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ABSTRACT: Time-dependent density-functional theory
(TDDFT) is a computationally efficient first-principles approach
for calculating optical spectra in insulators and semiconductors
including excitonic effects. We show how exciton wave functions
can be obtained from TDDFT via the Kohn−Sham transition
density matrix, both in the frequency-dependent linear-response
regime and in real-time propagation. The method is illustrated
using one-dimensional model solids. In particular, we show that
our approach provides insight into the formation and dissociation
of excitons in real time. This opens the door to time-resolved
studies of exciton dynamics in materials by means of real-time
TDDFT.

1. INTRODUCTION

According to the common textbook definition,1 an exciton is a
bound electron−hole pair, which is created in an optical
excitation of an insulator or semiconductor across the band
gap. Within the so-called Wannier exciton model,2 the electron
and the hole attract each other via the dielectrically screened
Coulomb interaction; the exciton wave function follows from a
hydrogenic Schrödinger equation for a particle of reduced mass
mr = memh/(me + mh), where me and mh are the electron and
hole effective mass, respectively. In three dimensions, the
Wannier model gives a qualitatively useful picture of excitons
in solids, but it is too simplistic for most applications, especially
when one is interested in the dynamics of the exciton induced
by some external perturbation.
The Bethe-Salpeter equation (BSE), usually coupled with

the GW method for the electronic band structure, is a well-
established first-principles approach for calculating optical
spectra including excitonic features.3−5 More recently, time-
dependent density-functional theory (TDDFT)6 has made
significant progress as an alternative approach for the optical
properties of semiconductors and insulators,7−15 with accu-
racies close to the BSE, but at a fraction of its cost.16−21

The BSE can be formulated as an eigenvalue problem, giving
rise to the excitation spectrum; the eigenvectors can be used to
construct a two-body object, the exciton wave function
Ψ(re,rh), where re and rh are the positions of the electron
and the hole, respectively. There are many examples in the
literature where BSE exciton wave functions are studied for
various materials.22−32 However, this kind of analysis is limited
to the frequency-dependent linear-response regime; the
standard BSE does not tell us how excitonic wave functions

have been created nor how they behave under more general
time-dependent perturbations such as sudden switching or
short laser pulses, especially if the resulting dynamics is
ultrafast or goes beyond the linear regime. There exists an
explicitly time-dependent version of the BSE,33 but to our
knowledge, it has not been used to obtain exciton wave
functions.
In this paper, we show how exciton wave functions can be

obtained from TDDFT, both in the frequency-dependent
linear-response and in the real-time propagation regime. This
makes it possible to investigate from first-principles how
excitons evolve under nonsteady-state conditions. An alter-
native approach for real-time exciton dynamics is based on
nonequilibrium Green’s functions, which involves the solution
of the time-dependent Kadanoff-Baym equation.34 Such
calculations have recently been implemented for molecules
and solids,35−39 but the computational effort for realistic
materials is significantly higher than that of TDDFT.
To illustrate the dynamics of the exciton wave function, we

will use one-dimensional (1D) models of a solid, for which the
entire two-body wave function Ψ(re,rh) can be plotted as a
two-dimensional map. For further analysis, especially to
illustrate the time evolution, we will also use representations
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of reduced dimensionality, where we fix the position of the
hole and plot the distribution of the electron around it
(alternatively, one can also fix the center of mass coordinate of
the exciton and plot the relative electron−hole coordinate). By
fixing the position of the hole, or of the center of mass, we can
easily visualize the dynamics of the exciton wave function, a
task that becomes much more complicated in higher
dimensions.
This paper is organized as follows. In Section 2, we discuss

the theoretical background, introducing the frequency- and
time-dependent transition density matrix and its representation
in periodic solids. We also discuss issues related to gauge
invariance. In Section 3, we present results for 1D model
solids, illustrating the exciton wave function in frequency-
dependent and real-time representations. We will discuss
explicit examples to showcase the capabilities of the approach,
namely the visualization of localized and charge-transfer
excitons, the onset of nonlinear effects under increasing
excitation strength, and exciton dissociation under the
influence of static electric fields. Conclusions are given in
Section 4.
Atomic units (a.u.), with ℏ = e = m = 4πϵ0 = 1, will be used

throughout. Explicit values of physical quantities such as
lengths, energies, or electric field strengths will be given as
dimensionless numbers; it is understood that they are
measured in a.u.

