspace we find a wave function of the form of equation (A.4). Yet we in
the following denote both wave functions with the same symbol |Φ〉 since they correspond to the same physical
object just represented in different spaces. Where the difference matters we will comment on it.

The issue of different spaces becomes even more clear once we choose to label the above Fock-state basis
functions in a specific order similarly to equation (13). For instance we can define

|F1〉 = |0〉

|F2〉 = ĉ†1|0〉

|F3〉 = ĉ†2|0〉

. . .

|Fi〉 = ĉ†l ĉ†j ĉ†k . . . |0〉

. . .

|F25〉 = ĉ†1 ĉ†2 ĉ†3 ĉ†4ĉ†5|0〉.

(A.11)

However, the basis functions that will have non-zero contributions to |Φ〉 will be only 10, as it is in the three-
particle subspace of the whole Fock space. Then the wave function |Φ〉 in Fock space can be written as a linear
combination of the basis functions |Fi〉 similarly to equation (19) as

|Φ〉 =
25∑

i=1

Φi|Fi〉 =
10∑

i=1

Φ′
i|F′

i〉, (A.12)

19



Electron. Struct. 3 (2021) 035001 I Theophilou et al

where we have used the prime to denote only the three-particle basis functions |F′
i〉 in Fock space:

|F′
1〉 = ĉ†1 ĉ†2ĉ†3|0〉

|F′
2〉 = ĉ†1 ĉ†2ĉ†4|0〉

|F′
3〉 = ĉ†1 ĉ†2ĉ†5|0〉

|F′
4〉 = ĉ†1 ĉ†3ĉ†4|0〉

|F′
5〉 = ĉ†1 ĉ†3ĉ†5|0〉

|F′
6〉 = ĉ†1 ĉ†4ĉ†5|0〉

|F′
7〉 = ĉ†2 ĉ†3ĉ†4|0〉

|F′
8〉 = ĉ†2 ĉ†3ĉ†5|0〉

|F′
9〉 = ĉ†2 ĉ†4ĉ†5|0〉

|F′
10〉 = ĉ†3 ĉ†4ĉ†5|0〉.

(A.13)

In this basis we can find a different expression for the Fock-space Hamiltonian of equation (A.6), which is
implicitly restricted to the three-particle subspace. Diagonalizing the resulting 10 × 10 matrix with matrix
elements 〈F′

i |Ĥ|F′
j〉 leads to the following expansion coefficients Φ′

i that appear in equation (A.12):

Φ′
1 = Φ′

10 = 0.105 66

Φ′
2 = Φ′

3 = Φ′
6 = Φ′

7 = Φ′
9 = 0.288 67

Φ′
4 = Φ′

8 = 0.394 34

Φ′
5 = 0.5.

(A.14)

To see that this agrees with the definition of equation (A.9), we compare with Ckμ. To do so we carry out the
sum and the product appearing in equation (A.9) and the wave function is then expressed in the Fock space
basis (A.13). We find that

Φ′
i = det

∣∣∣∣∣∣
Cj,1 Cj,2 Cj,3

Ck,1 Ck,2 Ck,3

Cl,1 Cl,2 Cl,3

∣∣∣∣∣∣ (A.15)

which is the coefficient associated to a basis function |F′
i〉, with the sites j, k, l occupied. For instance, for |Φ′

2〉
we have j = 1, k = 2, l = 4. Carrying out this procedure for all the terms appearing in equation (A.9) one can
verify that it is the same wave function as in equation (A.12). Here we point out that as long as we work with
the creation and annihilation operators, which take into account the anti-symmetry by construction, we do
not need to anti-symmetrize the coefficients Ckμ. Once we have fixed a basis, e.g. |Fi〉, the coefficients need to
be anti-symmetrized, e.g. equation (A.15). Moreover, diagonalizing (A.6) in the Fock space basis gives again
the same ground-state energy E as the sum of the three lowest orbital energies of (A.1), i.e. E = −

√
3 − 1.

A.2. The different projections of the exact wave function
In the previous part of the appendix we have highlighted the connections between the single-particle, the
multi-particle and the Fock-space perspectives. Now we will employ the above different representations of the
same physical object, i.e. the three-particle wave function, to perform the exact projection onto an impurity
subspace. To do so we choose the impurity to be A = {1, 2}, i.e. the first two sites. We then want to find a
representation of the wave function such that only two orbitals have a contribution on A. This representation
will then be used to define the exact projected Hamiltonian on a smaller Fock space E .

A.2.1. Projection via singular-value decomposition in Fock-space basis

First we show the projection of the exact wave function performed in a Fock-space basis. We will do so via
an SVD in the connecting matrix that involves the Fock-space basis functions on the impurity and the corre-
sponding ones on the environment. We can recast our wave function similarly to equation (20) in a way that
it will comprise of basis functions |FA

i 〉 that belong only to the impurity and |FB
i 〉 that will belong only to the

environment. The number of linearly independent |FA
i 〉 that we get is 22, while for |FB

i 〉 is 23. For this we define
two new vacua |0〉A and |0〉B and define ĉ†1 and ĉ†2 only on |0〉A (which leads to a Fock space FA) and accordingly
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for sites 3, 4 and 5 that constitute B and FB. By dimensional correspondence we find F ∼= FA ⊗FB. The Fock
states of the respective Fock spaces are

|FA
1 〉 = |0〉A

|FA
2 〉 = ĉ†2|0〉A

|FA
3 〉 = ĉ†1|0〉A

|FA
4 〉 = ĉ†1 ĉ†2|0〉A

(A.16)

and

|FB
1 〉 = |0〉B

|FB
2 〉 = ĉ†3|0〉B

|FB
3 〉 = ĉ†4|0〉B

|FB
4 〉 = ĉ†5|0〉B

|FB
5 〉 = ĉ†3 ĉ†4|0〉B

|FB
6 〉 = ĉ†3 ĉ†5|0〉B

|FB
7 〉 = ĉ†4 ĉ†5|0〉B

|FB
8 〉 = ĉ†3 ĉ†4ĉ†5|0〉B.

