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Background: Cognitive dysfunctions represent a core feature of schizophrenia and a

predictor for clinical outcomes. One possible mechanism for cognitive impairments could

involve an impairment in the experience-dependent modifications of cortical networks.

Methods: To address this issue, we employed magnetoencephalography (MEG) during

a visual priming paradigm in a sample of chronic patients with schizophrenia (n = 14),

and in a group of healthy controls (n = 14). We obtained MEG-recordings during the

presentation of visual stimuli that were presented three times either consecutively or

with intervening stimuli. MEG-data were analyzed for event-related fields as well as

spectral power in the 1–200Hz range to examine repetition suppression and repetition

enhancement. We defined regions of interest in occipital and thalamic regions and

obtained virtual-channel data.

Results: Behavioral priming did not differ between groups. However, patients with

schizophrenia showed prominently reduced oscillatory response to novel stimuli in

the gamma-frequency band as well as significantly reduced repetition suppression

of gamma-band activity and reduced repetition enhancement of beta-band power in

occipital cortex to both consecutive repetitions as well as repetitions with intervening

stimuli. Moreover, schizophrenia patients were characterized by a significant deficit in

suppression of the C1m component in occipital cortex and thalamus as well as of the

late positive component (LPC) in occipital cortex.

Conclusions: These data provide novel evidence for impaired repetition suppression

in cortical and subcortical circuits in schizophrenia. Although behavioral priming was
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preserved, patients with schizophrenia showed deficits in repetition suppression as

well as repetition enhancement in thalamic and occipital regions, suggesting that

experience-dependent modification of neural circuits is impaired in the disorder.

Keywords: neural oscillations, repetition suppression (RS), visual priming, magentoencephalography (MEG),

schizophrenia

INTRODUCTION

Schizophrenia is a severe mental disorder characterized by
psychotic experiences and disorganized and negative symptoms.
In addition, the disorder involves profound deficits in a range
of cognitive processes (1). Importantly, cognitive deficits are not
modified by current pharmacological treatments and are related
to the poor functional outcomes in the majority of schizophrenia
patients (2, 3). While cognitive impairments have so far been
conceptualized primarily in terms of impairments in higher
cognitive functions, such as attention, memory and executive
processes (4), there is evidence that dysfunctional sensory
processes are also involved (5, 6). Accordingly, the identification
of neural mechanisms underlying cognitive impairments in
schizophrenia remains one of the major challenges that is
important for the development of novel treatments.

Impaired learning mechanisms may contribute to cognitive

deficits in schizophrenia as there is evidence of dysfunctional

synaptic plasticity (7, 8). Synaptic plasticity refers to synaptic
changes in neuronal connections, such as long-term potentiation
and depression (LTP/LTD), and is thought to be the primary
mechanism for learning and memory (9–12). N-methyl-D-
aspartate receptors (NMDA-Rs) play an important role during
the induction of LTP/LTD (13). Moreover, there is consistent
evidence for an involvement of NMDA-R hypofunctioning in the
pathophysiology of schizophrenia (14, 15).

Patients with schizophrenia consistently show deficits in

explicit learning and memory (16), while performance on

implicit processing tasks appears relatively intact. Thus, studies
using motor learning or grammar learning tasks found
normal learning (17–19), while probabilistic learning was
impaired (18, 19).

One form of implicit memory is repetition priming. Repetition
priming refers to improvements in behavioral responses, such as
accuracy or reaction time, when stimuli are repeatedly presented
(20, 21). Stimulus repetition is associated with changes in
single cortical neuron responses (22) as well as in functional
magnetic resonance imaging (fMRI)- (23, 24) and in Electro-
/Magnetoencephalography data (25, 26). Although stimulus
repetition typically leads to repetition suppression, the converse
phenomenon, repetition enhancement, has been also been
observed in response to unfamiliar stimuli (23) or with low
stimulus visibility (27). More recently, it has been shown that
repetition suppression and enhancement can occur within one
cortical region (28) and that stimulus repetition can induce both
enhancement and suppression of neural responses, depending on
the number of stimulus presentations (29).

Repetition suppression has been related to the “sharpening”
of neural networks (30, 31) which involves a reduction of

the number of neurons over successive presentations. More
recent studies have shown that top-down processes contribute
toward repetition suppression (32, 33). From this perspective,
the reduction of neural activity is the result of a comparison
between bottom-up (sensory evidence) and top-down activity
(predictions), thus leading to a reduction of the prediction
error (34, 35).

There is evidence that schizophrenia is associated with
impaired repetition suppression. Deficits have been observed for
early evoked auditory responses, such as the P50 component
(36–40), as well as during pre-pulse inhibition (41–43), in the
M170 component in visual cortex (44) and in fMRI-data (45, 46).
However, there is also evidence for intact repetition suppression
of ERPs (47–49) as well as in fMRI-data (50, 51).

