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ABSTRACT
Contact tracing has been extensively studied from different per-
spectives in recent years. However, there is no clear indication
of why this intervention has proven effective in some epidemics
(SARS) and mostly ineffective in some others (COVID-19). Here, we
perform an exhaustive evaluation of random testing and contact
tracing on novel superspreading random networks to try to identify
which epidemics are more containable with such measures. We also
explore the suitability of positive rates as a proxy of the actual
infection statuses of the population. Moreover, we propose novel
ideal strategies to explore the potential limits of both testing and
tracing strategies. Our study counsels caution, both at assuming
epidemic containment and at inferring the actual epidemic progress,
with current testing or tracing strategies. However, it also brings
a ray of light for the future, with the promise of the potential of
novel testing strategies that can achieve great effectiveness.

INTRODUCTION
The COVID-19 pandemic has posed significant threats to public
health globally since 2020. It spreads rapidly around the world and
it is hard to control due to a large proportion of pre-symptomatic
and asymptomatic cases [40]. Although preventive measures, such
as social distancing [50] and lockdowns [19, 51], have shown to
be effective in slowing down the disease spreading, they come
at the cost of economic downturn and the risk of a second wave
after lifting restrictions. In order to respond to such time-critical
emergencies while avoiding strict measures, testing of potential
infections via contact data and quarantining of positive cases have
been proposed as alternative measures [2, 38]. However, limited
testing/tracing resources have imposed challenges on the mass
deployment of such measures.

In this work, we tackle an extensive evaluation of different ran-
dom testing and contact tracing strategies to ascertain their effi-
ciency. To answer this, we first build a simulation tool involving
two major components — an extended stochastic epidemic model
simulator with tracing and quarantining actions, and a contact net-
work simulator that takes both 𝑅0 and the dispersion parameter
into account. These allow us to identify the characteristics of each
strategy for a large set of parameter combinations. Moreover, by
introducing two ideal (despite unreal) strategies, we can propose a
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classification of an epidemic (along with the initial time point and
testing resources) with levels: 1) can be contained with classic con-
tact tracing (either forward, backward or both), 2) can be contained
with contact tracing with priorities, 3) can be contained with smart
testing strategies and 4) cannot be contained with testing.

Overall, we find that: our superspreading networks better char-
acterize the actual dispersion effect; backward contact tracing is
slightly better at finding positive cases for epidemics with small
dispersion parameter with a small number of tests; and that there is
both a gap between classic contact tracing and ideal contact tracing
and between it and ideal testing, that make exploring smart contact
tracing and testing strategies worth it. We also show the limitations
of contact tracing as a proxy for the actual epidemic status and pro-
pose random testing as a better estimate for such inference. Finally,
our models assume full knowledge of the contact network, akin
to using a perfect digital tracking app; other modeling decisions
attempt at conveying optimal computational conditions for contact
tracing and testing.

Background
Compartmental epidemic models, such as the Susceptible-Infected-
Recovered (SIR) model [26], are classical models used for gaining
insights into disease transmission dynamics. Such models define
several infection states for individuals in a population, and the
dynamics of individuals moving between states can be modeled
deterministically or stochastically [3].

Many works have explored epidemic simulations over random
networks [28, 43, 44]. The key issues to consider in this context are
the stochasticity of epidemic diffusions and the network architec-
ture.

Stochastic simulations of epidemics are conducted with the Gille-
spie algorithm [28]. The algorithm samples, at each step, from the
total rates of all possible events, the next event time and an event
type—e.g., an infection event or a recovery event. Every simula-
tion continues until no infectious individuals can be found in the
population.

Keeling and Eames [24] provide a review of properties of epi-
demics over a variety of common network structures, including
Erdős–Rényi random networks, lattices, small-world networks,
scale-free networks, and spatial networks. Others [27, 39] attempt
to design disease spreading networks where node connections are
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clustered. On the other hand, other works [2, 36, 56] seek to con-
struct networks from real-world contact data. In this work, we
employ random networks with controllable epidemic parameters to
analyze the limits of contact tracing and random testing strategies.

The number of secondary infections of individuals has been
shown to be heterogeneous, and numerous “superspreading events”
have been reported [53]. Lloyd-Smith et al. [37] proposed to model
this phenomenon with a negative-binomial distribution parame-
terized by the basic reproduction number 𝑅0 and a dispersion pa-
rameter 𝑘 . The dispersion parameter 𝑘 controls the superspreading
effect of a given disease, e.g., 𝑘 = 0.16 was estimated for SARS [37]
where lower 𝑘 values indicate a stronger superspreading effect.
Specifically, modeling efforts on the superspreading effect of the
ongoing COVID-19 pandemic have been focused on estimating
the dispersion parameter [12], understanding the causes [46] and
evaluating control strategies [23].

