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Abstract8

Before formal education begins, children typically acquire a vocabulary of thousands of9

words. This learning process requires the use of many different information sources in their10

social environment, including the context in which they hear words used and their current11

state of knowledge. How is this information integrated? We specify a developmental model12

according to which children consider information sources in an age-specific way and13

integrate them via Bayesian inference. This model accurately predicted 2-to-5 year-old14

children’s word learning across a range of experimental conditions in which they had to15

integrate three information sources. Model comparison suggests that the central locus of16

development is an increased sensitivity to individual information sources, rather than17

changes in integration ability. This work presents a quantitative developmental theory of18

information integration during language learning, and illustrates how formal models can be19

used to make a quantitative test of the predictive and explanatory power of competing20

theories.21

Keywords: language acquisition, social cognition, pragmatics, Bayesian modeling,22

common ground23
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How young children integrate information sources to infer the meaning of words24

Human communicative abilities are unrivaled in the animal kingdom.1–3 Language –25

in whatever modality – is the medium that allows humans to collaborate and coordinate in26

species-unique ways, making it the bedrock of human culture and society.4 Thus, to absorb27

the culture around them and become functioning members of society, children need to learn28

language.5 A central problem in language learning is referent identification: To acquire the29

conventional symbolic relation between a word and an object, a child must determine the30

intended referent of the word. However, there is no unique cue to reference that can be31

used across all situations.6 Instead, referents can only be identified inferentially by32

reasoning about the speaker’s intentions.7–10 That is, the child has to infer what the speaker33

is communicating about based on information sources in the utterance’s social context.34

From early in development, children use several different mechanisms to harness35

social-contextual information sources.7,9,11 Children expect speakers to use novel words for36

unknown objects,12–15 to talk about objects that are relevant,16,17 new in context,18,19 or37

related to the ongoing conversation.20–22 These different mechanisms, however, have been38

mainly described and theorized about in isolation. The picture of the learning process that39

emerges is that of a “bag of tricks”: mechanisms that operate (and develop) independently40

from one another.11 As such, this view of the learning process does not address the41

complexity of natural social interaction during which many sources of information are42

present.6,23 How do children arbitrate between these sources in order to accurately infer a43

speaker’s intention?44

When information integration is studied directly, the focus is mostly on how children45

interpret or learn words in light of social-contextual information.24–32 In one classic study,3346

children faced a 2 x 2 display with a ball, a pen and two glasses in it. The speaker, sitting47

on the opposite side of the display, saw only three of the four compartments: the ball, the48

pen, and one of the glasses. When the speaker asked for “the glass”, children had to49
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integrate the semantics of the utterance with the speaker’s perspective to correctly infer50

which of the glasses the speaker was referring to. This study advanced our understanding51

by documenting that preschoolers use both information sources, a finding confirmed by a52

variety of other work.26,29,31 Yet these studies do not specify – or test – the process by which53

children integrate different information sources. When interpreting their findings, work in54

this tradition refers to social-pragmatic theories of language use and learning,9,10,34–36 all of55

which assume that information is integrated as part of a social inference process, but none56

of which clearly defines the process. As a consequence, we have no explicit and quantitative57

theory of how different information sources (and word learning mechanisms) are integrated.58

We present a theory of this integration process. Following social-pragmatic theories of59

language learning,9,10 our theory is based on the following premises: information sources60

serve different functional roles but are combined as part of an integrated social inference61

process.34–37 Children use all available information to make inferences about the intentions62

behind a speaker’s utterance, which then leads them to correctly identify referents in the63

world and learn conventional word–object mappings. We formalize the computational steps64

that underlie this inference process in a cognitive model38–40. In contrast to earlier65

modelling work, we treat word learning as the outcome of a social inference process instead66

of a cross-situational41,42 or principle-based learning process.43 In the remainder of this67

paper, we rigorously test this theory by asking how well it serves the two purposes of any68

psychological theory: prediction and explanation.44,45 First, we use the model to make69

quantitative predictions about children’s behavior in new situations – predictions we test70

against new data. This form of model testing has been successfully used with adults38,4671

and here we extend it to children. Next, we quantify how well the model explains the72

integration process by comparing it to alternative models that make different assumptions73

about whether information is integrated, how it is integrated, and how the integration74

process develops. Alternative models either assume that children ignore some information75

sources or – in line with a “bag of tricks” approach – they assume that children compute76
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isolated inferences and then weigh their outcome in a post-hoc manner.77