To further investigate repetition priming and the associated
neural signatures in schizophrenia, we employed a visual priming
paradigm in combination with MEG. Specifically, we presented
three visual objects consecutively to examine both repetition
suppression and enhancement in MEG-data. In a second
experimental condition, stimulus repetitions were interleaved
with intervening stimuli to exclude habituation as an alternative
explanation for repetition suppression effects.

We focused on the modification of neural oscillations, as beta-
/gamma- (52, 53) but also theta-band oscillations (54) provide
a temporal structure that allows for precise alignment of the
temporal relations between pre- and postsynaptic activation,
this relation being crucial in determining the occurrence
and the polarity of activity dependent synaptic gain changes
(LTP/LTD). More specifically, experience-dependent changes in
neural networks appear to depend on the power of stimulus-
induced gamma-band oscillations, suggesting a critical role of
synchronized gamma-activity for synaptic plasticity (53).

Importantly, there is consistent evidence for aberrant
neural oscillations and their synchronization in patients with
schizophrenia (55) that could underlie impairments in sensory
processing (56–59) as well as higher cognitive functions (60).
These data are furthermore consistent with evidence for impaired
GABAergic as well as impaired glutamatergic neurotransmission
in the disorder (61–64).

Given the important role of neural oscillations in synaptic
plasticity (53) as well as the evidence for impaired learning
in schizophrenia, we hypothesized that schizophrenia patients
would be characterized by impaired behavioral priming as well
as reduced repetition suppression in visual cortex as reflected
by aberrant gamma-band activity and impaired event-related
fields (ERFs) in response to repeated presentation of visual
stimuli. Moreover, we also expected close correlations between
behavioral impairments, cognitive deficits, and dysfunctional
oscillatory activity.
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METHODS

Participants
Fourteen healthy control participants (mean ± SD age, 25.71 ±

4.64 years; 11 females) were recruited from the local community
and screened for psychopathology with the German version
of the Structured Clinical Interview for DSM-IV-R (SCID)
(65). Fourteen patients with schizophrenia (mean ± SD age,
33.79 ± 11 years; three females) were recruited from the out-
patient unit of the Psychiatry Department of the Clinic in
Frankfurt-Hoechst. All patients fulfilled DSM-IV criteria for
schizophrenia as verified by means of a SCID-interview prior
to study inclusion. Average disease duration was 10.8 ± 7.1
years. All patients were medicated with atypical neuroleptics.
Age and sex differed significantly between both groups (age:
t26 = −2.68, p = 0.012; sex: X2(1) = 8.31, p < 0.01). Current
psychopathological symptoms were assessed using the Positive
and Negative Syndrome Scale (PANSS) for schizophrenia (66).
Symptoms were grouped into five factors – “Negative,” “Positive,”
“Excitement,” “Cognitive,” and “Depression” – according to
the model of Lindenmayer et al. (67) (Table 1). In addition,
patients were also rated on the item “Inappropriate Affect,”
which allowed for a score on the factor “Disorganization" (68).
Cognitive functions were assessed with the German version of
the Brief Assessment of Cognition in Schizophrenia [BACS; (69)]
(Table 1). BACS data were standardized (z-transformed) to a
normative database, correcting for age and gender (70).

Participants were excluded if they reported any neurological
disorder or current or past alcohol or substance dependence.
All subjects were right-handed as assessed by the Edinburgh
Handedness Inventory (71) and had normal or corrected-to-
normal visual acuity. All participants gave written informed
consent prior to the study. The study was carried out according
to the declaration of Helsinki and approved by the ethical
committee of the Goethe University Frankfurt.

Stimuli and Task
Stimuli consisted of 200 colored line drawings, picturing natural
or man-made objects (72, 73). Stimuli were presented in the
center of a translucent screen at a viewing distance of 51 cm and
subtended 6.6 degrees of visual angle. A fixation cross was always
present in the center of the screen to reduce eye-movements. An
LCD projector located outside the magnetically shielded room
of the MEG was used to project the stimuli onto the screen via
two front-silvered mirrors. Presentation of experimental stimuli
was controlled using Presentation (version 14.2, Neurobehavioral
Systems, Inc.).

Stimuli were presented for 1000ms with a randomized inter-
stimulus interval of 1000–2000ms. Each stimulus was presented
three times, with either no or different intervening stimuli.
The number of intervening stimuli (5–15) was randomized.
This resulted in two different repetition conditions: (1) stimulus
sequences with three consecutive presentations of the same

TABLE 1 | Demographic, neuropsychological and psychopathological data.