As a tool for containing infectious epidemics, contact tracing
is the process of identifying individuals who have been in contact
with known infected cases. This process usually involves intensive
manual efforts from specialists in interviewing infected patients
and reconstructing their potential contacts [18]. Prior work has
targeted improving the efficiency and accuracy of this process
through communication traces [16] or dedicated digital apps [1, 5].

Effective contact tracing is considered to be critical in control-
ling an ongoing epidemic [48, 49], which successfully contained
SARS [35]. However, this tool has experienced failures before, such
as the British foot-and-mouth epidemic [17]. Therefore, a rich set of
literature has studied the effectiveness of applying contact tracing
in controlling epidemics [7, 22, 29] and, especially, in the ongoing
COVID-19 pandemic [2, 9, 18, 25, 32].

RESULTS
Superspreading random networks
The simplest randomnetworks, the Erdős–Rényi (ER) networks [15],
have been shown to reduce the epidemic models to their classical
fully mixed variants [24]. Therefore, in the context of epidemics,
they can be fully characterized given the number of nodes 𝑁 and
the 𝑅0, 𝛽 , and 𝛾 parameters. In the same spirit, we have developed a
new method to generate random networks taking into account the
superspreading effect. Given the number of nodes 𝑁 , the epidemic
model parameters and the dispersion parameter 𝑘 , we can fully
define the node degree distributions of such networks, which we
call superspreading random networks.

We show that the node degree distribution of a superspreading
random network is defined as

𝑝 (𝑖 | 𝑘, 𝑅0, 𝛽, 𝛾) =
𝑁𝐵(𝑖 − 1 | 𝑘, 𝑅0 (𝛾+𝛽)

𝛽
)

𝑖
∑∞

𝑗=1
𝑁𝐵 ( 𝑗−1 |𝑘, 𝑅0 (𝛾+𝛽 )

𝛽
)

𝑗

(1)

where 𝑁𝐵(· | 𝑘, 𝑅0 (𝛾+𝛽)
𝛽

) is a negative binomial distribution param-

eterized by the dispersion parameter 𝑘 and mean 𝑅0 (𝛾+𝛽)
𝛽

. We then
apply the configuration model [45] to generate random networks.
The detailed derivation is explained in Methods.

Given the assumption of infection independence (see Methods),
we seek to ascertain that desired dispersion parameters are achieved

and maintained throughout the exponential phase of the epidemic.
Fig. 1a shows that this is the case up to 𝑘 = 1 regardless of the
recovery and infection rates and that it degrades at lower infec-
tion rates and higher recovery rates. In contrast, in ER networks,
dispersion parameters cannot be controlled. As shown in Fig. 1b,
it is always above 1, and, in general, it increases with higher in-
fection rates and lower recovery rates. Both Figs. 1a and 1b show
results for the first 100 infected nodes with 10 initial infected nodes.
Similar results for higher numbers of infected nodes are shown
in Supplementary Fig. 1. As it can be seen, using ER networks for
an epidemic in which 𝑘 is known to be low (such as COVID-19 or
SARS) would lead to a misrepresentation of the distribution of the
infections.

Prior works [37, 46] typically model heterogeneous secondary
infection numbers with variances in individual infectiousness, i.e.,
posing aGamma distribution on infection rates. Supplementary Fig. 2
shows that, for low 𝑅0 values and especially for low recovery rates,
the difference between the intended dispersion parameter and the
achieved dispersion parameter in the first 100 infected nodes is
significant and much larger in this case than for the superspreading
network.

Finally, we show in Fig. 1c the node degree distribution of su-
perspreading networks for different values of the dispersion pa-
rameters, 𝑅0, infection rates, and recovery rates. Other network
measures, such as clustering coefficients, are shown in Supplemen-
tary Fig. 3.

A study of contact tracing and Random Testing
See Methods for a complete description of the computational setup
used throughout this section.

Correlation between positive rates and actual infections

Positive rates from testing are widely adopted for estimating under-
lying infection statuses in populations [55]. Therefore, in this part,
we evaluate the correlation between positive rates (see Methods)
and actual infected numbers on each day. Fig. 2 depicts the aver-
aged daily correlations for SIR model (A similar study is depicted
in Supplementary Fig. 4 for the SEIR model).

First, we can see that, in general, for small 𝑅0, small 𝑘 , large 𝛾
and a small number of tests, the correlations are relatively poor,
so positive rates from all strategies are misrepresenting the actual
infection. These correlations become better as the 𝑅0, 𝑘 and the
number of tests increase.

For RT (Fig. 2a), we observe close proportions between daily
confirmed rates and actual infection rates in general. We can con-
clude that random testing, for a sufficiently large 𝑅0 and number of
tests, is a good estimator of the actual epidemic progress. Note that
correlations always improve as the number of daily tests increases,
even though the testing is also affecting the epidemic since posi-
tives are being quarantined. For a scenario in which testing does
not affect the epidemic (𝑃𝑞 = 0) see Supplementary Fig. 5a for SIR
or Supplementary Fig. 5b for SEIR.