2. THEORETICAL BACKGROUND
2.1. TDM of the nth Excitation. The transition density

matrix (TDM) between a many-body ground state Ψ0 and the
nth excited state Ψn is defined as40,41

r r r r( , ) ( , )n
n

( )
0ρΓ ′ = ⟨Ψ | ̂ ′ |Ψ ⟩ (1)

where ρ̂(r, r′) is the reduced one-particle density matrix
operator.
The TDM can be approximately obtained from Kohn−

Sham- or quasi-particle-based theories such as TDDFT,
generalized (hybrid) TDDFT, time-dependent Hartree−
Fock, or GW/BSE. In each case, the first step is to calculate
the spectrum of excitation energies Ωn, which involves solving
a non-Hermitian eigenvalue equation in one-particle transition
space of the form
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In TDDFT, the elements of the matrix A are given by

A B( )ia i a a i ii aa ia i a, ,ε ε δ δ= − +′ ′ ′ ′ ′ ′ (3)

where i, i′ and a, a′ refer to occupied and unoccupied single-
particle levels, respectively, and εa − εi are the single-particle
excitation energies. The matrix B is defined as

B d d fr r r r r r r r( ) ( ) ( , , ) ( ) ( )ia i a i a i a, Hxc∫ ∫ φ φ ω φ φ= ′ * ′ ′ * ′′ ′ ′ ′

(4)

where fHxc is the (formally frequency-dependent) Hartree-
exchange-correlation kernel. In TDDFT, eq 2 is known as the
Casida equation.42

In hybrid TDDFT, time-dependent Hartree−Fock, or in
GW/BSE, the coupling matrices A and B are defined in a
similar manner as in Kohn−Sham TDDFT, involving double
integrals of single-particle orbitals with the bare or screened

Coulomb interaction. Explicit expressions can be found in the
literature.6,20,43

Using the occupied and unoccupied single-particle orbitals
and the eigenvectors (X(n), Y(n)), the TDM can be constructed
as

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
X Yr r r r r r( , ) ( ) ( ) ( ) ( )s

n

ia
i a ia

n
i a ia

n( ) ( ) ( )∑ φ φ φ φΓ ′ = [ * ′ + * ′
(5)

Here, the subscript s stands for “single-particle”.
In TDDFT, the diagonal of the single-particle TDM is the

density response associated with the nth excitation, which is
given in principle exactly: Γs

(n) (r,r) = Γ(n)(r,r) = δn(r,Ωn).
However, the nondiagonal elements (where r ≠ r′) are not
guaranteed to be exact. Nevertheless, Γs

(n) (r,r′) has been
widely used to analyze electronic excitations.44

2.2. Time-Dependent TDM. Let us now assume that the
system starts from the ground state at time t = 0 and then
evolves for t > 0 under the influence of time-dependent scalar
or vector potentials. We define the time-dependent TDM as
the difference between the time-dependent and the ground-
state one-body density matrices:

t t tr r r r r r( , , ) ( ) ( , ) ( ) ( , )0 0ρ ρΓ ′ = ⟨Ψ | ̂ ′ |Ψ ⟩ − ⟨Ψ | ̂ ′ |Ψ ⟩ (6)

where Ψ(t) is the time-dependent many-body wave function,
which evolves from the initial state Ψ0. The time-dependent
density matrix ⟨Ψ(t)| ρ̂(r, r′) |Ψ(t)⟩ is commonly used for
describing nonequilibrium electronic processes such as
transient absorption spectroscopy.35 Defining the time-
dependent TDM as in eq 6 allows us to visualize the
dynamical changes induced by the external perturbation and is
consistent with the linear-response TDM, as we will show
below.
The time-dependent wave function can be written as

t t( ) e ( )iE t
0

0 δΨ = Ψ + Ψ−
(7)

and to first order in δΨ(t), the time-dependent TDM
becomes45

t t e tr r r r r r( , , ) ( ) ( , ) e ( , ) ( )iE t iE t
0 0

0 0δ δ ρ ρ δΓ ′ = ⟨ Ψ | ̂ ′ |Ψ ⟩ + ⟨Ψ | ̂ ′ | Ψ ⟩−

(8)

In real-time TDDFT, the time-dependent TDM is given by

t t tr r r r r r( , , ) ( , ) ( , ) ( ) ( )s
i

i i i i

occ

∑ φ φ φ φΓ ′ = [ * ′ − * ′ ]
(9)

where the φi(r, t) are the time-dependent Kohn−Sham
orbitals, which evolve from the ith occupied Kohn−Sham
orbitals φi(r) in the ground state at time t = 0.
Writing the time-dependent Kohn−Sham orbitals as

t tr r r( , ) ( )e ( , )i i
i t

i
iφ φ δφ= +ε−

(10)

we obtain, to first order,

t t t er r r r r r( , , ) ( )e ( , ) ( , ) ( )s
i

i
i t

i i i
i t

occ
i i∑δ φ δφ δφ φΓ ′ = [ * ′ + * ′ ]ε ε−

(11)

