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ABSTRACT: Carbohydrates, such as oligo- and polysaccharides, are highly abundant biopolymers that are involved in numerous
processes. The study of their structure and functions is commonly based on a material that is isolated from complex natural sources.
However, a more precise analysis requires pure compounds with well-defined structures that can be obtained from chemical or
enzymatic syntheses. Novel synthetic strategies have increased the accessibility of larger monodisperse polysaccharides, posing a
challenge to the analytical methods used for their molecular characterization. Here, we present wide mass range ultrahigh-resolution
matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS)
as a powerful platform for the analysis of synthetic oligo- and polysaccharides. Synthetic carbohydrates 16-, 64-, 100-, and 151-mers
were mass analyzed and characterized by MALDI in-source decay FT-ICR MS. Detection of fragment ions generated from glycosidic
bond cleavage (or cross-ring cleavage) provided information of the monosaccharide content and the linkage type, allowing for the
corroboration of the carbohydrate compositions and structures.

■ INTRODUCTION

Carbohydrates are a highly abundant, structurally very diverse
group of molecules that contribute to the biology of living
organisms in many ways.1 The structure of these biomolecules
is complex as a result of monosaccharide diversity and the ways
these are linked.2 Typically, oligosaccharides contain 2−20
monosaccharides, whereas larger structures are referred to as
polysaccharides.3

Studying the biological roles of carbohydrates requires
compounds with well-defined chemical structures.4,5 The
purification of a specific carbohydrate from a complex
biological mixture can be hampered by the presence of
compounds with similar physical/chemical properties that are
difficult to separate.6,7 To this end, chemical, enzymatic, or
chemoenzymatic syntheses are powerful alternatives to obtain
highly pure compounds with tailored chemical structures while
requiring control over stereo- and regiochemistry.8−14 Never-
theless, the synthesis of a large carbohydrate is challenging, and

novel strategies have been developed to prepare longer
polysaccharides. Recently, the syntheses of the largest
monodisperse polysaccharides ever chemically prepared were
reported. Automated glycan assembly was employed to prepare
a branched 151-mer polymannoside with D-mannose residues
connected in an α(1−6) linkage and an additional α1−2
linkage at the branching residue.15 Repeated block couplings
yielded a linear 128-mer polysaccharide containing a [-4-L-
Rhaα1-3-D-Manβ1-] repeating unit.16

Structure analysis of oligo- and polysaccharides is commonly
performed using NMR spectroscopy and complemented by
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other analytical techniques such as mass spectrometry (MS)
that are particularly useful for the analysis of complex mixtures
of carbohydrates at a low concentration.17−22 Various MS-
based strategies are used to generate carbohydrate fragment
ions that are informative of the monosaccharide content (such
as hexoses, deoxy-hexoses, pentoses, and uronic acids) and the
type of glycosidic linkages.23−27 Other characterization
methods include the chemical or enzymatic treatment of
carbohydrates.18,19,28,29

The combination of matrix-assisted laser desorption/
ionization (MALDI) and time-of-flight (TOF) MS has been
widely applied for oligo- and polysaccharide analysis. The
resulting vast literature on MALDI-TOF MS applications is
overviewed by Harvey.18,19 In MALDI TOF MS, carbohy-
drates can be fragmented using “post-source” or “in-source”
decay (ISD) processes that are induced by a high laser fluence
and/or the use of specific MALDI matrices.30−33 These
processes can be combined with collision-induced dissociation
for a more in-depth structural characterization.34

MALDI TOF MS is fast and allows for the analysis of
carbohydrates over a wide range of masses.35−38 It provides
sufficient resolving power and sensitivity for the analysis of
oligosaccharides and small polysaccharides but is of limited use
for the structural elucidation of larger structures since large
ions are typically detected as broad peaks and overlap between
signals is common. Measurements at low mass resolution can
be used to determine the average mass of compounds, while
measurements at isotopic resolution allow for the determi-
nation of the monoisotopic mass and provide information on
the isotopic distribution.39 Deviations from the theoretical
isotopic distribution may be indicative of deviations in the
elemental composition or the presence of overlapping ion
species.40

Fourier transform ion cyclotron resonance (FT-ICR) MS
provides higher resolving power than TOF MS.41 FT-ICR MS
measurements of cesium iodide clusters [Cs(CsI)n]

+, up to
about m/z 32,000, have been previously reported.42,43

Ultrahigh-resolution MALDI FT-ICR MS has been used to
analyze biomolecules at an isotopic resolution up to about m/z

