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Abstract: We compute the effects of strong Hubbardlike local electronic interactions
on three-dimensional four-component massless Dirac fermions, which in a noninteracting
system possess a microscopic global U(1)⊗SU(2) chiral symmetry. A concrete lattice re-
alization of such chiral Dirac excitations is presented, and the role of electron-electron
interactions is studied by performing a field theoretic renormalization group (RG) analysis,
controlled by a small parameter ε with ε = d−1, about the lower-critical one spatial dimen-
sion. Besides the noninteracting Gaussian fixed point, the system supports four quantum
critical and four bicritical points at nonvanishing interaction couplings ∼ ε. Even though
the chiral symmetry is absent in the interacting model, it gets restored (either partially
or fully) at various RG fixed points as emergent phenomena. A representative cut of the
global phase diagram displays a confluence of scalar and pseudoscalar excitonic and super-
conducting (such as the s-wave and p-wave) mass ordered phases, manifesting restoration
of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b)
pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconduct-
ing masses for attractive interactions. Finally, we perturbatively study the effects of weak
rotational symmetry breaking on the stability of various RG fixed points.
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1 Introduction

Dirac fermions offer a universal language to explore various territories of modern physics
that include baryonic matters at high energies [1], topological phases of matter [2, 3], and
scale invariant quantum critical phenomena in fermionic systems, to name a few. While in
the context of high-energy physics massless Dirac fermions are realized in the ultraviolet
regime, in solid state systems they are found as emergent sharp quasiparticle excitations
at sufficiently low energies (the infrared regime) [4, 5]. The prominent representatives
of such infrared nodal Dirac materials are the two-dimensional carbon-based honeycomb
membrane or graphene [6], and three-dimensional strong spin-orbit coupled Cd3As2 [7] and
Na3Bi [8]. Here we focus on the minimal building block of a three-dimensional strong spin-
orbit coupled gapless Dirac liquid, constituted by four-component massless Dirac fermions,
that besides the fundamental discrete parity (P), time-reversal (T ) and charge-conjugation
(C) symmetries, also enjoy a microscopic continuous U(1)⊗SU(2) global chiral symmetry.
The present discussion unfolds the role of strong momentum-independent Hubbardlike or
local electronic interactions among massless chiral Dirac fermions.
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The central outcomes of this study are captured by a representative cut of the global
phase diagram, shown in Fig. 1. It displays realizations of and competitions among four chi-
ral symmetry breakingmass orders for sufficiently strong local electronic interactions, which
we demonstrate via a controlled, but leading-order renormalization group (RG) analysis.
Even though the interacting Hubbardlike model does not possess the chiral U(1)⊗SU(2)
symmetry at the bare level, the resulting phase diagram and the RG fixed points manifest
its restoration (at least partially) as emergent phenomena. Indeed “more is different" [9].
We now present a synopsis of our main findings.

1.1 Summary of results

Here we show that a collection of isotropically dispersing massless chiral Dirac fermions,
interacting via Hubbardlike local or short-range interactions, is described only in terms
of four linearly independent four-fermion or quartic terms. By performing a one-loop or
leading-order RG analysis on such an interacting model, controlled by a small parameter
ε with ε = d − 1, about the lower-critical one spatial dimension (d = 1), we show that
the system altogether sustains eight interacting fixed points, see Table 1. All the fixed
points are located at coupling constants ∼ ε, and can be grouped into following three
categories, depending on the emergent chiral symmetry therein. Fixed points (1) possessing
a partial U(1) or pseudospin SU(2) chiral symmetry, (2) enjoying the full U(1)⊗ SU(2) chiral
symmetry, and (3) transforming into each other under the chiral U(1) rotation. We arrive
at these conclusions by computing the scaling dimensions of all symmetry allowed particle-
hole or excitonic and particle-particle or superconducting orders, see Table 2, at various RG
fixed points, see Table 3. Otherwise, among eight RG fixed points four are quantum critical
points (QCPs), while the remaining ones are bircitical points (BCPs). All the QCPs are
characterized by the dynamic scaling exponent z = 1 and the correlation length exponent
ν = ε−1. Therefore, at the upper-critical three spatial dimensions we recover the exact
mean-field value of the exponent ν = 1/2 [10, 11], from a leading order ε expansion.

Some of these fixed points also play prominent roles on the global phase diagram of
interacting Dirac fermions, a representative cut of which is displayed in Fig. 1. It shows a
competition and confluence of four mass orders for chiral Dirac fermions, namely (1) the
scalar excitonic mass, (2) the pseudoscalar excitonic mass, (3) the scalar s-wave pairing
and (4) the pseudoscalar odd-parity p-wave pairing. Transformations of each mass order
under various discrete (P, T and C) and continuous symmetries are summarized in Table 2.
The fixed points (both critical and bicritical) controlling the continuous quantum phase
transitions out of a Dirac semimetal into various broken symmetry phases for finite interac-
tions across different segments of the phase boundary are also highlighted in Fig. 1. Most
importantly, we find that the U(1) chiral symmetry of the noninteracting system manifests
in the phase diagram as a reflection about the 45◦ diagonal (dashed) line under which the
scalar excitonic and pairing masses transform into the pseudoscalar masses. Along this high
symmetry line the chiral U(1) symmetry between scalar and pseudosclar excitonic masses
gets restored in the ordered phase (red line), which describes an axionic insulator [12–14].
Furthermore, the phase diagram supports another high symmetry line, the 135◦ diago-
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Figure 1. A representative phase diagram of a three-dimensional interacting isotropic Dirac
semimetal in a two-dimensional subspace of interaction couplings. Here gs

3
and gs

2
are the cou-

pling constants in scalar and pseudoscalar excitonic mass channels, respectively, measured in units
of ε = d − 1. Their positive (negative) values correspond to repulsive (attractive) interactions.
Together, these two masses form a U(1) vector under the chiral U(1) rotation. The scalar s-
wave and pseudoscalar p-wave superconducting masses (denoted by sSC and pSC, respectively)
also constitute a U(1) chiral vector. The emergent chiral symmetry manifests through the mirror
symmetry of the phase diagram about the gs

3
= gs

2
line (the diagonal dashed line). Under the

mirror transformation the components of the chiral U(1) mass orders transform into each other.
The Dirac semimetal-excitonic mass quantum phase transition (blue boundary) is governed by the
U(1) symmetric quantum critical point (QCP) C1. The scalar and pseudoscalar excitonic masses
are degenerate along the red phase boundary between them, where the ordered state represents a
P and T symmetry breaking axionic insulator [12–14]. The phase transitions across the black and
purple boundaries are governed by the pseudospin SU(2) symmetric QCPs C2 and C3, respectively.
Each excitonic mass is degenerate with the adjacent superconducting mass along the 135◦ diagonal
(orange and pink lines), where they constitute pseudospin SU(2) chiral vectors, see Fig. 3. The
basins of attraction of C1 and C2 (C1 and C3) are separated by the bicritical point B2 (B1), see
Table 1. The transitions through the bicritical points are also continuous, as they are accessed by
holding one of the unstable directions fixed [15].

nal one, along which the pseudospin SU(2) symmetry between the scalar (pink line) and
pseudoscalar (orange line) excitonic and pairing masses gets restored.

Even though here we arrive at these conclusions from a leading-order RG analysis
within the framework of an ε expansion about the lower-critical one spatial dimension,
they are expected to be valid in general for the following reasons. Notice that existence
of the fixed points do not depend on the value of ε, as long as ε = d − 1 > 0. Moreover,
their locations (in terms of the coupling constants) are quoted in units of ε (Table 1).
Consequently, the scaling dimension for all the fermion bilinears (Table 2) are also reported

– 3 –



coupling C1 C2 C3 C4 B1 B2 B3 B4

gs
0

-0.042 0.062 0.062 -2/3 0 0 -0.895 -0.895
gs
1

-0.125 0.136 0.136 0 0 0 0.614 0.614
gs
2

0.167 0.215 -0.153 -1/3 0 1/3 -0.056 -0.840
gs
3

0.167 -0.153 0.215 -1/3 1/3 0 -0.840 -0.056

Table 1. Locations of four quantum critical points (QCPs) [C1, · · · , C4] and four bicritical points
(BCPs) [B1, · · · , B4] in the four-dimensional space of coupling constants, measured in units of ε,
where ε = d−1 and d is the spatial dimension of the system. Each QCP (BCP) possesses one (two)
unstable direction(s). Note C1 and C4 are chiral U(1) symmetric QCPs, since gs

2
= gs

3
therein. On

the other hand, C2 and C3 are chiral U(1) partners, as their locations transform into each other
under U(1) chiral rotation gs

2
↔ gs

3
. Similarly, two pairs of BCPs, namely (1) (B1,B2), and (2)

(B3,B4) are chiral U(1) partners. In addition, three QCPs C2, C3 and C4, and two BCPs B3 and
B4 individually possess pseudospin SU(2) chiral symmetry. The emergent chiral symmetries can be
anchored by comparing the scaling dimensions of fermion bilinears, tabulated in Table 2, at various
fixed points, see Table 3. In particular, the scaling dimensions of fermion bilinears that are related
to each other by chiral U(1) [pseudospin SU(2) chiral] rotations are identical at the U(1) [pseudospin
SU(2)] symmetric fixed points. By contrast, the scaling dimensions of two fermion bilinears that
form a U(1) vector under the chiral U(1) rotations, are interchanged between two fixed points
that are chiral partners of each other. Finally, the scaling dimension of chiral U(1) scalar fermion
bilinears remain unchanged between two chiral partner fixed points. Only the fully U(1)⊗SU(2)
symmetric QCP C4 becomes unstable even against weak rotational symmetry breaking, see Sec. 3.5.

in units of ε (Table 3). Finally, the chiral symmetry among various competing phases, which
we demonstrate as an emergent phenomena from a leading-order ε expansion, is, however,
an exact symmetry, as shown in Fig. 3.