We focus on three information sources that play a central part in theorizing about78

language use and learning: (1) expectations that speakers communicate in a cooperative79

and informative manner,12,16,35 (2) shared common ground about what is being talked80

about in conversation,36,47,48 and (3) semantic knowledge about previously learned81

word–object mappings.11,4982

Our rational integration model arbitrates between information sources via Bayesian83

inference (see Fig. 1f for model formulae). A listener (L1) reasons about the referent of a84

speaker’s (S1) utterance. This reasoning is contextualized by the prior probability of each85

referent ρ. We treat ρ as a conversational prior which originates from the common ground86

shared between the listener and the speaker. This interpretation follows from the social87

nature of our experiments (see below). From a modelling perspective, ρ can be (and also88

also has been) used to capture non-social aspects of a referent, for example its visual89

salience38. To decide between referents, the listener (L1) reasons about what a rational90

speaker (S1) with informativeness α would say given an intended referent. This speaker is91

assumed to compute the informativity for each available utterance and then choose the92

most informative one. The informativity of each utterance is given by imagining which93

referent a listener, who interprets words according to their literal semantics (what we call a94

literal listener, L0), would infer upon hearing the utterance. Naturally, this reasoning95

depends on what kind of semantic knowledge (for object j) θj the speaker ascribes to the96

(literal) listener.97

Taken together, this model provides a quantitative theory of information integration98

during language learning. The three information sources operate on different timescales:99

speaker informativeness is a momentary expectation about a particular utterance, common100

ground grows over the course of a conversation, and semantic knowledge is learned across101

development. This interplay of timescales has been hypothesized to be an important102
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component of word meaning inference,42,50 and we link these different time-dependent103

processes together via their hypothesized impact on model components. Furthermore, the104

model presents an explicit and substantive theory of development. It assumes that, while105

children’s sensitivity to the individual information sources increases with age, the way106

integration proceeds remains constant.7,51 In the model, this is accomplished by creating107

age-dependent parameters capturing developmental changes in sensitivity to speaker108

informativeness (αi, Fig. 1d), the common ground (ρi, Fig. 1c), and object specific109

semantic knowledge (θi,j, Fig. 1e).110

To test the predictive and explanatory power of our model we designed a111

word-learning experiment in which we jointly manipulated the three information sources112

(Fig. 1). Children interacted on a tablet computer with a series of storybook speakers.52113

This situation is depicted in Fig. 1a iv, in which a speaker (here, a frog) appears with a114

known object (a duck, left) and an unfamiliar object (the diamond-shaped object, right).115

The speakers used a novel word (e.g., “wug”) in the context of two potential referents, and116

then the child was asked to identify a new instance of the novel word, testing their117

inference about the speaker’s intended referent. To vary the strength of the child’s118

inference, we systematically manipulated the familiarity of the known object (from e.g., the119

highly familiar “duck” to the relatively unfamiliar “pawn”) and whether the familiar or120

novel object was new to the speaker (meaning that it was not part of common ground).121

This paradigm allows us to examine the integration of the three information sources122

described above. First, the child may infer that a cooperative and informative speaker12,16123

would have used the word “duck” to refer to the known object (the duck); the fact that the124

speaker did not say “duck” then suggests that the speaker is most likely referring to a125

different object (the unfamiliar object). This basic inference is oftentimes referred to as a126

mutual exclusivity inference.13,15 Second, the child may draw upon what has already been127

established in the common ground with the speaker. Listeners expect speakers to128

communicate about things that are new to the common ground.18,19 Thus, the inference129
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Figure 1 . Experimental task and model. (a and b) Screenshots from the experimental
task. (i) The speaker encounters one object and then leaves the scene. (ii) While the speaker
is away, (iii) a second object appears, (iv) when returning, the speaker uses a novel word
to request an object. Sections (i) to (iii) establish common ground between the speaker
and the listener, in that one object is new in context (red). The request in (iv) licenses
an inference based on expectations about how informative speakers are (gold). Listeners’
semantic knowledge enters the task because the identity of the known object on one of the
tables is varied from well-known objects like a duck to relatively unfamiliar objects like a chess
pawn (total of 12 objects – blue). (a) shows the condition of the experiment in which common
ground information is congruent (i.e., point to the same object) with speaker informativeness
and (b) shows the incongruent condition. The congruent and incongruent conditions are
each paired with the 12 known objects, resulting in 24 unique conditions. Developmental
trajectories are shown for (c) sensitivity to common ground, (d) speaker informativeness and
(e) semantic knowledge, estimated based on separate experiments (see main text). (f) gives
the model equation for the rational integration model and links information sources to model
parameters.
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about the novel word referring to the unfamiliar object also depends on which object is130

new in context (Fig. 1a and b i-iii). Finally, the child may use their previously acquired131

semantic knowledge, that is, how sure they are that the known object is called “duck”. If132

the known object is something less familiar, such as a chess piece (e.g., a pawn), a133