24,00044−47 and characterize complex biomolecules such as
monoclonal antibodies.48−50 Compared to MALDI TOF MS,
MALDI FT-ICR MS analysis improves the quality of the
spectra with regard to a higher number of detected ion species
at higher sensitivity, increased mass accuracy, and mass
measurement precision.45,51,52 These characteristics have
enabled the comprehensive analysis of carbohydrates, typically
up to about m/z 4000.53−59

Here, we demonstrate the utility of ultrahigh-resolution
MALDI-ISD FT-ICR MS for the structural characterization of
chemically synthesized oligo- and monodisperse polysacchar-
ides. Synthetic carbohydrates 16-, 64-, 100-, and 151-mers
(Figure 1) were mass analyzed and fragmented by ISD. The
fragmentation profiles, obtained over an extended m/z-range,
were then evaluated in detail. The measurement of both intact
carbohydrates and fragment ions at resolving power and high
mass accuracy allowed for the in-depth characterization of the
analyzed synthetic compounds.

■ EXPERIMENTAL SECTION

Synthesis of 16-mer Oligosaccharide and 64-, 100-,
and 151-mer Polysaccharides. The syntheses of the 16-mer
oligosaccharide and the 64-, 100-, and 151-polysaccharides
were recently reported.15,16 A brief description of the repeated
block couplings strategy used for the synthesis of the 16-mer
and 64-mer and the automated glycan assembly strategy used
for the 100-mer and 151-mer is reported in the Supporting
Information (Schemes S1−S3).

MALDI Spotting. The dry droplet spotting method was
used in combination with a ground steel MALDI target plate
(Bruker Daltonics) and “super-2,5-dihydroxybenzoic acid
(DHB)” [a 9:1 (w/w) mixture of DHB and 2-hydroxy-5-
methoxybenzoic acid; purchased from Sigma-Aldrich] as a
MALDI matrix. One microliter of each carbohydrate solution
(16-mer, 1.25 mg/mL; 64-mer, 1.25 mg/mL; 100- and 151-
mer, 1 mg/mL; and dextran (molecular weight of about 25,000
Da), 1.8 mg/mL; purchased from Sigma-Aldrich) was spotted
on the target plate with either 1 or 2 μL of super-DHB solution
at either 5, 10, or 100 mg/mL in 50% acetonitrile. Additionally,

Figure 1. Chemical structures of the analyzed oligo- and polysaccharides. 16-mer and 64-mer contain a [-4-L-Rhaα1-3-D-Manβ1-] repeating unit,
while 100-mer and 151-mer were polymannosides with mannose residues connected via an α1-6 linkage and an additional α1-2 linkage at the
branching residue.
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for some of the spots, more super-DHB (up to 4 μL) was
added to the already dried spots.
ESI and MALDI Mass Spectrometry. All MS experiments

were performed on a 15 T solariX XR FT-ICR mass
spectrometer (Bruker Daltonics) equipped with a Combi-
Source and a ParaCell. The MS system was operated using
FTMSControl software (Bruker Daltonics). ESI MS measure-
ments were performed by direct infusion at a flow rate of 2 μL/
min with a capillary voltage of 4500 V. Collision-induced
dissociation (CID) measurements were performed using the
quadrupole for precursor ion selection, with an isolation
window of 5 Th and a collision energy of 55 V. The ESI-CID
mass spectrum of 16-mer was generated from the sum of 200
scans in the m/z-range 207−5000 with 1 M data points.
MALDI measurements were performed using a smartbeam-II
laser system (Bruker Daltonics) at a frequency of 500 Hz and
200 laser shots per scan. The MALDI-ISD mass spectra were
acquired in the m/z-ranges 300−5000 and 1000−7000 with 1
M data points and the laser power at 20%, and in the range
3500−30,000 with 512 K data points and the laser power at
25%. The MALDI-ISD mass spectra were obtained from the
sum of a different number of scans. The scan number ranged

from 20 (64-mer; m/z-range 1000−7000) to 697 (151-mer;
m/z-range 3500−30,000).

Data Processing. ESI and MALDI FT-ICR mass spectra
were visualized in DataAnalysis version 5.0 SR1 (Bruker
Daltonics), internally calibrated and exported as XY files. The
theoretical fragment ions were generated in GlycoWork-
bench.60,61 The elemental composition of theoretical fragment
ions were generated in Microsoft Excel, and theoretical
isotopic distributions were obtained using the online EnviPat
tool (https://www.envipat.eawag.ch/).62 The assignments
were done by a visual comparison of the MALDI mass spectra
and the theoretical isotopic distributions of fragment ions in
mMass.63 All figures were generated in Adobe Illustrator CC
2018. For 151-mer, a sum spectrum was generated in mMass
following the workflow depicted in Figure S18.