Controls (n = 14) SCZ-patients (n = 14) Statistics

Mean SD Mean SD

Gender (f/m) 11/3 3/11 X2(1) = 8.31, P < 0.01

Age (years) 25.71 4.64 33.79 11.00 t(26) = 2.68, P < 0.05

Education (years) 14.86 2.03 14.10 3.31 n.s.

Duration of Illness (years) — — 10.80 7.10 —

Handedness, left 0 0

Behavioral priming

%-change RT NOLAG −21.42 −23.11 n.s.

%-change RT LAG −8.72 −9.20 n.s.

BACS (total) 323.43 21.14 248.21 29.47 t(26) = 8.05, P < 0.001

Memory 56.57 6.62 40.14 7.96 t(26) = 4.37, P < 0.001

Digit span 21.50 3.52 16.21 2.58 t(26) = 5.15, P < 0.001

Token motor 97.86 3.16 81.14 17.71 t(26) = 3.12, P < 0.005

Fluency 63.86 14.84 45.43 14.27 t(26) = 3.27, P < 0.005

Symbols 63.86 7.34 49.36 16.20 t(26) = 2.54, P < 0.05

Tower of London 19.79 1.81 15.93 2.95 t(26) = 3.98, P < 0.001

PANSS (total) 43.00 24.37 —

Negative — — 14.23 5.20 —

Excitement — — 6.86 3.91 —

Cognitive — — 8.86 2.40 —

Positive — — 9.43 3.56 —

Depression — — 10.71 2.63 —

Disorganization — — 4.64 2.35 —
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FIGURE 1 | Experimental design and behavioral performance. (A) Paradigm: participants had to decide whether the presented object is man-made or natural. Each

stimulus was presented three times either in consecutive trials (NOLAG) or with 5–15 different intervening stimuli (LAG). (B) Mean response times (RTs; left) and

response accuracy (right) ± SD for the different conditions/groups. Asterisk indicates significant group differences (p < 0.05, corr.). HC = control participants, SCZ,

schizophrenia patients; NOV, Novel; REP, Repeated.

stimulus without different intervening stimuli (NOLAG) and (2)
three presentations of the same stimulus separated by different
intervening stimuli (LAG) (Figure 1A). The LAG condition was
included to exclude habituation as an alternative explanation
for repetition suppression effects and allowed to investigate
the modulation of repetition effects by the lag between the
repeated presentations of a stimulus (i.e., the “stability” of
the repetition effect). Stimulus sequences were shuffled for
each participant, resulting in individually randomized stimulus
sequences with regards to experimental conditions and stimulus
category. Participants were instructed to respond with a button
press to indicate whether the presented object was natural or
man-made. The assignment of buttons was counterbalanced
across participants. Behavioral responses were recorded using
a fiber-optic response device (Lumitouch, Photon Control
Inc., Burnaby, BC, Canada). Participants were instructed to
avoid eye movements and blinking during the presentation
of stimuli.

Stimuli were administered in three experimental conditions:
(1) novel pictures (i.e., the first presentation of a stimulus;
NOV), (2) repeated presentations without lag (NOLAG) and (3)
repeated presentations with lag (LAG). The experiment consisted
of 600 trials, divided into five blocks of 120 trials each.

Neuroimaging
MEG data were acquired using a 275-sensor whole-head
system (Omega 2005, VSM MedTech Ltd.) with a sampling
rate of 600Hz in a synthetic third order axial gradiometer
configuration. Before and after each block, head position relative
to the gradiometer array was measured. Recordings with head
movements exceeding 5mm were discarded. A high-resolution
anatomical MRI scan was acquired for each participant on a 3 T
Siemens Trio scanner, using a 3D-MPRAGE sequence (160 slices,
voxel size: 1 × 1 × 1mm; field of view: 256mm, repetition time:
2300ms, echo time: 3.93ms), with markers placed at the same
locations as the sensors used for recording head position in the
MEG. These markers were used for subsequent co-registration of
the MEG data to the anatomical T1 image.

MEG Data Analysis
MEG data were analyzed with MATLAB using the open source
Fieldtrip toolbox (74). Trials were defined from the continuously
recorded MEG signal from −1000 to 1500ms with respect
to the onset of the stimulus. Pre-processing included lowpass
filtering of the MEG data (Butterworth filter fourth order)
with a lowpass frequency of 200Hz as well as detrending.
Power line fluctuations (50Hz and harmonics) and a 60Hz
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beamer noise signal were removed using a band-stop filter.
Independent component analysis (ICA) was used to remove
artifacts due to cardiac activity, eye movements and eye blinks.
Trials containing muscle artifacts or sensor (SQUID) jumps were
discarded using semi-automatic artifact rejection routines. Data
epochs for NOV trials were pooled together from the NOLAG
and LAG conditions, and only trials with correct responses were
considered for further analyses.