It is straightforward to establish a correspondence with the
TDM of the nth excitation, eq 5, by expressing the time-
evolved states in the basis of the ground-state Kohn−Sham
orbitals. This leads to

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01334
J. Chem. Theory Comput. 2021, 17, 1795−1805

1796

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01334?ref=pdf


t C tr r( , ) ( )e ( )i
k

ik
i t

k
k∑δφ φ= ε−

(12)

Inserting this into eq 11, and using standard first-order time-
dependent perturbation theory, it follows that
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i t
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i a

∑ ∑δ φ φ

φ φ

Γ ′ = * * ′

+ * ′

ε ε

ε ε

−

−
(13)

Assuming that the system is in an eigenmode associated with
the nth excitation, one is then able to identify the Fourier
transforms of the coefficients Cia(t)e

i(εa − εi)t and Cia*(t)e
i(εa − εi)t

with Xia
(n) and Yia

(n), respectively.46 This allows one to obtain Xia
(n)

and Yia
(n) without solving the Casida equation by using time

propagation following a small kick at the initial time.
2.3. Exciton Wave Functions from TDDFT. We now

proceed to make a more direct connection between the exciton
wave function and the single-particle TDM obtained from
TDDFT. The TDM has been identified with the exciton wave
function in large molecular systems.47

In the case of periodic solids, the Casida equation, eq 2, can
be generalized in a rather straightforward manner.20 In the
following, we will specifically consider solids with a gap, that is,
semiconductors or insulators, in which excitonic effects can be
observed. In solids, eq 5 becomes

É
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ÑÑÑÑÑÑÑÑÑÑÑ
X Yr r r r r r( , ) ( ) ( ) ( ) ( )s

n

vc
v c vc

n
v c vc

n

k
k k k k k k

( ) ( ) ( )∑ φ φ φ φΓ ′ = [ * ′ + * ′

(14)

Here, v and c are valence- and conduction band indices, k is a
wave vector within the first Brillouin zone, and r and r′ are
arbitrary positions within the periodic solid, not restricted to
one unit cell. This reflects the fact that the exciton is an
extended object that lives in the entire periodic crystal; the
total size of the crystal is determined by the number of k-
points used to sample the Brillouin zone. However, eq 14 can
be brought into an alternative, more convenient, form by
defining r = x + R, where x is within the Wigner-Seitz unit cell,
and R is a direct lattice vector. Making use of Bloch’s theorem
for the single-particle wave functions, we find
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n

vc
v c vc

n
v c vc

n i

k
k k k k k k

k R R( ) ( ) ( ) ( )∑ φ φ φ φΓ ′ = * ′ + * ′ · − ′

(15)

From this expression, it is clear that to construct the TDM in
the entire periodic crystal, only input from within a unit cell is
required. If the nth excitation has excitonic character, then eq
15 gives the exciton wave function. This will be illustrated in
Section 3 for model insulators.
In a similar manner, the time-dependent TDM (9) can be

formulated for periodic solids:

t t t er r x x x x( , , ) ( , ) ( , ) ( ) ( )s
v

v v v v
i

k
k k k k

k R R( )∑ φ φ φ φΓ ′ = [ * ′ − * ′ ] · − ′

(16)

and likewise for the first-order expression (11),

t t

t e e

r r x x

x x

( , , ) ( )e ( , )

( , ) ( )

s
v

v
i t

v

v v
i t i

k
k k

k k
k R R( )

v

v

k

k

∑δ φ δφ

δφ φ

Γ ′ = [ * ′

+ * ′ ]

ε

ε

−

· − ′
(17)

In practice, the time-dependent TDM is constructed using
orbitals obtained from numerical solutions of the time-
dependent Kohn−Sham equations; the full expressions (9)
and (16) for Γs are then to be preferred over the linearized
expressions (11) and (17). The main reason is that the phase
factors e±iεit and e±iεvkt, respectively, depend on the Kohn−Sham
single-particle eigenvalues, which in practice are determined to
within some numerical error; this introduces numerical
inaccuracies, which will accumulate over time.