Finally, we address the stability of various interacting fixed points against weak break-
down of the spatial rotational symmetry. Such a rotational symmetry breaking introduces
an anisotropy between the Fermi velocities in the xy plane and along the z direction, for
example. Here we show that all but one RG fixed points, reported in Table 1 for the
isotropic system, retain their character in a weakly anisotropic Dirac semimetal. Only one
QCP, namely C4, becomes a BCP, see Sec. 3.5.

1.2 Organization

The rest of the paper is organized as follows. In the next section we present the low-energy
model for four-component massless chiral Dirac fermions, discuss its symmetry properties
and a lattice realization of such gapless excitations on a cubic lattice. Sec. 3 is devoted
to address the effects of strong local electronic interactions, emergent chiral symmetry
and quantum critical behavior in this system. In Sec. 4 we summarize our findings and
allude to some possible future directions. Additional technical details are relegated to the
Appendices.
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CF Matrix Physical meaning P T C CH PS

∆s
0 η3Γ00 Fermionic density + + − III

∆s
1 η3Γ10 Chiral density − + +

∆s
2 η0Γ20 Pseudoscalar mass − − + • II

∆s
3 η3Γ30 Scalar mass + + + • I

∆t
0 η0Γ0j Axial current + − +

∆t
1 η0Γ1j Abelian current − − − IV

∆t
2 η3Γ2j Spatio-temporal tensor − + − •

∆t
3 η0Γ3j Spatial tensor + − − •

∆p
0 ηαΓ00 Scalar s-wave pairing + +/− + • I

∆p
1 ηαΓ10 Pseudoscalar p-wave pairing − +/− + • II

∆p
2 ηαΓ2j Spatial vector pairing − +/− + IV

∆p
3 ηαΓ30 Temporal vector pairing + +/− + III

Table 2. Various local (momentum independent) orderings with their conjugate fields (CFs) (first
column), the corresponding matrix ηµΓνρ (second column) associated with the fermion bilinears
Ψ†NamηµΓνρΨNam in the Nambu basis ΨNam, defined in Eq. (3.5), and the physical meaning of the
orderings (third column). First eight (last four) rows correspond to excitonic (superconducting)
orders. In the superconducting channels α = 1 and 2, reflecting the U(1) gauge redundancy in the
choice of the superconducting phase (φ), see Eq. (3.10). Transformation of each fermion bilinear
under discrete P, T , and C symmetries are shown in the fourth, fifth and sixth columns, respec-
tively. Here, + and − respectively correspond to even and odd. Fermion bilinears transforming
as components of three chiral U(1) vectors under the U(1) chiral (CH) rotation are identified with
distinct colored circles (red, black and blue). Rest of the bilinears are scalars under chiral U(1)
rotation. Fermion bilinears transforming as components of four pseudospin (PS) SU(2) vectors are
marked as I, II, III and IV in the eighth column, see Fig. 3. The rest of the fermion bilinears
transform as scalars under the pseudospin rotations, as they all commute with PS, see Eq. (3.7).

2 Non-interacting system

In this section we introduce a noninteracting gapless Dirac system, possessing a genuine
microscopic continuous chiral symmetry. First we promote the continuum or low-energy
description of such system, and discuss its invariance under various discrete and continu-
ous symmetries. Subsequently, we propose a lattice realization of a genuine chiral Dirac
semimetal.

2.1 Continuum model and symmetries

The minimal model for three-dimensional massless chiral Dirac fermions is captured by the
Hamiltonian

ĥ(k) =

3∑
j=1

vjΓjkj , (2.1)

where kj are the components of momentum and vj are the Fermi velocities along the
principal axes. Here j = 1, 2 and 3 correspond to x, y, and z, respectively. The mutually
anticommuting four-component Hermitian Γ matrices satisfy the Clifford algebra {Γi,Γj} =
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CF C1 C2 C3 C4 B1 B2 B3 B4

∆s
0 0 0 0 0 0 0 0 0

∆s
1 0 0 0 0 0 0 0 0

∆s
2 0.875 0.849 -0.256 -1 1/2 4/3 0.754 -1.597

∆s
3 0.875 -0.256 0.849 -1 4/3 1/2 -1.597 0.754

∆t
0 -0.167 -0.260 -0.260 4/3 -1/3 -1/3 1.176 1.176

∆t
1 0.500 -0.136 -0.136 0 1/3 1/3 -0.614 -0.614

∆t
2 -0.042 -0.147 0.221 1/3 1/6 -1/6 0.363 1.147

∆t
3 -0.042 0.221 -0.147 1/3 -1/6 1/6 1.147 0.363

∆p
0 -0.250 -0.256 0.849 -1 1/2 -1/2 -1.597 0.754

∆p
1 -0.250 0.849 -0.256 -1 -1/2 1/2 0.754 -1.597

∆p
2 -0.250 -0.136 -0.136 0 -1/3 -1/3 -0.614 -0.614

∆p
3 0 0 0 0 0 0 0 0

Table 3. Scaling dimensions (in units of ε) of various particle-hole (first eight rows) and particle-
particle (last four rows) order parameters (see Table 2) at the eight nontrivial fixed points (see
Table 1). At the chiral U(1) symmetric fixed point C1 any two orders transforming as chiral U(1)
vector (see Table 2, seventh column) possess identical scaling dimensions. By contrast, their scaling
dimensions switch between two fixed points that are chiral U(1) partners of each other, namely (1)
(C2,C3), (2) (B1,B2), and (3) (B3,B4). At four pseudospin SU(2) chiral symmetric fixed points (C2,
C3, B3, B4) all components of each pseudospin SU(2) vector (see Table 2, eighth column and Fig. 3)
possess identical scaling dimension. At the fully U(1)⊗SU(2) chiral symmetric fixed point C4, all
components of chiral U(1) and pseudospin SU(2) vectors acquire equal scaling dimensions. In the
phase diagram shown in Fig. 1, we highlight the role of these fixed points. At three QCPs (C1, C2,
and C3) and two BCPs (B1 and B2) the mass orders possess the largest scaling dimensions (shown
in bold). Therefore, C1 controls the transition to scalar and pseudoscalar excitonic mass orders.
By contrast, C2 (C3) controls transition to pseudoscalar (scalar) excitonic and superconducting
masses. On the other hand, when the role of C1 and C3 (C1 and C2) switches, the continuous
transition to the scalar (pseudoscalar) excitonic mass is controlled by the BCP B1 (B2).

2δij . The representation of Γ matrices depends on microscopic details, even though our
results are insensitive to it. Nonetheless, for the sake of concreteness we organize the four-
component spinor basis as Ψk = (c+↑, c+↓, c−↑, c−↓)

>(k), where cps(k) are the fermion
annihilation operators with parity p = ±, spin projections s =↑, ↓, and momentum k. The
Γ matrices are then given by Γj = Γ1j for j = 1, 2, 3, with Γµν ≡ τµ⊗σν . Two sets of Pauli
matrices {τµ} and {σν} operate on parity and spin indices, respectively, and τ0 and σ0 are
the two-dimensional identity matrices. The model in Eq. (2.1) then describes the mixing of
different parity states with unit angular momentum difference. To close the anticommuting
Clifford algebra, which contains five elements in the space of four-dimensional Hermitian
matrices, we define Γ4 = Γ30 and Γ5 = Γ20.

Unless mentioned, throughout the paper we set vx = vy = vz = v (say), which brings
Eq. (2.1) into a fully rotationally symmetric form ĥ(k) = vΓ1jkj , where the summation over
the repeated spatial indices is assumed, and ĥ(k) describes an isotropic, doubly Kramers
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degenerate Dirac cone centered at the Γ = (0, 0, 0) point [see Sec. 2.2]. The generators
of rotations about the x-, y- and z-axis are respectively Γ01,Γ02, and Γ03. For example, a
rotation by an angle θ about the jth axis is generated by Rj(θ) = exp[iθΓ0j/2]. Specifically,
when θ = π/2 and j = z, k→ (ky,−kx, kz), such that Rz(π/2)ĥ(k)R−1

z (π/2) = ĥ(k) in an
isotropic system. Therefore, the noninteracting Hamiltonian remains invariant under the
four-fold (C4) rotation about the z axis. Similarly, under the C4 rotations about the x and
y axes k→ (kx, kz,−ky) and (−kz, ky, kx), respectively. It is then straightforward to show
that ĥ(k) remains invariant under O(3) rotations.