All analyses were conducted on “virtual channel”
reconstructed MEG data. Linearly constrained minimum
variance (LCMV) beamformer spatial filters (75) were used
to first reconstruct the MEG data from MNI source locations
corresponding to centroids of 80 of 116 available AAL atlas
regions (76).

Time-frequency power representations (TFRs) were
computed on the LCMV reconstructed time-series, using a
sliding window Fast Fourier Transform (FFT) approach with a
fixed window of 200ms and a step size of 10ms across the length
of the epochs. Power of all frequencies between 1 and 200Hz
was estimated based on data padded up to 4 s, using a frequency
resolution of 1Hz, and multiplying the data with a Hanning
taper before power estimation.

To analyze ERFs, trials were low-pass filtered at 20Hz
(Butterworth filter fourth order) and baseline corrected using the
first 200ms of each epoch. Trials were averaged per condition and
per participant. Based on previous studies (25, 77–79) ERFs were
analyzed for early components C1m (30–80ms) and M100 (80–
120ms) as well as the P300m (200–400ms) and the late positive
component (LPC, 400–600 ms).

Fourteen regions were included in the further analyses: 12
covering striate and extra-striate visual-cortical areas based on
previous studies (25, 78) and two (bilateral) thalamic regions (see
Figures 4A,B).

Statistical Analyses
Behavioral data were analyzed by means of repeated measures
ANOVA using JASP (version 0.13.1; University of Amsterdam,
NL). A probability level of p< 0.05 was considered as statistically
significant. Statistical analyses of MEG data for factors GROUP
(Controls vs. Patients), NOVELTY (Novel vs. Repetition) and
PRESENTATION (NOLAG vs. LAG) were assessed using non-
parametric Monte-Carlo permutation independent F-tests as
implemented in Fieldtrip with 1999 permutations and cluster-
based correction for multiple comparisons (p < 0.05, one sided).
To examine differences between experimental conditions within
and between groups, non-parametric Monte-Carlo permutation
t-test statistics with 1999 permutations and cluster-based
correction for multiple comparisons (p < 0.05, two sided)
as implemented in Fieldtrip were performed. Cluster-based
statistics were computed across the 12 occipital cortex regions
of interest (ROIs) and for the two thalamic ROIs, separately.
Effects of picture repetition on modulation of neural activity
were statistically evaluated within each group in relation to
the response to novel stimuli, with contrasting novel stimuli
(NOV) against repeated stimuli for each repetition condition
(NOLAG or LAG). For group effects, the difference between
NOV and REP for each repetition condition (NOLAG or LAG)

was calculated within each group and then contrasted against
each other. As sex and age were significantly different between
groups, the influence of these variables on group differences of
repetition effects was analyzed with correlational analyses (see
Supplementary Figure 2).

RESULTS

Neuropsychological Data
Schizophrenia patients were significantly impaired in the BACS-
total score as well as in each of the subtests (t = 7.76, p < 0.001;
mean z-score± SD, controls: 4.33± 2.29, schizophrenia patients:
−4.33± 3.31; Table 1).

Behavioral Data
Analysis of reaction times (RTs) revealed amain effect of GROUP
[F(1, 27) = 13.97, p < 0.001], a main effect of NOVELTY [F(1, 27)
= 41.12, p < 0.001], and a main effect of PRESENTATION
[F(1, 27) = 7.18, p < 0.01]. Tukey post-hoc analyses showed
that schizophrenia patients responded significantly slower than
controls (GROUP: t = −3.72, p < 0.001, mean difference:
−71.20ms, 95%-CI [−132.22, −10.17]; mean RT ± SD,
controls: 638.62 ± 100.44ms, schizophrenia patients: 709.82 ±

89.07ms). Moreover, RTs were faster for repeated presentations
(NOVELTY: t = 6.41, p < 0.001, mean difference: 106.47ms,
95%-CI [73.55, 139.40]; mean RT± SD, NOV: 674.22± 99.95ms,
REP: 567.75 ± 93.83ms), and that participants responded
faster for presentations without different intervening stimuli
(PRESENTATION: t = −3.72, p < 0.001, mean difference:
−44.48ms, 95%-CI [−77.41, −11.56]; mean RT ± SD, NOLAG:
598.74 ± 117.23ms, LAG: 643.23 ± 98.16ms) (Figure 1B).
There was no GROUP × NOVELTY interaction, indicating a
comparable behavioral priming effect to repeated presentations
in the two groups [F(1, 27) = 0.33, p = 0.569] (Table 1). A
significant NOVELTY× PRESENTATION interaction indicated
that RTs were significantly different between novel and
repeated presentation depending on the repetition condition
[F(1, 27) = 7.18, p < 0.01].