3-year-old child may draw a weaker inference, if they draw any inference at all.53–55 Taken134

together, the child has the opportunity to integrate their assumptions about (1)135

cooperative communication, (2) their understanding of the common ground, and (3) their136

existing semantic knowledge. In one condition of the experiment, information sources were137

aligned (Fig. 1a) while in the other they were in conflict (Fig. 1b).138

Results139

Predicting information integration across development140

We tested the model in its ability to predict 2 - 5 year-old children’s judgments about141

word meaning. We estimated children’s (N=148) developing sensitivity to individual142

information sources in two separate experiments (Experiments 1 and 2; see Fig. 1c-e). In143

Experiment 1, we jointly estimated children’s sensitivity to informativeness and their144

semantic knowledge. In Experiment 2, we estimated sensitivity to common ground. We145

then generated parameter-free a priori model predictions (developmental trajectories)146

representing the model’s expectations about how children should behave in a new situation147

in which all three information sources had to be integrated. We generated predictions for148

24 experimental conditions: 12 objects of different familiarities (requiring different levels of149

semantic knowledge), with novelty either conflicting or coinciding; Fig. 1. We compared150

these predictions to newly collected data from N = 220 children from the same age range151

(Experiment 3). All procedures, sample sizes and analysis were pre-registered (see152

methods).153

The results showed a very close alignment between model predictions and the data154
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across the entire age range. That is, the average developmental trajectories predicted by155

the model resembled the trajectories found in the data (Fig. S6). For a more quantitative156

analysis, we binned predictions and data by child age (in years) and correlated the two. We157

found a high correlation, with the model explaining 79% of the variance in the data (Fig.158

2a). These results support the assumption of the model that children integrate three all159

available information sources. However, it is still possible that simpler models might make160

equally good – or even better – predictions. For example, work on children’s use of161

statistical information during word learning showed that their behaviour was best162

explained by a model which selectively ignored parts of the input.56163

Thus, we formalized the alternative view that children selectively ignore information164

sources in the form of three lesioned models (Fig. 2b). These models assume that children165

follow the heuristic “ignore x” (with x being one of the information sources) when multiple166

information sources are presented together.167

The no word knowledge model uses the same model architecture as the rational168

integration model. It uses expectations about speaker informativeness and common ground169

but omits semantic knowledge that is specific to the familiar objects (i.e., uses only general170

semantic knowledge). That is, the model assumes a listener whose inference does not vary171

depending on the particular familiar object but only depends on the age-specific average172

semantic knowledge. The no common ground model takes in object-specific semantic173

knowledge and speaker informativeness but ignores common ground information. Instead174

of assuming that one object has a higher prior probability to be the referent because it is175

new in context, the speaker thinks that both objects are equally likely to be the referent.176

As a consequence, the listener does not differentiate between situations in which common177

ground is aligned or in conflict with the other information sources. Finally, according to178

the no speaker informativeness model, the listener does not assume that the speaker is179

communicating in an informative way and hence ignores the utterance. As a consequence,180

the inference is solely based on common ground expectations.181
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We found little support for these heuristic models (Fig. 2b). When using Bayesian182

model comparison via marginal likelihood of the data,57 we find that the data was several183

orders of magnitude more likely under the rational integration model compared to any of184

the lesioned models (Fig. 2). Figure 2c exemplifies the differences between the models: all185

heuristic models systematically underestimate children’s performance in the congruent186

condition. Thus, even when the information sources are redundant (i.e. they all point to187

the same referent), children’s inferences are notably strengthened by each of them. In the188

incongruent condition, the no word knowledge model underestimates performance, because189

it does not differentiate between the different familiar objects, and in the case of a highly190

familiar word such as duck, underestimates the strength of the mutual exclusivity inference191

and its compensatory effect. The no speaker informativeness completely ignores this192

inferences, which leads to even worse predictions. On the contrary, the no common ground193

model overestimates performance because it ignores the dampening effect of common194

ground favoring a different referent. Taken together, we conclude that children considered195

all available information sources.196

Explaining the process of information integration197

In the previous section, we established that children integrated all available198

information sources. This result, however, does not speak to the process by which199

information is assumed to be integrated. Thus, in this section, we ask which integration200

process best explains children’s behavior.201

The rational integration model assumes that all information sources enter into a joint202

inference process, but alternative integration processes are conceivable and might be203

consistent with the data. For example, the “bag of tricks”11 hypothesis mentioned in the204

introduction could be re-phrased as a modular integration process: children might compute205

independent inferences based on subsets of the available information and then integrate206

