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Abstract

SARS-CoV-2, the agent that causes COVID-19, invades epithelial
cells, including those of the respiratory and gastrointestinal
mucosa, using angiotensin-converting enzyme-2 (ACE2) as a recep-
tor. Subsequent inflammation can promote rapid virus clearance,
but severe cases of COVID-19 are characterized by an inefficient
immune response that fails to clear the infection. Using primary
epithelial organoids from human colon, we explored how the
central antiviral mediator IFN-c, which is elevated in COVID-19,
affects epithelial cell differentiation, ACE2 expression, and suscep-
tibility to infection with SARS-CoV-2. In mouse and human colon,
ACE2 is mainly expressed by surface enterocytes. Inducing entero-
cyte differentiation in organoid culture resulted in increased ACE2
production. IFN-c treatment promoted differentiation into mature
KRT20+ enterocytes expressing high levels of ACE2, increased
susceptibility to SARS-CoV-2 infection, and resulted in enhanced
virus production in infected cells. Similarly, infection-induced
epithelial interferon signaling promoted enterocyte maturation
and enhanced ACE2 expression. We here reveal a mechanism by
which IFN-c-driven inflammatory responses induce a vulnerable
epithelial state with robust replication of SARS-CoV-2, which may
have an impact on disease outcome and virus transmission.

Keywords ACE2; differentiation; interferon; organoids; SARS-CoV-2

Subject Categories Immunology; Microbiology, Virology & Host Pathogen

Interaction

DOI 10.15252/emmm.202013191 | Received 28 July 2020 | Revised 1 February

2021 | Accepted 2 February 2021

EMBO Mol Med (2021) e13191

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

causes coronavirus disease (COVID-19) and has already infected

more than 80 million people around the globe. Patients develop

highly variable clinical symptoms that range from mild to life-threat-

ing. SARS-CoV-2 invades epithelial cells of the mucosal surfaces of

the upper and lower respiratory tract as well as the gastrointestinal

tract, but can also replicate in epithelia of other organs (Zhu

et al, 2020). In addition to respiratory symptoms, gastrointestinal

symptoms are common in COVID-19 and recent data revealed that

the virus can efficiently infect enterocytes (Cholankeril et al, 2020;

Lamers et al, 2020). Gastrointestinal symptoms have been linked to

prolonged infection and a more severe course of disease (Zhong

et al, 2020). The entry receptor for SARS-CoV-2 is angiotensin-

converting enzyme 2 (ACE2) expressed on epithelial cells. Spike

glycoproteins present in the viral envelope bind to ACE2 and are

proteolytically cleaved by the transmembrane protease serine

protease 2 (TMPRSS2), which results in virus entry (Hoffmann

et al, 2020; Matsuyama et al, 2020; Yan et al, 2020).

Virus infection of epithelial cells triggers an inflammatory

response. While a well-coordinated immune response leads to viral

clearance, excessive, dysfunctional responses are incapable of clear-

ing the infection and are linked to severe COVID-19 symptoms

(Zheng et al, 2020). It is not clear why such immune responses are

inefficient and whether and how SARS-CoV-2 undermines the

immune response. IFN-c is a central antimicrobial cytokine that has

been shown to be upregulated in the context of COVID-19, both

locally in the mucosa and systemically (Chua et al, 2020; Huang

et al, 2020). It binds to IFN-c receptors expressed on various cell

types (Hu & Ivashkiv, 2009) and orchestrates the cellular immune

responses to infection by multiple means such as activation of

macrophages, enhanced antigen presentation, and T cell differentia-

tion (Borden et al, 2007). In addition, IFN-c can also signal to

epithelial cells directly, leading to different responses such as

expression of chemokines and secretion of antimicrobial proteins

(Farin et al, 2014; Walrath et al, 2020). Recent reports have

revealed an increase in IFN-c signaling upon SARS-CoV-2 infection

in lung epithelial cells (Chua et al, 2020). Moreover, using

scRNAseq from patient airway samples, an association between
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interferon signaling and ACE2 expression levels has been suggested

(Ziegler et al, 2020). However, mechanisms by which IFN-c regu-

lates ACE2 expression and functional data on how it affects SARS-

CoV-2 are lacking.

Here, we applied a primary 3D organoid system from the colon

that mimics epithelial turnover and differentiation. We demonstrate

that IFN-c is a strong and efficient driver of epithelial differentiation

into enterocytes that express high levels of ACE2. IFN-c-induced,
differentiated colonocytes are highly susceptible to SARS-CoV-2

infection, and we demonstrate virus replication and release from

dying colonocytes. Moreover, we demonstrate that SARS-CoV-2

itself triggers epithelial IFN responses that are sufficient to induce

increased differentiation and ACE2 expression. Our data reveal how

SARS-CoV-2 exploits a central immune response pathway for epithe-

lial invasion and replication, which may have a significant impact

on the clinical course of disease as well as on viral transmission.