Analyses of accuracy showed a main effect of GROUP [F(1, 27)
= 9.86, p < 0.005]. Tukey post-hoc analysis showed that accuracy
was higher in controls compared to schizophrenia patients (t =
3.14, p = 0.002; mean accuracy ± SD, controls: 98.37 ± 0.98%,
patients: 96.69± 3.30%; Figure 1B).

MEG Data
Responses to Novel Stimuli

The schizophrenia group was characterized by a significantly
reduced oscillatory response in occipital ROIs in the gamma-
band to novel stimuli (63–141Hz, 0.04–1.0 s, tsum = 14,470,
p = 0.001, 95%-CI [−0.0004, 0.0024]; Figures 2A,B, Table 2).
This effect was observed in bilateral cuneus, calcarine sulci as
well as bilateral superior, middle and inferior occipital gyri.
Moreover, schizophrenia patients showed a significantly reduced
C1m component in occipital ROIs (tsum = 25.45, p = 0.036;
Figure 2C, Table 2).
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FIGURE 2 | Effects of novel pictures on spectral power and event-related fields (ERFs). (A) Time-frequency responses (TFR) of AAL atlas reconstructed virtual channel

data. TFR show grand average (N = 14 per group) data from across 12 regions in the occipital cortex as displayed in Figure 4A (averaged dB power changes from

baseline) for novel picture presentations in control participants (left) and schizophrenia patients (right). (B) TFR plot with statistical result (non-parametric, Monte-Carlo

permutation independent t-test, cluster corrected, p < 0.05) of group difference with significant cluster outlined. (C) ERF time-course of grand average (N = 14 per

group) data in the occipital cortex for novel picture presentations in control participants (HC) and schizophrenia patients (SCZ). Asterisk indicates a significant

difference between groups (cluster corrected, p < 0.05).

Repetition Suppression/Enhancement

Spectral power
Analyses of factors GROUP, NOVELTY, and PRESENTATION
revealed a main effect of GROUP (p < 0.001, Fsum = 110785.70),
a main effect of NOVELTY (p= 0.012, Fsum = 20049.06), but no
main effect of PRESENTATION (p= 0.9, Fsum = 27.95).
Post-hoc pairwise t-test analyses revealed that stimulus
repetitions led to a significant reduction of gamma-band
power in occipital cortex ROIs in controls in both NOLAG
(42–123Hz, tsum =−11366, p = 0.001; Figures 3A,B) and
LAG (42–129Hz, tsum =−8903.30, p= 0.001; Figures 3A,B)
conditions (Table 2). In the NOLAG condition, the effect
was observed in all occipital cortex ROIs, whereas the
effect in the LAG condition was observed only in right

cuneus, right inferior occipital gyrus as well as bilateral
calcarine sulci and superior and medial occipital gyri.
Schizophrenia patients, however, showed a significant
reduction of gamma-band power to repeated presentations
only in the NOLAG condition and with a smaller bandwidth
(66–88Hz, tsum =−1262.30, p = 0.016; Figures 3A,B, Table 2).
Furthermore, this effect was spatially limited to the right
lingual gyrus.

Importantly, schizophrenia patients showed an impaired
repetition suppression of gamma-band power in both NOLAG
(43–98Hz, tsum = −3319.10, p = 0.001; Figure 3C) and LAG
(50–98Hz, tsum = −1658.70, p = 0.015; Figure 3C) conditions
in occipital ROIs compared to controls (Table 2). For both
conditions, impaired repetition suppression of gamma-band
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TABLE 2 | Summary of significant within- and between-group effects in MEG

data.

Effect ROI Frequency

range

ERF latency P

CONTROLS

NOV vs. REPnolag Occipital ROI 42–123Hz

2–35Hz

0.001

0.008

Occipital ROI 30–80ms 0.029

400–600ms 0.020

Thalamus 30–80ms 0.053

NOV vs. REPlag Occipital ROI 42–129Hz 0.001

1–36Hz 0.003

Occipital ROI 30–80ms 0.031

SCZ-PATIENTS

NOV vs. REPnolag Occipital ROI 66–88Hz 0.016

1–37Hz 0.001

NOV vs. REPlag Occipital ROI 12–40Hz 0.009

CON vs. SCZ

NOV vs. REPnolag Occipital ROI 43–98Hz 0.001

14–33Hz 0.039

Occipital ROI

Thalamus

30–80ms

30–80ms

0.005

0.019

NOV vs. REPlag Occipital ROI 50–98Hz 0.015

12–31Hz 0.024

Occipital ROI 30–80ms 0.063

NOV Occipital ROI 63–141Hz 0.001

30–80ms 0.036

activity was observed in bilateral cuneus, calcarine sulci as well
as bilateral superior occipital gyri.