The O(3) rotational symmetry of the low-energy model is only plausible when the
underlying lattice structure possesses a cubic symmetry. The isotropic Fermi velocity in
a low-energy theory is then v ∼ ta, where t is the hopping amplitude and a is the lattice
constant. However, known Dirac materials often exhibit tetragonal symmetry [7, 8], with
elongated (or shortened) lattice constant along one of the three principle axes, for example.
In a tetragonal environment this results in the breakdown of the O(3) rotational symmetry
down to an in-plane O(2) one about the z-axis. In other words, vx = vy 6= vz in a tetragonal
Dirac material. In Sec. 3.5 we discuss the effects of weak rotational symmetry breaking on
interacting chiral Dirac fermions in a perturbative manner.

The gapless chiral Dirac system is invariant under the discrete parity transformation
(P), reversal of time (T ), and charge conjugation (C). In our representation of the four-
component spinor Ψk and the Γ matrices, the above transformations are realized as PΨkP =

Γ30Ψ−k, T Ψ?
kT = −Γ02Ψ−k and CΨkC = −iΓ12Ψ?

k [1]. The time-reversal operator is
antiunitary and can be written as T = UK, where U = Γ02 is the unitary part and K is
complex conjugation, such that T 2 = −1, yielding Kramers degenerate Dirac bands.

The noninteracting system remains invariant also under a continuous global U(1) chi-
ral rotation (θch), under which Ψk → exp[iθchΓ10]Ψk, where the matrix C = Γ10 is the
generator of the chiral rotation. We note that two mass matrices, namely Γ4 and Γ5,
that anticommute with ĥ(k), break the global U(1) chiral symmetry of the massless Dirac
Hamiltonian. While the scalar mass (Γ4) only breaks the continuous chiral symmetry, the
pseudoscalar mass (Γ5) in addition breaks the discrete P and T symmetries. Furthermore,
the noninteracting Hamiltonian ĥ(k) possesses a psuedospin SU(2) chiral symmetry, which
only becomes visible once we Nambu double the spinor basis, as shown in Sec. 3.3. There-
fore, the noninteracting gapless chiral Dirac system enjoys a U(1)⊗SU(2) chiral symmetry.

The imaginary time (τ) Euclidean action for such a collection of noninteracting chiral
Dirac fermions reads

S0 =

∫
dτ

∫
ddx Ψ†τ,x

[
∂τ + ĥ(k→ −i∇)

]
Ψτ,x, (2.2)

where d is the number of spatial dimensions. The absence of a chemical potential term
implies the fine tuning of the Fermi energy to the band touching Dirac point, whereby the
Fermi surface shrinks to just one point at the center of the Brillouin zone (see, however,
Ref. [16]). While constructing the interacting theory, besides the spatial rotational symme-
try, we impose P, T and C symmetries separately. But, we do not enforce invariance under
U(1) chiral rotations or pseudospin SU(2) rotations explicitly. Instead, we demonstrate
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restoration of the chiral symmetry as an emergent phenomena at various RG fixed points
that can be accessed by tuning the strength of interactions among Dirac fermions. For the
time being however our noninteracting single-flavor model is chiral symmetric, which at
first glance seems to be at odds with the Nielsen-Ninomiya “no-go” theorem [17], when it
comes to constructing a corresponding lattice model. We proceed with pointing at a possi-
ble way out of this conundrum. Readers solely interested in the field theoretic results may
wish to skip the following section. Nevertheless, given that two-dimensional genuine chiral
Dirac-Hubbard model on a square lattice [18], and three-dimensional Dirac-Hubbard on a
cubic lattice [19] have been studied recently using quantum Monte Carlo simulations, a con-
crete lattice realization of three-dimensional massless chiral Dirac fermions should facilitate
future numerical investigations of this system, where our results can be scrutinized.

2.2 Lattice model

In this paper we consider a single flavor of four-component massless chiral Dirac
fermions in a continuum theory, the translation of which to a lattice model is, however,
a nontrivial task. The challenge originates from constructing a lattice version of the deriva-
tive operator while taking k→ −i∇ in Eq. (2.1). Nevertheless, symmetrizing the derivative
from basic calculus as

df(x)

dx
= lim

a→0

f(x+ a)− f(x− a)

2a
(2.3)

proffers a tempting lattice version, in which one treats a as the lattice constant, and arrives
at the nearest neighbor description, where in one dimension the eigenenergies are εk ∼
t sin(ka), the blue squares in Fig. 2. Here k is the discrete valued lattice momentum and t is a
hopping amplitude, setting the energy scale. However, this construction results in so-called
fermion doublers at the edges of the Brillouin zone (k = ±π/a). In fact in d dimensions
one finds 2d number of low-energy Dirac points compared to the continuum theory [20].
A common remedy to this problem is the introduction of a momentum-dependent Wilson
mass, which gaps the doublers, but vanishes at the desired Γ point [21, 22]. But, such a
construction comes with its own intricacies. As such adding another discrete symmetry
(P, T , C) preserving anticommuting mass matrix (Γ4) spoils the genuine microscopic chiral
symmetry of Dirac fermions. Even though the resulting higher order in momentum (∝ k2)
terms are irrelevant in the RG framework, yielding an emergent chiral U(1) symmetry, the
nucleation of P, T and C symmetric, but chiral U(1) symmetry breaking scalar mass (Γ4)
at strong coupling then takes place through a fluctuation driven first-order transition, as it
does not break any bonafide microscopic symmetry [23]. So, we seek for a lattice realization
of single flavored massless Dirac fermions with genuine microscopic chiral symmetry.

The doubler problem can also be overcome by extending the nearest neighbor derivative
to next nearest neighbor [20], with hopping parameters t1 = (1 + µ)/(2µ) and t2 = (µ −
1)/(4µ) between the first and second neighbors, respectively. Here µ is a tuning parameter
that recovers the nearest neighbor limit for µ = 1. The corresponding spectrum is then
given by

εk = t1 sin(ka) + t2 sin(2ka). (2.4)
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−πa 0 π
a

k

−πt

0

πt

εk

Ideal derivative

Next nearest neighbor
µ = 0.12

Nearest neighbor

Figure 2. Spectrum of the one-dimensional Hamiltonian ĥ1D = −i(ta)d/(dx) for three different
choices for the lattice derivative. The blue squares show the simplest, nearest neighbor approach
[see Eq. (2.3)], which results in doublers around k = ±π/a. The red diamonds correspond to the
next nearest neighbor spectrum from Eq. (2.4) for µ = 0.12. Notice that the Fermi velocity of
the doubler around k = ±π/a in this case is greater than that near the center of the Brillouin
zone (k = 0). This effect is exacerbated by further decreasing µ, which eventually gets rid of
the doublers, but pushes much of the spectral weight to high energies (εk � πt). The black dots
represent the ideal derivative, the spectrum of which is devoid of doublers and remains linear in the
entire Brillouin zone, thereby yielding a genuine chiral symmetry at the microscopic level. Notice
that around k ≈ 0 all three constructions recover k-linear dispersion. This construction can be
generalized to realize three-dimensional massless Dirac fermions with microscopic chiral symmetry,
see Eq. (2.7).

Upon sending µ→ 0, the Fermi velocity of the doublers gets pushed to infinity, and due to
the finite sampling of the k axis there will be no additional low-energy mode in the Brillouin
zone, see red diamonds in Fig. 2. However, this construction results in much of the spectral
weight being pushed to high energies εk � πt.

The aforementioned complications are solved by using the Stanford Linear Accelerator
(SLAC) lattice derivative [24], a pedagogic construction of which is provided in Ref. [25].
The three main ingredients of the SLAC construction are the following. (i) Identifying
the (continuum) derivative operation with convolving a function f(x) with the negative
derivative of the Dirac delta function f ′(x) = −δ′(x) ? f(x). (ii) Applying a low-pass filter
to the continuum formalism to restrict it in momentum space to the first Brillouin zone.
(iii) Finally, sampling the resulting operator on a lattice. Since the Fourier transform of the
Dirac delta function is unity, and the ideal low-pass filter in position space is sin(πx/a)/(πx),
steps (i) and (ii) can be summarized as

− (δfilt(x))′ =
a sin

(
πx
a

)
− πx cos

(
πx
a

)
aπx2

, (2.5)
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where δfilt(x) is the filtered Dirac delta operator that has Fourier components only in the
first Brillouin zone. By performing the Taylor expansion we find that δfilt(x)′ vanishes
linearly around x = 0, and the SLAC construction does not have an on site component.
The ideal lattice derivative is then obtained by sampling the expression from Eq. (2.5) at
the lattice points x = na, multiplied by the lattice spacing (a), yielding

∆(n) =

{
0, if n = 0

− (−1)n

na , otherwise.
(2.6)

By identifying the position space derivative with convolution from Eq. (2.6), we get rid of
the doublers, but pay the price of our operator now being non-local, albeit only along the
principal axes.