2.4. Gauge Dependence of the Time-Dependent
TDM. We first consider the time-dependent Kohn−Sham
equation in the length gauge:

Ä
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É
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ÑÑÑÑÑÑÑÑÑÑ
i

t
t V V t V t tr r r r r( , )

2
( ) ( , ) ( , ) ( , )j j

2

0 1 Hxcφ φ∂
∂

= − ∇ + + +

(18)

We assume that the system is initially in the ground state
associated with the static external potential V0(r); at time t = 0,
a time-dependent scalar potential V1(r, t) is switched on and
the system is driven out of the ground state. VHxc(r, t) is the
sum of the time-dependent Hartree and exchange-correlation
potentials.
To describe optical processes in materials, it is convenient to

transform the time-dependent Kohn−Sham equation, eq 18,
into the velocity gauge:48−56
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i

t
t

i
t V V t tr A r r r r( , )

1
2

( , ) ( ) ( , ) ( , )j j1

2

0 Hxcφ φ∂
∂

̃ = ∇ + + + ̃

(19)

The vector potential A1(r, t) is given by

t V t tA r r( , ) ( , ) d
t

1
0

1∫= −∇ ′ ′
(20)

which follows from the relation ∂ A1(r, t)/∂t = E1(r, t)
between the vector potential and the electric field E1 associated
with the scalar potential V1.
The Kohn−Sham orbitals in the velocity gauge, φ̃j(r,t), are

related to the orbitals in the length gauge, φj(r, t), as follows:

t tr r( , ) e ( , )j
i t

j
r( , )φ φ̃ = − Λ

(21)

where ∂Λ(r, t)/∂t = −V1(r, t).
An important example is that of a linearly polarized

electromagnetic wave in dipole approximation. The perturbing
potential then has the form V1(r, t) = −E · rf(t), where E is the
constant uniform electric field amplitude, and f(t) is a purely
time-dependent function describing, for instance, a short kick
or a short pulse. The associated gauge function and vector
potential are then Λ(r, t) = E · rF(t) and A1(r, t) = EF(t),
respectively, where F(t) = ∫ 0

t f(t′) dt′.
The time-dependent TDM is not invariant under electro-

magnetic gauge transformations. If we start from Γs(r, r′, t) in
eq 9 evaluated with length-gauge wave functions, we obtain,
using the above gauge transformation, the TDM as

Ä
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ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑt t t er r r r r r( , , ) ( , ) ( , ) ( ) ( )s

i
i i

i t t
i i

r r
occ

( ( , ) ( , ))∑ φ φ φ φΓ ′ = ̃ ̃* ′ − * ′Λ −Λ ′

(22)

This is clearly different from the time-dependent TDM directly
constructed from the wave functions obtained in the velocity
gauge,
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t t tr r r r r r( , , ) ( , ) ( , ) ( ) ( )s
i

i i i i

occ

∑ φ φ φ φΓ̃ ′ = [ ̃ ̃* ′ − * ′ ]
(23)

As we will see in the next section, the lack of gauge invariance
can sometimes be mitigated by a suitable choice of A1(r, t).
However, we found in all examples of Section 3.2 that the
differences between Γs(r, r′, t) and Γ̃s(r,r′,t) were rather minor.
In the following, we therefore only consider Γ̃s(r,r′,t), as
defined in eq 23.
An important point to note is that the gauge transformation

in eqs 19 and 20 has only been applied to the external time-
dependent potential. As we will discuss in more detail below,
this is the proper thing to do for 1D systems. However, in 2D
and 3D there may be long-range contributions to the time-
dependent exchange-correlation potential, which must be
gauge transformed into a vector potential as well.

3. RESULTS FOR MODEL SOLIDS

3.1. Time-Independent Description of Excitons.
3.1.1. Band Structure of the 1D Model Solid. We will now
illustrate the frequency- and time-dependent TDM using 1D
model solids.57,58 We first calculate the electronic band
structure in a 1D periodic Kohn−Sham potential VKS(x) =
V0(x) + VHxc(x) with cosine shape:

i
k
jjj

y
{
zzzV x A

x
a

( ) cos
2

KS
π= −

(24)

Here, a is the lattice constant, and A is the amplitude of the
potential. Separate knowledge of V0(x) and VHxc(x) is not
needed here. In the following, we choose A = 20 and a = 1, and
we consider the case where the two lowest bands are occupied,
that is, there are four electrons per unit cell. The ground-state
density n0(x) and the associated VKS(x) are shown in the
bottom panel of Figure 1.
The top panel of Figure 1 presents the electronic band

structure in the first Brillouin zone; occupied valence bands are
shown in blue, empty conduction bands in red. There is a
direct band gap of size Eg = 7.56 at the Γ-point (where k = 0).
Here and in the following, the calculations were done using a
straightforward plane-wave expansion with 200 k-points in the
Brillouin zone and seven reciprocal lattice vectors. Later, in
Section 3.1.3, we will consider a 1D solid with defects, using a
supercell with 15 k-points in the Brillouin zone.
3.1.2. Excitons from Linear-Response TDDFT. Next, we use

TDDFT in the frequency-dependent linear-response formalism
to calculate the excitation energies. Specifically, we solve the
Casida equation, eq 2, for our 1D solid, including the two
occupied valence bands and three unoccupied conduction
bands. We use the following xc kernel:

f x x
x x

( , )
( )

xc
LRC

2 2

α

γ
′ = −

− ′ + (25)

