English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Classical decay rates of oscillons

MPS-Authors
/persons/resource/persons216895

Lozanov,  Kaloian D.
Physical Cosmology, MPI for Astrophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, H.-Y., Amin, M. A., Copeland, E. J., Saffin, P. M., & Lozanov, K. D. (2020). Classical decay rates of oscillons. Journal of Cosmology and Astroparticle Physics, 2020(7): 055. doi:10.1088/1475-7516/2020/07/055.


Cite as: https://hdl.handle.net/21.11116/0000-0008-1EE1-9
Abstract
Oscillons are extremely long-lived, spatially-localized field configurations in real-valued scalar field theories that slowly lose energy via radiation of scalar waves. Before their eventual demise, oscillons can pass through (one or more) exceptionally stable field configurations where their decay rate is highly suppressed. We provide an improved calculation of the non-trivial behavior of the decay rates, and lifetimes of oscillons. In particular, our calculation correctly captures the existence (or absence) of the exceptionally long-lived states for large amplitude oscillons in a broad class of potentials, including non-polynomial potentials that flatten at large field values. The key underlying reason for the improved (by many orders of magnitude in some cases) calculation is the systematic inclusion of a spacetime-dependent effective mass term in the equation describing the radiation emitted by oscillons (in addition to a source term). Our results for the exceptionally stable configurations, decay rates, and lifetime of large amplitude oscillons (in some cases ≳ 108 oscillations) in such flattened potentials might be relevant for cosmological applications.