(A.17)

Similar to the local creation and annihilation operators (see section 2.1), while the operators in each class A and
B anti-commute, operators of different classes commute. So there is no automatic anti-symmetry of combined
wave functions, i.e. when representing the three-particle wave function of F

|Φ〉 =
22∑

i=1

23∑
j=1

Φi,j|FA
i 〉 ⊗ |FB

j 〉 (A.18)

the coefficients need to take care of the proper symmetry. The induced basis of F then corresponds to the
previously introduced basis of equation (A.11). This means that the coefficients Φi,j are identical with the
coefficients Φi that appear in equation (A.12). This means that there will be only 10 non-zero entries of Φi,j.
Recasting now equation (A.18) in terms of only its non-zero entries we find that

|Φ〉 =
Φ′

10︷︸︸︷
Φ1,8

|F′10〉︷ ︸︸ ︷
|FA

1 〉 ⊗ |FB
8 〉+

Φ′
7︷︸︸︷

Φ2,5

|F′7〉︷ ︸︸ ︷
|FA

2 〉 ⊗ |FB
5 〉

+

Φ′
8︷︸︸︷

Φ2,6

|F′8〉︷ ︸︸ ︷
|FA

2 〉 ⊗ |FB
6 〉+

Φ′
9︷︸︸︷

Φ2,7

|F′9〉︷ ︸︸ ︷
|FA

2 〉 ⊗ |FB
7 〉

+

Φ′
4︷︸︸︷

Φ3,5

|F′4〉︷ ︸︸ ︷
|FA

3 〉 ⊗ |FB
5 〉+

Φ′
5︷︸︸︷

Φ3,6

|F′5〉︷ ︸︸ ︷
|FA

3 〉 ⊗ |FB
6 〉

+

Φ′
6︷︸︸︷

Φ3,7

|F′6〉︷ ︸︸ ︷
|A3〉 ⊗ |FB

7 〉+
Φ′

1︷︸︸︷
Φ4,2

|F′1〉︷ ︸︸ ︷
|FA

4 〉 ⊗ |FB
2 〉

+

Φ′
2︷︸︸︷

Φ4,3

|F′2〉︷ ︸︸ ︷
|A4〉 ⊗ |FB

3 〉+
Φ′

3︷︸︸︷
Φ4,4

|F′3〉︷ ︸︸ ︷
|FA

4 〉 ⊗ |FB
4 〉, (A.19)

where the matrix elements Φ′
i are given by equation (A.15). Having written the wave function of our example

in the form of equation (20), we proceed in performing the SVD on the connecting matrix Φ with entries Φi,j

defined just above (all the other entries that this matrix has are zero)

Φ =

⎛
⎜⎜⎝

0 0 0 0 0 0 0 Φ′
10

0 0 0 0 Φ′
7 Φ′

8 Φ′
9 0

0 0 0 0 Φ′
4 Φ′

5 Φ′
6 0

0 Φ′
1 Φ′

2 Φ′
3 0 0 0 0

⎞
⎟⎟⎠ . (A.20)
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The connecting matrix for our example reads

Φ =

⎛
⎜⎜⎝

0 0 0 0 0 0 0 0.105 66
0 0 0 0 0.288 68 0.394 34 0.288 68 0
0 0 0 0 0.394 34 0.5 0.288 68 0
0 0.105 66 0.288 68 0.288 68 0 0 0 0

⎞
⎟⎟⎠ . (A.21)

Rotating with U and V†, which are defined in equation (22) and the discussion after it, we obtain the
following states on the impurity

|A1〉 = −0.629 78|FA
2 〉 − 0.776 78|FA

3 〉 (A.22)

|A2〉 = −|FA
4 〉 (A.23)

|A3〉 = −|FA
1 〉 (A.24)

|A4〉 = 0.776 78|FA
2 〉 − 0.629 78|FA

3 〉 (A.25)

and on the bath:

|B1〉 =− 0.542 83|FB
5 〉 − 0.708 12|FB

6 〉

− 0.451 557|FB
7 〉 (A.26)

|B2〉 =− 0.250 56|FB
2 〉 − 0.6846|FB

3 〉

− 0.6846|FB
4 〉 (A.27)

|B3〉 = −|FB
8 〉 (A.28)

|B4〉 =− 0.486 54|FB
5 〉 − 0.173 10|FB

6 〉

+ 0.856 34|FB
7 〉 (A.29)

|B5〉 =− 0.436 46|FB
2 〉 − 0.325 17|FB

3 〉

+ 0.484 93|FB
4 〉+ 0.468 61|FB

5 〉 − 0.468 61|FB
6 〉

+ 0.171 523|FB
7 〉 (A.30)

|B6〉 =− 0.646 38|FB
2 〉 − 0.088 58|FB

3 〉

+ 0.325 17|B4〉 − 0.468 61|FB
5 〉+ 0.468 61|FB

6 〉

− 0.171 523|FB
7 〉 (A.31)

|B7〉 =− 0.573 51|FB
2 〉+ 0.646 38|FB

3 〉

− 0.436 46|FB
4 〉+ 0.171 52|FB

5 〉 − 0.171 52|FB
6 〉

+ 0.062 78|FB
7 〉 (A.32)

|B8〉 = |FB
1 〉 (A.33)

and a new connecting matrix which is diagonal

Λ =

⎛
⎜⎜⎝

0.899 19 0. 0. 0. 0. 0. 0. 0.
0. 0.4217 0. 0. 0. 0. 0. 0.
0. 0. 0.105 66 0. 0. 0. 0. 0.
0. 0. 0. 0.049 55 0. 0. 0. 0.

⎞
⎟⎟⎠ . (A.34)

The wave function after the SVD reads

|Φ〉 =
4∑

i=1

λi|Ai〉 ⊗ |Bi〉 (A.35)
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= 0.899 19 ·

|A1〉︷ ︸︸ ︷
(−0.629 78|FA

2 〉 − 0.776 78|FA
3 〉)

⊗

|B1〉︷ ︸︸ ︷
(−0.542 83|FB

5 〉 − 0.708 12|FB
6 〉 − 0.451 56|FB

7 〉)

+ 0.4217 ·

|A2〉︷ ︸︸ ︷
(−|FA

4 〉)

⊗

|B2〉︷ ︸︸ ︷
(−0.250 56|FB

2 〉 − 0.684 55|FB
3 〉 − 0.684 55|FB

4 〉)

+ 0.105 66 ·

|A3〉︷ ︸︸ ︷
(−|FA

1 〉) ⊗

|B3〉︷ ︸︸ ︷
(−|FB

8 〉)

+ 0.049 55 ·

|A4〉︷ ︸︸ ︷
(0.776 78|FA

2 〉 − 0.629 778|FA
3 〉)

⊗

|B4〉︷ ︸︸ ︷
(−0.486 54|FB

5 〉 − 0.173 10|FB
6 〉+ 0.856 34|FB

7 〉). (A.36)

If we compare to equation (A.19), we see that this is of course the same wave function.