This xc kernel is the 1D version of the so-called long-range
corrected (LRC) kernel,14,20,59,60 featuring two adjustable
parameters, α and γ. Here, γ defines the 1D soft Coulomb
potential; in the following, we choose γ = 0.1. The strength α
of the LRC kernel determines the exciton binding energy.
In reciprocal space, the xc kernel is given by

f q K q G( ) 2 ( )GG GGxc,
LRC

0α γ δ= − | + |′ ′ (26)

where K0 denotes a modified Bessel function of the second
kind, q is a wave vector in the first Brillouin zone, and G, G′ are
reciprocal lattice vectors of the 1D lattice. Since limq→0K0(γ|q|)
= ln(γ|q|), the head of the 1D LRC kernel diverges
logarithmically rather than as 1/q2. Therefore, only the body
of f xc,GG′

LRC contributes to the excitonic binding. In other words,
the 1D LRC kernel creates excitons via local-field effects, in
contrast with LRC kernels in three dimensions, where the head
is dominant.15,57

From the eigenvectors of the Casida equation, the
macroscopic dielectric function ϵmac(ω) can be con-
structed.15,61 Figure 2 shows the imaginary part of ϵmac(ω)
for our 1D solid for various values of α. Strong excitonic peaks

Figure 1. Bottom: Kohn−Sham potential VKS(x) (scaled by 0.1) and
ground-state density n0(x) of a model 1D insulator with four electrons
per unit cell. Top: associated band structure (occupied bands in blue,
empty bands in red).

Figure 2. Imaginary part of the macroscopic dielectric function of the
1D solid, for various values of the LRC parameter α, as indicated.
Inset: exciton binding energy Eb versus α.
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are seen to develop as α ≳ 1. The exciton binding energy Eb,
shown in the inset, strongly increases with α.
Figure 3 shows the frequency-dependent TDM of the bound

exciton for α = 3 (corresponding to the peak at ω = 6.79 in

Figure 2, with Eb = 0.78). The top panel presents the absolute
value |Γs(x, x′)|, where x and x′ cover a range of 21 unit cells.
Clearly, the TDM is diagonally dominated, as one would
expect for the wave function of a bound exciton, for which the
electrons and holes are held together by the Coulomb
interaction. The bottom panels of Figure 3 show the electron
distribution |Γs(xh, x′)| for various reference positions xh of the
hole in the central unit cell. Each of the four profiles is a
vertical cut through the TDM of the top panel.
Figure 4 shows the absolute value of the TDM in an

alternative representation, namely as a function of center-of-
mass and relative coordinates of the exciton, X = (x + x′)/2
and Xr = x − x′. The TDM now appears as a broad horizontal
stripe, which expresses the translational invariance in the
model solid. The bottom panels show the exciton wave
function (in terms of the relative coordinate) for various
center-of-mass positions in the unit cell.
For this simple model solid, it is not obvious which of the

two representations of the exciton wave function, Γs(x, x′) or
Γs(X, Xr), is to be preferred since both convey similar

information. However, we can use the representation Γs(X, Xr)
to make a comparison with the basic Wannier model of
excitons.2

According to the 3D Wannier model, the excitons are
described using hydrogenic wave functions (as a function of
relative coordinate, for arbitrary center-of-mass position). One
finds that the effective Bohr radius of the 1s exciton behaves as
a0 ≈ Eb

−1/2, where Eb = ℏ2/2mra0
2 is the exciton binding energy

of the 3D Wannier model (mr is the reduced electron−hole
effective mass).
In 1D, no analytic solution exists for the Wannier model

with soft Coulomb interaction. We have obtained numerical
solutions of the corresponding 1D hydrogenic Schrödinger
equation, and we found that one can extract a 1D equivalent,
a0
1D, of the Bohr radius as the half-width at half-maximum
(HWHM) of the exciton wave function. It turns out that a0

1D ≈
Eb
−ξ, where the exponent ξ is close to 0.5.
3.1.3. 1D Solid with Defects: Visualizing Localized and

Charge-Transfer Excitons. At equilibrium, the particle-hole
map (PHM) offers an alternative tool for visualizing electronic
excitations.46,62,63 It is defined similarly to the TDM (5), as
follows:

Figure 3. Top: frequency-dependent TDM |Γs(x, x′)| of the bound
exciton for α = 3. Bottom: electron distribution |Γs(xh, x′)| for various
reference positions xh of the hole.