Figs. 2b and 2c show the correlations for forward and backward
contact tracing, respectively. We can see that in both cases, posi-
tive rates often overestimate the actual infections, especially for
low 𝑘 and 𝛾 values. Moreover, BCT overestimates more than FCT,
especially when the number of tests is low and the epidemic has
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a low dispersion parameter. This also means that BCT is better at
finding positive contacts under these conditions.

Also, we see instances in which CT daily positive rates increase
whenmore daily tests are deployed, whereas actual infections in the
population decrease. For example, when 𝑅0 = 10, 𝛾 = 0.05, 𝑘 = 0.5
in Fig. 2b, 1, 000 daily tests lead to higher proportions of positive
cases than 100 daily tests, which results in a false estimation of the
epidemic.

In conclusion, positive rates from contact tracing can be mislead-
ing and should be considered with caution. However, positive rates
from random testing with a sufficiently large number of daily tests
show more promise as a proxy for the actual epidemic progress
(A similar trend can be seen in Supplementary Fig. 4 for the SEIR
model).

Analysis on final epidemic infections

Here, in order to classify different epidemics, we introduce two
novel strategies that represent both the ceiling of contact tracing
and the ceiling of testing. Fig. 3 shows a cartoon representation of
the effect of these strategies on a toy infection network and their
differences with both random testing and contact tracing. We call
these ideal strategies oracles, and they are defined in Methods.

When comparing average total infections, Fig. 4a shows that, for
the networks simulated with 𝑘 = 0.1, around 20% of the population
may be infected in the worst scenario without any intervention and
less than 10% of populationwhen𝑅0 < 2.5. On the other hand, when
intervention operations are applied, epidemics with higher 𝛽 and 𝑅0
are more difficult to contain. Only GOT contains epidemics within
a small number of daily tests, which becomes more difficult as 𝑅0
grows. COT performs slightly better than the other contact tracing
strategies (forward and backward). However, BCT does not show
obvious advantages over FCT. In general, contact tracing does not
seem to have a considerable impact in the course of the epidemic,
and much less so random testing. Also, note that all epidemics result
in much larger infected populations when simulations occur over an
ER network. For SEIR models in Supplementary Fig. 6, it can also be
found that incubation periods (when individuals are not contagious
but they are detectable) result in more containable epidemics when
compared to the same parameter sets in SIR models.

The nature of the superspreading events when 𝑘 is low renders a
lower portion of the population infected at the end of the epidemic
(Figure 3a). However, since superspreading events will have more
impact in denser communities (connected components in the net-
work), especially in those where initially infected individuals were
found, we explore the average percentage of the infected population
in the top 5 largest communities in the network. Figure 3b shows
that this has no effect for large 𝑘 values or in ER networks but
shows noticeable differences, especially for 𝑘 = 0.1. Note that, for
example, 𝑅0 = 2.5 and 𝛾 = 0.05 with no interventions reaches only
10 to 15 percent of infected individuals at the end of the epidemic,
but around 80 percent within the densest communities.

From Fig. 4c and Supplementary Fig. 6c, we see that high 𝑘 and
small 𝛾 lead to longer epidemic diffusion times, peaking at 𝑅0 = 2.5.
Here we see an opposite trend to Fig. 4a with longer times for
smaller 𝑅0 and lower 𝑘 values. Also, contact tracing seems to have a
greater impact on times than on the total infected population.When

comparing SEIR models to SIR models, longer days are observed
overall due to the incubation periods.

Finally, Fig. 4 helps us classify parameter sets in terms of how
containable they are. Thus, we can see that epidemics with 𝑅0 = 1
can be contained even without any interventions; however, contact
tracing does have an impact in the densest communities and in
the final time of the epidemic. For 𝑘 = 0.1 tracing interventions
are capable of partially containing the epidemics with a sufficient
number of resources. For larger 𝑘 values and as 𝑅0 increases, epi-
demics are not containable with RT or any CT strategies. Only the
global oracle, equipped with large numbers of daily tests, can have
an impact. Lastly, for extreme 𝑅0 values (10 and beyond) and large
𝑘 values (above 1 and for ER networks), there is no intervention
that can contain the epidemic.

A mixed strategy for containment and surveillance

Many countries have established daily risk level thresholds that are
accompanied by different measures. For illustration purposes, we
choose the levels defined by the Spanish government (see Methods).

Fig. 5 depicts the maximum threat level achieved during an
epidemic for each of the epidemic parameter values, the number of
daily tests, and different contact tracing/testing strategies.

Fig. 5a shows the actual levels achieved. As it can be seen, for
almost all cases, the maximum threat level is reached at some point
in time during the epidemic (except for low 𝑅0 values). Fig. 5b
shows the maximum threat level when considering all positive
tests as the actual total positives in the population. This inference
consistently underestimates the maximum threat level. On the other
hand, Fig. 5c shows the maximum threat levels if those are inferred
from the positive rates found during testing. As expected from our
correlations section results, this scenario consistently overestimates
threat levels (except RT).