A.2.2. Projection via singular-value decomposition in the impurity submatrix

Here we perform the projection via an SVD for the non interacting system on the orbital coefficient matrix of
the creation operators. Due to our choice of A we have

CA =

⎛
⎝ 1√

12
−0.5

1√
3

0.5 −0.5 0

⎞
⎠ , (A.37)

which corresponds to the first two lines of the matrix defined in equation (A.10). Performing an SVD on CA

we get the factorization for its matrix elements

CA
kμ = Ck,∈μ(k ∈ A) =

2∑
k=1

3∑
ν=1

Uk iΛiνV†
νμ, (A.38)

where U (size: 2 × 2) and V (size: 3 × 3) are both orthonormal matrices and Λ is a 2 × 3 matrix with only 2
entries non-zero on the diagonal. These matrices for our example read:

U =

(
−0.776 78 −0.629 78
−0.629 78 0.776 78

)
(A.39)

Λ =

(
0.993 17 0. 0.

0. 0.424 60 0.

)
(A.40)

V =

⎛
⎝−0.542 83 0.486 54 −0.684 55

0.708 12 −0.173 10 −0.684 55
−0.451 56 −0.856 34 −0.250 56

⎞
⎠ . (A.41)

The matrix V is now the sought-after rotation matrix, which rotates the orbitals into a new basis. In this new
basis, only the first two orbitals have overlap with the first two impurity sites
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C̃ = C · V

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
12

−0.5
1√
3

0.5 −0.5 0
1√
3

0 − 1√
3

0.5 0.5 0
1√
12

0.5
1√
3
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎝−0.542 83 0.486 54 −0.684 55

0.708 12 −0.173 10 −0.684 55
−0.451 56 −0.856 34 −0.250 56

⎞
⎠

=

⎛
⎜⎜⎜⎜⎝
−0.771 47 −0.267 41 0
−0.625 48 0.329 82 0
−0.052 70 0.775 31 −0.250 56
0.082 64 0.156 72 −0.684 55
−0.063 35 −0.440 50 −0.684 55

⎞
⎟⎟⎟⎟⎠ . (A.42)

As V is a unitary matrix its determinant is one, which results in leaving the Slater determinant of the origi-
nal wave function unchanged and the new ‘rotated’ orbitals still orthonormal. Thus the impurity-projected
representation of equation (A.9) is

|Φ〉 =
3∏

μ=1

5∑
k=1

C̃kμĉ†k|0〉

=

(
2∏

μ=1

5∑
k=1

C̃kμĉ†k

)(
5∑

k=3

C̃k3ĉ†k

)
︸ ︷︷ ︸

=ˆ̃ϕ†
3

|0〉

= ˆ̃ϕ†
1
ˆ̃ϕ†

2
ˆ̃ϕ†

3|0〉. (A.43)

We see in this basis that the third orbital is zero on A, i.e. the third orbital belongs purely to the environment
(or it is an occupied entangled environment orbital as it is called in the DMET literature) and we hence denote
it in accordance to equation (27) by ˆ̃ϕ†

3 = ϕ̂B,†
3 .

The first two orbitals have still contributions on the impurity and the environment. To construct the
missing further two bath orbitals (we should have 3) we remove the part that belongs to the impurity and
renormalize the resulting vectors and creation operators as

ϕ̂B,†
μ =

5∑
k=3

ĉ†k
C̃kμ√∑5
l=3|C̃lμ|2

=

5∑
k=3

ĉ†k
C̃kμ

‖ϕ̃μ‖B︸ ︷︷ ︸
=ϕB

μ(k)

. (A.44)

The normalization factors that appear in the denominator of equation (A.44) read

‖ϕ̃1‖B =

√√√√ 5∑
l=3

|C̃l1|2 = 0.116 70

‖ϕ̃2‖B =

√√√√ 5∑
l=3

|C̃l2|2 = 0.905 38 (A.45)

such that

ϕ̂B,†
1 = −0.451 56ĉ†3 + 0.708 12ĉ†4 − 0.542 83ĉ†5 (A.46)

ϕ̂B,†
2 = 0.856 34ĉ†3 + 0.173 10ĉ†4 − 0.486 54ĉ†5. (A.47)

In a similar manner (see equation (27)) we can define the renormalization factors ‖ϕ̃1‖A = 0.993 17, ‖ϕ̃2‖A =

0.424 60 and the 2 impurity orbitals as
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ϕ̂A,†
1 = −0.776 78ĉ†1 − 0.629 78ĉ†2 (A.48)

ϕ̂A,†
2 = −0.629 78ĉ†1 + 0.776 77ĉ†2. (A.49)

If we now express Φ in these new orbitals (that are no longer normalized on the full lattice A + B but only on
the respective sub-lattices) we find with the corresponding normalization coefficients

|Φ〉 =

ˆ̃ϕ†
1︷ ︸︸ ︷(

‖ϕ̃1‖Aϕ̂
A,†
1 + ‖ϕ̃1‖Bϕ̂

B,†
1

)

·

ˆ̃ϕ†
2︷ ︸︸ ︷(

‖ϕ̃2‖Aϕ̂
A,†
2 + ‖ϕ̃2‖Bϕ̂

B,†
2

)
ϕ̂B,†|0〉

= ‖ϕ̃1‖A‖ϕ̃2‖Aϕ̂
A,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉

+ ‖ϕ̃1‖A‖ϕ̃2‖Bϕ̂
A,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉

+ ‖ϕ̃1‖B‖ϕ̃2‖Aϕ̂
B,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉

+ ‖ϕ̃1‖B‖ϕ̃2‖Bϕ̂
B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉. (A.50)

Since we have now four terms in accordance to equation (A.35), we can individually compare. Firstly we find
that

‖ϕ̃1‖A‖ϕ̃2‖A = 0.421 70 = λ2 (A.51)

and the corresponding vectors can be associated as (note the anti-symmetrization)

ϕ̂A,†
1 ϕ̂A,†

2 |0〉 = (ϕA
1 (1)ϕA

2 (2) − ϕA
2 (1)ϕA

1 (2))︸ ︷︷ ︸
=−1

ĉ†1ĉ†2|0〉

≡ |A2〉, (A.52)

and

ϕ̂B,†
3 |0〉 =

(
−0.250 56ĉ†3 − 0.684 55ĉ†4 − 0.684 55ĉ†5

)
|0〉

≡ |B2〉. (A.53)

We note here again that the left-hand sides of the above equivalence relations are vectors that are defined on a
Fock space of the full lattice, while the right-hand sides are defined on Fock spaces of sub-lattices. Consequently
they are not the same vectors since they are defined on dimensionally different spaces, yet they describe the
same physical states. This allows us to associate

‖ϕ̃1‖A‖ϕ̃2‖Aϕ̂
A,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉 ≡ λ2|A2〉 ⊗ |B2〉 (A.54)

while dimensionally (and also physically) ‖ϕ̃1‖A‖ϕ̃2‖Aϕ̂
A,†
1 ϕ̂A,†

2 |0〉 ⊗ ϕ̂B,†
3 |0〉 would not make sense. This high-

lights again the subtleties that arise when mixing different representations of the same physical state. We can
then proceed by associating the other states in a similar manner. Since ‖ϕ̃1‖A‖ϕ̃2‖B = 0.899 19 = λ1,