The resulting tight binding Hamiltonian which corresponds to Eq. (2.1) on a three-
dimensional cubic lattice with linear dimension L = 2N + 1 in each direction reads

hlatt = −i
∑
R

3∑
j=1

N∑
n=−N

∆(n)Ψ†RΓjΨR+nê(j) , (2.7)

where R denotes the position of the lattice sites and ê(j) is a vector of length a in the
jth principal direction. While the locality of the SLAC derivative on a conceptual level
can be subject to debate, the long-range nature of it is certainly unwieldy from a practical
point of view. Nevertheless, in exchange we obtain spectra that reflect “true” momentum
operator on a lattice, namely εk = (ta)k, where v = ta is the isotropic Fermi velocity. See
the black dots in Fig. 2. As the SLAC fermion construction produces linear in momentum
Dirac dispersion for the entire range of momentum −π/a ≤ k ≤ π/a, our RG analysis is
equally germane to both the continuum and lattice SLAC model for interacting massless
chiral Dirac fermions, once we identify the ultraviolet momentum cutoff Λ = π/a, about
which more in a moment.

3 Electron-electron interactions

In what follows we seek to unveil the structure of the RG fixed points (including both
QCPs and BCPs) and emergent symmetries therein starting from an interacting model for
three-dimensional massless chiral Dirac fermions. To capture interaction-induced sponta-
neous symmetry breaking in this system we construct the symmetry-allowed four-fermion
or quartic terms. In this paper we only take the Hubbardlike short-range (momentum-
independent) interactions into account. On the other hand, the long-range tail of the
Coulomb interaction in Dirac materials only provide logarithmic correction to the Fermi
velocity [26–36], without causing any transition to ordered states [29, 31, 33]. When si-
multaneously present with the short-range interactions, it can only cause non-universal
shifts of the phase boundaries [32, 34], without altering the underlying quantum critical
behavior [31, 33].

– 10 –



The most general local four-fermion term is of the schematic form

g
µνρλ

(Ψ†ΓµνΨ)(Ψ†ΓρλΨ),

where µ, ν, ρ, λ = 0, 1, 2, 3, g
µνρλ

is the coupling constant, and Ψ† ≡ Ψ†τ,x and Ψ ≡ Ψτ,x

are two independent Grassmann variables in the path integral or action formalism. Be-
fore imposing any symmetry constraint on the quartic terms, altogether there are 136 of
them. Namely, 16 (the number of Hermitian matrices, constituting the basis for all four-
dimensional matrices) of them are obtained for µν = ρλ, while µν 6= ρλ in the remaining
120 quartic terms. However, this number gets drastically reduced first by imposing the dis-
crete symmetries, namely parity (P), time-reversal (T ) and charge conjugation (C). These
three discrete symmetries permit only 12 terms with µν 6= ρλ and 16 quartic terms with
µν = ρλ. The spatial O(3) rotational symmetry eliminates the former set of quartic terms,
and organizes remaining 16 terms of the form (Ψ†ΓµνΨ)2 into eight distinct interaction
channels. For a detailed derivation see Appendix A. The interacting Lagrangian containing
all symmetry allowed local quartic terms is then given by

Lint =

3∑
µ=0

gs
µ
(Ψ†Γµ0Ψ)2 +

3∑
µ=0

gt
µ

 3∑
j=1

(Ψ†ΓµjΨ)2

 . (3.1)

The four-fermion interactions with coupling constants gs
j
(gt
j
) for j = 1, 2, 3 correspond to

spin-independent (spin-dependent) mixing of even and odd parity states. By contrast, gs
0

(gt
0
) corresponds to short-range density-density (ferromagnetic) interaction. Notice that

we did not enforce chiral U(1) symmetry on Lint at the bare level. Consequently, the
components of chiral U(1) vectors appear as independent quartic terms in Eq. (3.1). Namely,
two terms containing Γ20 and Γ30 (Γ2j and Γ3j) acquire two separate coupling constants
gs
2
and gs

3
(gt

2
and gt

3
), respectively, at the microscopic level. On other hand, in Weyl

semimetals the chiral U(1) symmetry is associated with the translational symmetry in the
continuum limit [37, 38]. Therefore, the interacting theory must preserve the chiral U(1)
symmetry in Weyl semimetals.

However, the number of linearly independent four-fermion terms is only four due to the
existence of the Fierz identity [39] (see Appendix B). We choose them to be the ones ap-
pearing with the coupling constants {gs

µ
}. The corresponding interacting Euclidean action

reads

Sint =

∫
dτ

∫
ddx

 3∑
µ=0

gs
µ

(Ψ†Γµ0Ψ)2

 . (3.2)

Notice that eight quartic terms appearing in Lint can be decomposed into two sectors,
the ones transforming as scalars (three-component vectors) under spatial O(3) rotations
and appearing with coupling constants gs

µ
(gt
µ
), for µ = 0, · · · , 3. Consequently, we can

choose four quartic terms in the singlet channel as the independent ones. Next we study
the interacting model S0 + Sint within the framework of Wilsonian momentum-shell RG
analysis.
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3.1 Renormalization group analysis

To study the quantum critical properties of this system, we examine its low-energy and long-
wavelength behavior under the tuning of non-thermal parameters, such as the strength of
the local interactions in this case. To proceed we introduce a hard ultraviolet momentum
cutoff Λ = π/a, which replaces the cubic Brillouin zone by a spherical one (see Sec. 2.2 for
a lattice origin of Λ for SLAC massless chiral Dirac fermions). Here a bears the dimension
of the lattice constant. In the RG procedure we then gradually decrease Λ by repeatedly
integrating out a thin Wilsonian momentum shell defined as Λe−` < |k| < Λ, where ` > 0

is the logarithm of the RG scale. Finally, we restore the Euclidean action (S0 + Sint) into
its original form, but in terms of the renormalized quantities.

The scaling of various quantities appearing in the action relative to k is of crucial im-
portance as we gradually lower the ultraviolet cutoff. The scaling dimensions of momentum
and frequency are respectively [k] = 1 and [ω] = z, where the dynamic scaling exponent
z = 1 for linearly dispersing Dirac fermions. The scale-invariance of S0 requires that
[Ψ] = d/2, from which we obtain the scaling dimension of the quartic coupling constants
to be [gs

µ
] = z − d. Therefore, local interactions in three-dimensional Dirac systems are

irrelevant in the RG sense and the Dirac cone remains stable as long as they are sufficiently
weak. On the other hand, strong enough local interactions can drive the system through
quantum phase transitions into various broken symmetry phases. The scaling dimension
[gs
µ
] pins the lower critical dimension at d = 1, where short-range interactions are marginal,

which facilitates a controlled ε expansion about one spatial dimension, with ε = d−1. Note
that vanishing density of states, namely ρ(E) ∼ |E|2 indicates stability of the Dirac node
against sufficiently weak interactions in d = 3, whereas interactions become marginal when
d = z = 1, yielding a constant density of states.

Evaluating the relevant Feynmann diagrams up to one-loop order [40], we arrive at the
following leading-order RG flow equations for the coupling constants

dgs
0

d`
=− εgs

0
−
(
gs
0
gs
3

+ gs
0
gs
2

+ 2gs
3
gs
2

)
,

dgs
1

d`
=− εgs

1
+ gs

0
gs
3

+ gs
0
gs
2
− 4gs

3
gs
2
,

dgs
2

d`
=− εgs

2
+ 3

(
gs
2

)2 − 2
(
gs
0
gs
3

+ gs
0
gs
2
− gs

3
gs
2

)
+ 3gs

1

(
gs
2
− gs

3

)
,

dgs
3

d`
=− εgs

3
+ 3

(
gs
3

)2 − 2
(
gs
0
gs
3

+ gs
0
gs
2
− gs

3
gs
2

)
+ 3gs

1

(
gs
3
− gs

2

)
. (3.3)

Here we made the substitution Λε

3vπ2 g
s
µ
→ gs

µ
, such that the flow equations are expressed in

terms of dimensionless couplings. Note that the flow equations are symmetric under the
exchange of gs

2
and gs

3
, manifesting the chiral U(1) symmetry of the noninteracting system.

Here all the matrix algebra are performed in d = 3 and subsequently the radial integral in
the momentum space is carried out in dimension d = 1 + ε.

3.2 Fixed points and critical exponents

We examine the quantum critical phenomena by analyzing the fixed point structure of
the RG flow equations from Eq. (3.3), which from now we denote as β functions βgsµ ≡
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dgsµ/d`. A fixed point gs∗ in the four-dimensional coupling constant space is found by
simultaneously solving βgsµ(gs∗) = 0, where µ = 0, · · · , 3 and gs = (gs

0
, gs

1
, gs

2
, gs

3
). Each fixed

point is characterized by linearizing the RG flow around it. To this end we construct a
four-dimensional stability matrix (M) and compute its eigenvalues at various fixed points.
The elements of the stability matrix are explicitly given by

Mµ+1,ν+1 =
dβgsµ
dgsν

, (3.4)

where µ, ν = 0, · · · , 3. A negative (positive) eigenvalue of M corresponds to a stable
(unstable) eigendirection, and the number of unstable directions characterizes a given fixed
point. For example, a QCP (BCP) has one (two) unstable direction(s).