In frequencies < 40Hz, both groups showed repetition
enhancement in occipital cortex ROIs to repeated presentations
in both NOLAG (controls: 2–35Hz, tsum = 4,514, p = 0.008;
schizophrenia patients: 1–37Hz, tsum = 2957.70, p = 0.001;
Figures 3A,B) and LAG (controls: 1–36Hz, tsum = 4632.2, p
= 0.003; schizophrenia patients: 12–40Hz, tsum = 1972.10, p
= 0.009; Figures 3A,B) conditions (Table 2). For controls, the
effect was observed in all occipital cortex ROIs in both NOLAG
and LAG conditions. Schizophrenia patients, on the other hand,
showed repetition enhancement of beta-band activity only in
bilateral cuneus, calcarine sulci, superior and medial occipital
gyri and the right lingual gyrus.

Repetition enhancement of beta-band-power was significantly
reduced in the schizophrenia group compared to controls in
both NOLAG (14–33Hz, tsum = 1238.70, p = 0.039; Figure 3C)
and LAG (12–31Hz, tsum = 1407.20, p = 0.024; Figure 3C)
conditions in occipital ROIs (Table 2). Group differences for
repetition enhancement of beta-band power were found in
bilateral calcarine sulci and the right superior occipital gyrus in
the NOLAG condition and in the right calcarine sulcus as well as
the left middle occipital gyrus in the LAG condition.

ERFs
Analyses of factors GROUP, NOVELTY and PRESENTATION
showed no significant main effects. Post-hoc pairwise t-tests
revealed that controls showed an early effect of stimulus
repetition with a significant reduction of the C1m (30–80ms)
component in the NOLAG and LAG condition (NOLAG: tsum
= 19.83, p = 0.029; LAG: tsum = 43.90, p = 0.031) in all
occipital ROIs (Figure 4A, Table 2). In addition, we observed a
statistical trend in the NOLAG condition in the thalamus (tsum
= 24.20, p = 0.053; Figure 4B, Table 2). Importantly, repetition
suppression of the C1mwas not present in schizophrenia patients
neither in the NOLAG nor the LAG conditions across occipital
and thalamic ROIs (Figures 4A,B). There was a significant
group difference in C1m repetition suppression in the NOLAG
condition in occipital ROIs (tsum= −43.70, p = 0.005) and
thalamus (tsum= −32.36, p = 0.019) but only as a statistical
trend in the LAG condition in occipital ROIs (tsum= −20.39, p=
0.063) (Figures 4A,B, Table 2). The group effect in the NOLAG
condition was mainly driven by the left calcarine sulcus and left
superior occipital gyrus as well as the left thalamus, respectively,
while the group effect in the LAG condition was observed only in
the left calcarine sulcus.

In addition, we observed repetition suppression of the LPC in
occipital ROIs in the NOLAG condition in controls (400–600ms,
tsum = 82.39, p = 0.02; Figure 4A). In schizophrenia patients,
this effect did not reach statistical significance (tsum = −56,19,
p = 0.09), and the group difference showed only a trend toward
statistical significance when averaged over all occipital ROIs
(tsum =−61.70, p = 0.058). However, there was a significant
difference in right calcarine sulcus (tsum=−259.89, p= 0.002).

Analyses of the M100 (80–120ms) and P300m (200–400ms)
revealed no significant differences within or between groups.

Correlations With Behavior and
Psychopathology vs. MEG Data
Pearson’s correlations were used on z-normalized
data to investigate relationships between repetition
suppression/enhancement of the C1m, spectral power in the low
(12–33Hz) and high frequency (43–98Hz) range and response
times, accuracy and PANSS ratings. Bootstrapping (1000
randomizations) was applied to control for spurious findings.
We did not find any significant correlations between repetition
suppression/enhancement and behavioral parameters in both
groups as well as with psychopathology in schizophrenia patients.

DISCUSSION

The present study investigated repetition suppression in

schizophrenia with MEG to examine changes in neural

oscillations and ERFs during visual priming. While behavioral
priming was intact in schizophrenia patients, we observed
a dysregulation of both low- and high-frequency oscillations
as well as impaired ERFs, suggesting an impairment in the
experience-dependent modification of neural circuits.