ϕ̂A,†
1 |0〉 =

(
−0.776 77ĉ†1 − 0.629 78ĉ†2

)
|0〉

≡ |A1〉 (A.55)

and

ϕ̂B,†
2 ϕ̂B,†

3 |0〉 =
(
ϕB

2 (3)ϕB
3 (4) − ϕB

2 (4)ϕB
3 (3)
)︸ ︷︷ ︸

=−0.542 83

ĉ†3ĉ†4|0〉

+
(
ϕB

2 (3)ϕB
3 (5) − ϕB

2 (5)ϕB
3 (3)
)︸ ︷︷ ︸

=−0.708 12

ĉ†3ĉ†5|0〉
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+
(
ϕB

2 (4)ϕB
3 (5) − ϕB

2 (5)ϕB
3 (4)
)︸ ︷︷ ︸

=−0.451 56

ĉ†4ĉ†5|0〉

≡ |B1〉.

we have ‖ϕ̃1‖A‖ϕ̃2‖Bϕ̂
A,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉 ≡ λ1|A1〉 ⊗ |B1〉. Further, since ‖ϕ̃1‖B‖ϕ̃2‖A = 0.049 55 = λ4,

ϕ̂A,†
2 |0〉 =

(
0.776 78ĉ†2 − 0.629 78ĉ†1

)
|0〉 ≡ |A4〉 (A.56)

and

ϕ̂B,†
1 ϕ̂B,†

3 |0〉 =
(
ϕB

1 (3)ϕB
3 (4) − ϕB

1 (4)ϕB
3 (3)
)︸ ︷︷ ︸

=0.486 54

ĉ†3ĉ†4|0〉

+
(
ϕB

1 (3)ϕB
3 (5) − ϕB

1 (5)ϕB
3 (3)
)︸ ︷︷ ︸

=0.173 09

ĉ†3ĉ†5|0〉

+
(
ϕB

1 (4)ϕB
3 (5) − ϕB

1 (5)ϕB
3 (4)
)︸ ︷︷ ︸

=−0.856 34

ĉ†4ĉ†5|0〉

≡ −|B4〉,

we have ‖ϕ̃1‖B‖ϕ̃2‖Aϕ̂
B,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉 ≡ λ4|A4〉 ⊗ |B4〉. Finally, since ‖ϕ̃1‖B‖ϕ̃2‖B = 0.105 66 = λ3,

|0〉 ≡ −|A3〉 (A.57)

and

ϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉 = det

∣∣∣∣∣∣
ϕB

1 (3) ϕB
1 (4) ϕB

1 (5)
ϕB

2 (3) ϕB
2 (4) ϕB

2 (5)
ϕB

3 (3) ϕB
3 (4) ϕB

3 (5)

∣∣∣∣∣∣︸ ︷︷ ︸
=1

ĉ†3 ĉ†4 ĉ†5|0〉

≡ |B3〉,

we have ‖ϕ̃1‖B‖ϕ̃2‖Bϕ̂
B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉 ≡ λ3|A3〉 ⊗ |B3〉. Thus we have explicitly verified that performing the SVD

in the orbital coefficient matrix with a subsequent division in impurity and environment orbitals is equivalent
to performing the SVD in the connecting matrix in the Fock-space representation.

A.3. The different constructions of the exact embedded system
Next we construct the exact embedded system. We do so first by using the Fock-space projection and then we
use the single-particle projection. While the first is the only possibility for doing the exact projection for an
interacting system (see also appendix A.4), the latter approach is the one that is employed in practice and is
only exact for non-interacting systems.

A.3.1. Exact embedded Hamiltonian via the Fock-space projection

The Fock-space projection according to equation (23) reads in our case

P̂ =

4∑
α=1

4∑
β=1

|Aα〉 ⊗ |Bβ〉〈Aα| ⊗ 〈Bβ|, (A.58)

with |Aα〉 given by equations (A.22)–(A.25) and |Bβ〉 given by equations (A.26)–(A.29). It is instructive, how-
ever, to see how this projection looks like using the impurity plus bath orbitals (and also the environment one).
Since we have already associated these states with each other in the previous section, we readily can associate

P̂ ≡ ϕ̂A,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂B,†

1 ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2 ϕ̂

B
1 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂B,†

1 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
1 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2 ϕ̂

A
2 ϕ̂

A
1
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+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
A
2 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

B
1 ϕ̂

A
2 ϕ̂

A
1

+ ϕ̂A,†
1 ϕ̂A,†

2 ϕ̂B,†
1 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
1 ϕ̂

A
2 ϕ̂

A
1

+ ϕ̂B,†
3 |0〉〈0|ϕ̂B

3

+ ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2

+ ϕ̂B,†
1 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

B
1

+ ϕ̂B,†
1 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
1

+ ϕ̂A,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

A
2

+ ϕ̂A,†
2 ϕ̂B,†

2 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
2 ϕ̂

A
2

+ ϕ̂A,†
2 ϕ̂B,†

1 ϕ̂B,†
2 ϕ̂B,†

3 |0〉〈0|ϕ̂B
3 ϕ̂

B
2 ϕ̂

B
1 ϕ̂

A
2

+ ϕ̂A,†
2 ϕ̂B,†

1 ϕ̂B,†
3 |0〉〈0|ϕ̂B

3 ϕ̂
B
1 ϕ̂

A
2 . (A.59)

In this projection appear different terms that project to subspaces with a different number of particles. Since
the Hamiltonian is particle-number conserving, contributions like 〈ϕA

1ϕ
B
2ϕ

B
3 |ĤϕA

1ϕ
B
3 〉 are zero, yet we still have

non-zero contributions within different particle-number subspaces. If we do not restrict at this point to only
the three-particle subspace, a minimization of the projected Hamiltonian will lead to a different ground state
with different number of particles. In this approach we therefore have to restrict by hand to those states such
that the correct projector becomes

P̂′ = |A1〉 ⊗ |B1〉〈B1| ⊗ 〈A1|

+ |A2〉 ⊗ |B2〉〈B2| ⊗ 〈A2|

+ |A3〉 ⊗ |B3〉〈B3| ⊗ 〈A3|

+ |A4〉 ⊗ |B4〉〈B4| ⊗ 〈A4|

+ |A1〉 ⊗ |B4〉〈B4| ⊗ 〈A1|

+ |A4〉 ⊗ |B1〉〈B1| ⊗ 〈A4|. (A.60)

This yields a 6 × 6 Hamiltonian matrix P̂′ĤP̂′ (see the Jupyter notebook for the explicit matrix). Diag-
onalizing provides its lowest eigenvalue as E = −

√
3 − 1 with the eigenstate Φ = −0.899 19|A1〉 ⊗ |B1〉 −

0.421 70|A2〉 ⊗ |B2〉 − 0.105 66|A3〉 ⊗ |B3〉 − 0.049 55|A4〉 ⊗ |B4〉. This agrees with equation (A.35). Alterna-
tively we could have also restricted the projection further to only the states |Aα〉 ⊗ |Bα〉 with α ∈ {1, 2, 3, 4}
(leading to a 4 × 4 Hamiltonian) and would have found the same ground state.

