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A physical self-learning machine can be defined as a nonlinear dynamical system that can be
trained on data (similar to artificial neural networks), but where the update of the internal degrees
of freedom that serve as learnable parameters happens autonomously. In this way, neither external
processing and feedback nor knowledge of (and control of) these internal degrees of freedom is
required. We introduce a general scheme for self-learning in any time-reversible Hamiltonian system.
We illustrate the training of such a self-learning machine numerically for the case of coupled nonlinear
wave fields.

I. INTRODUCTION

In the last decade, the field of Machine Learning (ML)
has experienced an explosive growth, finding use in an
ever-increasing number of applications in our everyday
lives, from automatic driving to face recognition. To
a large degree, this astonishing progress in ML can be
attributed to the developments in Artificial Neural Net-
works (ANN). Training deep ANN’s has only recently
become possible in practice [1], thanks both to the avail-
ability of large data sets and to the continued improve-
ment in digital electronic hardware and the advent of
fast Graphical Processing Units (GPU) and other spe-
cialized hardware. However, while the demand for faster
and more efficient information processing will only grow
in order to address the needs of increasingly larger and
complex ANN’s, the exponential growth in the power of
electronic devices that we enjoyed in the last half century
appears to be coming to a halt.

What is more, the von Neumann architecture that is
currently employed by electronic devices is known to be
highly inefficient for most ML applications. In a von
Neumann computer, the memory and processing units
are separated, and the necessary transfer of data between
them can severely constrain the overall performance. The
field of neuromorphic computing [2] aims to improve the
efficiency of specialized hardware for ML by imitating the
structure of biological neural networks. The hope is to
realize devices that are as efficient and massively parallel
as the brain, while using much faster physical processes
to carry out the information processing.

In particular, the idea of constructing neuromorphic
computing devices based on light has recently attracted a
lot of attention, as it promises to unlock all the benefits of
optical computing: broad bandwidth, small latency, low
power consumption and natural parallelism [3]. Apart
from optics, other physical platforms have been consid-
ered too, such as spin-based devices or memristor circuits
[2].

Nonetheless, training such machines is still a challeng-
ing problem. The best solution would be to realize a
self-learning machine - i.e. a learning machine that is
trained by means of entirely autonomous physical pro-
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Figure 1. Different types of physical learning machines.
(a) Physical learning machine requiring feedback based on the
outcome, to tune the internal "learning" parameters θ inside
the physical device. (b) A self-learning machine does not
involve feedback. It updates the learning parameters in a fully
autonomous way (for example using physical backpropagation
and a physical gradient update; see main text).

cesses (Fig. 1), without the use of feedback for updating
the learning parameters and without any kind of external
processing of information (except possibly that needed
for feeding the training data). A first step in this di-
rection was already suggested theoretically in a vision-
ary paper by Psaltis et al. [4] and later implemented
to some degree [5]. In that paper, it was shown that
it could be possible to approximately realize the back-
propagation algorithm [6] in an optical neural network
based on volume holograms. However, the nonlinear ele-
ments must be engineered so that the transmittance for
the backpropagating signal matches the derivative of the
transmittance for the forward propagating signal, besides
requiring a carefully designed geometric arrangement [7].
To this day, such stringent requirements have prevented
a fully developed practical implementation of the back-
propagation algorithm in an optical learning machine [8].

Other learning machines based on Hebbian learning or
Spiking Timing-Dependent Synaptic Plasticity (STDSP)
would also fall under our definition of a self-learning ma-
chine [9]. Still, both Hebbian learning and STDSP are
motivated mainly by their plausibility in the context of
biological neural networks. Unlike the methods based on
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the optimization of a cost function, their use most often
lacks a rigorous mathematical foundation, and their per-
formance is typically poor when applied to deep learning
tasks.

In this work we consider SL machines based on clas-
sical Hamiltonian systems. We present a new training
procedure based on time reversal operations, which we
name Hamiltonian Echo Backpropagation (HEB). As op-
posed to existing approaches, we do not need to consider
a particular implementation of a SL machine or care-
fully selected nonlinear elements; instead we present a
completely general procedure to train SL machines in a
wide class of physical systems. Indeed, HEB can realize
gradient descent and update of the learning parameters
via the dynamics in any time-reversible Hamiltonian sys-
tem, and it does so in an efficient way that exploits the
parallelism of the learning machine. This new training
procedure opens up many exciting possibilities, making
it possible to construct self-learning machines in a wide
range of physical platforms. One the one hand, HEB
makes it feasible to realize SL devices based on already
mature technologies, such as integrated photonic circuits.
On the other hand, it expands the field of SL machines
to new interesting physical platforms, such as clouds of
cold atoms or trains of optical pulses in a fiber loop.
Given how broad are the sufficient conditions for HEB
to work, we believe that it will instigate the discovery of
completely new physical learning machines. Moreover,
our training procedure is independent of the Hamiltonian
that describes the dynamics of the learning machine. Sur-
prisingly, one does not even need to know the dynamics
of the physical device in order to train it.