Results

IFN-c is a strong driver of ACE2 expression in human
colon organoids

ACE2 is the primary entry receptor for SARS-CoV-2 and a large

proportion of COVID-19 patients experience gastrointestinal symp-

toms. We thus explored the expression of ACE2 in human colon

tissue by analyzing single-cell RNA sequencing data of a recently

published data set (Parikh et al, 2019). The results demonstrate that

surface colonocytes expressing KRT20 and AQP8, both markers of

differentiated enterocytes (Fig 1A), also express ACE2 as well as the

receptor for IFN-c (IFNGR2). Immunofluorescence of human colon

tissue indeed confirmed ACE2 expression at the apical side of the

surface epithelial cells (Fig 1B).

SARS-CoV-2-infected individuals show elevated levels of IFN-c
that may influence the progression of COVID-19 (Chua et al, 2020;

Huang et al, 2020). To explore the potential connection between

IFN-c and ACE2, we established cultures of human colon organoids

(hCOs). hCOs grown in full medium (supplemented with the growth

factors WNT, Noggin and EGF) showed signs of self-organization

and development of crypt-like buds (Fig 1C, left panel). When orga-

noids were treated with IFN-c for 3 days, we observed an increased

abundance of KRT20-positive cells (Fig 1C). Switching from full

medium to basic medium (by removal of the supplemented growth

factors) for 4 days directed cells to a more differentiated state,

which was evident by the pronounced increase in KRT20+ cells as

well as an increase in signal intensity, as assessed by confocal

microscopy (Figs 1C and D and EV1A). hCOs grown in basic

medium showed a robust IFN-c response between 5 and 100 ng/ml,

as assessed by qRT–PCR for expression of the IFN-c target gene

IFIT3 (Fig EV1B). We used the intermediate concentration of 50 ng/

ml for subsequent experiments and utilized E-cadherin staining to

better visualize the cell shape and performed actin staining to show

that upon IFN-c treatment cells become more columnar, a feature of

differentiation (Fig EV1C). Of note, IFN-c treatment reduced the

proportion of goblet cells in the presence of both full and basic

medium conditions, as assessed by alcian blue staining (Fig EV1D).

To quantify the effects of IFN-c on differentiation, we analyzed

mRNA expression of the enterocyte marker KRT20 and ALPI, the

goblet cell markers MUC2 and ITF, the enteroendocrine cell marker

CHGA, and the stem cell marker LGR5. In basic medium conditions,

the differentiation markers for absorptive and secretory cells

increased (Figs 1E–G and EV1E), while the stem cell marker LGR5

was strongly decreased (Fig 1H). IFN-c treatment increased KRT20

as well as ALPI expression, while the secretory cell markers were

reduced only in basic medium (Figs 1E–G and EV1E) confirming the

histological findings. Concomitantly, expression of ACE2 was also

significantly increased upon IFN-c treatment in differentiated orga-

noids (Fig 1I). Immunofluorescence imaging revealed expression of

ACE2 at the apical side of differentiated human organoids, which

was further increased by additional treatment with IFN-c (Fig 1J).

In mouse colon, Ace2 is also expressed in Krt20+ surface colono-

cytes (Fig EV2A). Single-cell RNA sequencing data from a recently

published data set accessible by an online tool (Tabula Muris

Consortium et al, 2018) showed that the receptors for IFN-c
(INFGR1/2) are expressed in Krt20 expressing enterocytes

(Fig EV2B). IFN-c treatment of mouse colon organoids induced dif-

ferentiation, similar to that induced by removal of the Wnt signaling

factors sWnt and CHIR from the medium (Fig EV2C). IFN-c treat-

ment resulted in more columnar shaped cells (Fig EV2C) that

express increased levels of Krt20 protein (Fig EV2D) and show

reduced proliferation (Fig EV2E). qPCR analyses from organoids

treated with IFN-c and corresponding controls confirmed a signifi-

cant increase in Krt20 as well as Ace2 expression (Fig EV2F). We

conclude that IFN-c rapidly induces a differentiation program

in organoids toward the enterocyte lineage that is conserved

between species.

IFN-c increases susceptibility of colon epithelial cells to
SARS-CoV-2 infection

It has recently been demonstrated that human small intestinal orga-

noids can be productively infected by SARS-CoV-2 (Lamers

et al, 2020). To explore whether the increased ACE2 expression

affects the efficiency of infection with SARS-CoV-2, we cultured

human colon organoids in full as well as basic medium, with or

without IFN-c treatment and infected them with SARS-CoV-2 at an

MOI of 1. Immunofluorescence staining for the nucleocapsid protein

(N-protein), indicative of productive infection, showed infected cells

in all conditions (Fig 2A). In organoids grown in full medium,

however, only some cells were positive for N-protein, whereas

almost all cells were infected in cells grown in basic medium. More-

over, IFN-c appeared to increase the proportion of infected cells as

well as N-protein fluorescence intensity in both conditions (Fig 2A).

To quantify virus replication, we measured virus RNA levels by

qPCR. Organoids cultured in basic medium had a higher virus load

compared with cells grown in full medium (Fig 2B), and IFN-c-
treated cells had a higher virus load in both medium conditions

(Fig 2C and D), which was most pronounced in organoids cultured

in basic conditions (Fig 2E). Comparing the virus load at 24 and

48 h post-infection revealed an increase in SARS-CoV-2 over time in

IFN-c treated cells, demonstrating efficient viral replication (Fig 2F).