them in a post-hoc manner by weighting them according to some parameter. This view207
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Figure 2 . Predicting information integration. Correlation between model predictions
and child inference data for all 24 conditions and for each age group (binned by year) for
the rational integration model (a) and the three lesioned models (b). Horizontal and vertical
error bars show 95% HDI. Inset shows an example of model predictions as developmental
trajectories (see Fig. 3). BF10 gives the Bayes Factor in favor of the integration model based
on the marginal likelihood of the data under each model. (c) Predictions from all models
considered alongside the data (with 95% HDI) for two experimental conditions (familiar
word: duck).
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would allow for the possibility that some information sources are considered to be more208

important than others. In other words, children might be biased towards some information209

sources. We formalized this alternative view as a biased integration model. This model210

assumes that semantic knowledge and expectations about speaker informativeness enter211

into one inference (mutual exclusivity inference)12,13,53 while common ground information212

enters into a second one. The outcomes of both processes are then weighted according to213

the parameter φ. Like the rational integration model, this model takes in all available214

information sources in an age-sensitive way and assumes that they are integrated. The only215

difference lies in the nature of the integration process: the biased integration model216

privileges some information sources over others in an ad-hoc manner.217

The parameter φ in the biased integration model is unknown ahead of time and has218

to be estimated based on the experimental data. That is, through Experiment 1 and 2219

alone, we do not learn anything about the relative importance of the information sources.220

As a consequence – and in contrast to the rational integration model – the biased221

integration model does not allow us to make a priori predictions about new data in the222

way we describe above. For a fair comparison, we therefore constrained the parameters in223

the rational integration model by the data from Experiment 3 as well. As a consequence,224

both models estimate their parameters using all the data available in a fully Bayesian225

manner (see Fig. S4).226

The biased integration model makes reasonable predictions and explains 78% of the227

variance in the data (Fig. 3b). The parameter φ – indicating the bias to one of the228

inferences – was estimated to favor the mutual exclusivity inference (Maximum229

A-Posteriori estimate = 0.65; 95% highest density interval (HDI): 0.60 - 0.71, see Fig. 3d).230

However, the rational integration model presented a much better fit to the data, both in231

terms of correlation and the marginal likelihood of the data (Fig. 3). When constrained by232

the data from all experiments, the rational integration model explains 87% of the variance233

in the data. Fig. 3e exemplifies the difference between the models: the biased integration234
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model puts extra weight on the mutual exclusivity inference and thus fails to capture235

performance when this inference is weak compared to the common ground inference – such236

as in the congruent condition for younger children. As a result, a fully integrated – as237

opposed to a modular and biased – integration process explained the data better.238

The rational integration model assumes that the integration process itself does not239

change with age.7 That is, while children’s sensitivity to each information source develops,240

the way they relate to one another remains the same. The biased integration model241

provides an alternative proposal about developmental change, one in which the integration242

process itself changes with age. That is, children may be biased towards some information243

sources, and that bias itself may change with age. We formalize such an alternative view as244

a developmental bias model which is structurally identical to the biased integration model245

but in which the parameter φ changes with age. The model assumes that the importance246

of the different information sources changes with age.247

The developmental bias model also explains a substantial portion of the variance in248

the data: 78% (Fig. 3c). The estimated developmental trajectory for the bias parameter φ249

suggests that younger children put a stronger emphasis on common ground information,250

while older children rely more on the mutual exclusivity inference (Fig. 3d). The relative251

importance of the two inferences seems to switch at around age 3. Yet again, when we252

directly compare the competitor models, we find that the data is several orders of253

magnitude more likely under the rational integration model (Fig. 3). Looking at Figure 3e,254

we can see that the developmental bias model tends to underestimate children’s255

performance because the supportive interplay between the different inferences is256

constrained. In the biased models, the overall inference can only be as strong as the257

strongest of the components – in the rational integration model, the components interact258

with one another, enabling a stronger overall inference.259
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Figure 3 . Explaining information integration across development. (a) Model predic-
tions from the rational integration model (colored lines) next to the behavioral data (dotted
black lines with 95% CI in gray) for all 24 experimental conditions. Top row (blue) shows
congruent conditions, bottom row (red) shows incongruent conditions. Familiar objects are
ordered based on their rated age of acquisition (left to right). Light dots represent individual
data points. (b) Correlations between model predictions binned by age and condition for
the integration model and (c) the two biased models. Vertical and horizontal error bars
show 95% HDIs. BF10 gives the Bayes Factor in favor of the rational integration model
based on the marginal likelihood of the data under each model. (d) Posterior distribution
of the bias parameter in the biased integration model and developmental trajectories for the
bias parameter in the developmental bias model (e) Predictions from all models considered
alongside the data (with 95% HDI) for two experimental conditions (familiar word: duck).
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Discussion260