Finally, we constructed a mixed strategy in which 100 daily tests
were devoted to random testing regardless of the strategy (for 10
daily tests we devoted 5 to random testing and for 100 daily tests
50 were devoted to random testing). Fig. 5d shows the maximum
threat levels reached with this new strategy when only positive
rates from random testing are used. Although far from perfect, we
can see that this strategy shows maximum threat levels very similar
to the actual ones shown in Fig. 5a.

Note that this mixed strategy could potentially result in different
infection levels, since not all tests are devoted to the given strategy.
However, Supplementary Fig. 7 shows that the differences between
this strategy and the non-mixed ones (compare with Fig. 4) are
negligible.

Known diseases

As an example and proof of concept, we seek to quantify the ef-
fect of intervention strategies on several known diseases with
their reported epidemic parameters, including Measles [6, 47, 54],
H1N1 [11, 20, 31], Ebola [4, 34], SARS [10] and COVID-19 [2, 12].
Their detailed parameters are listed in Supplementary Table 1. In
our simulations, we fix the population number to 𝑁 = 100, 000 and
𝐼0 = 10 initial infections. Again, we vary the number of daily tests
from 0 to 10, 000.

3



Fig. 6 depicts the epidemic curve of the simulation results of the
five epidemics under different interventions. Supplementary Fig. 8
shows the same results for the cumulative cases.

In Figs. 6a to 6d, overall, the operations with oracle strategies
contain epidemics better, while random testing requires much more
daily tests to control the epidemic spreading. In particular, both
contact tracing operations (forward and backward) lead to similar
average daily infection curves. When comparing different diseases,
SARS (Fig. 6c) is the most containable epidemic, while Measles
cannot be controlled due to its extreme 𝑅0 value and its infection
processes in all simulations finished shortly compared to other
epidemics as shown in Fig. 6e. These two are the extreme points
where an epidemic can be controlled with CT andwhere it cannot be
controlled even with GOT, respectively. For the rest, H1N1 (Fig. 6c)
can be contained with relatively few resources, and Ebola (Fig. 6b)
and Covid-19 might need one order of magnitude more to reach
containment. Note that SEIR models are easier to contain under the
assumption that E individuals are not contagious, but they will be
tested positive. Finally, note that the global oracle can control all
epidemics with few resources, except for Measles.

Supplementary Fig. 9 and Supplementary Fig. 10 show the same
results when we disregard the dispersion parameter and run the
simulations over ER networks, both for the epidemic curve and
cumulative cases, respectively. It can be seen that final infections
are much higher than those found in superspreading networks with
low dispersion parameters.

Of relevance, with the parameters for COVID-19 from [2, 12],
only around 10% of the population is infected. A reasonable amount
of daily tests can reduce this proportion to around 2 − 5%. This is
mainly due to the low dispersion parameter and the static nature of
our network simulations (and no re-introductions). We believe this
is in accordance with what most countries are suffering nowadays
in terms of infected population per wave [30, 33, 52].

Finally, Supplementary Fig. 11 shows the daily threat levels
for each of the epidemics. Note that the maximum threat level is
reached at some point during the epidemic in all cases (even when
the final proportion of infected individuals is low – see Supple-
mentary Fig. 8). As expected, inferring threat levels from positives
found in tests underestimates the actual infections, whereas infer-
ring threat levels from positive rates from all tests overestimate
them. In general, inferring threat levels from positives found only
in random testing (mixed strategy) is a much closer estimate to the
actual levels.

DISCUSSION
In this paper, we study the computational bounds of contact trac-
ing and random testing. We introduce random networks that take
into account the superspreading effect with controllable dispersion
parameters for the first time. We first find that backward contact
tracing is slightly better than forward contact tracing for low dis-
persion parameters and a small limit of daily tests. We then find
the limitation of contact tracing as a means to describing the actual
epidemic status. Afterward, we provide a classification of epidemics
in terms of how containable they are, in which we find that there is
a gap between classic contact tracing and optimal contact tracing,
and between this an optimal testing. The implications are exploring

both smart contact tracing and smart testing techniques is worth it.
We also see that the length of the epidemic can be misleading and
that contact tracing also has an impact on it.

Finally, we want to address the fact that other recent works on
contact tracing models [2, 18, 32] for COVID-19 show more opti-
mistic results than what transpires from our study regarding the
impact of contact tracing. We believe three main factors contribute
to this difference: (1) The superspreading effects controlled by the
dispersion parameter are not explicitly considered in these works,
while our study is done over networks where we control the dis-
persion parameter for the simulations. (2) Testing and/or tracing
resources are unlimited for these references, while we have ana-
lyzed various levels of available testing or tracing resources up to
10% of the total population of daily tests. (3) Lastly, most of these pa-
pers ( [2, 18]) consider between 35% and 70% of infected individuals
as triggers of contact tracing, while for this work, only hospital-
ized individuals (which is 5% of infected individuals throughout
the main text) and positives found via random testing or contact
tracing are considered.