■ RESULTS AND DISCUSSION

Determination of the Intact Mass of Synthetic Oligo-
and Monodisperse Polysaccharides by MALDI FT-ICR
MS. Recently, we reported on the analysis of a linear 128-mer
polysaccharide by MALDI FT-ICR MS.16 The polysaccharide

Figure 2. MALDI-(ISD) FT-ICR mass spectra of (A) 64-mer, (B) 100-mer, and (C) 151-mer polysaccharides.
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was detected at m/z 19,769, as a broad peak, in a low-
resolution spectrum. In FT-ICR MS, the mass resolving power
and the ion transmission from the ion source to the ICR cell, in
commercially available instruments, vary inversely with m/z
(Supporting Information, Figures S1 and S2). Consequently,
the isotopically resolved analysis of ions larger than m/z 16,000
is challenging. So far, MALDI FT-ICR MS has been used to
analyze carbohydrates up to about m/z 4000, while larger
molecules such as polysaccharides have been typically analyzed
by low-resolution MALDI TOF MS. Here, we analyzed
different synthetic monodisperse polysaccharides by MALDI
FT-ICR MS to determine their intact mass. The mass spectra
of 64-, 100-, and 151-mer polysaccharides are reported. These
were detected as [M + Na]+ ions at a resolving power of about
42,500, 22,000, and 1400, respectively (Figures 2 and S3).
Baseline isotopic resolution was obtained for the 64-mer with
the detection of its monoisotopic peak at m/z 9900.573. The
observed isotopic distribution of the 100-mer was in good
agreement with the theoretical values; however, at such high
m/z-values, the monoisotopic peak (i.e., theoretical m/z
16,331.371) is hardly visible, and the most abundant isotopic
peak (i.e., theoretical m/z 16,339.397) was reported for this
polysaccharide. For the 151-mer, mass measurement at high
m/z-values resulted in the detection of a broad peak at m/z
24,610.58.
Additional adducts, at a lower intensity, were detected for

64-mer and 100-mer (Figure S3). The most intense adduct
species of the 64-mer was identified as a DHB (used as a

matrix) adduct ion (Figure S3A). DHB can bind to the intact
polysaccharides or their fragment ions, and DHB adducts were
likewise detected in the spectrum of the 100-mer (Figure S3B).
In the latter spectrum, a 101-mer and 102-mer polysaccharide
were detected as minor species. Other even larger species were
detected in the spectra of 64- and 100-mer at very minor
amounts, but their nature was not further investigated.
The mass spectra of 64-, 100-, and 151-mer were

characterized by the presence of ISD fragment ions. These
provided structural information useful for the corroboration of
the monosaccharide composition and linkage types.

Structural Characterization of a 16-mer Oligosac-
charide. The structural characterization of carbohydrates by
MS-based fragmentation techniques has been widely per-
formed with standardized nomenclature of the fragment ions.64

The different fragmentation mechanisms can provide comple-
mentary structural information. Here, we analyzed a 16-mer
oligosaccharide with a [-4Rhaα1-3Manβ1-] repeating unit by
MALDI-ISD, CID FT-ICR, and ESI-CID MS (Figures S4−
S6). In the MALDI-ISD mass spectrum, the intact 16-mer
oligosaccharide was detected as [M + Na]+ at m/z 2505.8848
(theoretical m/z 2505.8856). The most abundant fragment
ions are B, C, Y, and Z ions generated from the cleavage of a
glycosidic bond. The first two types include the non-reducing
end of the carbohydrate, while the other two types include the
reducing end. Of note is the fact that C-2H (or isobaric Y-2H)
ions were detected for both Rha and Man residues (Figure S7).
The formation of these fragment ions may involve the

Figure 3. Enlargements of MALDI-ISD FT-ICR mass spectra of the 64-mer polysaccharide. Fragment ions were detected in clusters, as exemplified
for the m/z-ranges 3000−3400 (A) and 6700−7100 (B) (see also Figure S8). The labels of isomeric fragment ions are vertically aligned. (C)
Schematic structure of the 64-mer polysaccharide with assigned B, C, Y, and Z fragment ions. Structural characterization of a linear 100-mer
polysaccharide.
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abstraction of hydrogen atoms via a radical-based mechanism
and, as previously shown for ISD fragment ions of proteins,
these interfering fragments can lead to distortions of the
isotopic distributions of adjacent fragment ions affecting the
interpretation of the spectrum.65