The environment in which children learn language is complex. Children have to261

integrate different information sources, some of which relate to expectations in the moment,262

others to the dynamics of the unfolding interactions, and yet others to their previously263

acquired knowledge. Our findings show that young children can integrate multiple264

information sources during language learning – even from relatively early in development.265

To answer the question of how they do so, we presented a formal cognitive model that266

assumes that information sources are rationally integrated via Bayesian inference.267

Previous work on the study of information integration during language268

comprehension focused on how adults combine perceptual, semantic or syntactic269

information.58–62 Our work extends this work to the development of pragmatics. Our model270

is based on classic social-pragmatic theories on language use and comprehension.10,34–36 As271

a consequence, instead of assuming that different information sources feed into separate272

word-learning mechanisms (the “bag of tricks” view), we assume that all of these273

information sources play a functional role in an integrated social inference process. Our274

model goes beyond previous theoretical and empirical work by specifying the computations275

that underlie this inference process. Furthermore, we present a substantive theory about276

how this integration process develops: We assume that children become increasingly277

sensitive to different information sources, but that the way these information sources are278

integrated remains the same. We used this model to predict and explain children’s279

information integration in a new word learning paradigm in which they had to integrate (1)280

their assumptions about informative communication, (2) their understanding of the281

common ground, and (3) their existing semantic knowledge.282

We found that this rational integration model made accurate quantitative predictions283

across a range of experimental conditions both when information sources were aligned and284

were in conflict. Predictions from the model better explained the data compared to285
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lesioned models which assumed that children ignore one of the information sources,286

suggesting that children used all available information. To test the explanatory power of287

the model – how well it explains the process by which information is integrated – we288

formalized an alternative, modular, view. According to the biased integration model,289

children use all available information sources but compute separate inferences based on a290

subset of them. Integration happens by weighing the outcomes of these separate inferences291

by some parameter. Finally, we tested an alternative view on the development of the292

integration process. According to the developmental bias model, the importance of the293

different information sources changed with age. In both cases, the rational integration294

model provided a much better fit to the data, suggesting that the integration process295

remains stable over time. That is, there is developmental continuity and therefore no296

qualitative difference in how a 2-year-old integrates information compared to a 4-year-old.297

The rational integration model is derived from a more general framework for298

pragmatic inference, which has been used to explain a wide variety of phenomena in adults’299

language use and comprehension.38,39,63–67 Thus, it can be generalized in a natural way to300

capture word learning in contexts that offer more, fewer, or different types of information.301

For example, non-verbal aspects of the utterance (e.g. eye-gaze or gestures) can affect302

children’s mutual exclusivity inference.68–72 As a first step in this direction, we recently303

studied how adults and children integrate non-verbal utterances with common ground51.304

Using a structurally similar model, we also found a close alignment between model305

predictions and the data. The flexibility of this modeling framework stems from its306

conceptualization of human communication as a form of rational social action. As such, it307

connects to computational and empirical work that tries to explain social reasoning by308

assuming that humans expect each other to behave in a way that maximizes the benefits309

and minimizes the cost associated with actions.28,73,74310

Our model and empirical paradigm provide a foundation on which to test deeper311

questions about language development. First, our findings should be replicated in children312
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from different cultural backgrounds, learning different languages.75 In such studies, we313

would not expect our results to replicate in a strict sense; that is, we would not expect to314

see the same developmental trajectories in all cultures and languages. Substantial variation315

is much more likely. Studies on children’s pragmatic inferences in different cultures have316

documented similar76,77 and different78 developmental trajectories. Nevertheless, our model317

provides a way to think about how to reconcile cross-cultural variation with a shared318

cognitive architecture: We predict differences in how sensitive children are to the individual319

information sources at different ages, but similarities in how information is integrated.7 In320

computational terms, we assume a universal architecture that specifies the relation between321

a set of varying parameters. Of course, either confirmation or disconfirmation of this322

prediction would be informative.323

Second, it would be useful to flesh out the cognitive processes that underlie reasoning324

about common ground. The basic assumption that common ground changes interlocutors’325

expectations about what are likely referents79 has been used in earlier modelling work on326

the role of common ground in reference resolution.62 Here we went one step further and327

measured the strength of these expectations to inform the parameter values in our model.328