For illustration purposes, we turn our focus to the exhaustive
work carried out in [2] to try to ascertain objectively whether these
three issues can explain the differences observed. First, we see
that, when we run the epidemic diffusion process as stated in [2]
(see Methods) over the network provided in https://github.com/
aaleta/NHB_COVID, the resulting dispersion parameter is 𝑘 = 2.5,
which is higher than the estimated value of 0.1 ([12]). Second, again
with the same parameters from [2], Supplementary Fig. 12a shows
the number of tests performed each day. It can be seen that the
testing peak goes over 500 tests (for 𝐼0 = 1), which represents over
5% of the total population of daily tests to achieve a final 91% of
the infected population. Finally, Supplementary Fig. 12b brings [2]
framework closer to our own by limiting the number of daily tests
and setting contact tracing trigger cases to hospitalizations (with
a probability of 2%). Here we can see how the impact of contact
tracing is drastically reduced.

In conclusion, our study provides a cautionary tale of contact
tracing. It also suggests a separation between tracing as a means
to containing an epidemic and testing as a means of inferring the
progress of the epidemic. Moreover, it highlights the need for more
intelligent testing strategies in order to contain most of the possible
(future) epidemics.
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METHODS
Contact networks simulation
Simulate Erdős–Rényi random networks

Bartlett and Plank [8] reveal the analytical connection between
the epidemic parameters and network parameters for Erdős–Rényi
random networks [14], i.e.,

𝑅0 =
𝛽 (𝑁 − 1)𝐾
𝛾 + 𝛽 (2)

where a network is parameterized by the average node degree 𝐾 .
When 𝑁 → ∞, the node degrees of these networks are Poisson
distributed with a mean value 𝑅0 (𝛾+𝛽)

𝛽
.

Simulate networks with dispersion parameters

In this section, we describe the algorithm for simulating random
contact networks that lead to negative binomial distributed sec-
ondary infections with given parameters.

To generate a random network, we first seek to derive its node
degree distribution. We provide here some definitions including
several probability generating functions (PGFs) following [44]:

• Given a random network with its degree distribution P(𝑑 =

𝑖) = 𝑝𝑖 , its PGF is𝐺0 (𝑥) =
∑∞
𝑖=1 𝑝𝑖𝑥

𝑖 and the average degree
equals < 𝑖 >= 𝐺 ′

0 (𝑥 = 1) = ∑∞
𝑖=1 𝑖𝑝𝑖 .

• The excess edge of a vertex is defined as the number of remain-
ing edges connected to the vertex when follow a random
edge to that vertex. This corresponds the remaining neigh-
bor counts when disease diffuses to a new individual. The
probability that a vertex at the end of a random edge has
excess degree 𝑖 − 1 is given in [44] as 𝑖𝑝𝑖

<𝑖> . Therefore, the
PGF for the excess degree of a vertex is

𝐺1 (𝑥) =
∑∞
𝑖=1 𝑖𝑝𝑖𝑥

𝑖−1∑∞
𝑖=1 𝑖𝑝𝑖

(3)

• More importantly, given the probability that a infected indi-
vidual infects his/her neighbor 𝑇 , the PGF of the number of
infected neighbors is

𝐺 ′
0 (𝑥) = 𝐺0 (1 + (𝑥 − 1)𝑇 ) (4)

Similarly, the PGF for the excess occupied degree is𝐺 ′
1 (𝑥) =

𝐺1 (1 + (𝑥 − 1)𝑇 )
We are then able to derive the degree distribution. The assump-

tion of a negative binomial (NB) distributed secondary infections
indicates that 𝐺 ′

1 (𝑥) is also the PGF of an NB distribution. Given
the average secondary infection 𝑅0 and the dispersion parameter 𝑘 ,
we have

𝐺 ′
1 (𝑥) =

∞∑︁
𝑛=0

(
𝑛 + 𝑘 − 1

𝑛

) (
𝑅0

𝑅0 + 𝑘

)𝑛 (
𝑘

𝑅0 + 𝑘

)𝑘
𝑥𝑛 (5)

=

(
1 + 𝑅0

𝑘
(1 − 𝑥)

)−𝑘
(6)

where the second step is due to the binomial theorem. With a
change of variable, we get

𝐺1 (𝑦) =
(
1 + 𝑅0

𝑇𝑘
(1 − 𝑦)

)−𝑘
(7)

where 𝐺1 (𝑦) is simply another NB with mean 𝑅0
𝑇

and dispersion
parameter 𝑘 . We denote its probability mass function as 𝑞𝑖−1 which,
as mentioned above, is equal to 𝑖𝑝𝑖

<𝑖> = 𝑞𝑖−1. Due to
∑∞
𝑖=1 𝑝𝑖 = 1, we

are able to compute the average node degree

< 𝑖 > =
1∑∞

𝑖=1
𝑞𝑖−1
𝑖

(8)