In the following, after defining self-learning machines,
we will introduce the Hamiltonian Echo Backpropagation
procedure and present a mathematical proof of its core
element. We will then discuss the ingredients of such a
machine, illustrate the learning approach in two numer-
ical examples, and finally comment on the prospects for
different physical platforms.

II. SELF-LEARNING MACHINES

Definitions: Physical learning machines vs. physical
self-learning machines

A physical learning machine can be defined as a phys-
ical device provided with an internal memory that can
process an input to produce an output, such that the
functional dependence between the input and the out-
put is parameterized by the state of the internal mem-
ory. For example, a physical learning machine can be
a photonic circuit made of beam-splitters, nonlinear el-
ements and variable phase shifters. In this example, for
any input signal that enters the circuit, the output will
depend on the configuration of the phase shifters, which
in this case represent the internal memory. In a phys-
ical learning machine, training is the process of finding

the optimal state of the internal memory to realize some
desired input-output relation.

There are several possible ways of training a physical
learning machine. It could be done entirely externally
(using numerical simulations) or by employing feedback,
i.e. external processing of the machine’s output to adapt
the parameters. However, this step may spoil some of
the advantages of using physical dynamics. Going be-
yond that, the most advanced version would consist in a
machine that uses an internal physical process for train-
ing. We may thus define a self-learning machine as a
physical learning machine that, when presented a data
set, can train itself in a fully autonomous way. During
training, a self-learning machine receives a sequence of in-
puts and some information about the target outputs. It
is also legitimate to realize a preset sequence of external
operations on the SL machine or to supply energy. What
is not permissible is to give any kind of feedback depen-
dent on the internal state of the device. In this sense, a
SL machine is a black box: the user provides an input
and obtains an output, but requires neither knowledge of
nor access to the internal degrees of freedom.

Optimization vs. Heuristic approaches

Apart from the distinction between non-autonomous
and autonomous (self-learning) machines, we may also
classify the training of physical learning machines along
another axis, subdividing them into two broad classes,
the heuristic approaches and schemes based on optimiza-
tion.

A broad category of devices makes uses of learning
rules inspired by biological neural networks. We call this
set of ideas the heuristic approach. This corpus of ideas
started historically with Hebbian learning and it can be
summarized in the motto ’neurons that fire together, wire
together’. A more sophisticated version in the context of
spiking neurons is the so-called spike-timing-dependent
synaptic plasticity. Importantly, these learning rules are
always local in order to be biologically plausible (i.e. the
update in the learning parameters is a function of only
the nearest neighbouring neurons). The fact that these
training rules are local makes them potentially easier to
implement in a physical device.

However, the training rules in the heuristic category of-
ten lack a rigorous mathematical foundation. Such a gen-
eral mathematical foundation does exist for the second
set of ideas, which underpin modern machine learning:
there, the challenge of training is converted into an opti-
mization problem. In this approach, training the learning
machine consists in finding the learning parameters that
minimize a cost function, which quantifies the deviation
between desired output and actual output. Typically,
the minimization is done by means of some variant of
the gradient descent algorithm. In this article, we will
focus entirely on the optimization approach.
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Figure 2. Overview: The landscape of physical learn-
ing machines. Our work falls into the broad class of opti-
mization approaches. It belongs to the small class of works
that involve both physical backpropagation and self-learning,
but in contrast to other approaches our scheme is universal,
i.e. independent of the specific Hamiltonian. (some related
works, see main text: Shen et al [10], Guo et al [11], Skinner
et al [12], Psaltis et al [4, 5]).

Review of physical learning machines

The idea of using specialized physical hardware for
ML has been explored in various platforms. What we
define as physical learning machines have been stud-
ied theoretically and for some cases already demon-
strated experimentally in the context of photonic hard-
ware [5, 10, 11, 13], memristor circuits [14, 15], and spin-
tronic devices [16, 17], among others. Here we review
some of the most relevant ideas on the topic to prepare a
comparison with our concept. We focus on optimization
approaches and the problem of training.