We find all together nine fixed points [33], of which the trivial one at gs = (0, 0, 0, 0)

is the fully attractive noninteracting Gaussian fixed point. It describes a stable Dirac
semimetal for sufficiently weak, but generic short-range interactions. The rest of the eight
fixed points at nontrivial strength of the coupling constants are reported in Table 1. Four of
them are QCPs (C1,· · · , C4) and the remaining four are BCPs (B1, · · · , B4). The existence
of BCPs is necessary for the continuity of the RG flow trajectories. As such they separate
the basins of attraction of various QCPs. All fixed points are located at gs∗ ∼ ε, which can
be seen from Eq. (3.3).

The dynamic scaling exponent z = 1 at all four QCPs. On the other hand, the inverse
of the positive eigenvalue of the stability matrix (M) determines the correlation length
exponent (ν) at each QCP. To the leading order in the ε expansion we obtain ν−1 = ε,
and ν = 1/2 in d = 3. The mean-field value of the correlation length exponent is an exact
result, as the system resides at the upper-critical three spatial dimensions [10, 11].

From the locations of the fixed points we can conclude the following. Two QCPs C1
and C4 are chiral symmetric, where the couplings of the two components of the U(1) chiral
vector gs

2
and gs

3
are identical. The remaining two QCPs, namely C2 and C3, are chiral

partners of each other and their locations transform into one another under the chiral
rotation gs

2
↔ gs

3
. On the other hand, the four BCPs form two such pairs of chiral partners,

namely under gs
2
↔ gs

3
(1) B1 ↔ B2 and (2) B3 ↔ B4. To further anchor the restoration

of chiral symmetry at various RG fixed points next we compute the scaling dimension of
all symmetry allowed fermion bilinears.

3.3 Nambu doubling and emergent chiral symmetry

Sufficiently strong local electronic interactions destabilize a gapless Dirac liquid and
drive the system through quantum phase transitions into various broken symmetry phases.
Here we consider all such symmetry allowed particle-hole (or excitonic) and particle-particle
(or superconducting or pairing) orders. To bring both sectors under a unified framework
we extend the Dirac spinor following the Nambu doubling

Ψk → ΨNam =

[
Ψk

Γ20Ψ∗−k

]
. (3.5)
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Figure 3. Four sets of three mutually anticommuting fermion bilinears in the Nambu doubled basis
ΨNam [see Eq. (3.5)], denoted by (µνρ) ≡ Ψ†NamηµΓνρΨNam, residing at the vertices of four triangles,
each representing a pseudospin SU(2) vector. Each triangle demonstrates pseudospin SU(2) chiral
rotation among (I) scalar, (II) pseudoscalar excitonic and two components (real and imaginary) of
pairing or superconducting masses, (III) fermionic density and two components of temporal vector
pairing, and (IV) Abelian current and two components of spatial vector pairing with a specific spin
orientation (ρ ≡ j = 1, 2, 3). The real and imaginary components of any pairing correspond to
µ = 1 and 2, respectively. Three pseudospin generators PSj with j = 1, 2, 3 reside at three vertices
of III [see also Eq. (3.7)]. Any arm of the triangle corresponds to the rotation between two fermion
bilinears, sitting at its two ends, by a specific generator of pseudospin SU(2) chiral symmetry. Also
the identical vertices of triangles I and II are related by the chiral U(1) rotation (the blue dashed
lines), generated by C = η3Γ10. See also Table 2.

Note that in the lower block we absorb the unitary part of the time-reversal operator (T ),
such that ΨNam transform as Ψk under all symmetry operations [41]. The noninteracting
Hamiltonian from Eq. (2.1) in this basis reads

ĥNam(k) = η3

3∑
j=1

vjΓjkj . (3.6)

The newly introduced set of Pauli matrices {ηµ} operate on the Nambu or particle-hole
indices, with µ = 0, · · · , 3. The generator of the chiral U(1) symmetry in this basis becomes
C = η3Γ10. Furthermore, the Nambu doubling allows us to unveil the psedospin SU(2) chiral
symmetry of the noninteracting system, generated by

PS = {η1Γ30, η2Γ30, η3Γ00} , (3.7)

since [ĥNam(k),PS] = 0. Specifically, PS3 = η3Γ00 is the number operator. Therefore a
collection of noninteracting four-component massless Dirac fermions enjoys U(1)⊗SU(2)
chiral symmetry, since [C,PS] = 0. Previously, the pseudospin SU(2) symmetry has been
discussed in the context of two-dimensional Hubbard model [15, 42–44]. But, its imprints
on three-dimensional interacting systems remained unexplored so far.

To appreciate the imprint of the enlarged chiral symmetry in the presence of interac-
tions, next we consider all symmetry allowed fermion bilinears describing different orders
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in the Nambu doubled basis. The effective action containing all (excitonic and pairing)
symmetry allowed local orders reads as

Slocal =

∫
dτ

∫
ddrΨ†Nam(ĥexc + ĥpair)ΨNam, (3.8)

where

ĥexc = ∆s
0η3Γ00 + ∆s

1η3Γ10 + ∆s
2η0Γ20 + ∆s

3η3Γ30

+

3∑
j=1

[
∆t

0η0Γ0j + ∆t
1η0Γ1j + ∆t

2η3Γ2j + ∆t
3η0Γ3j

]
, (3.9)

and

ĥpair = (η1 cosφ+ η2 sinφ)×
[
∆p

0Γ00 + ∆p
1Γ10 + ∆p

2

3∑
j=1

Γ2j + ∆p
3Γ30

]
, (3.10)

with φ as the U(1) superconducting phase. The real (imaginary) component of any pairing
order corresponds to φ = 0 (π/2). Here ∆a

µ is the conjugate field of the corresponding
fermion bilinear.

The bilinears, their physical meanings together with the corresponding matrices and
their transformations under various symmetry operations (discrete and continuous) are
summarized in Table 2. The two fully gapped phases in the particle-hole subspace are the
scalar and pseudoscalar masses, which form a U(1) vector under the chiral U(1) rotation
generated by C = η3Γ10. The Nambu basis accommodates two additional massive orders
in the particle-particle sector, the scalar s-wave and pseudoscalar p-wave pairings [45, 46].
They form two copies of U(1) chiral vector, where the doubling is due to the gauge redun-
dancy in the internal U(1) degree of freedom associated with the superconducting phase (φ).
Furthermore, the two tensor bilinears (coupled with the conjugate fields ∆t

2 and ∆t
3) form

other three copies of two-component chiral U(1) vector, where the three-fold redundancy
stems from the spatial O(3) symmetry. Additionally, there exist four three-component
orders, each of which is a composite of a particle-hole and a particle-particle order and
transforms as a vector under the pseudospin SU(2) chiral rotations, generated by PS [see
Eq. (3.7)], as shown in Fig. 3.

To extract the scaling dimension of various fermion bilinears, first we compute the RG
flow equations for the corresponding source terms or conjugate fields ∆a

µ, where µ = 0, · · · , 3
and a = s, t, p. After evaluating the relevant Feynmann diagrams up to the one-loop
order [40], we arrive at the following leading-order β functions for ∆a

µ

β̄∆s
0

= 0, β̄∆s
1

= 0,

β̄∆s
2

= −3

2
(gs

0
− gs

1
− 3gs

2
− gs

3
), β̄∆s

3
= −3

2
(gs

0
− gs

1
− gs

2
− 3gs

3
),

β̄∆t
0

= −gs
0
− gs

1
− gs

2
− gs

3
, β̄∆t

1
= −gs

0
− gs

1
+ gs

2
+ gs

3
,

β̄∆t
2

=
1

2
(−gs

0
+ gs

1
− gs

2
+ gs

3
), β̄∆t

3
=

1

2
(−gs

0
+ gs

1
+ gs

2
− gs

3
),
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β̄∆p
0

=
3

2
(gs

0
+ gs

1
− gs

2
+ gs

3
), β̄∆p

1
=

3

2
(gs

0
+ gs

1
+ gs

2
− gs

3
),

β̄∆p
2

= gs
0
− gs

1
− gs

2
− gs

3
, β̄∆p

3
= 0, (3.11)

where β̄∆a
µ

= d ln ∆a
µ/d`− 1. The right hand side of each equation corresponds to the one-

loop corrections to the scaling dimension of the corresponding order or fermion bilinear,
which we compute at various RG fixed points (see Table 1) and their values are reported
in Table 3.

Computation of one-loop corrections to the scaling dimensions for all excitonic and
pairing orders reveals the emergent chiral symmetry at various RG fixed points. First we
note that the bilinears that commute with ĥNam(k), the fermionic density, chiral density
and temporal vector pairing, do not receive any correction to their bare scaling dimension.
The matrices associated with these bilinears are also the generators of U(1)⊗SU(2) chiral
symmetry of the noninteracting system.