When compared to ESI-CID MS, ISD analysis of the 16-mer
oligosaccharide provided additional fragment ions, namely 1,5X,
0,2X, 3,5A, and C (Figures S4 and S6). Of note, some of the
cross-ring fragments showed unique m/z-values (i.e., not
isobaric with other fragment ions) that provided useful
information for the corroboration of the linkage types. For
example, fragment 3,5A10 corroborates the linkage at position 4
of the Rha7 residue, while the observation of

0,2X9 allowed us to
exclude a linkage at position 2 of Man10. The observation of

cross-ring fragments makes the ISD analysis particularly
valuable and complementary to ESI-CID MS for the
characterization of carbohydrates. MALDI-ISD FT-ICR MS
has previously been explored for protein characterization,
where it likewise showed vast complementarity to other
fragmentation techniques.48,49,66

The evaluation of the ISD mass spectra of the 16-mer
oligosaccharide was facilitated by the high sensitivity and
resolving power (i.e., ∼105,000 at m/z 2505.8856) in the
analyzed m/z range. The analysis of the polysaccharides also
benefitted from the high quality of the spectra at low m/z-
values, allowing for a reliable evaluation of the high m/z
regions with decreased mass resolution. The mass measure-
ment errors were in the sub- and low-ppm range.

Figure 4. Enlargements of MALDI-ISD-FT ICR mass spectra of the 100-mer polymannoside shows clusters of fragment ions detected in the m/z-
ranges 2985−3160 (A), 8670−8835 (B), and 13,695−13,862 (C). (D) Schematic structure of the 100-mer polysaccharide with assigned B, C, Y,
and Z fragment ions. * indicates [M + K]+ species.
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In general, many isomeric fragment ions can be obtained
from a carbohydrate structure, such that the interpretation of a
fragmentation spectrum may not be trivial. Large mono-
disperse polysaccharides, like those presented here, have never
been characterized by ultrahigh-resolution MALDI-ISD FT-
ICR MS over an extended m/z-range. This is due to the
uniqueness of both the analyzed compounds and the used MS
methods.
Structural Characterization of a Linear 64-mer

Polysaccharide. The linear 64-mer polysaccharide shares
the [-4Rhaα1-3Manβ1-] disaccharide repeating unit with the
16-mer. Due to the repeating nature of the structure of this
monodisperse polysaccharide, the ISD fragment ions were
detected in clusters (Figure S8). These clusters showed m/z
differences of about 308 (theoretical Δm/z = 308.1107),
corresponding to the sum of one mannose and one rhamnose
residue. Two representative fragment ion clusters detected at
different m/z-ranges in the mass spectra of the 64-mer are
depicted in Figure 3. The most intense fragment ions were
generated from the cleavage of the glycosidic bonds, while
cross-ring fragments were detected at lower intensities. Many
of the fragment ions are isomeric and could not be
distinguished (e.g., 1,3A21,

2,4A21, and
0,2X20). Unique fragments

were B and C ions (e.g., B43 and C43) that generated at the
Man residue side and Y and Z ions (e.g., Y21 and Z21) that
generated at the Rha residue side. Hydrogen abstraction and
losses of neutrals (e.g., H2O) during the ISD process led to

interfering species (Figure S9). The reliable identification of
these species at low m/z-values explains the distortions
observed at higher m/z-values. Other fragments with unique
m/z-values are 1,5X and 3,5A ions (e.g., 1,5X20 and

3,5A44) that
are generated at Rha residues and 1,5X and 0,2X ions that are
generated at Man residues (e.g., 1,5X21 and

0,2X19). Of these, for
example, 3,5A ions corroborate the linkage at position 4. With
the increasing fragment ion size, the isotopic distributions
become larger, and the overlaps between adjacent distributions
in the spectra increase (Figure S10), thus complicating the
interpretation of the spectra. Small fragment ions were also
detected in the m/z region (m/z < 1000) that is dominated by
the MALDI matrix ions (Figure S11). The high-resolution
measurements allowed for the confident assignment of
fragment ions in this crowded region. Thus, the analysis of
MALDI-ISD fragment ions in the m/z-range 300−9920 led to
the characterization of 61 out of 63 glycosidic bonds
corresponding to 97% carbohydrate sequence coverage.
The analyzed linear 100-mer α1-6 polymannoside contains a

five-carbon aliphatic linker, with a terminal primary amine
bound to the reducing end. The linker provided a mass tag of
85.0891 Da, allowing us to differentiate X, Y, and Z fragments,
which included the terminal linker, from A, B, and C ions (e.g.,
Y18 at m/z 3044.0432 and C18 at m/z 2958.9540). Similar to
the 64-mer polysaccharide described above, the fragmentation
of the linear 100-mer polymannoside also resulted in the
detection of clusters of fragment ions (Figure S12). The m/z