Figure 4. Top: frequency-dependent TDM |Γs(X, Xr)| of the bound
exciton for α = 3. Bottom: associated exciton wave function | Γs
(Xcm,Xr)))| for various reference positions Xcm of the center of mass of
the exciton.
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The PHM provides visual information about the origins and
destinations of electrons and holes created during an
excitation, and is therefore particularly suitable to analyze
charge-transfer excitation processes in large molecules or
molecular complexes.64 Here, we consider the PHM for
periodic crystals; in contrast with the TDM, the PHM is itself
lattice periodic and is therefore not very interesting for excitons
in simple solids such as the 1D model treated above. However,
as we will see, the PHM can offer valuable insight into the
nature of excitation processes in solids with more complex unit
cells.
To give an example, we consider a supercell consisting of

seven primitive unit cells of the cosine potential, eq 24. To
simulate defects, we modify the amplitude A of the cosine
potential in selected cells: specifically, we choose A = 14 and A
= 17 in cells 2 and 6, respectively, and A = 20 in all other cells.
The resulting ground-state density is shown in the bottom
panel of Figure 5. The density is slightly reduced at the defect
positions. We then solve the Casida equation as before, using α

= 2. The resulting exciton binding energy, Eb = 0.353, is
significantly larger than in the absence of the defects (Eb =
0.248).
In Figure 5, we compare the TDM (top) and the PHM

(middle) for the exciton within one supercell. At first glance,
both seem to convey similar visual information, but the
physical meaning is different. The vertical streak of the TDM
around x/a = −2 indicates that the hole strongly localizes at
the left defect. A similar localization of the hole, but to a lesser
degree, occurs at the right defect around x/a = 2. The PHM,
on the other hand, tells us about the charge-transfer nature of
the exciton. The prominent signal at (x/a, x′/a) = (−2, −2)
indicates that excitation is mostly localized at the left defect.
However, there are distinct off-diagonal features at (2, −2) and
(−2, 2), which tell us that there is coherent charge transfer
happening between the two defect sites (in the sense that
electrons at one site are associated with holes at the other site,
and vice versa).
In Figure 6, we show the exciton wave functions extending

over several supercells, comparing the two representations

Γs(x, x′) and Γs(X, Xr). Clearly, in the presence of the defects,
the exciton wave function is dramatically changed compared to
the pristine case shown in Figures 3 and 4, mainly due to
localization. Thus, the example discussed here illustrates that
the TDM and PHM can provide complementary information
about the inner mechanisms of excitonic processes.

3.2. Time-Resolved Calculations. We now demonstrate
that excitonic effects can also be captured in the time domain,
via the time-dependent Kohn−Sham equation in the velocity
gauge, as defined in eq 19. For our 1D model solid, we use the

Figure 5. Bottom: ground-state density n0(x) in a 1D supercell
consisting of 7 primitive unit cells of the cosine potential (24); defects
are simulated by reducing the depth of selected potential wells. Top
and middle: TDM |Γs(x, x′)| and PHM |Ξ(x, x′)| of the exciton (α =
2) within one supercell.

Figure 6. Comparison of the two representations of the TDM,
|Γs(x, x′)| (top) and | Γs (X,Xr)))| (bottom), for the exciton in the 1D
solid with defects (see Figure 5).
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following form of the time-dependent exchange-correlation
potential:

V x t dx f x x n x t( , ) ( , ) ( , )xc
LRC LRC∫ δ= ′ ′ ′

(28)

where δn(x, t) = n(x, t) − n0(x) is the density response. The
Hartree potential is ignored here since it does not contribute to
the excitonic binding (likewise, we ignored the Hartree kernel
in the frequency-dependent Casida formalism). In reciprocal
space, one therefore finds Vxc,G(t) = f xc,GG′

LRC δnG(t), using eq 26.
Notice that we set Vxc,G=0(t) = 0, since the head of f xc,GG′

LRC does
not contribute to the excitonic interaction in 1D, as discussed
above. This is different in 3D, where the G = 0 contribution is
crucial; however, Vxc,G=0(t) is ill defined in 3D, which can be
remedied by gauge transforming it into a vector potential.65

3.2.1. Resonant versus Nonresonant Excitation. We
consider time-dependent perturbations of the reciprocal-
space form

A E F t( )G G1, 0 ,0δ= (29)

associated with a uniform short-pulsed field E(t) = E0 f(t) with
amplitude E0 and time-dependence
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Here ωd is the driving frequency of the external field, Nc ≥ 1 is
the number of cycles contained in the pulse, and f(t) = 0 for t >
2πNc/ωd. With this choice of f(t), the vector potential (29)
vanishes at the end of the pulse, and the time-dependent TDM
becomes gauge invariant [i.e., Γs(x, x′, t) and Γ̃s(x,x′,t)
coincide] once the system reaches the stage of free time
propagation.
Figure 7 shows waterfall plots of the time-dependent TDM