We also grew colon cells as polarized, 2-dimensional air–liquid

interface (ALI) cultures and infected them from the apical side with

SARS-CoV-2, confirming susceptibility of colon cells in this system

(Fig EV3A). However, ALI cultures showed less robust growth and

already contained high levels of differentiated cells in full medium
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conditions, overall indicating that 3D organoids are more appropri-

ate for studying effects of differentiation and infection with SARS-

CoV-2. We performed transmission electron microscopy on the IFN-

c-treated organoids 48 h after infection and observed a high number

of particles of ~ 100 nm in diameter, phenotypically resembling the

morphology of a coronavirus. The particles were found in large

intracellular vesicles, which were randomly distributed but in prox-

imity to other cellular components, such as mitochondria and rough

endoplasmic reticulum (Fig 2G). Further, we observed cells heavily

loaded with virus particles (Fig 2G lower and inset). Such cells

showed signs of cell lysis and some were removed from the epithe-

lial structure of the organoids, consistent with the light microscopy

images of organoids at 48 h after infection, which showed signs of

disintegration (Fig EV3B). Immunofluorescence for cleaved caspase-

3, a marker of apoptosis, confirmed increased cell death in infected,

differentiated organoids (Fig 2H, quantification below). Thus, our

data indicate that SARS-CoV-2 can invade and efficiently replicate in

IFN-c-treated enterocytes. Upon infection, these cells produce large

numbers of virus particles, ultimately leading to disintegration and

apoptosis.

To explore how infection affects the epithelium, we performed a

transcriptome analysis of organoids grown in basic medium 48 h

after infection and compared the results with uninfected controls.

The comparative analysis revealed a strong upregulation of several

IFN-c target genes (Table EV1). Gene set enrichment analysis con-

firmed the most significant positive enrichment for GO gene sets

linked to virus infection such as “GO response to virus” as well as

gene sets linked to IFN signaling such as “GO responses to type I

interferon” as well as “GO response to interferon gamma” (Fig 3A).

Similarly, we observed a highly significant positive enrichment for

the “Hallmark Interferon gamma response” gene set (Fig 3B). To

compare the cellular responses of colon organoids to infection with

those induced by IFN-c, we also analyzed the transcriptome of orga-

noids treated with IFN-c compared with uninfected controls

(Table EV2). Not unexpectedly, we found various IFN-c target genes

to be upregulated. Comparison of differentially expressed genes of

SARS-CoV-2-infected and IFN-c-treated organoids using DISCO

revealed that several of the top regulated genes were induced by

both treatments (Fig 3C). Furthermore, when we analyzed the 20

genes with the highest fold-change increase upon infection with

SARS-CoV-2, we noticed that 18 of them were also significantly

induced by IFN-c treatment (Appendix Table S1). Overall, this

indicates that infection triggers signaling pathways in the epithelium

that, to a large extent, resemble epithelial responses to IFN-c.
Accordingly, analysis of enterocyte-specific genes following SARS-

CoV-2 infection revealed that enterocyte marker genes, including

ACE2 and KRT20 were also significantly increased (Fig 3D). Under

conditions of differentiation, all cells already expressed KRT20;

however, SARS-CoV-2 infection further increased KRT20 expression,

as observed by immunofluorescence (Fig 3E). We used qPCR to

validate the SARS-CoV-2 infection-dependent upregulation of the

IFN-c target genes CXCL11 and IFIT3, as well as KRT20 and ACE2

(Fig 3F) and indeed confirmed an upregulation of these genes upon

infection. IFN-c induces JAK/STAT signaling, which can be dimin-

ished by the pan-JAK inhibitor pyridone 6 (P6) (Nakagawa

et al, 2011). Indeed organoids infected with SARS-CoV-2 show

reduced expression of IFIT3 and CXCL11 as well as ACE2, KRT20

when treated with P6 (Fig EV4A). Lastly, we asked whether JAK/

STAT activity may have an impact on infectivity of organoids and to

this end infected organoids treated either with IFN-c alone or with

IFN-c and pyridine. IFN-c treatment increased the virus load of

organoids infected with SARS-CoV-2, while the JAK inhibition by P6

prevented this increase (Fig EV4B).

Discussion

Here, we demonstrate that differentiated enterocytes from human

colon express ACE2 and are susceptible to SARS-CoV-2 infection.

We also reveal that IFN-c is a strong driver of epithelial differentia-

tion toward the enterocyte lineage, resulting in high ACE2 expres-

sion and increased susceptibility to SARS-CoV-2. Moreover, the

transcriptional response of epithelial cells to infection indicates a

strong activation of IFN signaling, resembling IFN-c treatment, and

also promoting differentiation. These data suggest that infection-

driven inflammation may create a vulnerable state, which in turn

enables robust virus replication and release, which may have conse-

quences for the clinical course of the disease as well as for virus

transmission.

We used organoids derived from the large intestine (colon) and

confirm recent reports that used small intestine to demonstrate

productive infection with SARS-CoV-2 (Lamers et al, 2020; Zhou

et al, 2020). Gastrointestinal infection by SARS-CoV-2 and its role in

COVID-19 is an emerging area of investigation (Gupta et al, 2020).

◀ Figure 1. IFN-c is a strong driver of ACE2 expression in human colon organoids.