However, in its current form, our model treats common ground as a conversational prior329

and does not specify how the listener arrives at the expectation that some objects are more330

likely referents because they are new in common ground. That is, computationally, our331

model does not differentiate between common ground information and other reasons that332

might make an object contextually more salient. An interesting starting point to overcome333

this shortcoming would be modelling work on the role of common ground in conversational334

turn taking.80335

Finally, our model is a model of referent identification in the moment of the336

utterance. At the same time, the constructs made use of by our model are shaped by337

factors that unfold across multiple time points and contexts: Common ground is built over338

the course of a conversation, and the lexical knowledge of a child is shaped across a339
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language developmental time-scale. Even speaker informativeness could be imagined to340

vary over time following repeated interactions with a particular speaker. What is more,341

assessing speaker informativeness is unlikely to be the outcome of a single, easy-to-define342

process. The expectations about informative communication that we take it to represent343

are probably the result of the interplay between multiple social and non-social inference344

processes. Thus, our model makes use of unidimensional representations of these345

high-dimensional, structured processes and examines how these representations are346

integrated. Connecting our model with other frameworks that focus on the cognitive,347

temporal and cross-situational aspects of word learning would elucidate further these348

complex processes.42,50,81349

Taken together, we hope this work advances our understanding of how children350

navigate the complexity of their learning environment. Methodologically, it illustrates how351

computational models can be used to test theories; from a theoretical perspective, it adds352

to broader frameworks that see the onto- and phylogenetic emergence of language as deeply353

rooted in social cognition.354

Methods355

A more detailed description of the experiments and the models can be found in the356

supplementary material. The experimental procedure, sample sizes, and analysis for each357

experiment were pre-registered (https://osf.io/7rg9j/registrations). Experimental358

procedures, model and analysis scripts can be found in an online repository359

(https://github.com/manuelbohn/spin). Experiments 1 and 2 were designed to estimate360

children’s developing sensitivity to each information source. The results of these361

experiments determine the parameter values in the model (see Fig. 1 c-f). Experiment 3362

was designed to test how children integrate different information sources.363

https://osf.io/7rg9j/registrations
https://github.com/manuelbohn/spin
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Participants364

Sample sizes for each experiment were chosen to have at least 30 data points per cell365

(i.e. unique combination of condition, item and age-group). Across the three experiments, a366

total of 368 children participated. Experiment 1 involved 90 children, including 30367

2-year-olds (range = 2.03 - 3.00, 15 girls), 30 3-year-olds (range = 3.03 - 3.97, 22 girls) and368

30 4-year-olds (range = 4.03 - 4.90, 16 girls). Data from 10 additional children were not369

included because they were either exposed to less than 75% of English at home (5), did not370

finish at least half of the test trials (2), the technical equipment failed (2) or their parents371

reported an autism spectrum disorder (1).372

In Experiment 2, we tested 58 children from the same general population as in373

Experiment 1, including 18 2-year-olds (range = 2.02 - 2.93, 7 girls), 19 3-year-olds (range374

= 3.01 - 3.90, 14 girls) and 21 4-year-olds (range = 4.07 - 4.93, 14 girls). Data from 5375

additional children were not included because they were either exposed to less than 75% of376

English at home (3) or the technical equipment failed (2).377

Finally, Experiment 3 involved 220 children, including 76 2-year-olds (range = 2.04 -378

2.99, 7 girls), 72 3-year-olds (range = 3.00 - 3.98, 14 girls) and 72 4-year-olds (range = 4.00379

- 4.94, 14 girls). Data from 20 additional children were not included because they were380

either exposed to less than 75% of English at home (15), did not finish at least half of the381

test trials (3) or the technical equipment failed (2).382

All participants were recruited in a children’s museum in San José, California, USA.383

This population is characterized by a diverse ethnic background (predominantly White,384

Asian, or mixed-ethnicity) and high levels of parental education and socioeconomic status.385

Parents consented to their children’s participation and provided demographic information.386

All experiments were approved by the Stanford Institutional Review Board (protocol no.387

19960).388
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Materials389

All experiments were presented as an interactive picture book on a tablet computer.390

Tablet-based storybooks are commonly used to simulate social interactions in391

developmental research and interventions.82 A recent, direct comparison found similar392

performance with tablet-based and printed storybooks in a word learning paradigm.52393

Furthermore, our results in Experiment 1 and 2 replicate earlier studies on mutual394

exclusivity and discourse novelty that used live interactions instead of storybooks.18,19395

Fig. 1a and b show screenshots from the actual experiments. The general setup396

involved an animal standing on a little hill between two tables. For each animal character,397

we recorded a set of utterances (one native English speaker per animal) that were used to398

talk to the child and make requests. Each experiment started with two training trials in399

which the speaker requested known objects (car and ball).400

Procedure401

Experiment 1 tested the mutual exclusivity inference.13,53 On one table, there was a402

familiar object, on the other table, there was an unfamiliar object (a novel design drawn for403

the purpose of the study) (Fig. 1a/b iv and Fig. S1a). The speaker requested an object by404

saying “Oh cool, there is a [non-word] on the table, how neat, can you give me the405