Figure 5. MALDI-ISD FT-ICR mass spectrum of 151-mer in the m/z-range 3500−17,000. Intense fragment ions were generated from a double
cleavage: one 0,2X cross-ring fragmentation at the branching residue Man5 and one Y fragmentation.
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difference between clusters, corresponding to one Man residue,
was about 162 (theoretical Δm/z = 162.0528). Three
examples of ISD fragment ion clusters, detected in different
m/z-ranges, are reported in Figure 4. As shown for the 64-mer
polysaccharide, with the increasing fragment ion size, the
quality of the isotopic distributions decreases due to a lower
signal-to-noise ratio (S/N), complicating the interpretation of
the spectra.
Within each cluster, the most abundant fragment ions were

B, B + DHB, C, and Y, while cross-ring fragments and other
DHB adducts were detected at lower intensities. The detection
of 0,4A, 3,5A, and 1,5X cross-ring fragments corroborated the 1−
6 linkage between mannose residues. 0,2X fragment ions were
also detected but at a lower intensity. The identification of this
type of fragment was hampered by the partial overlap with B-
H2O fragments (Figure S13). 0,2X fragmentation of oligosac-
charides with α1−6 linked hexose residues was previously
reported. For example, Bashir and co-workers analyzed linear
dextran oligomers, with an α1-6 linkage, using MALDI-ISD,
-PSD, and -CID MS and identified 0,2X fragment ions in all
three different fragmentation spectra.67 Similarly, we identified
0,2X fragment ions of dextran, a polyglucoside with α1−6
linkages with an average mass of about 25,000 Da, in MALDI-
ISD FT-ICR mass spectra (Figure S14). Additionally, 0,2X
fragmentation was reported for other oligosaccharides, linkage
types, and fragmentation techniques.23,25,26,53,68−73

In general, due to the higher resolving power and the
narrower isotopic distributions at low m/z-values, more
fragment ions can be identified accurately in the low m/z
region. At higher m/z-values, the overlap between adjacent
isotopic distributions increased as a consequence of the lower
resolving power and the broader distributions. Finally, based
on the detection of Y ions, from Y3 until Y99, a sequence
coverage of 98% was obtained.
Structural Characterization of a Branched 151-mer

Polysaccharide. The synthetic branched 151-mer polyman-
noside also contains an aliphatic linker at the reducing end.
The mannose residues are α1−6 linked, with an additional
α1−2 linkage at the branching residue. In the MALDI-ISD FT-
ICR mass spectrum of 151-mer, in the m/z-range 18,000−
25,000, intense Y type fragment ions were detected (Figure
2C). The ISD mass spectrum of the 151-mer, in the m/z-range
3500−17,000, is depicted in Figure 5. The branched nature of
the compound was taken into account for the assignment of
these fragments (Figure S15). The ion species were identified
as fragment ions that were generated from the cleavage of
either one or two glycosidic bonds (Figure S16). For example,
two fragment ions were detected at m/z 5694.8466 and m/z
5712.8507, respectively (Figure S17). These correspond to B
and C ions with 35 mannose residues. However, B35 and C35
generate from the cleavage of the glycosidic bond at the
reducing end side of the branching mannose residue,
producing ions of 69 (i.e. 34 + 34 + 1) mannose residues,
with m/z 11,209.950 and m/z 11,227.660, respectively
(Figures S15 and S16). Furthermore, theoretical Y4 has m/z
774.300, while Y5 (with 78 mannose residues) has m/z
12,772.228; therefore, a double glycosidic bond cleavage was
hypothesized to explain the fragment ions detected in the m/z
region 5715−12,772, and the two fragment ions detected at
m/z 5694.8466 and m/z 5712.8507 were identified as B35Y10
and C35Y10, respectively.
In the spectrum, BY, CY, YY, ZY, and YZ + DHB ions were

identified as major species. In addition to these fragment ions,

a series of intense 0,2XY ions was detected. The data suggest
that the 0,2X fragmentation at the branching residue, with an
α1-2 linkage, is preferred over other cross-ring fragmentation
types and that the combination with Y fragmentation leads to
the intense fragment ions. In fact, the most intense fragment
ions in the spectrum, detected in the m/z-range 6000−12,000,
were also of this type. 0,2X fragment ions generated at mannose
residues with α1−6 linkages were not detected probably due to
their low abundance and possible overlap with B-H2O
fragment ions (see Figure S13). 0,2X fragmentation at
monosaccharide residues connected via an α1-2 linkage was
previously reported.53,70 For example, Park and Lebrilla
analyzed lacto-N-fucopentaose-I by MALDI-CID MS and
identified a 0,2X fragment ion diagnostic for the α1−2 linkage
between a fucose and a galactose residue (i.e., Fucα1-2Man).53