In some of the earlier attempts [12], training was done
in silico, by means of numerical simulations. The prob-
lem with this approach is that the size of the learning
machine is limited by the computational power required
to simulate the physical hardware. Moreover, training is
performed for an idealized model of the actual physical
hardware. As a result, fabrication imperfections cannot
be taken into account.

To remedy this shortcoming, one can employ feedback.
The simplest feedback-based training technique uses

a finite-difference approximation to the gradient of the
cost function. This can be realized physically in a very
simple manner: (1) estimate the cost function C for the
current state of the learning parameters, (2) change the
i-th parameter by a small amount and estimate C again,
(3) add the difference of these results to the i-th parame-
ter. That is the approach used in a number of works (e.g.
Shen et al. [10]). However, this idea is far from optimal,
since the number of evaluations needed scales with the
number of parameters.

We know that the backpropagation algorithm that
forms the cornerstone of artificial neural network training

can update all the parameters using only two evaluations
of the network, independent of the number of parame-
ters. A crucial improvement of a physical learning ma-
chine therefore consists in realizing the backpropagation
algorithm by physical means. This idea was first intro-
duced in Wagner et al. [4], in the context of optical neural
networks. In a typical optical neural network, an opti-
cal field propagates inside some nonlinear medium with
elements that provide controllable phase shifts. The con-
trollable phase shifts play the role of the learning weights.
The optical field would be injected at the input and prop-
agate towards the output. The idea advocated in [4] then
is to create a physical error signal that propagates in the
opposite direction, from output to input. The error signal
is prepared according to the difference of the output of
the device and the desired target output. Without going
into any further detail (we refer to the original paper),
in their approach the backward-propagating weak error
signal interferes with the strong forward-propagating op-
tical field. In this way, for the specific choice of optical
nonlinearities in their setup it was possible to ensure that
the error signal is (approximately) equal at any point of
the device to the required gradient of the cost function.
Once the error signal is prepared, one can measure it and
use the result to update the parameters via feedback.
All learning parameters could be updated at once, in a
fully parallel fashion. This idea was originally proposed
for optical neural networks using Kerr nonlinearities [4],
but it was recently extended to setups that employ sat-
urable absorption for the activation function [11]. In a
similar spirit, in Hermans et al [18], the idea of physical
backpropagation is used to train a physical linear sys-
tem with controllable nonlinear feedback. A related idea
by Hughes, Fan et al. [19] uses an auxiliary circuit to
backpropogate the error signal.

Nonetheless, there is a potential drawback in using
feedback to update the learning parameters. The error
signal has to be measured in order to update the learn-
ing weights. If that is done by means of electronic sen-
sors, that could potentially introduce a bottleneck. The
potential advantage of using ultrafast physical dynam-
ics for evaluating the network could be lost because of
a relatively slow electronic response. In addition, some
of these approaches require further computation steps.
These problems can be addressed if the error signal could
directly influence the learning parameters, without exter-
nal feedback.

The possibility of using a physical mechanism to up-
date the learning parameters autonomously was proposed
for the first time also by Wagner and Psaltis [4]. In their
paper, they consider a setup in which the learning param-
eters are recorded in the form of a hologram in a photore-
fractive material. In this way, the interference between
the error signal and the forward-propagating beam could
in principle provide the means to update the holographic
recording in the right way. A simple version was partially
demonstrated in a linear optical device in a follow-up pa-
per by Li, Psaltis et al [13]. However, that experimental
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setup did actually still involve some form of feedback.
The ideas advanced in [4] could potentially lead to ul-

trafast training and a huge density of interconnections
between neurons. By combining physical backpropaga-
tion with an autonomous process to update the parame-
ters according to the error signal, it would be possible to
realize self-learning machines. Nevertheless, all presently
existing proposals for physical backpropagation are suit-
able only for some setups with very specific nonlinearities.
In some cases, such as [4] or [11], it is required that the
forward propagating beams and the error signal experi-
ence a different dynamics at the nonlinear elements, that
nonetheless has to be matched in a precise way. What is
more, recording the learning parameters in a holographic
pattern requires a very careful engineering of the geome-
try of the device [7]. In other cases, such as [12], physical
backpropagation is only realized approximately in a par-
ticular limit.