(using α = 2) in three cases for above-resonant (ωd = 15.0),
resonant (ωd = 7.5), and below-resonant (ωd = 3.8) excitation.
The electric-field amplitude is the same in each case, E0 =
0.0001, corresponding to a very weak excitation. The three
cases are strikingly different. Above and below resonance, the
system shows a pronounced response of the TDM as long as
the pulse is present, but after the end of the pulse the signal
essentially disappears. In the above-resonant case, the
excitation energy is much greater than the band gap, thus
promoting the carriers well into the conduction band and into
the incoherent single-particle regime, far from the exciton. On
the other hand, the below-resonant response can be viewed as
a transient, quasi-static polarization effect. Only the resonant
excitation leads to a time-dependent TDM that persists after
the pulse is over, leading to a time-dependent TDM that
essentially maintains its shape, apart from some minor
oscillations at the frequency of the exciton.
3.2.2. Strong Excitations. One would expect that the results

obtained from real-time propagation are consistent with
frequency-dependent linear response. To demonstrate that
this is indeed the case, we calculate the time average of the
resonant time-dependent TDM over a time interval of 10 au
after the end of the pulse. Indeed, we find an almost perfect
agreement with linear response for field strengths up until E0 =
0.1: in this case, the averaged time-dependent TDM, shown in
the bottom panel of Figure 8, is indistinguishable from the
frequency-dependent TDM.
However, differences start to develop for stronger

excitations, see the middle panel (E0 = 0.5) and top panel

(E0 = 1.0) of Figure 8. Clearly, for E0 = 1.0 the exciton wave
function no longer has an exponential envelope but has
become significantly distorted and broadened. This suggests
that nonlinear effects start to become noticeable once the peak
field strength of the laser pulse exceeds 0.1. Of course, entering
the nonlinear regime for E0 ≳ 0.1 also means that our
expression for the xc potential, eq 28, is no longer formally
justified.66

To analyze this further, we plot in Figure 9 the population
Pex(t) of the initially empty bands, that is, the number of
excited (Kohn−Sham) electrons per unit cell, promoted into
the initially empty bands marked in red in Figure 1. As shown
in the top panel, the excited-state population Pex(t) rises
sharply during the pulse and then stabilizes, apart from some
small oscillations. Denoting the time average after the end of
the pulse by P̅ex, we find P̅ex = 0.00196, 0.0465, and 0.157 for
E0 = 0.1, 0.5, and 1, respectively.
The bottom panel of Figure 9 shows P̅ex as a function of E0

on a logarithmic scale. The straight-line behavior for small E0
indicates that, as expected for a resonant one-photon excitation
process, the number of excited electrons grows quadratically

Figure 7. Time-dependent TDM for the 1D solid of Figure 1, subject
to 5-cycle pulsed fields of the form given in eq 30, with E0 = 0.0001,
for three different values of ωd: above resonance (top), on resonance
(middle) and below resonance (bottom) with the 1D exciton (here, α
= 2).
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with E0, that is, proportional to the peak intensity of the pulse.
As E0 approaches 1, P̅ex starts to fall behind the quadratic
behavior. Again, this is not unexpected: as the population of
the bands changes significantly, the energy levels shift and the
laser field detunes; this makes the excitation process less
effective. In TDDFT, this detuning effect is a well-known
weakness of adiabatic approximations to the time-dependent xc
potential, leading, among other things, to inability to describe
Rabi oscillations.67,68

Thus, we conclude that the time-dependent exciton wave
function reflects the transition from the linear to the nonlinear
regime in the form of an increasing peak height with a gradual
change of shape, although a bound exciton remains
recognizable well beyond the linear regime. For extremely
strong excitations, outside the range of validity of the present
approach, the exciton wave function will distort more and
more strongly, and will eventually dissolve.
3.2.3. Exciton Dissociation in Static Electric Fields. In the

presence of a uniform static electric field, the bound states of a
hydrogenic Hamiltonian become metastable: even a weak field
leads to a suppression of the Coulomb potential, which allows
the electron to tunnel out.69 The field-induced dissociation of

excitons, which is in many ways similar to the tunneling
ionization of the H atom, has been widely studied both
theoretically and experimentally.70−74 In practice, one is
interested in the rates at which the excitons dissociate and
how these rates depend on the material.
The atomic unit of electric field strength (the field

experienced by an electron at a distance of one Bohr radius
a0 from a proton) is e a/(4 ) 5.14 100

2
0 0

2 11π= ϵ = × V/m.
An applied field whose strength approaches 0 causes an H
atom to ionize. For free carriers in materials with effective mass
m* = μm and effective charge e e/ r* = ϵ , the atomic unit of

electric field becomes, ( / )r0
2 3

0μ* = ϵ which can be less than

0 by several orders of magnitude. Accordingly, typical field
strengths at which exciton dissociation becomes noticeable
range anywhere from 106−108 V/m, depending on the
material.70−74