A (left) t-sne plot from scRNAseq data of human organoids and cluster assignment of colonic cell populations. Red color corresponds to undifferentiated cells
and light green corresponds to surface colonocytes (enterocytes). t-sne plot for selected genes from single-cell RNAseq of human colon epithelial cells
revealing expression of ACE2 specifically in differentiated surface colonocytes expressing KRT20 and AQP8, which also express the IFN-c receptor IFNGR2.

B Immunofluorescence staining for ACE2 (red) and KRT20 (green) of human colon tissue section indicating ACE2 expression in surface colonocytes. Scale bar:
50 µm.

C Human colon organoids cultured in full medium (FM) condition (upper panel) or FM treated with IFN-c (lower panel). Left: bright field images of 7-day cultured
human colon organoids, scale bar: 100 µm. Right: Immunofluorescence for KRT20 (green; note increased expression upon IFN-c treatment). Scale bar: 25 µm.

D Human colon organoids cultured in basic medium (upper panel) or additionally treated with IFN-c (lower panel). Left: bright field images of organoids that were
cultured for 4 days in basic medium and in addition for 3 days with IFN-c (lower panel) scale bar: 100 µm. Right: Immunofluorescence labeling for KRT20 (green).
Scale bar: 25 µm.

E–I Comparison of E) KRT20, F) MUC2, G) CHGA, H) LGR5, and I) ACE2 mRNA expression in organoids grown in FM or in basic medium and either untreated or treated
with IFN-c (n = 3). Data are presented as mean � SD, *: P ≤ 0.05, **: P ≤ 0.001, ***: P ≤ 0.0001, as determined by one-way ANOVA, followed by Tukey’s multiple
comparisons test (more details see Appendix Table S2).

J Immunofluorescence staining for ACE2 (red) and KRT20 (green) of organoids grown in full medium (upper) or basic medium (lower) and additionally treated with
IFN-c (right), indicating expression of ACE2 in differentiated enterocytes. White arrows point to ACE2. Scale bar: 10 µm.
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Gastrointestinal symptoms have been observed in a large proportion

of patients with SARS-CoV-2. Immunofluorescence staining of

samples from patients with COVID-19 suggests that their glandular

gut epithelium can be infected with SARS-CoV-2 (Xiao et al, 2020),

implicating a potential fecal-oral transmission route, which has been

further substantiated by the notion that viral RNA can be detected

in feces of around 50% of patients with COVID 19, even after respi-

ratory recovery (Cheung et al, 2020). Thus, understanding the inter-

action of gastrointestinal epithelia with SARS-CoV-2 is important for

uncovering the mechanism of SARS-CoV-2 infection and COVID-19

disease. In this context, organoids represent a valuable tool to not

only explore cellular interactions with SARS-CoV-2 but also mimic

in vivo aspects such as cellular heterogeneity within epithelial units,

niche signals that regulate epithelial turnover and differentiation,

and the impact of immune responses on epithelial behavior and

viral replication.

IFN-c is a central mediator of host responses to pathogens and a

plethora of IFN-c driven antiviral mechanisms have been demon-

strated. In the context of COVID-19, IFN-c signaling has been found

to be upregulated in the airway mucosa of infected individuals

(Chua et al, 2020). IFN-c is secreted by different subsets of immune

cells, particularly Th1 T cells, and is a master orchestrator of the

immune response to infection. Our data demonstrate that IFN-c also

has a direct effect on epithelial cells. In addition to activating epithe-

lial immune response mechanisms, including increased expression

of genes involved in antigen presentation and chemokine produc-

tion, we show that IFN-c alters epithelial cell fate determination. A

direct effect of T helper cell cytokines on epithelial stem cell fate

determination and, therefore, cellular composition in the gastroin-

testinal tract has recently been demonstrated (Biton et al, 2018),

establishing that epithelial differentiation is shaped by the immune

environment. Similarly, our data suggest that IFN-c drives differenti-

ation toward the enterocyte lineage. It was previously reported that

extended exposure to IFN-c can interfere with Wnt signaling by

inducing expression of Dkk1 (Nava et al, 2010). Such interference

of IFN-c with Wnt signaling activity may explain the increased cell

fate switch toward the enterocyte linage that we observed in mouse

and human colon organoids. In the colon, ACE2 is specifically

expressed in surface enterocytes and the upregulation upon IFN-c
treatment we observed is at least partially due to altered differentia-

tion of organoids. In the lung, ACE2 expression also seems to be

regulated by IFN-c, which may be similarly due to IFN-driven cellu-

lar cell fate determination (Ziegler et al, 2020). It will be important

to explore how IFN-c affects lung cell differentiation and whether its

differentiation-promoting effects are responsible for enhanced ACE2

expression in the airway system.

Our data showing how IFN-c signaling can promote virus replica-

tion in mucosal tissue may explain several clinical observations

related to COVID-19. Indeed, severe cases of COVID-19 are linked to

strong IFN responses that appear to be inefficient with respect to

clearance of the infection. A recent report that evaluated single-cell

RNA expression data from the airways of patients with COVID-19

revealed a correlation between the severity of SARS-CoV-2 infection

and ACE2 expression in response to IFN-c produced by immune

cells (Chua et al, 2020). While IFN-c is likely important in the

context of the host immune response to SARS-CoV-2 infection, its

effects on epithelial differentiation and ACE2 expression may

explain why it is inefficient in limiting infection in some patients.