Finally, interpretation of the ISD mass spectra of 151-mer
was facilitated by comparison with the mass spectra obtained
from the linear 100-mer polysaccharide (Figure S18).
Of note, the analysis of large polydisperse polysaccharides by

MALDI MS is not trivial and has often required fractionation
of the carbohydrate mixture before MS measurements.74,75

The here reported detection of large monodisperse poly-
saccharides and their ISD fragments by MALDI FT-ICR MS
brings new insights into the ionizability of such large
carbohydrates and warrants further research on naturally
occurring polydisperse polysaccharides.

■ CONCLUSIONS
Recent developments in carbohydrate synthesis provide access
to large synthetic polysaccharides. These precisely defined
structures are required to understand the structure and
function of carbohydrates and are of interest for future
biomaterial and biomedical science applications. Notably, their
size and complexity are a challenge for analytical methods;
thus, novel strategies are needed to analyze and ascertain the
correct carbohydrate composition and purity.
Mass spectrometry has been extensively used for the

characterization of carbohydrates, albeit high-resolution
measurements have only been performed on oligosaccharides.
So far, polysaccharides have been analyzed at lower resolution
(i.e., broad peak). Here, we reported the analysis of different
synthetic oligo- and monodisperse polysaccharides by wide m/
z range ultrahigh-resolution MALDI FT-ICR MS. Here, we
analyzed different synthetic oligo- and polysaccharides by wide
m/z range ultrahigh-resolution MALDI FT-ICR MS. Measure-
ments at the isotopic resolution allowed for an accurate
determination of the mass of the intact polysaccharides up to
m/z 16,000 by distinguishing these compounds from other less
abundant ion species. FT-ICR MS measurements at lower
resolution enabled the detection of the largest ever synthesized
polysaccharidea 151-mer polymannosideat higher m/
zvalues (approximately m/z 24,600). Furthermore, oligo- and
polysaccharides were sequenced by MALDI-ISD FT-ICR MS
over an extended m/z-range. The ultrahigh resolution
measurements enabled an in-depth interpretation of the
spectra that included structural information on both
carbohydrate composition and linkage types of linear as well
as branched polysaccharides. It was shown that ultrahigh-
resolution MALDI-(ISD) FT-ICR MS is a powerful analytical
tool for the analysis of synthetic oligo- and polysaccharides that
contributes to a more comprehensive structural character-
ization of large, synthetic, and monodisperse carbohydrates.
Compared to other MALDI MS platforms (e.g., MALDI
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Orbitrap MS), the developed method allows for mass
measurements of polysaccharides at a higher resolving power
in a larger m/z-range. We envision broader applicability of this
analytical approach with applications ranging from the
biopharma (e.g., analysis of glycoconjugate vaccines and
heparins) to the food industry (e.g., analysis of pectin).

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00239.

Evaluation of the mass resolution and the mass
measurement precision; analysis of [(CsI)n + Cs]+

cluster ions by MALDI FT-ICR MS; examples of CsI
ion clusters; enlargement of mass spectra of 64-mer and
100-mer polysaccharides; comparison between MALDI-
ISD, MALDI-CID, and ESI-CID FT-ICR MS; MALDI-
ISD FT-ICR mass spectrum of 16-mer oligosaccharide;
MALDI-CID FT-ICR mass spectrum of the singly
sodiated 16-mer oligosaccharide; ESI-CID FT-ICR MS
of the doubly sodiated 16-mer oligosaccharide; enlarge-
ments of MALDI-ISD FT-ICR mass spectra of the 16-
mer oligosaccharide; MALDI-ISD FT-ICR mass spec-
trum of the 64-mer in the m/z-range 1000−7000;
enlargement of MALDI-ISD FT-ICR mass spectra of the
64-mer polysaccharide; examples of isotopic distribu-
tions of adjacent fragment ions (i.e., 3,5A, 2,4A, and 2,5X);
examples of fragment ions detected in the MALDI
matrix region (below m/z 1000); MALDI-ISD FT-ICR
mass spectrum of the 100-mer in the m/z-range 1000−
7000; enlargement of MALDI-ISD FT-ICR mass
spectrum of the 100-mer polysaccharide; MALDI-ISD
FT-ICR mass spectrum of dextran; schematic structure
of the 151-mer and nomenclature used for the
assignment of ISD fragment ions; examples of assigned
ISD fragment ions of the 151-mer polysaccharide;
examples of fragment ions generating from the cleavage
of two glycosidic bonds; comparison between ISD mass
spectra of 151-mer and 100-mer polysaccharides; and
experimental details (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Simone Nicolardi − Center for Proteomics and Metabolomics,
Leiden University Medical Center, Leiden 2333 ZA, The
Netherlands; orcid.org/0000-0001-8393-1625;
Email: s.nicolardi@lumc.nl