We now want to find out how a static electric field influences
the exciton wave function, and whether we can observe
signatures of dissociation. For this purpose, we include an
additional term into the time-dependent vector potential (29)
and write

A E F t E t( )G G1, 0 stat ,0δ= [ + ] (31)

In other words, together with the laser pulse of peak strength
E0 that creates the exciton, we switch on a uniform static field
of strength Estat at time t = 0.
In Figure 10, we illustrate the time-dependent exciton wave

function following resonant excitation with pulses of strength
E0 = 0.005, 0.05, and 0.5, subject to static electric fields of
strength Estat = 0.01, 0.1, and 1. A static field has important
consequences for Bloch electrons in materials with a gap:1 it
causes interband transitions via Zener tunneling, and it affects

Figure 8. Time average of the time-dependent TDM for resonant
excitation (see middle panel of Figure 7), calculated after the end of
the pulse.

Figure 9. Top: time dependence of the excited-state population for
the three cases shown in Figure 8 (resonant excitation with ωd = 7.5).
Bottom: average excited-state population at the end of the pulse, as a
function of E0. The dashed line indicates a behavior ∼ E0

2.
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the carrier dynamics by causing Bloch oscillations and
Wannier-Stark ladders.75,76 Since our focus is on coherent
electron−hole pairs, Bloch oscillations are not visible here. On
the other hand, the tunneling effect is clearly seen in our
calculations: the field-induced interband transitions lead to a
steady increase of excited-state population. As a result, the
central peak of the exciton wave function keeps increasing in
height; in Figure 10, we have capped the peak height at a value
of 0.05 because this would otherwise overshadow the main
effect.
We observe that for sufficiently strong fields, of order Estat =

0.1 or higher, the exciton wave function develops an
asymmetry following the initial pulse, which triggers the
exciton. The exciton wave function here represents the
distribution of an electron around a hole fixed at x = 0.
Thus, we can clearly observe the flux of the electron moving to
the right. Integrating over the outgoing flux can provide a
practically useful measure of the rate of exciton dissociation.
Here, the rate is small compared to the rate of interband
tunneling. This is likely a consequence of the extremely large
oscillator strength of the bound exciton in our 1D model
system.
In the last panel (E0 = 0.5 and Estat = 1), we observe another

interesting effect: it can be clearly seen that the flux of the
outgoing electron re-enters from the left after some time. In
other words, the system behaves as a ring of circumference
Nka, where Nk is the number of k-points (here, Nk = 200).
Choosing Nk sufficiently large is thus essential to avoid
unphysical finite-size effects in simulating exciton dynamics.

4. CONCLUSION

In this paper, we have shown how excitons can be visualized
using Kohn−Sham TDDFT. The method, based on the single-
particle TDM, can be applied in frequency-dependent linear-
response as well as in the real-time regime. In the appropriate
limit of weak perturbations, the frequency-dependent linear-
response and the real-time versions of the TDM lead to the
same representation of the exciton wave function. However,
the real-time TDM can be extended beyond the linear regime,

giving access to the description of exciton dynamics under
strong, ultrafast excitations.
We have illustrated the features and capabilities of the

Kohn−Sham TDM for 1D model solids in various scenarios.
As the example of charge-transfer excitons in a solid with
defects shows, the TDM (together with its cousin, the PHM)
delivers a spatially resolved exciton wave function, which
allows one to extract useful information about the excitation
mechanism in the material.
In the real-time domain, we have discussed the formation

and dynamics of excitons following short-pulsed excitations.
The time-dependent exciton wave function exhibits very
different behavior depending on whether the excitation is
resonant or nonresonant. As the excitation strength is
increased and more and more carriers are promoted across
the gap, the exciton wave function begins to distort, but the
essential features of a bound exciton are preserved well into the
nonlinear regime. In the presence of static electric fields, the
exciton wave function displays signatures of dissociation.
We have thus shown that the Kohn−Sham TDM is a

versatile and powerful visualization tool for excitons. The time-
dependent exciton wave function introduced in this paper is
computationally easy to implement in conjunction with time-
dependent Kohn−Sham calculations for extended systems
such as periodic solids, nanostructures, or large molecules.
However, the TDM can provide more than just visual
information and could in fact be used in various ways for a
more quantitative analysis of exciton dynamics, for instance to
extract dissociation rates under the influence of a bias, or
charge separation rates at interfaces. Given the increasing use
and availability of real-time electronic structure approaches in
chemistry and materials science,77 this may open up many new
and promising applications in excitonics.
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