English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP

MPS-Authors
/persons/resource/persons236920

Bokelmann,  Lukas
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;
The Leipzig School of Human Origins (IMPRS), Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

/persons/resource/persons72834

Maricic,  Tomislav
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

/persons/resource/persons72897

Pääbo,  Svante
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

/persons/resource/persons72846

Meyer,  Matthias
Junior Research Group on Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;
Advanced DNA Sequencing Techniques, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

/persons/resource/persons192484

Riesenberg,  Stephan
Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bokelmann, L., Nickel, O., Maricic, T., Pääbo, S., Meyer, M., Borte, S., et al. (2021). Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP. Nature Communications, 12(1): 1467. doi:10.1038/s41467-021-21627-0.


Cite as: https://hdl.handle.net/21.11116/0000-0008-18EC-4
Abstract
Efforts to contain the spread of SARS-CoV-2 have spurred the need for reliable, rapid, and cost-effective diagnostic methods which can be applied to large numbers of people. However, current standard protocols for the detection of viral nucleic acids while sensitive, require a high level of automation and sophisticated laboratory equipment to achieve throughputs that allow whole communities to be tested on a regular basis. Here we present Cap-iLAMP (capture and improved loop-mediated isothermal amplification) which combines a hybridization capture-based RNA extraction of gargle lavage samples with an improved colorimetric RT-LAMP assay and smartphone-based color scoring. Cap-iLAMP is compatible with point-of-care testing and enables the detection of SARS-CoV-2 positive samples in less than one hour. In contrast to direct addition of the sample to improved LAMP (iLAMP), Cap-iLAMP prevents false positives and allows single positive samples to be detected in pools of 25 negative samples, reducing the reagent cost per test to ~1 Euro per individual.