Authors
A. Abragam Joseph − Department of Biomolecular Systems,
Max-Planck-Institute of Colloids and Interfaces, 14476
Potsdam, Germany; orcid.org/0000-0003-3584-0408

Qian Zhu − State Key Laboratory of Bioorganic and Natural
Products Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry,
University of Chinese Academy of Sciences, Chinese Academy
of Sciences, Shanghai 200032, China

Zhengnan Shen − School of Physical Science and Technology,
ShanghaiTech University, Shanghai 201210, China

Alonso Pardo-Vargas − Department of Biomolecular Systems,
Max-Planck-Institute of Colloids and Interfaces, 14476

Potsdam, Germany
Fabrizio Chiodo − Institute of Biomolecular Chemistry (ICB),
Italian National Research Council (CNR), Napoli 80078,
Italy; Amsterdam UMC-Locatie VUMC, Molecular Cell
Biology and Immunology, Amsterdam 1081 HZ, The
Netherlands; orcid.org/0000-0003-3619-9982

Antonio Molinaro − Department of Chemical Sciences,
University of Naples Federico II, Napoli 80126, Italy;
orcid.org/0000-0002-3456-7369

Alba Silipo − Department of Chemical Sciences, University of
Naples Federico II, Napoli 80126, Italy; orcid.org/0000-
0002-5394-6532

Yuri E. M. van der Burgt − Center for Proteomics and
Metabolomics, Leiden University Medical Center, Leiden
2333 ZA, The Netherlands; orcid.org/0000-0003-0556-
5564

Biao Yu − State Key Laboratory of Bioorganic and Natural
Products Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry,
University of Chinese Academy of Sciences, Chinese Academy
of Sciences, Shanghai 200032, China; School of Chemistry
and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of Sciences, Hangzhou
310024, China

Peter H. Seeberger − Department of Biomolecular Systems,
Max-Planck-Institute of Colloids and Interfaces, 14476
Potsdam, Germany; Institute of Chemistry and Biochemistry,
Freie Universität Berlin, Berlin 14195, Germany

Manfred Wuhrer − Center for Proteomics and Metabolomics,
Leiden University Medical Center, Leiden 2333 ZA, The
Netherlands; orcid.org/0000-0002-0814-4995

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.1c00239

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We gratefully acknowledge the generous financial support of
the Max Planck Society.

■ REFERENCES
(1) Varki, A. Glycobiology 2017, 27, 3−49.
(2) Mariño, K.; Bones, J.; Kattla, J. J.; Rudd, P. M. Nat. Chem. Biol.
2010, 6, 713−723.
(3) Seeberger, P. H. Monosaccharide Diversity. In Essentials of
Glycobiology, Varki, A.; Cummings, R. D., Esko, J. D., Stanley, P., Hart,
G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H.,
Prestegard, J. H., Schnaar, R. L., Seeberger, P. H., Ed.; Cold Spring
Harbor Laboratory Press: Cold Spring Harbor, NY, 2015; pp 19−30.
(4) Yamada, K.; Kakehi, K. J. Pharm. Biomed. 2011, 55, 702−727.
(5) Astronomo, R. D.; Burton, D. R. Nat. Rev. Drug Discov. 2010, 9,
308−324.
(6) Zhang, Q.; Li, Z.; Song, X. Front. Chem. 2020, 8, 508.
(7) Morais, V.; Dee, V.; Suárez, N. Front. Bioeng. Biotechnol. 2018, 6,
145.
(8) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900−
1934.
(9) Yu, H.; Chen, X. Org. Biomol. Chem. 2016, 14, 2809−2818.
(10) Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M. R.;
Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P. G. Chem. Rev. 2018,
118, 8151−8187.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.1c00239
Anal. Chem. 2021, 93, 4666−4675