Consistent with previous studies that examined implicit
learning in schizophrenia (80, 81), we found no difference
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FIGURE 3 | Effects of picture repetition on spectral power. (A) Time-frequency responses (TFR) of AAL atlas reconstructed virtual channel data. TFR show grand

average (N = 14 per group) data from across 12 regions in the occipital cortex as displayed in Figure 4A (averaged dB power changes from baseline) for the

difference between novel and repeated pictures (REP minus NOV) for repetitions with no lag (first row) and lag (second row) in control participants (left) and

schizophrenia patients (right). (B) Line graphs show averaged power for gamma (top) and beta (bottom) frequencies over time per group for novel and repeated

picture presentations in the NOLAG (first row) and LAG (second row) condition. (C) TFR plots with statistical results (non-parametric, Monte-Carlo permutation

independent t-test, cluster corrected, p < 0.05) of group difference for the effect of repetition (REP minus NOV) with significant clusters outlined. HC, control

participants; SCZ, schizophrenia patients; NOV, novel; REP, repeated.

in behavioral priming between schizophrenia patients and
controls. However, differences between groups emerged in
MEG-parameters, suggesting a dissociation between repetition
suppression/enhancement and behavioral priming. This is
also supported by the fact that there were no significant
correlations between MEG-data, cognitive and clinical variables.
Moreover, previous studies failed to show a significant correlation

between behavioral priming and neural suppression in occipital
cortex during normal brain functioning (82–85), raising the
possibility that behavioral priming and repetition suppression are
distinct processes.

Consistent with previous studies that investigated repetition
effects on neural oscillations and ERPs in healthy participants
using visual paradigms (25, 78, 86), we observed repetition
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FIGURE 4 | Effects of picture repetition on event-related fields (ERFs). (A) Indication of regions of interest (ROI) used in the analysis for the occipital cortex, projected

onto a transparent MNI template brain. CAL, calcarine sulcus; CUN, cuneus; LING, lingual gyrus; SOG/MOG/IOG, superior/middle/inferior occipital gyrus. ERF

time-courses of grand average (N = 14 per group) data from across 12 regions in the occipital cortex for consecutively repetitions (NOLAG, left) and repetitions with

intervening different stimuli (LAG, right) for control participants (first row) and schizophrenia patients (second row). Third row shows the group difference for the effect

of repetition (REP minus NOV within group). (B) As in (A) but for the thalamus = THA. HC, controls participants; SCZ, schizophrenia patients; NOV, Novel; REP,

Repeated. Gray boxes indicate the time window used for the statistical analyses (C1m = 30–80ms; LPC = 400–600ms). Asterisk indicates a significant difference

between conditions/groups (cluster corrected, p < 0.05).

suppression of gamma-band frequencies and ERF components
as well as repetition enhancement of beta-band frequencies
in normal controls. Importantly, our data highlight an
impairment in high-frequency oscillations in patients
with schizophrenia during responses to novel stimuli as
well as aberrant modulation of beta- and gamma-band
activity during repetition suppression and enhancement.
Consistent with a large body of EEG/MEG-data that
demonstrated reduced power of high-frequency oscillations
during sensory and perceptual processing (56, 59, 87, 88),
we observed a pronounced (effect size: d = 1.48) and
sustained reduction of high-gamma (>60Hz) power that
was extended over a large frequency range and time interval
in occipital areas belonging to both dorsal and ventral
processing streams.

Furthermore, modulation of spectral power during repetition
suppression and enhancement at beta/gamma-band frequencies
was also impaired in schizophrenia patients. Because of the
pronounced reduction of gamma-band power to novel stimuli in
schizophrenia patients, we have specifically examined repetition
effects in relation to the response to novel stimuli within
each group. Although the reduced gamma-band response to
novel stimuli limits the range of repetition suppression in
schizophrenia patients, our finding of impaired repetition
enhancement of beta-band oscillations without a decreased
beta-band response to novel stimuli, indicates a general
deficit in repetition-related modulation of spectral power in
schizophrenia patients.

Recently, Galuske et al. (53) have shown that changes
of neuronal response properties induced by repetitive
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visual stimulation depend on the magnitude of induced
gamma-band oscillations. The authors observed changes in
orientation tuning of neurons in visual cortex only when
conditioning stimuli induced strong gamma-oscillations,
suggesting a critical role of synchronized gamma-oscillations
for facilitating experience-dependent plasticity. Accordingly,
aberrant repetition suppression in schizophrenia patients
might result from a persistent failure to generate gamma-band
oscillations that in turn impairs synaptic plasticity.