One can construct three chiral U(1) vectors by combining (1) the scalar and pseu-
doscalar excitonic masses, (2) two tensor order parameters, and (3) the scalar s-wave and
pseudoscalar p-wave pairing masses, see Table 2. Two components of any chiral U(1) vec-
tor acquire identical scaling dimensions at C1 and C4, while their scaling dimensions are
exchanged between (a) C2 and C3, (b) B1 and B2, and (c) B3 and B4. Therefore, only
C1 and C4 are chiral U(1) symmetric. On the other hand, the four-dimensional coupling
constant space accommodates three chiral U(1) partner fixed points, namely (a) (C2,C3),
(b) (B1,B2), and (c) (B3,B4), as we previously anticipated from their locations.

Also the possible restoration of the pseudospin SU(2) chiral symmetry can be anchored
from the scaling dimensions of fermion bilinears at various RG fixed points. As such one
can construct four three-component pseudospin SU(2) vectors by combining (1) the scalar
excitonic and pairing masses, (2) the pseudoscalar excitonic and paring masses, (3) fermion
density and temporal vector pairing, and (4) Abelian current and spatial vector pairing, see
Fig. 3. All components of each pseudospin vector acquire identical scaling dimensions at
three QCPs, C2, C3 and C4, and at two BCPs, B3 and B4. Hence, these five fixed points
are pseudospin SU(2) chiral symmetric. Therefore, while all the RG fixed points at least
partially restore the chiral U(1)⊗SU(2) symmetry of the noninteracting system, it is fully
restored only at the C4 QCP.

Even though the space of independent coupling constants is four-dimensional, the im-
print of various chiral symmetric fixed points on the global phase diagram of interacting
massless chiral Dirac fermions can be appreciated by focusing on its representative cut on
the (gs

3
, gs

2
) plane, as shown in Fig. 1, which we discuss next.

3.4 Phase diagram

Now we proceed to construct the phase diagram in the (gs
3
, gs

2
) plane by numerically solving

the β functions of the coupling constants [see Eq. (3.3)] and the conjugate order parameter
fields [see Eq. (3.11)]. We simultaneously run the flow equations for four coupling constants
(gsµ) and all symmetry allowed source terms (∆a

µ) for various choices of the bare coupling
constants as a function of the RG time (`). Sufficiently weak but generic local interactions
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are irrelevant perturbation in three-dimensional Dirac semimetals due to the vanishing
density of states (ρ(E) ∼ |E|2). Therefore, onset of any ordered phase takes place beyond a
bare critical strength of interaction, which we identify from the divergence of at least one of
the renormalized coupling constants as `→∞. At the same time at least one of the source
terms diverges, which ultimately determines the pattern of the symmetry breaking in the
ordered phase in an unbiased fashion. We pursue this approach to construct a representative
cut of the global phase diagram for three-dimensional interacting massless chiral Dirac
fermions, displayed in Fig. 1, which manifests an intriguing confluence of all four mass orders
(the scalar and pseudoscalar excitonic and pairing masses), and the restoration of chiral
and pseudospin symmetries among them. Note that at zero temperature nucleation of mass
orders is energetically most favored as they isotropically gap the Dirac point and thereby
optimally lower the free-energy (no competition with entropy [40]). Next we highlight the
role of various RG fixed points on different segments of this phase diagram.

The chiral U(1) symmetric QCP C1 can be accessed for purely repulsive interactions
gs
2
, gs

3
> 0 and it governs the continuous quantum phase transitions between Dirac semimetal

and the two excitonic mass orders (the blue phase boundary in Fig. 1). These two excitonic
masses are degenerate along the 45◦ red line, where we realize an axionic insulator [12–14].
A slight deviation from the red line in favor of gs

3
(gs

2
) tips the balance in favor of the

nucleation of pure scalar (pseudoscalar) excitonic mass.
The phase transitions out of the Dirac semimetal across the black phase boundary

into the pseudoscalar excitonic and pairing (p-wave superconductor) masses is governed
by the SU(2) pseudospin symmetric QCP C2. In the absence of a Fermi surface, strong
attractive interaction in at least one channel is required for the stability of a superconducting
phase, which in this case occurs in the gs

3
channel. These two orderings are degenerate

along the 135◦ (orange) line. The basins of attraction of C1 and C2 are separated by the
bicritical point B2, where the pseudoscalar exciton possesses the largest scaling dimension,
see Table 3. Still the transition to this ordered phase through B2 is continuous as it is
accessed by holding one of its unstable directions fixed [15].

The rest of the phase diagram and the role of various fixed points therein can be
appreciated by exploiting a mirror symmetry of the whole phase diagram, under which
gs
2
↔ gs

3
. Such a mirror symmetry is rooted in the underlying U(1) chiral symmetry and

corresponds to a reflection about the 45◦ diagonal (dashed) line, defined by gs
2

= gs
3
, that

brings the upper left triangle of the phase diagram onto its chiral partner, the bottom right
triangle. Also note that the three-component scalar and pseudoscalar masses, constructed
by combining the corresponding excitonic and pairing orders, can be rotated into each other
by the generator of the chiral U(1) symmetry C = η3Γ10, see Fig. 3. Correspondingly,
C2 is rotated into C3, which governs the phase transitions between the Dirac semimetal
and the scalar excitonic and pairing (s-wave superconductor) mass orders that take place
through the purple phase boundary. These two competing orders are degenerate along
the 135◦ (pink) line, as C3 is bestowed with the same pseudospin SU(2) chiral symmetry.
In this segment of the phase diagram, the roles of gs

2
and gs

3
are exchanged due to the

aforementioned mirror transformation and the requisite strong attractive interaction for
the nucleation of the scalar s-wave pairing is now fulfilled by gs

2
(< 0). The basins of

– 17 –



attraction of C1 and C3 are separated by B1, where the scalar excitonic mass possesses
the largest scaling dimension, see Table 3. Still the transition to this phase through B1 is
continuous.

The remaining three fixed points, C4, B1 and B2, play no evident role on the phase
diagram in the (gs

3
, gs

2
) plane. Moreover, we find that the existence of the QCP C4 is due

to the assumed O(3) rotational symmetry and is in general not present in a tetragonal
environment. Next we address the effects of weak rotational symmetry breaking on various
RG fixed points in a perturbative manner.

3.5 Anisotropic Dirac semimetal

Finally, we address the breakdown of the O(3) rotational symmetry down to an in-
plane O(2) invariance about the z-axis, which manifests through an anisotropy between
the perpendicular and the z components of the Fermi velocity, i.e., vx = vy = v⊥ 6= |vz|.
Due to such a reduced symmetry, all three-component four-fermion terms get split into the
perpendicular and z components, namely gtµ → (g⊥µ , g

z
µ), where µ = 0, · · · , 3, see Eq. (3.1).

The interacting Lagrangian then contains 12 quartic terms, out of which only five are
linearly independent due to the Fierz constraint. See Appendix B for detailed derivation.
To account for the reduced symmetry, we take the fifth independent quartic term to be
gz
1
(Ψ†Γ13Ψ)2. Assuming sufficiently weak rotational symmetry breaking, we compute the

one-loop renormalization of gz
1
only up to linear order in gz

1
, yielding

dgz
1

d`
=
(
−ε− gs

0
− 3gs

1
− 2gs

2
− 2gs

3

)
gz
1

+O
(
(gz

1
)2
)
. (3.12)

Since we are interested in capturing the leading order effects of weak rotational symmetry
breaking, all the Feynman diagrams are computed with isotropic Dirac kernel.

The relevance of the rotational symmetry breaking can be estimated by computing the
scaling dimension of gz

1
at all the fixed points reported in Table 1 for the isotropic system.

Evaluating the right hand side of Eq. (3.12) at the eight fixed points from Table 1, we find

d ln gz
1

d`

∣∣∣∣
C1

= −1.251ε,
d ln gz

1

d`

∣∣∣∣
C2/C3

= −1.594ε,
d ln gz

1

d`

∣∣∣∣
C4

= ε,

d ln gz
1

d`

∣∣∣∣
B1/B2

= −5

3
ε,

d ln gz
1

d`

∣∣∣∣
B3/B4

= −0.155ε. (3.13)

Therefore, slight distortion of the Dirac cone is an irrelevant perturbation in the close
vicinity of all the fixed points, except C4. In other words, C4 turns into a BCP even
for sufficiently weak breaking of the rotational symmetry. Therefore, this QCP cannot be
found in general in a three-dimensional interacting Dirac system. We also note that the
irrelevance of gz

1
at the BCPs B3 and B4 is weak, in comparison to those near C1, C2, C3,

B1 and B2. Therefore, it is conceivable that these two BCPs ultimately turn into tricritical
points with three relevant directions in a strongly anisotropic Dirac semimetal, which we
leave for a future investigation.
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4 Summary and Discussion

Here we investigate the role of strong momentum-independent local or Hubbardlike
electronic interactions among three-dimensional massless Dirac fermions that in a noninter-
acting system possess a global chiral U(1)⊗SU(2) symmetry. We provide a lattice realization
of such quasiparticle excitations in terms of the SLAC fermions, which should facilitate fu-
ture numerical investigation of this subject using quantum Monte Carlo simulations [18, 19],
for example. We show that an isotropic interacting Dirac semimetal is described in terms
of only four linearly independent local quartic interactions. Beside studying the possible
ordered or broken symmetry phases in this system, which set in through continuous quan-
tum phase transitions, we also pay special attention to the restoration of partial and full
chiral symmetry at various interacting fixed points. By performing a leading-order field
theoretic RG analysis, controlled by a small parameter ε = d − 1, about the lower-critical
one spatial dimension (d = 1), we find that an isotropic interacting chiral Dirac semimetal
altogether supports nine RG fixed points. One of them corresponds to the noninteracting
trivial Gaussian fixed point, describing a stable Dirac semimetal for sufficiently weak, but
generic short-range interactions. On the other hand, the system also supports four quantum
critical (Ci) and four bicritical (Bi) fixed points at finite interaction couplings (∼ ε), where
i = 1, 2, 3, 4, see Table 1.