In this work, we show how to realize self-learning (i.e.
the combination of physical backpropagation and au-
tonomous parameter update) in a much broader set of
physical systems. Since our idea does not rely on a spe-
cific choice of the system, it is not restricted to optical
setups. Hence, it could be applied to many other possible
platforms, ranging from cold atom clouds to solid state
spin networks. In fact, the training procedure that we
propose is a sequence of operations that do not even de-
pend on the particular dynamics of the device, provided
that some weak assumptions are met. Essentially, we
only require that the physical learning machine is based
on a time-reversible nonlinear Hamiltonian system.

Hamiltonian-independent self-learning

Let us be more precise about the assumptions made
in this paper. First of all, we shall remark that we only
consider Hamiltonian systems, where the dynamical de-
grees of freedom consist in the learning parameters and
the variables needed to process the information. This is
not a very restrictive assumption from the point of view
of the functionality of the device. Although most stan-
dard architectures for artificial neural networks produce
contractive non-Hamiltonian maps, we point out that it
is always possible to cast a contractive dynamical system
as a Hamiltonian system with the help of extra ancil-
lary degrees of freedom (we explain this idea in more
detail in a later section). From the point of view of the
physical realization, it means that the timescale of dis-
sipation in the self-learning device must be much larger
than the time interval between the injection of the input
and the production of the output. Since we aim to use
fast dynamical processes, this seems to be a reasonable
requirement. In fact, many of the previous proposals for
physical learning machines can be modeled as Hamilto-
nian systems, e.g. the optical neural networks using Kerr
nonlinearity.

The second assumption is that the self-learning device

has time-reversal symmetry. The first main contribu-
tion of this paper is a new method to realize physical
backpropagation in arbitrary Hamiltonian systems with
time-reversal symmetry. This new method is based on
a time reversal operation weakly perturbed in a partic-
ular way. As a result of this time reversal operation, a
perturbed echo is produced inside the device. We show
that this echo contains the information needed to update
the learning parameters. The echo is used to update the
parameters by means of another operation that will be
defined later, the decay step. We call this method Hamil-
tonian Echo Backpropagation (HEB).

We summarize the assumptions in our paper in the
following two definitions. A Hamiltonian self-learning
machine is a self-learning machine that is Hamiltonian
and time-reversible. A Hamiltonian-independent self-
learning machine is a Hamiltonian self-learning machine
in which the training procedure is independent of the
Hamiltonian. By this statement, we mean that the train-
ing procedure can minimize the cost function for any
Hamiltonian that fulfills the two assumptions mentioned
above.

To the best of our knowledge, our proposal consti-
tutes the first example of an approach to construct
Hamiltonian-independent self-learning machines. Since
the training procedure does not depend on the particular
form of the Hamiltonian, the self-learning machine can be
regarded as a black box. As opposed to other physical
learning machines in the literature, its implementation
in the laboratory does not even need a detailed knowl-
edge of the internal dynamics of the device in order to
make it work. There are only few mechanisms that could
disrupt an experimental implementation: a mechanism
that in some way breaks time-reversal symmetry of the
Hamiltonian (including an unwanted dissipation or noise
channel) , or significant imperfections in the implemen-
tation of the time-reversal operation or the decay step.

In order to realize our proposal in a completely
Hamiltonian-independent way, the time reversal and the
decay step must be realized outside the device, by means
of external operations. For example, this is possible if the
SL machine is a photonic circuit and the learning dynam-
ical variables are wave packets that can propagate in and
out. However, there are many possible implementations
of a SL machine where the time-reversal and decay steps
must be performed inside the device. In such cases, we
need an additional assumption: the ground state of the
Hamiltonian of the device must be continuously degen-
erate with respect to the the learning parameters. This
additional requirement seems perhaps quite restrictive.
However, as we shall discuss later, the degeneracy can be
approximate, provided that the difference in energy be-
tween the degenerate minima is small enough. Putting
aside the learning parameters, for the rest of the dynam-
ical variables (used to process the information) there is
almost absolute freedom in the Hamiltonian, with the
only requirement of having time-reversal symmetry and
any sort of nonlinear dynamics.
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In most of the subsequent discussion, we will analyze
our method in the case in which the Hamiltonian pos-
sesses a continuously degenerate ground state. Then, in
subsection III F we will discuss our approach for the case
in which the time reversal operation and the decay step
are performed externally. In section IV we will prove that
our training method can realize backpropagation exactly
in the most general case.

III. HAMILTONIAN ECHO
BACKPROPAGATION

A. Dynamical variables and Hamiltonian

Our setup for a SL machine consists of two basic in-
gredients: dynamical variables that are used to process
the information (the evaluation variables), and dynami-
cal variables that contain the learning parameters.