As perception is dependent upon inferential processes
whereby sensory evidence is weighted against prior knowledge
(34, 89), it is possible that shallow processing, as indexed by
reduced gamma-band responses to the initial stimulus, leads to
a weaker formation of the prior in patients with schizophrenia.
In the context of predictive coding, repetition suppression
reflects the attenuation of the prediction error due to the
decreasing mismatch between predictions and sensory input. As
the magnitude of the prediction error signal reflects the match
between prior and sensory data, weak priors in schizophrenia
patients might result in a greater mismatch and thus in reduced
repetition suppression. Interestingly, in the schizophrenia group
repetition suppression effects were only observed in the NOLAG
condition. This could index that interfering stimuli in the LAG
condition further diminished the impact of the prior, thus leading
to a further reduction of repetition suppression. In agreement
with this interpretation is the recent finding (90) that the
amplitude of induced gamma oscillations is positively correlated
with the goodness of the match between sensory evidence and
internal predictions.

Different oscillation frequencies have been related to different
components of inferential processing. Top-down prediction
signaling has been proposed to be predominantly mediated
by alpha-/beta-frequencies and feed-forward prediction error
signaling by gamma- and theta-band oscillations (91, 92). As
group differences in gamma-band activity emerged in early visual
areas, such as cuneus and calcarine sulcus, as well as higher-
order visual regions, such as superior occipital gyrus, reduced
gamma-band activity in patients with schizophrenia may lead
to reduced feed-forward signaling as recently demonstrated by
our group (59). According to the predictive coding framework,
the predictive model at higher levels of the hierarchy is updated
by the ascending prediction error, which has more impact
on the prior when it conveys precise information (through
precision weighting). Reduced gamma responses in patients with
schizophrenia may lead to a deficient updating of priors through
reduced precision of the prediction error signal resulting from
imprecise sensory data input.

This is in line with our finding of impaired repetition
enhancement of beta-band activity in schizophrenia patients.
Precision of predictions increases as prediction error is
minimized by repetitions, which may underlie repetition
enhancement (35). Reduced repetition enhancement in
schizophrenia patients could index reduced precision of
predictions, which may result from a deficient interplay between
top-down predictions and bottom-up prediction error signaling.

Consistent with a previous report (79) we also found that
stimulus repetition was associated with an early (30–80ms)
reduction of the C1m component in healthy controls in visual

cortex. The C1 component reflects the first visual evoked
potential (VEP) component, with an onset latency between
40 and 70ms and peak latency between 60 and 100ms, and
originates from primary visual cortex in striate cortex within
the calcarine fissure (93–97). Importantly, repetition suppression
of this early VEP was impaired in schizophrenia patients. This
finding is in line with a large body of research on early-stage
visual processing deficits in schizophrenia (59, 98).

Furthermore, we found impaired repetition suppression of
early VEPs in schizophrenia patients in the thalamus. The
thalamus plays a key role in information processing as nearly
all sensory information must pass the thalamus before reaching
the cerebral cortex, and there is consistent evidence for
both anatomical (99) and functional abnormalities (100, 101)
in schizophrenia.

In addition, we observed impaired repetition suppression
of the LPC in the schizophrenia group in occipital ROIs. The
LPC has been associated with recognition memory processes
[“old/new effect;” (102)]. Specifically, Matsuoka et al. (103) using
repetition priming found that schizophrenia patients showed no
effect of immediate stimulus repetition on late ERPs that could
index a failure to use information from preceding stimuli.

However, these deficits between groups only reached trend
level in the LAG condition, which is consistent with previous
studies showing that suppression of ERPs (78, 104) dissolves with
lag between repetitions.

LIMITATIONS

There are several limitations associated with this study. Firstly,
we only included a relatively small sample of patients with
schizophrenia. As a result, the lack of significant correlations
between behavioral and neuroimaging measures might be
due to insufficient statistical power. In addition, we did not
systematically assess the contribution of eye movements toward
differences in both behavior andMEG-data. Finally, observations
in deep brain structures like the thalamus with MEG can be
challenging because of the decay of the magnetic field. However,
the large effect size (d= 0.98) of our result support the feasibility
of MEG in combination with individual anatomical information
to assess thalamic signals (101, 105, 106).

SUMMARY

The present study provides novel evidence for impaired
repetition suppression and repetition enhancement in
schizophrenia as reflected by deficits in the experience-
dependent modification of beta/gamma-band oscillations as
well as ERFs during visual priming. Specifically, schizophrenia
patients showed impaired repetition suppression of early and late
evoked visual responses as well as gamma-band oscillations. In
the context of predictive coding, reduced gamma-band activity
may lead to impaired feed-forward signaling which could then
lead to reduced repetition suppression and enhancement.

Since deficits in repetition suppression have been found to
be present even before the onset of the disorder (107, 108),
it will be important to further investigate neural mechanisms
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of repetition suppression and their impairment in at-risk
populations as well as in larger cohorts of schizophrenia patients
to examine whether effects of reduced repetition suppression
involve aberrant connectivity between cortical areas.
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