A.3.2. Exact embedded Hamiltonian via the single-particle projection

Since the above projection needs to be further restricted by hand to only the right particle sector, it is advan-
tageous if one can directly construct the correct projector without further filtering. This can be done for
non-interacting systems on the single-particle level as discussed in section 3.2. Since one uses in practice always
a non-interacting projection the following is the standard way in DMET to construct the embedded system.

We start from the non-interacting Hamiltonian of the full system, i.e. equation (A.1) and construct the
non-interacting 1RDM in the site basis from the three lowest energy orbitals (which are the ones that form the
Slater determinant Φ). This will be a 5 × 5 (the number of sites) matrix

γ(i, j) = 〈Φ|̂c†j ĉi|Φ〉 =
3∑

μ=1

CT
jμCiμ.

As this is a non-interacting 1RDM its eigenvalues are 1 or 0. Next we consider a submatrix of this 1RDM
which consists only of the sites that belong to the bath B. For our example this is the matrix defined above with
i, j ∈ B ≡ {3, 4, 5}

γenv(i, j) =
3∑

μ=1

CT
jμCiμ with i, j ∈ B. (A.61)
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Diagonalizing this 3 × 3 submatrix gives

n1 = 0.013 62 ≡ ‖ϕ̃1‖2
B

ϕB
1 = −0.451 56|3〉+ 0.708 12|4〉 − 0.542 83|5〉

n2 = 0.819 71 ≡ ‖ϕ̃2‖2
B

ϕB
2 = 0.856 34|3〉+ 0.173 10|4〉 − 0.486 54|5〉

n3 = 1 ≡ ‖ϕ̃3‖2
B

ϕB
3 = 0.250 56|3〉+ 0.684 55|4〉+ 0.684 55|5〉,

where we have introduced the notation ĉ†i |0〉 = |i〉. The orbital ϕB
3 with occupation number 1 is called in the

DMET literature unentangled occupied environmental orbital. It agrees with ϕ̃3 ≡ ϕB
3 from appendix A.2.2. The

two orbitals that have eigenvalues (occupations) between 0 and 1 are called the bath orbitals and agree with the
corresponding ones from appendix A.2.2.

Since they have zero contribution on the impurity A ≡ {1, 2} we need two further states (the size of the
impurity) that are non-zero only on the impurity to express a 5 × 5 matrix. While we could use ϕA

1 and ϕA
2

from appendix A.2.2, we can equivalently use

ϕA
1 = |1〉,

ϕA
2 = |2〉.

Discarding the unentangled occupied environmental orbitalϕB
3 that constitutes the vacuum state |0̃〉 = ϕ̂B,†

3 |0〉
of the Fock space E (see also section 2.2), we are left with the 4 orbitals of the CAS, i.e. ϕCAS

1 = ϕA
1 , ϕCAS

2 =

ϕA
2 , ϕCAS

3 = ϕB
1 and ϕCAS

4 = ϕB
2 . The corresponding 5 × 4 CAS matrix CCAS

kμ ≡ ϕCAS
μ (k) takes the form of

equation (29). With this the embedded single-particle Hamiltonian becomes

h′
s = [CCAS]ThsCCAS

=

⎛
⎜⎜⎝

0.0 −1.0 0.0 0.0
−1.0 0.0 0.451 56 −0.856 338
0.0 0.451 56 1.408 29 −0.089 73
0.0 −0.856 34 −0.089 73 −0.128 02

⎞
⎟⎟⎠ . (A.62)

While here we do not gain much in dimensionality, in the case that the impurity is much smaller than the
original lattice, this leads indeed to a large reduction. The eigenvalues and eigenvectors of this single-particle
embedded Hamiltonian are

ε′1 = −1.372 56

ϕ′
1 = −0.513 87ϕCAS

1 − 0.705 32ϕCAS
2

+ 0.099 10ϕCAS
3 − 0.478 17ϕCAS

4

ε′2 = −0.079 22

ϕ′
2 = 0.634 51ϕCAS

1 + 0.050 27ϕCAS
2

− 0.061 64ϕCAS
3 − 0.768 81ϕCAS

4

ε′3 = 1.0

ϕ′
3 = −0.5ϕCAS

1 + 0.5ϕCAS
2

− 0.625 47ϕCAS
3 − 0.329 82ϕCAS

4

ε′4 = 1.732 05

ϕ′
4 = −0.288 68ϕCAS

1 + 0.5ϕCAS
2

+ 0.771 47ϕCAS
3 − 0.267 41ϕCAS

4 .
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Lifting the single-particle Hamiltonian to the Fock-space E we have (see also equation (15))

Ĥ′ =

4∑
k̃=1

4∑
k̃′=1

h′
s(k̃, k̃′)ϕ̂CAS,†

k̃
ϕ̂CAS

k̃′ +
Δε

2

4∑
k̃=1

ϕ̂CAS,†
k̃

ϕ̂CAS
k̃

(A.63)

=

4∑
μ=1

ε′μϕ̂
′†
μ ϕ̂

′
μ +

Δε

2

4∑
μ=1

ϕ̂′†
μ ϕ̂

′
μ. (A.64)

Because we have discarded the unentangled occupied environmental orbital the sought-after ground state is
given by the lowest two-particle eigenstate of Ĥ ′ which leads to E′ = ε′1 + ε′2 = −1.451 79 and |Φ′〉 = ϕ̂′†

1 ϕ̂
′†
2 |0̃〉.

Because in our case Δε = 〈0̃|Ĥ0̃〉 = E − E′ = −1.280 26. For the orbitals we find

ϕ′
1 = 0.513 87|1〉+ 0.705 32|2〉

+ 0.454 22|3〉+ 0.012 60|4〉 − 0.178 85|5〉,

ϕ′
2 = 0.634 51|1〉+ 0.050 27|2〉

− 0.630 53|3〉 − 0.176 73|4〉+ 0.407 52|5〉.