4673

https://pubs.acs.org/doi/10.1021/acs.analchem.1c00239?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.1c00239/suppl_file/ac1c00239_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Simone+Nicolardi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8393-1625
mailto:s.nicolardi@lumc.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A.+Abragam+Joseph"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-3584-0408
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qian+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhengnan+Shen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alonso+Pardo-Vargas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabrizio+Chiodo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-3619-9982
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Antonio+Molinaro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-3456-7369
http://orcid.org/0000-0002-3456-7369
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alba+Silipo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5394-6532
http://orcid.org/0000-0002-5394-6532
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yuri+E.+M.+van+der+Burgt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-0556-5564
http://orcid.org/0000-0003-0556-5564
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Biao+Yu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+H.+Seeberger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Manfred+Wuhrer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0814-4995
https://pubs.acs.org/doi/10.1021/acs.analchem.1c00239?ref=pdf
https://dx.doi.org/10.1093/glycob/cww086
https://dx.doi.org/10.1038/nchembio.437
https://dx.doi.org/10.1038/nchembio.437
https://dx.doi.org/10.1016/j.jpba.2011.02.003
https://dx.doi.org/10.1038/nrd3012
https://dx.doi.org/10.1038/nrd3012
https://dx.doi.org/10.3389/fchem.2020.00508
https://dx.doi.org/10.3389/fbioe.2018.00145
https://dx.doi.org/10.3389/fbioe.2018.00145
https://dx.doi.org/10.1002/anie.200802036
https://dx.doi.org/10.1002/anie.200802036
https://dx.doi.org/10.1039/c6ob00058d
https://dx.doi.org/10.1021/acs.chemrev.8b00066
https://dx.doi.org/10.1021/acs.chemrev.8b00066
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.1c00239?ref=pdf


(11) Zhang, X.; Pagadala, V.; Jester, H. M.; Lim, A. M.; Pham, T. Q.;
Goulas, A. M. P.; Liu, J.; Linhardt, R. J. Chem. Sci. 2017, 8, 7932−
7940.
(12) Schumann, B.; Pragani, R.; Anish, C.; Pereira, C. L.; Seeberger,
P. H. Chem. Sci. 2014, 5, 1992−2002.
(13) Yang, Y.; Martin, C. E.; Seeberger, P. H. Chem. Sci. 2012, 3,
896−899.
(14) Calin, O.; Eller, S.; Seeberger, P. H. Angew. Chem., Int. Ed.
2013, 52, 5862−5865.
(15) Joseph, A. A.; Pardo-Vargas, A.; Seeberger, P. H. J. Am. Chem.
Soc. 2020, 142, 8561−8564.
(16) Zhu, Q.; Shen, Z.; Chiodo, F.; Nicolardi, S.; Molinaro, A.;
Silipo, A.; Yu, B. Nat. Commun. 2020, 11, 4142.
(17) Duus, J. Ø.; Gotfredsen, C. H.; Bock, K. Chem. Rev. 2000, 100,
4589−4614.
(18) Harvey, D. J. Mass Spectrom. Rev. 1999, 18, 349−450.
(19) Harvey, D. J. Mass Spectrom. Rev. 2018, 37, 353−491.
(20) Obena, R. P.; Tseng, M.-C.; Primadona, I.; Hsiao, J.; Li, I.-C.;
Capangpangan, R. Y.; Lu, H.-F.; Li, W.-S.; Chao, I.; Lin, C.-C.; Chen,
Y.-J. Chem. Sci. 2015, 6, 4790−4800.
(21) Mucha, E.; Stuckmann, A.; Marianski, M.; Struwe, W. B.;
Meijer, G.; Pagel, K. Chem. Sci. 2019, 10, 1272−1284.
(22) Mohr, M. D.; OlafBörnsen, K.; Widmer, H. M. Rapid Commun.
Mass Spectrom. 1995, 9, 809−814.
(23) Han, L.; Costello, C. E. J. Am. Soc. Mass Spectrom. 2011, 22,
997−1013.
(24) Wilson, J. J.; Brodbelt, J. S. Anal. Chem. 2008, 80, 5186−5196.
(25) Desai, N.; Thomas, D. A.; Lee, J.; Gao, J.; Beauchamp, J. L.
Chem. Sci. 2016, 7, 5390−5397.
(26) Liu, P.; Zhao, P.; Cooks, R. G.; Chen, H. Chem. Sci. 2017, 8,
6499−6507.
(27) O’Brien, J. P.; Needham, B. D.; Brown, D. B.; Trent, M. S.;
Brodbelt, J. S. Chem. Sci. 2014, 5, 4291−4301.
(28) Rudd, P. M.; Gulle, G. R.; Küster, B.; Harvey, D. J.;
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