=

𝑅0
𝑇
(1 − 𝑘)

( 𝑘𝑇
𝑘𝑇+𝑅0

)𝑘 (𝑘 + 𝑅0
𝑇
) − 𝑘

(9)

which can be easily solved numerically.
We then need to define the infection probability 𝑇 given the in-

fection rate and recovery rate. For an infected individual, assuming
his/her recovery follows a rate 𝛾 and he/she is infecting a neighbor
with a rate 𝛽 , we can easily derive the probability of the neighbor
being infected as 𝛽

𝛾+𝛽 . If we further introduce a relaxed assumption

that all neighbors are infected i.i.d., we then have 𝑇 =
𝛽

𝛾+𝛽 .
Given the derived degree distributions, we can then simulate

a random network by applying a configuration model [45]. We
note that any self-loops or parallel edges are removed from the
generated networks.

Explore empirical dispersion parameters in simulations

Contact networks simulated via the method described in Methods
is based on an assumption that one infectious individual infects
his/her neighbors independently. However, this relaxed assumption
may lead to errors between chosen dispersion parameters and their
empirical values in simulations. Here we explore such discrepancies
via simulations.

Clustering coefficients

Nelakonda and Rhomberg [42] show that clustering coefficients of
the configuration model are defined as:

1
𝑁

(< 𝑖2 > − < 𝑖 >)2
< 𝑖 >3 (10)

where 𝑁 is the number of nodes. This indicates that the clustering
coefficients are 0 in the limit of large networks.

Experimental setup
Here we detail the main concepts of our experimental setup. As it
will be seen, all modeling decisions are geared towards a more favor-
able scenario for the impact of contact tracing rather than towards
a more realistic one. Therefore, the following results are best-case
scenarios for all strategies. The main modeling considerations are
as follows:

• Compartmental models.We simulate outbreaks with two
epidemic models, SIR and SEIR. The SIR model assigns three
possible infection statuses to individual nodes, susceptible
(𝑆), infected (𝐼 ), and recovered (𝑅), whereas the SEIR model
further introduces the exposed (𝐸) for modeling incubation
periods of diseases. While most nodes are in the susceptible
status (𝑆), 𝐼0 number of nodes are initialized as infectious
nodes (𝐼 ) at 𝑡 = 0, who spread the disease to their neigh-
bor nodes at a rate 𝛽 . The dynamics of infectious periods
(i.e., from 𝐼 to 𝑅) and incubation periods (i.e., from 𝐸 to 𝐼 ) of
individual nodes are defined by rates 𝛾 and ^, respectively.
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Besides, we introduce a hospitalized (𝐻 ) compartment in Ex-
perimental setup section to model the possibility of infected
individuals disclosing their statuses via hospitalization. The
rate of 𝐼 to 𝐻 is [, and it can be directly calculated from
the probability of hospitalization 𝑝𝐻 . Moreover, the basic
reproduction number, 𝑅0, is an important epidemic quan-
tity that defines the average secondary infections caused by
a single infected individual. Throughout the paper, results
for SIR models are shown in the main text figures, while
those for SEIR are depicted in supplementary figures. The
main decision about the SEIR model is that individuals who
are in incubation periods cannot infect but can be detected
as positive in a test. Both models are extended with a Hos-
pitalization rate, where some infected individuals become
hospitalized. Hospitalized individuals are considered as au-
tomatic positives who trigger contact tracing.

• Tracing and testing setups. In our experiments, we ex-
plore the limits of contact tracing and random testing in
containing epidemics. Given a fixed number of tests per day,
these strategies are applied daily in epidemic simulations,
and different individuals are then tested for their infection
statuses.We assume the test results are provided immediately
without false positives and false negatives. We disregard the
number of tracers and assume instead the limiting resources
are the daily tests. Calculating the number of tracers to daily
tests is not discussed in this work.

• Random testing (RT). This operation devotes resources to
randomized testing within a population. Random tests can
be performed in real-life scenarios by contacting random
people and asking them to take a test or by announcing
voluntary tests at specific locations. Here, we assume all in-
fection statuses will receive an equal probability of selection
for tests and also that recovered individuals can be chosen
for such random tests (only individuals that have tested pos-
itive and still have not recovered are not selected). These
two decisions together allow us for a unique implementation
that accounts for both real-life scenarios at the same time.

• Contact tracing (CT). During simulations, we maintain a
queue of individuals to be tested and traced. Neighbors of
positive cases, found by contact tracing, random testing, or
hospitalization, are recorded in the queue. The probability
of discovering a contact of an infected node is denoted as 𝑃𝑐
and is set to 1 (akin to using a perfect contact tracing app [1]).
We note that, when the queue becomes empty, all remaining
testing resources are devoted to random testing, so that all
tests are performed every day. Two possible strategies arise
when individuals in the queue are prioritized differently: For-
ward contact tracing (FCT) orders the tests for individuals
according to the times when they are added to the queue.
On the other hand, backward contact tracing (BCT) pri-
oritizes the tests to neighbors of positive cases, up to one
hop in networks. This latter approach has been proposed for
epidemics with low dispersion parameter [13, 21, 41], aiming
to find sources of the infections.