If we again disregard the unentangled occupied environmental orbital then the resulting Slater
determinant is

Φ̃′(k, l) =
1√
2

(
ϕ′

1(k)ϕ′
2(l) − ϕ′

1(l)ϕ′
2(k)
)
. (A.65)

While it gives the right impurity 1RDM, it does not give the wave function even on the impurity. Because the
only non-trivial term is Φ̃′(1, 2) = −0.298 187 we can compare to, e.g.

∑5
k=3Φ̃(1, 2, k) = 0.683 012 or some

arbitrary combination with k of equation (A.2). However, if we also use that we know the discarded orbital,
i.e. the form of the vacuum state |0̃〉, we find instead

Φ̃(i, j, k) =
(
i, j, k|1, 2, 3〉

=
1√
3!

det

∣∣∣∣∣∣
ϕ′

1(i) ϕ′
1(j) ϕ′

1(k)
ϕ′

2(i) ϕ′
2(j) ϕ′

2(k)
ϕ′

3(i) ϕ′
3(j) ϕ′

3(k)

∣∣∣∣∣∣ (A.66)

and have recovered the full wave function.

A.4. Interacting systems: why the projection via the impurity submatrix does not work
Let us next see explicitly, why for an interacting system only the (less convenient) projection in Fock space
works. The simplest wave function that exhibits the main feature of an interacting many-body wave function
(multi-reference character) is the linear combination of two Slater determinants. Here we will use two Slater
determinants build from orbitals of the non-interacting Hamiltonian of equation (A.1),

|Φ1〉 = φ̂†
1φ̂

†
2φ̂

†
3|vac〉, (A.67)

|Φ2〉 = φ̂†
1φ̂

†
4φ̂

†
5|vac〉. (A.68)

Our model interacting wave function is then

|Ψ〉 = ν1|Φ1〉+ ν2|Φ2〉 (A.69)

with (real) ν2
1 + ν2

2 = 1. We can define, similar to the coefficient matrix C in equation (A.10), the coefficient
matrix of the multi-determinant wave function as

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
12

−0.5
1√
3

−0.5
1√
12

0.5 −0.5 0 0.5 −0.5
1√
3

0 − 1√
3

0
1√
3

0.5 0.5 0 −0.5 −0.5
1√
12

0.5
1√
3

0.5
1√
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.70)
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where the last two columns correspond to φ4 and φ5. With this we can determine the 1RDM of the interacting
wave function

γ(i, j) = 〈Ψ|̂c†j ĉi|Ψ〉

= ν2
1〈Φ1 |̂c†j ĉi|Φ1〉+ ν2

2〈Φ2 |̂c†j ĉi|Φ2〉

= ν2
1

3∑
μ=1

DT
j,μDi,μ + ν2

2 (DT
j2Di2 + DT

j4Di4 + DT
j5Di5). (A.71)

If we then fix the missing values, e.g. ν1 = 0.8 and ν2 = 0.6, we can calculate numerically the 1RDM and
determine its environmental submatrix γenv(i, j) which would correspond to i, j ∈ {3, 4, 5}. The eigenvalues
and eigenvectors of γenv(i, j) are

n1 = 0.365 30 ≡ ‖ϕ̃1‖2
B

ϕB
1 = −0.451 53|3〉+ 0.678 86|4〉 − 0.579 02|5〉

n2 = 0.591 50 ≡ ‖ϕ̃2‖2
B

ϕB
2 = 0.889 05|3〉+ 0.287 34|4〉 − 0.356 41|5〉

n3 = 0.816 53 ≡ ‖ϕ̃3‖2
B

ϕB
3 = 0.075 58|3〉+ 0.675 70|4〉+ 0.733 29|5〉.

While before we did go on by discarding the orbital with n = 1, here we do not find such an unentangled
occupied environmental orbital. Thus the procedure that uses the impurity submatrix does in general not
work for interacting systems.

Appendix B. Non-interacting v-representability issues: non-uniqueness of mean-field
projection and of the DMET fixed point

In the following we will demonstrate explicitly in accordance to the non-interacting v-representability problem
that we do have multiple approximate projections for a given impurity 1RDM (see also general discussion in
section 4.2). Since this is an integral part of the DMET iteration procedure it is not surprising that we can also
show explicitly that we have multiple fixed points as well (see general discussion in section 4.4). As discussed
in the main text we need to have enough flexibility in the system to construct the different projections and
fixed points. We therefore in this part of the appendix consider a slightly larger grid and take N = 6. We still
consider only M = 3 spinless fermions.

B.1. Non-uniqueness of the mean-field projection
Here we show explicitly non-uniqueness of the approximate projection by constructing two non-interacting
system that have the same impurity 1RDM γs

imp(i, j) but different orbitals and thus projections.
We first make a random choice for a non-interacting system. Let us consider a translation invariant

Hubbard system, i.e. we have only next-neighbor hopping with periodic boundary conditions:

hs =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 −1
−1 0 −1 0 0 0
0 −1 0 −1 0 0
0 0 −1 0 −1 0
0 0 0 −1 0 −1
−1 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (B.1)
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Diagonalizing it leads to six eigenstates {φ1, . . . ,φ6}, and choosing the three lowest eigenstates leads
{φ1,φ2,φ3} with ground-state energy E = −4. The 1RDM

γs =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.333 33 0 −0.166 66 0 0.333 33
0.333 33 0.5 0.333 33 0 −0.166 66 0

0 0.333 33 0.5 0.333 33 0 −0.166 66
−0.166 66 0 0.333 33 0.5 0.333 33 0

0 −0.166 666 0 0.333 33 0.5 0.333 333
0.333 333 0 −0.166 666 0 0.333 333 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠ . (B.2)

The resulting impurity 1RDM on A ≡ {1, 2} is then

γ s
imp =

(
0.5 0.333 33

0.333 33 0.5

)
. (B.3)

To then construct a different system with the same impurity 1RDM as its three-particle ground state we first
diagonalize γs

imp of equation (B.3) and get the eigenvalues and the eigenvectors of the impurity 1RDM as

nimp
1 = 0.166 66 ≡ ‖ϕ̃1‖2

A

ϕA
1 = 0.707 11|1〉 − 0.707 11|2〉.

(B.4)

nimp
2 = 0.833 33 ≡ ‖ϕ̃2‖2

A

ϕA
2 = 0.707 11|1〉+ 0.707 11|2〉

. (B.5)

Since B is four-dimensional we have four basis functions. We can choose problem adopted ones by just diag-
onalizing the environment 1RDM of the original γs(i, j) of equation (B.2) and use two of them to build our
CAS space, i.e.