Several clinical trials are currently investigating the outcome of

SARS-CoV-2 infection as a function of activation of IFN signaling as

well as suppression of this pathway via Jak-Stat inhibitors (Satarker

et al, 2020). These studies will reveal whether, in a clinical setting,

this signaling pathway induces immunity and is beneficial, or

whether the virus highjacks IFN signaling through the mechanisms

described here. In case of the latter, inhibition of this pathway may

reduce virus replication and severity of COVID-19. In addition to

having a potential impact on the clinical outcome, IFN-c may also

have an impact on virus transmission, as our data suggest that

◀ Figure 2. IFN-c increases infectivity of SARS-CoV-2 in colonic organoids.

A Immunofluorescence for N-protein (green) 48 h after SARS-CoV-2 infection of human colon organoids cultured in full medium (upper), full medium + IFN-c (upper
right), basic medium (lower left), and basic medium + IFN-c (lower right). Yellow arrows point to N-protein-positive cells. Scale bar: 25 µm.

B qPCR data displaying the relative virus load of SARS-CoV-2 measured by viral genome quantity in full medium vs. basic medium organoids 48 h after infection and
normalized to GAPDH (n = 6). Data are presented as mean � SD, *: P ≤ 0.05, **: P ≤ 0.001, ***: P ≤ 0.0001, as determined by Student’s t-test (more details see
Appendix Table S2).

C qPCR data displaying the relative virus load of SARS-CoV-2 measured by viral genome quantity in full medium vs. full medium + IFN-c-treated organoids 48 h after
infection and normalized to GAPDH (n = 9). Data are presented as mean � SD, *: P ≤ 0.05, **: P ≤ 0.001, ***: P ≤ 0.0001, as determined by Student’s t-test (more
details see Appendix Table S2).

D qPCR data displaying the relative virus load of SARS-CoV-2 measured by viral genome quantity in basic medium vs. basic medium + IFN-c-treated organoids 48 h
after infection and normalized to GAPDH (n = 4). Data are presented as mean � SD, *: P ≤ 0.05, **: P ≤ 0.001, ***: P ≤ 0.0001, as determined by Student’s t-test (more
details see Appendix Table S2).

E qPCR data displaying the relative virus load of SARS-CoV-2 measured by viral genome quantity in full medium + IFN-c vs. basic medium + IFN-c-treated organoids
48 h after infection and normalized to GAPDH (n = 4). Data are presented as mean � SD, *: P ≤ 0.05, **: P ≤ 0.001, ***: P ≤ 0.0001, as determined by Student’s t-test
(more details see Appendix Table S2).

F qPCR data comparing the relative virus load of SARS-CoV-2 measured by viral genome quantity normalized to GAPDH at 24 and 48 h after infection in full medium
(left) and basic medium (right) untreated or treated with IFN-c, indicating increase in virus load in differentiated and IFN-c-treated conditions (n = 8). Data are
presented as mean � SD, *: P ≤ 0.05, **: P ≤ 0.001, ***: P ≤ 0.0001, as determined by one-way ANOVA, followed by Tukey’s multiple comparisons test (more details
see Appendix Table S2).

G Electron microscopy imaging of organoids grown in basic medium, pretreated with IFN-c for 3 days and infected for 48 h with SARS-CoV-2. Upper: Overview showing
large virus-loaded vesicles in an epithelial cell. Scale bar: 500 nm. Lower: Disintegrated organoid cell containing high virus load, scale bar: 2.5 µm, higher
magnification to visualize virus particles, scale bar: 100 nm.

H Immunofluorescence for cleaved caspase-3 (red) and E-cadherin (green) 48 h after SARS-CoV-2 infection of human colon organoids cultured in full medium (upper),
full medium + IFN-c (upper right), basic medium (lower left) and basic medium + IFN-c (lower right). Scale bar: 50 µm. (below) Quantification of apoptotic cells,
indicating increased cell death in the differentiated and IFN-c-treated condition after SARS-CoV-2 infection (n = 7). Data are presented as mean � SD, *: P ≤ 0.05, **:
P ≤ 0.001, ***: P ≤ 0.0001, as determined by one-way ANOVA, followed by Tukey’s multiple comparison test (more details see Appendix Table S2).
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differentiated cells have high virus loads that are released upon

cellular disintegration.

Differing IFN-c responses to SARS-CoV-2 may also be responsible

for the highly variable clinical outcome of COVID-19. For example,

IFN-c levels appear to be age-related, with the elderly showing

higher IFN-c production compared with younger subjects (Bandres

et al, 2000; Yen et al, 2000), correlating with the increased severity

of COVID-19 observed in elderly patients (Jordan et al, 2020). Simi-

larly, it was recently reported that the chronic inflammatory state in

the lungs of smokers increases the risk for severe course and

adverse outcomes of COVID-19 (Vardavas & Nikitara, 2020; Zhou

et al, 2020). Our data suggest that the virus’ ability to increase its

replication efficiency via IFN-c signaling could contribute to the

increased severity of SARS-CoV-2 infection and disease progression

of COVID-19 in patients with chronic inflammation.