Even though we do not impose (either partial or full) chiral symmetry on the interacting
theory Sint at the bare level, two QCPs, namely C1 and C4, transform as chiral U(1) scalars,
while the remaining six fixed points (C2,C3), (B1,B2) and (B3,B4) pairwise transform as
three two-component vectors under the chiral U(1) rotations. In addition, the pseudospin
SU(2) chiral symmetry gets restored at three QCPs (C2, C3 and C4) and two BCPs (B3
and B4). Therefore, only one fixed point, namely C4, enjoys the full chiral U(1)⊗SU(2)
symmetry of the noninteracting systems, see Tables 1, 2 and 3.

The dynamic scaling exponent (z) and correlation length exponent (ν) at all the QCPs
are respectively z = 1 and ν−1 = ε. Together they determine the scaling of the transition
temperature Tc ∼ δνz of the ordered states (up to a logarithmic correction due to the
breakdown of the hyperscaling hypothesis in d = 3), where δ is the reduced distance from
a critical point. The value of ν = 1/2 is an exact result as the system resides at the upper
critical three spatial dimension [10, 11]. The momentum shell RG procedure although
breaks the space-(imaginary)time Lorentz symmetry of the noninteracting system, it does
not obscure the restoration of internal chiral symmetry at various RG fixed points.

We also demonstrate the imprints of some of these fixed points and emergent chiral
symmetry among competing phases on a representative cut of the zero temperature global
phase diagram, shown in Fig. 1. This phase diagram displays an intriguing confluence of
four competing mass orders, the scalar and pseudoscalar excitonic and superconducting
masses, which are the energetically most favored ordered states at zero temperature as
they uniformly and isotropically gap the Dirac point. In particular, we find high-symmetry
lines in the phase diagram along which the chiral U(1) symmetry between two excitonic
(scalar and pseudoscalar) masses and the pseudospin SU(2) symmetry among scalar or
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pseudoscalar excitonic and superconducting masses get restored. We also note that the
phase diagram displays a chiral mirror symmetry about the 45◦ diagonal across which all
the scalar and pseudoscalar mass orders transform into each other. Finally, it is worth
pointing out that the arrangements among the competing and neighboring phases in the
phase diagram are consistent with our previously proposed “selection rule and organization
principle" in Ref. [40]. In particular, one can immediately verify the following. (1) A
quartic interaction (Ψ†NamηµΓνρΨNam)2, written in the Nambu doubled basis ΨNam [see
Eq. (3.5)], is conducive for the nucleation of an ordered state, represented by the fermion
bilinear Ψ†NamOΨNam, only if (a) O ≡ ηµΓνρ or (b) {O, ηµΓνρ} = 0. (2) Two ordered
phases, represented by the fermion bilinears Ψ†NamO1ΨNam and Ψ†NamO2ΨNam reside next
to each other only when {O1,O2} = 0. The pseudospin SU(2) symmetry has also been
discussed recently in the context of the η pairing in Dirac and Weyl semimetals, as well
as in nodal-loop semimetals [47]. In the future we will demonstrate emergence of such
symmetry from appropriate RG analysis in the context of extended Hubbard model in
Weyl [38] and nodal-loop semimetals [48].

Finally, we show that a weak anisotropy of the Dirac cone leaves the nature of various
RG fixed points unchanged, except the fully U(1)⊗SU(2) chiral symmetric critical point
C4. Specifically, this critical point gets converted into a bicritical point even in a weakly
anisotropic Dirac system. A complete RG analysis, fixed point structure and the phase
diagram in a three-dimensional anisotropic chiral Dirac semimetal is, however, left for a
future investigation.

Here we address the role of electronic interactions and chiral symmetry restorations
by performing a RG analysis about the lower-critical one spatial dimension. In the fu-
ture, we will complement this analysis by performing an alternative RG analysis about the
upper-critical three spatial dimension, with ε = 3 − d, by accounting for order-parameter
fluctuations within the framework of the Gross-Neveu-Yukawa theory [10]. The existing
methodology only allows to demonstrate the restoration of high-symmetry among the dom-
inant mass orders [49]. Therefore, a substantial generalization of the Gross-Neveu-Yukawa
formalism is needed in order to demonstrate the restoration of partial or full chiral sym-
metry among all symmetry allowed fermion bilinears at RG fixed points, which therefore
deserves a separate investigation. Schematically, all the fixed point in such a RG scheme are
located at ε = 0, as the system resides exactly at the upper critical three spatial dimensions.
However, before the coupling constants ultimately reach such Gaussian fixed points in the
deep infrared regime, we expect the chiral symmetry (partial or full) to get restored (see
Appendix C of Ref. [49], for example).
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bilinear P T C O(3)
Ψ†Γ00Ψ + + − 0
Ψ†Γ10Ψ − + + 0
Ψ†Γ20Ψ − − + 0
Ψ†Γ30Ψ + + + 0
Ψ†Γ0jΨ + − + 1
Ψ†Γ1jΨ − − − 1
Ψ†Γ2jΨ − + − 1
Ψ†Γ3jΨ + − − 1

Table 4. Classification of 16 fermion bilinears under the discrete parity (P), time reversal (T )
and charge conjugation (C) symmetries. Here + (−) sign corresponds to even (odd) transformation
of the bilinear, and j = 1, 2, 3. The fifth column shows whether a fermion bilinear transforms
as a scalar (0) or a three-component vector (1) under the spatial O(3) rotations, generated by
{Γ01,Γ02,Γ03}.

A Symmetry classification of four-fermion interaction

The momentum-independent local four-fermion interactions are captured by the quar-
tic terms of the form (Ψ†ΓµνΨ)(Ψ†ΓρλΨ), where µ, ν, ρ, λ = 0, · · · , 3. By imposing discrete
parity (P), time-reversal (T ), and charge conjugation (C) symmetries, we reduce 136 pos-
sible interaction terms to the ones where both Ψ†ΓµνΨ and Ψ†ΓρλΨ are either even or
odd under P, T and C separately, such that each quartic term is invariant under all three
individual discrete symmetries. The classification of sixteen fermion bilinears under these
three discrete symmetries is displayed in Table 4. As there are no two identical rows in
this table, there exists no interaction term that mixes any two different rows. Hence, the
remaining four-fermion terms that are invariant under P, T and C are

(Ψ†ΓµνΨ)2 (16 of them), (A.1)

(Ψ†ΓµjΨ)(Ψ†ΓµkΨ) (12 of them), (A.2)

where j 6= k = 1, 2, 3.
The number of quartic terms is further reduced when we invoke the spatial rotational

symmetry. First of all, all terms from (A.2) get eliminated, as they do not transform as
scalars nor as vectors under the O(3) spatial rotations. Furthermore, it organizes (A.1) into
four scalars (O(3) vectors) for Γµ0 (Γµj), with j = 1, 2, 3. Therefore, the eight symmetry
allowed four-fermion terms are of the form

(Ψ†Γµ0Ψ)2 and

3∑
j=1

(Ψ†ΓµjΨ)2. (A.3)

In Eq. (3.1) the matrices Γµ0 and Γµj appear with couplings gs
µ
, gt

µ
respectively. We note

that each component of Γµ0 (Γµj) for µ = 0, · · · , 3 transforms as scalar (three-component
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vector) under the spatial O(3) rotations, generated by {Γ01,Γ02,Γ03}. As the O(3) group
is isomorphic to SU(2), we can immediately conclude that the total number of linearly
independent quartic terms in an isotropic Dirac semimetal is four, the dimensionality of the
vectors Γµ0 and Γµj . Furthermore, we can choose four O(3) scalar quartic terms (Ψ†Γµ0Ψ)2

as the linearly independent four-fermion interactions. Next we explicitly demonstrate these
outcomes using the Fierz identity.