γ s
env =

⎛
⎜⎜⎝

0.5 0.333 33 0 −0.166 66
0.333 33 0.5 0.333 33 0

0 0.333 33 0.5 0.333 333
−0.166 666 0 0.333 333 0.5

⎞
⎟⎟⎠ . (B.6)

This leads to

n1 = 0 ≡ ‖ϕ̃1‖2
B (B.7)

ϕB
1 = −0.316 23|3〉+ 0.632 46|4〉 − 0.632 46|5〉+ 0.316 23|6〉 (B.8)

n2 = 0.166 66 ≡ ‖ϕ̃2‖2
B

ϕB
2 = 0.632 46|3〉 − 0.316 23|4〉 − 0.316 23|5〉+ 0.632 46|6〉

(B.9)

n3 = 0.833 33 ≡ ‖ϕ̃3‖2
B (B.10)

ϕB
3 = −0.632 46|3〉 − 0.316 23|4〉+ 0.316 23|5〉+ 0.632 46|6〉 (B.11)

n4 = 1.0 ≡ ‖ϕ̃4‖2
B

ϕB
4 = 0.316 23|3〉+ 0.632 46|4〉+ 0.632 46|5〉+ 0.316 23|6〉.

(B.12)

We can construct the CAS orbitals that would be used in the auxiliary projection of the target Hamiltonian
(where for the purpose of the example is not interacting but in a real application one would be interested in
interacting Hamiltonians). The first two CAS orbitals can be always chosen as

ϕCAS
1 = |1〉, (B.13)

ϕCAS
2 = |2〉. (B.14)

Alternatively, we could have used the two orbitals φA of the impurity submatrix as we have discussed in the
previous part of the appendix. Because the fourth eigenvector of the environment submatrix is discarded in
the usual approximate projection (unentangled occupied/core orbital) and the first orbital is perpendicular to

31



Electron. Struct. 3 (2021) 035001 I Theophilou et al

the subspace of the three lowest orbitals, we build the other CAS (environmental) orbitals from the remaining
orbitals as

ϕCAS
3 = ϕB

2 , (B.15)

ϕCAS
4 = ϕB

3 . (B.16)

While we do not need this CAS orbitals in this section, they will become important in the next. Further, they
will show that we get a very different projection when we compare to the CAS from the different Hamiltonian
that we construct next.

If we now take ϕB
3 and ϕB

4 and define

ϕ̃′
1 =

√
nimp

1 ϕA
1 +

√
1 − nimp

1︸ ︷︷ ︸
=
√

0.833 33

ϕB
1 (B.17)

ϕ̃′
2 =

√
nimp

2 ϕA
2 +

√
1 − nimp

2︸ ︷︷ ︸
=
√

0.166 66

ϕB
4 (B.18)

as well as

ϕ̃′
3 = ϕB

2 (B.19)

ϕ̃′
4 = ϕB

3 . (B.20)

Since we have now four orthogonal vectors we would still need to choose two orthonormal ones to fill up all of
the six dimensional space. However, since we only want to construct a Hamiltonian that has the same impurity
1RDM in the ground-state three-particle sector we leave them undefined but instead choose a set of random
numbers ε′1 � ε′2 � ε′3 < ε′4 � ε′5 = ε′6 = 0. For definiteness, we choose ε′1 = −4, ε′2 = −3, ε′3 = −2, ε′4 = −1
and ε′5 = ε′6 = 0. With this the new Hamiltonian is

hs
new =

4∑
μ=1

ε′μϕ̃
′
μ(i)ϕ̃′∗

μ(j)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1.583 33 −0.916 67 −0.583 33 0.166 67 −1.166 67 0.083 33
−0.916 67 −1.583 33 0.083 33 −1.166 67 0.166 67 −0.583 33
−0.583 33 0.083 33 −1.583 33 0.766 67 −0.166 67 −0.116 67
0.166 67 −1.166 67 0.766 67 −1.833 33 1.033 33 −0.166 67
−1.166 67 0.166 67 −0.166 67 1.033 33 −1.833 33 0.766 67
0.083 33 −0.583 33 −0.116 67 −0.166 67 0.766 67 −1.583 33

⎞
⎟⎟⎟⎟⎟⎟⎠ . (B.21)

If we diagonalize the Hamiltonian and take the lowest three eigenvectors we find the three-particle ground-
state 1RDM

γs
new =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.500 00 0.333 33 0.166 67 0.000 00 0.333 33 0.000 00
0.333 33 0.500 00 0.000 00 0.333 33 0.000 00 0.166 67
0.166 67 0.000 00 0.500 00 −0.333 33 0.000 00 0.333 33
0.000 00 0.333 33 −0.333 33 0.500 00 −0.166 67 0.000 00
0.333 33 0.000 00 0.000 00 −0.166 67 0.500 00 −0.333 33
0.000 00 0.166 67 0.333 33 0.000 00 −0.333 33 0.500 00

⎞
⎟⎟⎟⎟⎟⎟⎠ (B.22)

and the corresponding ground-state energy is E′ = ε′1 + ε′2 + ε′3 = −9. By construction the 1RDM agrees on
the impurity but the rest is different. Also, the CAS orbitals that are used in the projection will be different. In
our case they become (besides the first two that are always the same)

ϕ′CAS
3 = ϕB

4 , (B.23)

ϕ′CAS
4 = ϕB

1 , (B.24)

in contrast to the ones of equations (B.15) and (B.16). However, ϕB
4 and ϕB

1 were orbitals that did not belong
to the original CAS. That means that also the projection constructed from the Hamiltonian hs

new will look very
different from the one of hs of equation (B.1). Thus in this example we have highlighted that by the requirement
that the impurity 1RDM is the same there is the possibility to construct completely different projections even
in a very simple setting where also the target system is non-interacting and we just consider only a few sites.
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B.2. Non-uniqueness of DMET fixed point
Next we are going to demonstrate that besides the projection also the fixed point is arbitrary and that it can be
arbitrarily far away from the ‘exact result’. In our case the ‘exact result’ is the three-particle ground state of the
following ‘target’ Hamiltonian

ĥtar ≡
6∑

μ=1

εtar
μ φtar

μ (i)φtar
μ (j)

≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0.916 67 −0.583 333 0.166 667 −0.083 333 −0.583 333 −0.833 333
−0.583 333 0.916 667 −0.833 333 −0.583 333 −0.083 333 0.166 667
0.166 667 −0.833 333 −0.233 333 −0.033 333 −0.633 333 0.566 667
−0.083 333 −0.583 333 −0.033 333 −0.683 333 1.016 667 −0.633 333
−0.583 333 −0.083 333 −0.633 333 1.016 667 −0.683 333 −0.033 333
−0.833 333 0.166 667 0.566 667 −0.633 333 −0.033 333 −0.233 333

⎞
⎟⎟⎟⎟⎟⎟⎠ , (B.25)

where we have defined the orthogonal set of eigenfunctions as

{
φtar

1 = ϕB
1 ,φtar

2 = φ1,φtar
3 = φ2,φtar

4 = φ3,φtar
5 =

1

|φ4 − 〈φtar
1 |φ4〉φtar

1 |

× (φ4 − 〈φtar
1 |φ4〉φtar

1 ),

φtar
6 =

1

|φ5 − 〈φtar
1 |φ5〉φtar

1 | (φ5 − 〈φtar
1 |φ5〉φtar

1 ) +
1

|φ5 − 〈φtar
5 |φ5〉φtar

5 |

× (φ5 − 〈φtar
5 |φ5〉φtar

5 )
}

(B.26)

and {φ1, . . . ,φ5} are the five lowest eigenstates of equation (B.1). Further we have chosen

εtar
1 = −2, εtar

2 = −1, εtar
3 = −0.5, εtar

4 = 0.5, εtar
5 = 1, εtar

6 = 2.