• Quarantine.We assume a scenario where nodes that have
tested positive are quarantined—i.e., removed from the con-
tact network—with a probability that we denote as 𝑃𝑞 . This
probability is set to 1.

• Parameter exploration.We quantify the effect of different
intervention operations on a wide range of possible epi-
demics by varying all epidemic parameters. We also explore
the space of initial infected (with no re-introductions) and
the number of daily tests. A complete table of the param-
eters tested is presented in Supplementary Table 1. In the
main text, we discuss a smaller set of parameters that are
representative of the observed trends. Complete results for
all parameters can be found in Supplementary Data 1.

• Simulation setups Given an epidemic model with chosen
parameters, we first simulate 15 different superspreading
random networks based on the different network parameters
but with a fixed number of nodes 𝑁 = 100, 000 (some results
with 𝑁 = 1, 000, 000 are shown in Supplementary Data 2).
On each superspreading network, we randomly select 𝐼0
individuals as initial infections and simulate an epidemic
with applications of all intervention strategies daily. This
process is repeated 30 times on every contact network, which
results in 450 simulations in total. In all results that follow,
the number of initially infected nodes 𝐼0 is set to 10. Results
for larger numbers of initially infected nodes are shown in
Supplementary Data 1.

Positive rates from tracing/testing
Since we cannot select (for testing) individuals that have already
tested positive but are not yet recovered (which we call 𝑐𝑡𝑑 below),
the positive rates are calculated as follows:

𝑃𝑜𝑠𝑟𝑎𝑡𝑒 = ((𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/𝑡𝑒𝑠𝑡𝑠) ∗ (𝑁 − 𝑐𝑡𝑑) + 𝑐𝑡𝑑)/𝑁

Oracles
The contact tracing oracle (CTO) prioritizes individuals in the
testing queue so that the actual infected ones are visited (tested)
first. This provides an upper bound on the best contact tracing
strategy.

The global oracle testing (GOT) assumes the availability of
information about all newly infected individuals who are then
tested and quarantined. Thus, the contact tracing queue is filled
only with infected individuals. This assumption leads to an upper
bound for future smart testing strategies.

We note that, although these two oracle scenarios are unrealistic
in practice, they provide ideal upper-bounds for potential new
strategies that might arise in the future.

Threat Levels
We use the Spanish Government threat levels, which are based
on the total infection number, in the last 14 days, per 100, 000
individuals. These levels are the following: (1) less than 25 infected,
(2) between 25 and 50, (3) between 50 and 150, (4) between 150 and
250 and (5) over 250 infected individuals per 100, 000 individuals. In
practice, these levels also take into account positive rates and ICU
occupancy, however, we ignore these here for the sake of simplicity.
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Baseline Simulations from the Prior Work
We apply the network provided in https://github.com/aaleta/NHB_
COVID by Aleta et al. [2]. The provided network is unweighted and
has 10, 000 nodes and an average node degree of 10. In terms of the
simulations, we implement the epidemic parameter sets following
the statistics detailed in [2] where a 50% probability of the discov-
ery of symptomatic infections is applied and 40% of contacts are
successfully traced. The only two differences with [2] are: testing
and quarantining are performed immediately (whenever tests are
available) and no household contacts are automatically quarantined
(since these are unknown in the network provided).

Software Implementation
The simulation algorithm was implemented in Python based on
the sample code provided by Kiss et al. [28]1. We extended the
simulation with multiple containment strategies described in this
paper. We use the R programming language for batch running the
simulations by invoking the Python modules and for analyzing and
plotting the simulation results.
Code availability The source code is available at https://github.
com/qykong/testing-strategies. The simulation code and all param-
eters used for related works can be found in the repository.