In summary, our data reveal a new and somewhat counterin-

tuitive mechanism by which SARS-CoV-2 promotes infection of

epithelial cells in the context of inflammation, which may explain

the limited efficiency of the immune system to control viral repli-

cation. This function of IFN-c and downstream signaling may

contribute to the unusual pathogenesis of COVID-19 and transmis-

sion of SARS-CoV-2.

Materials and Methods

Primary human colon organoid culture

Colon biopsies were obtained from Charit�e University Hospital,

Berlin, under signed informed consent obtained from all human

subjects. All experiments conformed with the WMA Declaration of

Helsinki and the Department of Health and Human Services

Belmont Report. The study was approved by the ethics committee

of the Charit�e University Medicine, Berlin (EA2/008/18). Fresh

colon samples from surgical resections of the sigmoid colon were

washed five times in ice cold phosphate-buffered saline (PBS)

supplemented with 1× penicillin/streptomycin (#15140122, Gibco),

50 µg/ml Gentamicin (#G1272, Merck), and 2.5 µg/ml amphotericin

B (#Y0000005, Sigma) and incubated for 15 min at room tempera-

ture. The mucosa was cut into approx. 0.5 cm2 pieces and incubated

for 5 min in 10 mM EDTA/PBS. Pieces of tissue were transferred to

2 mM EDTA/PBS supplemented with 2.5 µM DTT (#D9779, Sigma)

and incubated on a rotating shaker for 40 min at 4°C. After transfer

to PBS and vigorous shaking, the crypt-containing supernatant was

transferred to 0.1% BSA/PBS and centrifuged at 200 g for 3 min at

4°C. The number of colonic crypts was determined and 10 crypts

per 1 µl Matrigel drop (#356231, Corning) seeded in a volume of

15 µl in 48-well plates.

Organoids were grown based on previously developed protocols

(Sato et al, 2011; Michels et al, 2019) with further modifications.

Human colon organoid lines were cultured in basic medium

composed of Advanced Dulbecco’s Modified Eagle’s Medium/F12

(#12634, Gibco) containing 10 mM HEPES (#15630056, Gibco),

2 mM GlutaMAX (#35050061, Gibco), 1.25 mM N-acetylcysteine

(#A9165, Sigma), 25% R-spondin1 conditioned medium, 1× B-27

(#17504044, Gibco), 1× N2 (#17502048, Gibco), 500 nM A83-01

(#616454, Merck), 100 µg/ml primocin (#ant-pm, Invivogen), and

10% penicillin/streptomycin (#15140122, Gibco), which was

supplemented with 1 mM nicotinamide (N0636, Sigma), 10 µM

SB202190 (#S7067, Sigma), 3 µM CHIR-99021 (#S1263, Selleck-

chem), 0.328 nM sWnt (#N001, U-Protein Express), 50 ng/ml hEGF

(#PHG0311, Invitrogen), and 100 ng/ml hNoggin (#120-10C, Pepro-

Tech) for maintenance in complete medium conditions. 10 µM Y-

27632 (#M1817, Hölzel) was added after passaging and after the

initial seeding. After 4 days of culture in complete medium, differen-

tiation was induced by further culturing in basic medium. Human

organoids were passaged as organoid-crypt-fragments generated by

passing 10 times through a 26-G needle. IFN-c treatment was carried

out with 40 ng/ml human IFN-c (#285-IF-100, R&D) for the indi-

cated times. To inhibit Jak/Stat signaling, organoids were treated

with 10 µM pyridone-6 (P6).

Primary mouse colon organoid culture

Mouse colon was dissected, opened longitudinally, and cut into

5 mm long pieces. Tissue was washed five times in ice cold PBS,

followed by incubation for 5 min in 10 mM EDTA/PBS. Pieces of

tissue were transferred to 2 mM EDTA/PBS supplemented with

2.5 µM DTT and incubated on a rotating shaker for 20 min at 4°C.

Buffer was changed to HBSS (#14025050, Gibco) and transferred to

S-Tubes and run in a gentleMACS Dissociator (Miltenyi) using the

Spleen2.01 program seven times. The crypt-containing supernatant

was transferred to 0.1% BSA/PBS and centrifuged at 200 g for

3 min at 4°C. The number of colonic crypts was determined and 20

crypts per 1 µl Matrigel (#356231, Corning) seeded in a volume of

15 µl in 48-well plates.

◀ Figure 3. SARS-CoV-2 induces IFN-c gene expression signature and promotes differentiation.

A Gene set enrichment analysis of the transcriptome data from uninfected vs. 48 h SARS-CoV-2 infected organoids was performed and the GO terms with the most
significant positive correlation are displayed.

B Gene set enrichment analysis of the transcriptome data comparing uninfected vs. 48 h SARS-CoV-2-infected organoids and the “Hallmark interferon gamma
response” gene set. P-values were calculated using the fgsea package from https://www.bioconductor.org with 5,000 permutations.

C Analysis of discordance and concordance of transcriptomic responses (DISCO) between untreated vs. SARS-CoV-2-infected and untreated vs IFN-c-treated organoids.
The 50 most regulated genes are highlighted; gray: discordant and black: concordant.