[non-word]?”. Children responded by touching one of the objects. The location of the406

unfamiliar object (left or right table) and the animal character were counterbalanced. We407

coded a response as a correct choice if children chose the unfamiliar object as the referent408

of the novel word. Each child completed 12 trials, each with a different familiar and a409

different unfamiliar object. We used familiar objects that we expected to vary along the410

dimension of how likely children were to know the word for it. This set included objects411

that most 2-year-olds can name (e.g. a duck) as well as objects that only very few412

5-year-olds can name (e.g. a pawn [chess piece]). The selection was based on the age of413
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acquisition ratings from Kuperman and colleagues.83 While these ratings do not capture414

the absolute age when children acquire these words, they capture the relative order in415

which words are learned. Fig. S2A in the supplementary material shows the words and416

objects used in the experiment.417

Experiment 2 tested children’s sensitivity to common ground that is built up over the418

course of a conversation. In particular, we tested whether children keep track of which419

object is new to a speaker and which they have encountered previously.18,19 The general420

setup was the same as in Experiment 1 (Fig. S1b). The speaker was positioned between421

the tables. There was an unfamiliar object (drawn for the purpose of the study) on one of422

the tables while the other table was empty. Next, the speaker turned to one of the tables423

and either commented on the presence (“Aha, look at that.”) or the absence (“Hm, nothing424

there”) of an object. Then the speaker disappeared. While the speaker was away, a second425

unfamiliar object appeared on the previously empty table. Then the speaker returned and426

requested an object in the same way as in Experiment 1. The positioning of the unfamiliar427

object at the beginning of the experiment, the speaker as well as the location the speaker428

turned to first was counterbalanced. Children completed five trials, each with a different429

pair of unfamiliar objects. We coded a response as a correct choice if children chose as the430

referent of the novel word the object that was new to the speaker.431

Experiment 3 combined the procedures from Experiments 1 and 2. It followed the432

same procedure as Experiment 2 but involved the same objects as Experiment 1 (Fig. 1433

i-iv and Fig. S1c). In the beginning, one table was empty while there was an object434

(unfamiliar or familiar) on the other one. After commenting on the presence or absence of435

an object on each table, the speaker disappeared and a second object appeared (familiar or436

unfamiliar). Next, the speaker re-appeared and made the usual request (“Oh cool, there is437

a [non-word] on the table, how neat, can you give me the [non-word]?”). In the congruent438

condition, the familiar object was present in the beginning and the unfamiliar object439

appeared while the speaker was away (Fig. 1a and Fig. S1c – left). In this case, both the440
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mutual exclusivity and the common ground inference pointed to the novel object as the441

referent (i.e., it was both novel to the speaker in the context and it was an object that does442

not have a label in the lexicon). In the incongruent condition, the unfamiliar object was443

present in the beginning and the familiar object appeared later. In this case, the two444

inferences pointed to different objects (Fig. 1b and Fig. S1c – right). This resulted in a445

total of 2 alignments (congruent vs incongruent) x 12 familiar objects = 24 different446

conditions. Participants received up to 12 test trials, six in each alignment condition, each447

with a different familiar and unfamiliar object. Familiar objects were the same as in448

Experiment 1. The positioning of the objects on the tables, the speaker, and the location449

the speaker first turned to were counterbalanced. Participants could stop the experiment450

after six trials (three per alignment condition). If a participant stopped after half of the451

trials, we tested an additional participant to reach the pre-registered number of data points452

per age group (2-, 3- and 4-year-olds).453

Data analysis454

To analyze how the manipulations in each experiment affected children’s behavior, we455

used generalized linear mixed models. Since the focus of the paper is on how information456

sources were integrated, we discuss these models in the supplementary material and focus457

here on the cognitive models instead. A detailed, mathematical description of the different458

cognitive models along with details about estimation procedures and priors can be found in459

the supplementary material. All cognitive models and Bayesian data analytic models were460

implemented in the probabilistic programming language WebPPL.84 The corresponding461

model code can be found in the associated online repository. Information about priors for462

parameter estimation and Markov chain Monte Carlo settings can also be found in the463

supplementary information and the online repository.464

As a first step, we used the data from Experiments 1 and 2 to estimate children’s465

developing sensitivity to each information source. To estimate the parameters for semantic466
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knowledge (θ) and speaker informativeness (α), we adapted the rational integration model467

to model a situation in which both objects (novel and familiar) have equal prior probability468