For this Hamiltonian the three-particle ground-state energy is Etar = −3.5 and the corresponding 1RDM is

γ tar =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.497 96 0.354 83 0.023 54 −0.164 63 −0.021 50 0.309 80
0.354 83 0.273 54 0.085 37 −0.021 50 0.059 80 0.247 96
0.023 54 0.085 37 0.328 50 0.109 80 0.447 96 0.004 83
−0.164 63 −0.021 50 0.109 80 0.897 96 −0.045 17 0.223 54
−0.021 50 0.059 80 0.447 96 −0.045 17 0.673 54 −0.114 63
0.309 80 0.247 96 0.004 83 0.223 54 −0.114 63 0.3285

⎞
⎟⎟⎟⎟⎟⎟⎠ (B.27)

with the impurity 1RDM as

γ tar
imp =

(
0.497 96 0.354 83
0.354 83 0.273 54

)
. (B.28)

Next we assume that a DMET iteration step led us to an auxiliary Hamiltonian of the form of equation (B.1).
So we follow the DMET procedure and determine the CAS of this auxiliary Hamiltonian (see equations (B.13)
to (B.16)) and define the embedded Hamiltonian

h′tar = [CCAS]ThtarCCAS

×

⎛
⎜⎜⎝

0.000 00 −1.0000 −0.632 46 0.632 46
−1.000 00 0.0000 −0.632 46 0.632 46
−0.632 46 −0.632 46 0.600 00 0.000 00
0.632 46 −0.632 46 0.000 00 −0.600 00

⎞
⎟⎟⎠ , (B.29)

with CCAS the 6 × 4 matrix constructed from these orbitals. Diagonalizing this Hamiltonian and keeping only
the two lowest (embedded) orbitals we obtain an embedded 1RDM of the target Hamiltonian in the CAS basis
as

γ ′tar
CAS ≡

2∑
k=1

ϕemb
k (μ)ϕemb

k (ν)

≡

⎛
⎜⎜⎝

0.500 00 0.333 33 0.263 52 0.263 52
0.333 33 0.500 00 0.263 52 0.263 52
0.263 52 0.263 52 0.166 67 0.000 00
−0.263 52 0.263 52 0.000 00 0.833 33

⎞
⎟⎟⎠ , (B.30)
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where ϕemb
μ are the two lowest eigenstates of equation (B.29). Transforming the 1RDM into the site

basis by

γ ′tar
emb(i, j) =

4∑
μ,ν=1

γ ′tar
CAS(μ, ν)ϕCAS

μ (i)ϕCAS
ν (j) (B.31)

leads to

γ ′tar
emb =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.333 33 0.000 00 −0.166 67 0. 0.333 33
0.333 33 0.5 0.333 33 0.000 00 −0.166 67 0.000 00
0.000 00 0.333 33 0.400 00 0.133 33 −0.200 00 −0.266 67
−0.166 67 0.000 00 0.133 33 0.1 −0.066 67 −0.2

0. −0.166 67 −0.2 −0.066 67 0.1 0.133 33
0.333 33 0.000 00 −0.266 67 −0.200 00 0.133 33 0.400 00

⎞
⎟⎟⎟⎟⎟⎟⎠ . (B.32)

We notice that the 1RDM γ ′tar
emb constructed from the embedded Hamiltonian of equation (B.29) does not

agree with the target 1RDM γtar even on the impurity A. That is, the approximate impurity 1RDM is

γ ′tar
imp =

(
0.5 0.333 33

0.333 33 0.5

)
, (B.33)

while the ‘exact’ impurity 1RDM is given in equation (B.28). Yet it does agree with the 1RDM γ imp of the
auxiliary Hamiltonian of equation (B.1) on the impurity. So we have attained the convergence criterion

γs
imp = γ ′tar

imp, (B.34)

and thus our DMET iteration is finished. Besides that we find completely wrong 1RDMs, also the energy
estimate is not necessarily good. To demonstrate this we are going to use the following formula to calculate
first the energy of the fragment A:

εexact
f =

∑
i=1,2,j=1−6

htar
i,j γ

tar(j, i) = −0.55242, (B.35)

where the expression for the fragment energy is taken from [37] (equation (25)). However, because in practice
we do not have the correct 1RDM that corresponds to this Hamiltonian available we need to calculate the
fragment energy using the embedded 1RDM:

εemb
f =

∑
i=1,2,j=1−6

htar
i,j γ

′tar
emb(j, i) = −0.438 16. (B.36)

Following the same procedure after adding to embedded 1RDM the environment orbital that we had originally
discarded (so as to have three particles)

γtar,tot
emb (j, i) = γ ′tar

emb(j, i) + φ∗B
4 (j)φB

4 (i) (B.37)

we obtain the same wrong fragment energy as in (B.36).
The reason why we can construct such a ‘bad’ fixed point is that we can instead of the ground state of a target

Hamiltonian (in our case the three lowest orbitals of the Hamiltonian of equation (B.25)) end up in an excited
state (in our case a Slater determinant that excludes the lowest-energy orbitals φtar

1 ). We can engineer that by
defining an auxiliary system that has the same impurity 1RDM as the excited state and a CAS that excludes the
ground state of the system (in our case the CAS of equations (B.13) to (B.16) is orthonormal to φtar

1 ≡ ϕB
3 ). We

therefore see that by changing the eigenenergies of our auxiliary Hamiltonian in an almost arbitrary fashion
as well as by choosing different eigenstates (yet still the CAS needs to be orthonormal to the lowest orbital
φtar

1 ≡ ϕB
3 ) we can find even find many auxiliary systems that lead to this ‘bad’ fixed point. Moreover, we can of

course generate other ‘bad’ fixed points by changing the excited state we target and construct the corresponding
auxiliary systems.
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