D Relative expression of selected enterocyte-specific genes upon SARS-CoV-2 infection, normalized to GAPDH. Differences in gene expression were assessed using the
linear model ‘lmFit’ and ‘makeContrasts’ in limma.

E Immunofluorescence for KRT20 (green) in human colon organoids cultured in basic medium and either non-infected (left) or 48 h after SARS-CoV-2 infection (right),
indicating a strong increase in KRT20 expression after viral infection. Scale bar: 50 µm. Quantification of fluorescence intensity below (n = 8). Data are presented as
mean � SD, ****: P ≤ 0.0001, as determined by Student’s t-test (more details see Appendix Table S2).

F qPCR data displaying the increase of INF-c target genes (CXCL11, IFIT3) (upper) and enterocyte marker genes (KRT20, ACE2) (lower) after SARS-CoV-2 infection,
validating the results from the microarray analysis (n = 3). Data are presented as mean � SD, ****: P ≤ 0.0001, as determined by Student’s t-test (more details see
Appendix Table S2).
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Mouse colon organoid lines were cultured in basic medium

consisting of Advanced Dulbecco’s Modified Eagle’s Medium/F12

(#12634, Gibco) containing 10 mM HEPES (#15630056, Gibco),

2 mM GlutaMAX (#35050061, Gibco), 1.25 mM N-acetylcysteine

(#A9165, Sigma), 25% R-spondin 1 conditioned medium, 1× B-27

(#17504044, Gibco), 1× N2 (#17502048, Gibco), 500 nM A83-01

(#616454, Merck), and 10% penicillin/streptomycin (#15140122,

Gibco), which was supplemented with 3 µM CHIR-99021 (#S1263,

Selleckchem), 0.328 nM sWnt (#N001, U-Protein Express), 50 ng/

ml mEGF (#PMG8043 Invitrogen), and 100 ng/ml mNoggin (#250-

38, PeproTech) for maintenance in complete medium conditions.

10 µM Y-27632 (#M1817, Hölzel) was added after passaging and

after the initial seeding. After 3 days of culture in full medium, dif-

ferentiation was induced by further culturing either in basic

medium, or supplemented with sWnt and CHIR or with mEGF and

mNoggin. Mouse colon organoids were passaged as single cells,

which were generated by 6-min incubation in TriplE (#12604013,

Gibco) at 37°C. IFN-c treatment was carried out with 100 ng/ml

mouse IFN-c (#485-MI, R&D) for the indicated times.

Immunofluorescence staining and imaging

Organoids were transferred to 3.7% formaldehyde and fixed for 3 h

at room temperature, followed by incubation in 0.1% BSA/PBS for

at least 30 min, embedding in 2% agarose, dehydration, and embed-

ding in paraffin. 5 µm sections were deparaffinized and rehydrated,

followed by antigen retrieval in citrate buffer. Non-specific antibody

binding was blocked by incubation in 0.1% tween/PBS supple-

mented with 5% FBS and 1% BSA for 30 min, followed by over-

night incubation with primary antibodies detecting KRT20 (#13063,

Cell Signaling), anti-E-cadherin (#610181, BD), N-protein (Buss-

mann et al, 2006), ACE2 (#HPA000288, Sigma), or Ki67 (#9192, Cell

Signaling). The next day, they were incubated with secondary anti-

bodies (Alexa488, Cy3 or Cy5) (Jackson Immunoresearch) for 2 h at

room temperature and counterstained with DAPI. Immunofluores-

cence imaging procedures were acquired with a laser scanning

microscope LS8 (Leica, Germany), and images were analyzed with

Fiji (ImageJ).

RNA isolation and RT–PCR

Organoid medium was removed and RNA was isolated using the

Macherey & Nagel RNA isolation kit (#740955) according to the

manufacturer’s instruction. cDNA was generated using the iScript

cDNA synthesis kit (#1708891, Bio-Rad), and qPCR was performed

with SYBR-green (#A25741, Thermo Fisher) and the StepOne Real-

Time PCR System (Thermo Fisher). Fold-change expression was

determined following the deltaCCmethod and normalized to GAPDH.

Viral RNA was detected by TaqMan RT–PCR as described before

(Corman et al 2020) and normalized to GAPDH (ID: sh99999905m1).

Virus infection

A human SARS-CoV-2 isolate (BetaCoV/Germany/BavPat1/2020

(Wolfel et al, 2020) was obtained as a generous gift from Dr.

Daniela Niemeyer and Prof. Christian Drosten, Charit�e—University

Medicine Berlin. The virus was propagated on Vero E6 cells (ATCC

CRL-1586) in minimal essential medium (MEM; #P04-09500, PAN

Biotech, Aidenbach, Germany) supplemented with 10% fetal bovine

serum (#P30-3031, PAN Biotech), 100 IU/ml penicillin G (HP49.1),

and 100 g/ml streptomycin (#HP66) (Carl Roth, Karlsruhe,

Germany). All work involving SARS-CoV-2 was performed under

the appropriate safety precautions in a BSL-3 facility (Freie Univer-

sit€at Berlin, Institute of Virology). Virus containing cell culture

supernatant was harvested when cytopathic effects (cpe) became

apparent (typically 48 h following infection) and stored at �80°C.