(i.e., no common ground information). We used the data from Experiment 1 to then infer469

the semantic knowledge and speaker informativeness parameters in an age-sensitive470

manner. Specifically, we inferred the intercepts and slopes for speaker informativeness via a471

linear regression submodel and semantic knowledge via a logistic regression submodel, the472

values of which were then combined in the cognitive model to generate model predictions473

to predict the responses generated in Experiment 1. To estimate the parameters474

representing sensitivity to common ground (ρ), we used a simple logistic regression to infer475

which combination of intercept and slope would generate predictions that corresponded to476

the average proportion of correct responses measured in Experiment 2. For the477

“prediction” models, the parameters whose values were inferred by the data from478

Experiments 1 & 2 were then used to make out-of-sample predictions for Experiment 3.479

For the “explanation” models, these parameters were additionally constrained by the data480

from Experiment 3. A more detailed description of how these parameters were estimated481

(including a graphical model) can be found in the supplementary material.482

To generate model predictions, we combined the parameters according to the483

respective model formula. As mentioned above, common ground information could either484

be aligned or in conflict with the other information sources. In the congruent condition,485

the unfamiliar object was also new in context and thus had the prior probability ρ. In the486

incongruent condition, the novel object was the “old” object and thus had the prior487

probability of 1− ρ.488

The rational integration model is a mapping from an utterance u to a referent r,489

defined as P int
L1 (r | u; {ρi, αi θij}) ∝ PS1(u | r; {αi, θij}) · P (r | ρi) where i represents the age490

of the participant and the j the familiar object. The three lesioned models that were used491

to compare how well the model predicts new data are reduced versions of this model. The492

no word knowledge model uses the same model architecture:493
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P no_wk
L1 (r | u; {ρi, αi θi}) ∝ PS1(u | r; {αi, θi}) · P (r | ρi) and the only difference lies in the494

parameter θ, which does not vary as a function of j, the object (i.e., θ in this model is495

analogous to a measure of gross vocabulary development). The object-specific parameters496

for semantic knowledge are fitted via a hierarchical regression (mixed effects) model. That497

is, there is an overall developmental trajectory for semantic knowledge (main effect – θi)498

and then there is object-specific variation around this trajectory (random effects – θij).499

Thus, the no word knowledge model takes in the overall trajectory for semantic knowledge500

(θi) but ignores object-specific variation. The no common ground model ignores common501

ground information (represented by ρ) and is thus defined as502

P no_cg
L1 (r | u; {αi θij}) ∝ PS1(u | r; {αi, θij}). For the no speaker informativeness model, the503

parameter α = 0. As a consequence, the likelihood term in the model is 1 and the model504

therefore reduces to P no_si
L1 (r | u; {ρi}) ∝ P (r | ρi).505

As noted above, the explanation models used parameters that were additionally506

constrained by the data from Experiment 3, but the way these parameters were combined507

in the rational integration model was the same as above. The biased integration model is508

defined as P biased
L1 (r | u; {φ, ρi, αi, θij}) = φ · PME(r | u; {αi, θij}) + (1− φ) · P (r | ρi) with509

PME representing a mutual exclusivity inference which takes in speaker informativeness510

and object specific semantic knowledge. This inference is then weighted by the parameter φ511

and added to the respective prior probability, which is weighted by 1− φi. Thus, φ512

represents the bias in favor of the mutual exclusivity inference. In the developmental bias513

model the parameter φ is made to change with age (φi) and the model is thus defined as514

P dev_bias
L1 (r | u; {φi, ρi, αi, θij}) = φi · PME(r | u; {αi, θij}) + (1− φi).515

We compared models in two ways. First, we used Pearson correlations between model516

predictions and the data. For this analysis, we binned the model predictions and the data517

by age in years and by the type of familiar object (see Fig. 2 and 3 as well as S7 and S10).518

Second, we compared models based on the marginal likelihood of the data under each519

model – the likelihood of the data averaging over (“marginalizing over”) the prior520
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distribution on parameters; the pairwise ratio of marginal likelihoods for two models is521

known as the Bayes Factor. It is interpreted as how many times more likely the data is522

under one model compared to the other. Bayes Factors quantify the quality of predictions523

of a model, averaging over the possible values of the parameters of the models (weighted by524

the prior probabilities of those parameter values); by averaging over the prior distribution525

on parameters, Bayes Factors implicitly take into account model complexity because526

models with more parameters will tend to have a broader prior distribution over527

parameters, which in effect, can water down the potential gains in predictive accuracy that528

a model with more parameters can achieve.57 For this analysis, we treated age continuously.529
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