1https://github.com/springer-math/Mathematics-of-Epidemics-on-Networks
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Figure 1: Comparison of network properties given different parameters. (a) shows the difference between chosen dispersion
parameters and estimated dispersion parameters in simulations. (b) depicts the estimated dispersion parameters of ER ran-
dom networks. (c) presents a complementary cumulative density plot of node degrees for dispersion networks with varying
parameters.
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Figure 2: Correlation plots between daily infections and positive rates for SIR models with different parameters, 𝛽 = 0.6 and
𝑃𝐻 = 0.05. (a) shows correlation plots for random testing, (b) shows correlation plots for forward contact tracing, and (c) shows
correlation plots for backward contact tracing. Red lines represent correlation values and green lines indicate expected final
total infections. Bars represent expected daily infection ratios and daily average positive rates. Note that bars are scaled by
the maximum values.
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Figure 4: Evaluation of epidemic simulations over a set of parameters for SIRmodelwith 𝛽 = 0.6 and 𝑃𝐻 = 0.05. (a) shows average
final infections, (b) shows average final infections in top 5 communities and (c) shows average days to the last infections.
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Figure 5: Summary of threat levels of SIR model simulations given different epidemic parameters and intervention strategies
where 𝛽 = 0.6 and 𝑃𝐻 = 0.05. (a) shows actual highest risk levels for SIR models, (b) shows highest threat levels from confirmed
cases, (c) shows highest threat levels from positive rates and (d) shows highest threat levels for the mixed strategy (positive
rates estimated only from random tests).
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Figure 6: The average daily infection ratios of five known diseases by varying number of daily tests, under different interven-
tion strategies.
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Figure 1: Chosen dispersion parameters and their empirical values. (a) evaluates the effect of computing empirical dispersion
parameters over different numbers of first infected nodes. (b) shows the evolution of estimated dispersion parameters over
the course of the whole epidemics for 𝛽 = 1 and 𝛾 = 0.05.
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Figure 3: Clustering coefficients given different parameters. (a) Expected clustering coefficients given different parameters
when 𝑁 = 100000; (b) cumulative density plots of clustering coefficients given different parameters, 𝛽 = 1
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Figure 4: Correlation plots between daily infections and positive rates for SEIR models with different parameters, 𝛽 = 0.6,
^ = 0.2 and 𝑃𝐻 = 0.05. (a) shows correlation plots for random testing, (b) shows correlation plots for forward contact tracing,
and (c) shows correlation plots for backward contact tracing. Red lines represent correlation values and green lines indicate
expected final total infections. Bars represent expected daily infection ratios and daily average positive rates. Note that bars
are scaled by the maximum values.
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Figure 5: Correlation plots between daily infections and positives of (a) SIR and (b) SEIR when 𝑃𝑞 = 0. Note that 𝛽 = 0.6, ^ = 0.2
and 𝑃𝐻 = 0.05, and both plots show for results under random testing. Red lines represent correlation values and green lines
indicate expected final total infections. Bars represent expected daily infection ratios and daily average positive rates. Note
that bars are scaled by the maximum values.
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Figure 6: Evaluation of epidemic simulations over a set of parameters for SEIR model with 𝛽 = 0.6, ^ = 0.2 and 𝑃𝐻 = 0.05. (a)
shows average final infections, (b) shows average final infections in top 5 communities and (c) shows average days to the last
infections.
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Figure 7: Evaluation of epidemic simulations over a set of parameters for SIR model with 𝛽 = 0.6 and 𝑃𝐻 = 0.05 for the mixed
strategy. (a) shows average final infections, (b) shows average final infections in top 5 communities and (c) shows average days
to the last infections.
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Figure 8: The average daily cumulative infected populations of five known diseases by varying number of daily tests, under
different intervention operations.
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Figure 9: The average daily infection ratios of five known diseases by varying number of daily tests, under different interven-
tion strategies, over ER networks.
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Figure 10: The average daily cumulative infected populations of five known diseases by varying number of daily tests, under
different intervention operations, over ER networks.
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Figure 11: The average daily threat levels of five known diseases by varying number of daily tests, under different intervention
strategies. 26
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Figure 12: Simulations of COVID-19 on the network provided by Aleta et al. [2] for 𝐼0 = 1. (a) shows the average number of
tests used and daily positives detected when 50% of symptomatic infections are discovered. (b) shows the average final infected
population proportions of the scenario in (a) and, for a scenario in which only hospitalized (2.1% of symptomatic infections)
are discovered (Our setup). Following [2], only 40% of the contacts are discovered during contact tracing. The forward tracing
strategy is considered in both figures, backward contact tracing shows identical results.
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Supplementary Tables

Table 1: Parameter used for experiments

Parameters Values

𝑁 100,000, 1, 000, 000
𝐼0 10, 50, 100
𝛽 0.2, 0.4, 0.6, 1
𝛾 0.05, 0.25, 0.5, 1
^ 0.2
𝑅0 1, 1.5, 2, 2.5, 3, 3.5, 10
𝑘 0.1, 0.5, 1, 1.5
𝑃𝐻 0, 0.05, 0.1, 0.3
Number of daily tests 0, 10, 100, 1,000, 10,000

Table 2: Epidemic parameters of some known diseases

Model 𝑅0 𝛽 𝛾 ^ 𝐻 𝑘

COVID-19 [2, 12] SEIR 2.5 1 0.4 0.2 0.008372 0.1
SARS [10, 37] SEIR 1.2 0.15 0.125 0.1 0.333 0.16
H1N1 [11, 20, 31] SIR 1.33 0.19 0.143 / 0.294 8.092
Ebola [4, 34] SEIR 1.4 0.2 0.143 0.2 0 0.18
Measles [6, 47, 54] SIR 18 4.932 0.274 / 0.079 0.32
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