B Fierz reduction of four-fermion interaction

Given a complete basis of Hermitian matrices, the Fierz identity allows us to express any
four-fermion term (Ψ†ΓµνΨ)(Ψ†ΓρλΨ) as a linear combination of the others. Schematically,
the Fierz relation can be written as

(Ψ†ΓµνΨ)(Ψ†ΓρλΨ) = − 1

16

∑
α,β,γ,δ

Tr(ΓµνΓαβΓρλΓγδ)× (Ψ†ΓαβΨ)(Ψ†ΓγδΨ), (B.1)

where α, β, γ, δ = 0, · · · , 3. Next we demonstrate the general principle to find linearly
independent quartic terms in a given interacting model. For example, if X is an array of
the four-fermion terms, then the above Fierz relation can be cast as

X = MX ⇒ (M − 1)X ⇒ FX = 0, (B.2)

where M contains the linear connections among the quartic terms due to Eq. (B.1), and
F = M − 1 is the Fierz matrix. The number of linearly independent four-fermion terms is
equal to D(F ) − R(F ), where D(F ) and R(F ) are respectively the dimension and rank of
the square matrix F . Since the isotropic and anisotropic DSM are bestowed with different
symmetries, the explicit forms of the corresponding Fierz matrices and the numbers of
independent quartic terms in these two cases are distinct. Therefore, we present the two
cases separately following the general approach outlined above.

B.1 Isotropic Dirac semimetal

For the isotropic Dirac semimetal there are eight symmetry allowed quartic terms, see
Eq. (3.1), which can be organized into X according to

X> =
[
(Ψ†Γ00Ψ)2, (Ψ†Γ10Ψ)2, (Ψ†Γ20Ψ)2, (Ψ†Γ30Ψ)2,

3∑
j=1

(Ψ†Γ0jΨ)2,

3∑
j=1

(Ψ†Γ1jΨ)2,

3∑
j=1

(Ψ†Γ2jΨ)2,

3∑
j=1

(Ψ†Γ3jΨ)2
]
. (B.3)
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The corresponding eight-dimensional Fierz matrix reads as

Fiso =



5 1 1 1 1 1 1 1

1 5 −1 −1 1 1 −1 −1

1 −1 5 −1 1 −1 1 −1

1 −1 −1 5 1 −1 −1 1

3 3 3 3 3 −1 −1 −1

3 3 −3 −3 −1 3 1 1

3 −3 3 −3 −1 1 3 1

3 −3 −3 3 −1 1 1 3


, (B.4)

with R(Fiso) = 4. Therefore, the number of independent coupling constants is D(Fiso) −
R(Fiso) = 4. Without any loss of generality, we choose the four single-component quartic
terms containing Γµ0, each of which transforms as a scalar under spatial O(3) rotations,
as the independent ones, see Eq. (3.2). The remaining four quartic terms containing Γµj ,
which for any given µ transform as a three-component vector under spatial O(3) rotations,
can be expressed as

3∑
j=1

(Ψ†Γ0jΨ)2 = −2(Ψ†Γ00Ψ)2 − (Ψ†Γ10Ψ)2 − (Ψ†Γ20Ψ)2 − (Ψ†Γ30Ψ)2,

3∑
j=1

(Ψ†Γ1jΨ)2 = −(Ψ†Γ00Ψ)2 − 2(Ψ†Γ10Ψ)2 + (Ψ†Γ20Ψ)2 + (Ψ†Γ30Ψ)2,

3∑
j=1

(Ψ†Γ2jΨ)2 = −(Ψ†Γ00Ψ)2 + (Ψ†Γ10Ψ)2 − 2(Ψ†Γ20Ψ)2 + (Ψ†Γ30Ψ)2,

3∑
j=1

(Ψ†Γ3jΨ)2 = −(Ψ†Γ00Ψ)2 + (Ψ†Γ10Ψ)2 + (Ψ†Γ20Ψ)2 − 2(Ψ†Γ30Ψ)2. (B.5)

Therefore, whenever we generate any one of these quartic terms through the quantum
loop corrections, it is expressed in terms of the four quartic terms appearing in Eq. (3.2).
Furthermore, the fact that an interacting isotropic chiral Dirac semimetal can be described
by only four linearly independent quartic terms is consistent with the existence of four
independent superconducting orders, tabulated in Table 2 (last four rows).

B.2 Anisotropic Dirac semimetals

When we introduce an anisotropy between the in-plane (vx and vy, with vx = vy = v⊥)
and the perpendicular or out of the plane (vz) components of the Fermi velocity (germane
in a tetragonal system), each three-component quartic term splits into two, with the cor-
responding coupling constants splitting as gt

µ
→ (g⊥

µ
, gz

µ
) for µ = 0, · · · , 3, yielding the

interacting Lagrangian

Lani
int =gs

0
(Ψ†Γ00Ψ)2 + gs

1
(Ψ†Γ10Ψ)2 + gs

2
(Ψ†Γ20Ψ)2 + gs

3
(Ψ†Γ30Ψ)2

+g⊥
0

2∑
j=1

(Ψ†Γ0jΨ)2 + gz
0
(Ψ†Γ03Ψ)2 + g⊥

1

2∑
j=1

(Ψ†Γ1jΨ)2 + gz
1
(Ψ†Γ13Ψ)2
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+g⊥
2

2∑
j=1

(Ψ†Γ2jΨ)2 + gz
2
(Ψ†Γ23Ψ)2 + +g⊥

3

2∑
j=1

(Ψ†Γ3jΨ)2 + gz
3
(Ψ†Γ33Ψ)2. (B.6)

Hence the array (X) containing all the quartic terms reads

X> =

[
(Ψ†Γ00Ψ)2, (Ψ†Γ10Ψ)2, (Ψ†Γ20Ψ)2, (Ψ†Γ30Ψ)2,

2∑
j=1

(Ψ†Γ0jΨ)2, (Ψ†Γ03Ψ)2,

2∑
j=1

(Ψ†Γ1jΨ)2, (Ψ†Γ13Ψ)2,
2∑
j=1

(Ψ†Γ2jΨ)2, (Ψ†Γ23Ψ)2,
2∑
j=1

(Ψ†Γ3jΨ)2, (Ψ†Γ33Ψ)2

]
.

(B.7)

The twelve-dimensional Fierz matrix then reads

Fani =



5 1 1 1 1 1 1 1 1 1 1 1

1 5 −1 −1 1 1 1 1 −1 −1 −1 −1

1 −1 5 −1 1 1 −1 −1 1 1 −1 −1

1 −1 −1 5 1 1 −1 −1 −1 −1 1 1

2 2 2 2 4 −2 0 −2 0 −2 0 −2

1 1 1 1 −1 5 −1 1 −1 1 −1 1

2 2 −2 −2 0 −2 4 −2 0 2 0 2

1 1 −1 −1 −1 1 −1 5 1 −1 1 −1

2 −2 2 −2 0 −2 0 2 4 −2 0 2

1 −1 1 −1 −1 1 1 −1 −1 5 1 −1

2 −2 −2 2 0 −2 0 2 0 2 4 −2

1 −1 −1 1 −1 1 1 −1 1 −1 −1 5



, (B.8)

and now R(Fani) = 7. Therefore, we have five linearly independent quartic terms. The
additional coupling constant (besides gs

µ
with µ = 0, · · · , 3) can be chosen to be gz

1
, for

example, see Sec. 3.5. The remaining seven quartic terms are then given by

2∑
j=1

(Ψ†Γ0jΨ)2 =− (Ψ†Γ00Ψ)2 − (Ψ†Γ20Ψ)2 − (Ψ†Γ30Ψ)2 + (Ψ†Γ13Ψ)2,

(Ψ†Γ03Ψ)2 =− (Ψ†Γ00Ψ)2 − (Ψ†Γ10Ψ)2 − (Ψ†Γ13Ψ)2,

2∑
j=1

(Ψ†Γ1jΨ)2 =− (Ψ†Γ00Ψ)2 − 2(Ψ†Γ10Ψ)2 + (Ψ†Γ20Ψ)2 + (Ψ†Γ30Ψ)2 − (Ψ†Γ13Ψ)2,

2∑
j=1

(Ψ†Γ2jΨ)2 =− (Ψ†Γ00Ψ)2 − (Ψ†Γ20Ψ)2 + (Ψ†Γ30Ψ)2 − (Ψ†Γ13Ψ)2,

(Ψ†Γ23Ψ)2 =(Ψ†Γ10Ψ)2 − (Ψ†Γ20Ψ)2 + (Ψ†Γ13Ψ)2,

2∑
j=1

(Ψ†Γ3jΨ)2 =− (Ψ†Γ00Ψ)2 + (Ψ†Γ20Ψ)2 − (Ψ†Γ30Ψ)2 − (Ψ†Γ13Ψ)2,

(Ψ†Γ33Ψ)2 =(Ψ†Γ10Ψ)2 − (Ψ†Γ30Ψ)2 + (Ψ†Γ13Ψ)2. (B.9)

– 24 –



The fact that an interacting anisotropic (tetragonal) Dirac semimetal is described by five
linearly independent quartic terms can be justified from the fact that a Dirac system with
reduced in-plane rotational symmetry supports five independent local pairings, as the three-
component vector pairing ∆p

2 (see Table 2) splits into the in-plane (with j = 1, 2) and out
of plane (with j = 3) components. Similarly, one can show that in orthorombic system
(vx 6= vy 6= vz), an interacting Dirac semimetal is described by six linearly independent
local four-fermion interactions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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