Titrations were performed on Vero E6 cells under a 1.3 % methyl-

cellulose (#M0262, viscosity 400 cP, Sigma, St. Louis, MO, USA)

overlay. Plaque-forming units were counted following fixation with

4% formalin and crystal violet staining at 72 h post-infection.

Organoids were cultured in complete medium for 3 days and

further cultured either in complete medium or differentiation

medium for 4 days, followed by 3 days of IFN-c treatment. Orga-

noids were harvested and broken into cell clusters by passaging

through a 26-G needle and washed in 0.1% BSA/PBS buffer. A

sample was incubated for 6 min in TryplE (#12604013, Gibco) at

37°C to generate single-cell suspension to determine cell numbers.

For virus infection, cell clusters were incubated with supernatant

from SARS-CoV-2-infected Vero E6 cell cultures at virus titer of

4 × 106 resulting in a multiplicity of infection (MOI) of 1. Excess

virus was removed by three washes in 0.1% BSA/PBS buffer before

seeding in Matrigel. Organoids were cultured for up to 48 h post-

infection in the respective medium.

Microarray

Microarray experiments were performed as independent dual-color

dye-reversal color-swap hybridizations. Total RNA was labeled with

the Low Input Quick-Amp Labeling Kit (Agilent Technologies). In

brief, 100 ng total RNA was reverse transcribed and amplified using

an oligo-dT-T7 promoter primer and labeled with cyanine 3-CTP

and/or cyanine 5-CTP by T7 in vitro transcription. After precipita-

tion, purification, and quantification, 0.5 lg labeled cRNA of each

ratio sample was mixed, fragmented, and hybridized to custom

whole genome human 8 × 60K multipack microarrays (Agilent-

048908) according to the supplier’s protocol (Agilent Technologies).

Scanning of microarrays was performed with 3 lm resolution and

20-bit image depth using a G2565CA high-resolution laser microar-

ray scanner (Agilent Technologies). Microarray image data were

processed with the Image Analysis/Feature Extraction software

G2567AA v. A.12.1.1.1 (Agilent Technologies) using default settings

and the GE2_1200_Dec17 extraction protocol.

The extracted MAGE-ML files were analyzed with the Rosetta

Resolver Biosoftware, Build 7.2.2 SP1.31 (Rosetta Biosoftware).

Ratio profiles comprising single hybridizations were combined in an

error-weighted fashion to create ratio experiments. A 0.5 log2 fold-

change expression cut-off for ratio experiments was applied together

with anti-correlation of ratio profiles, rendering the microarray anal-

ysis highly significant (P < 0.05).

In addition, microarray data were analyzed using the R package

limma (Ritchie et al, 2015). The microarray readout txt files were

background corrected, normalized, and controlled for quality using

the R package limma (Smyth & Speed, 2003). Between-array

normalization was done using the quantile method in limma. The

hybridization control samples were removed and the gene expres-

sion values were averaged for each probe over all replicates of that
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probe on the microarray, using the avereps function from limma.

Gene set enrichment was tested either with the R package tmod or

with the fgsea R package (preprint: Sergushichev et al, 2016) and

with 5,000 permutations.

Statistical analysis

Data are expressed as mean � SEM. Differences between the dif-

ferent treatment groups were determined by Student’s t-test or by

one-way ANOVA (if more than two groups were compared)

followed by Tukey’s multiple comparisons test to determine dif-

ferences of quantification of image analysis or expression data.

P < 0.05 was considered significant. No statistical methods were

used to predetermine sample size. All experiments were randomized

and blinded whenever possible. For data visualization and statistical

analysis, GraphPad Prism 8 software was used.

Generation of t-SNE plots

Epithelial scRNAseq data from colon of healthy donors were used

from a published data set (Parikh et al, 2019). Gene expression

Ontology (GEO) accession number for the source data is

GSE116222. Seurat R package (Butler et al, 2018) was used to

perform t-distributed stochastic neighbor embedding (t-SNE) analy-

sis. t-SNE analysis was applied to visualize cell clusters. Datasets

were filtered (> 50 transcripts, < 5% mitochondrial reads per cell)

and log-normalized, and the first 20 principal components were

used to reduce dimensionality by t-SNE with a resolution of 0.2.

Transmission electron microscopy

For fine structural analysis, organoids with attached Matrigel matrix

were embedded in small cubes of low melting agarose. These were

post-fixed with 0.5% osmium-tetroxide, contrasted with uranyl-

acetate and tannic acid, dehydrated in a graded ethanol series, and

infiltrated in Polybed (#02600-1, Polysciences). The cubes were

placed in flat embedding molds with Polybed. After polymerization,

specimens were cut at 60 nm. Specimens were analyzed in a Leo

906E transmission electron microscope (Zeiss, Oberkochen, DE)

equipped with a side-mounted digital camera (Morada, SIS-Olym-

pus, M€unster, DE). Images were aligned and mounted using ImageJ

(https://imagej.nih.gov/ij/).

Data availability

Microarray data have been deposited in the Gene Expression Omnibus

(GEO; https://www.ncbi.nlm.nih.gov/geo/) of the National Center for

Biotechnology Information under the accession number GSE156544:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156544.

All other data that support the findings of this study are available

from the corresponding author on reasonable request.

Expanded View for this article is available online.
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