The evaluation variables will be combined into a single
dynamical vector, Ψ(t). In a similar way, the collection
of all the learning parameters is denoted as a vector Θ(t).
Such vectors can represent any collection of physical de-
grees of freedom in a Hamiltonian system, from inter-
acting spins to optical fields. For the present discussion,
we imagine discrete models with a countable number of
degrees of freedom. However, the approach also covers
the case of continuous fields (with straightforward slight
changes in the notation).

The input to the device is given by the initial config-
uration of the evaluation variables, Ψ(−T ), whereas the
output is given by its state at a later time, Ψ(0). We
choose the initial time to be −T for reasons that will
become clear later. The learning parameters, Θ(t), will
interact with the evaluation variables and overall change
slowly during training.

For example, consider a self-learning machine where Ψ
and Θ are nonlinear wave fields. These could be realized
as a lattice of optical cavities or spins. We can imagine
the operation of the SL machine as a nonlinear scattering
experiment, where the input Ψ(−T ) is a wave packet. As
the wave packet propagates inside the device, it evolves
under the effect of the nonlinear self-interaction and the
interaction with the learning parameters. Finally, an out-
put wave packet is obtained at t = 0. The output state
of Ψ is a nonlinear function of the input, and it has a
parametric dependence on the initial configuration of the
learning parameters, Θ(−T ), much like an artificial neu-
ral network (ANN).

We can capture the dynamics of the SL machine in a
single Hamiltonian:

HSL = Hψ +Hint +Hθ +Hbath. (1)

Let us inspect one by one what each term means. Some
of the technical details will be more fully explained later.
Hψ is the Hamiltonian that describes the evolution of

Ψ alone, in the absence of interaction with Θ. In general,

it will have self-interaction (non-quadratic) terms. The
second term, Hint, contains the interaction of Θ and Ψ.
In general, Hψ + Hint must be a time-reversible Hamil-
tonian, but there is no further constraint. In accordance
with previous proposals for physical learning machines,
we may assume that, for example, Ψ is an optical field in-
side a nonlinear medium. The nonlinear response of such
a medium may correspond, among many other possible
choices, to a Kerr-like nonlinearity.

The second term, Hθ, describes the dynamics of Θ in
the absence of interaction with Ψ. The purpose of Θ
is to store the internal degrees of freedom that the SL
machine can learn. We need Θ to be able to store in-
formation once trained, but it is also important that it
can change continuously during training. Hence, we will
need to ensure that there is a continuous stable manifold
in the phase space of Θ: once the training is finished and
Θ converges to some particular point in this stable man-
ifold, it will remain there (at least until it interacts again
with Ψ). At the same time, during training the state of
Θ can change continuously from one stable point to an-
other in the search of a minimum of the cost function.
The interaction between Ψ and Θ may be given by any
time-reversible Hamiltonian, but in the absence of inter-
action we must impose that the dynamics of Θ possesses
such a stable manifold.

In the conceptually simplest setup for a SL machine,
once the interaction between Ψ and Θ is complete, the
dynamics of Θ is just that of a free particle. In this
case, the ground state of the Hamiltonian is any config-
uration with zero momentum: πθ = 0. Ideally, any such
state is a stable fixed point, and therefore, we can use
the parameter Θ as our learning parameter. What our
training procedure does is to impart an additional effec-
tive force on Θ proportional to the gradient of the cost
function. This breaks the degeneracy of Hθ, in such a
way that the only surviving stable fixed points are the
minima of the cost function. But that is not enough to
realize training: we not only need to have stable points,
we also need a mechanism to converge to them; i.e. we
not only require stability, we need asymptotic stability
[that is, relaxation towards the fixed points]. That can-
not be achieved purely based on Hamiltonian dynamics
alone, as we will now discuss.

B. Controllable dissipation

Our training procedure needs both steps with purely
Hamiltonian evolution (where we can use time-reversals
to our advantage) and steps with dissipative evolution (so
that a contractive map on the learning parameters can
be realized). This is described by the third term in the
Hamiltonian, Hbath. This term describes a dissipative
bath coupled only to Θ. We further assume that this
interaction possesses the same symmetries as Hθ. In the
example of a free particle Hamiltonian for Θ, this would
mean that the joint system of Θ and the thermal reservoir
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is invariant with respect to a shift in θ. This assumption
is required to ensure that the coupling to the bath does
not break the degeneracy. As a result, Θ is subject to
dissipation. But at the same time, during our training
method we require to be able to perform time reversals.
The conceptually simplest way to resolve this conflict is
to have the ability to switch dissipation on and off. In
principle, we can do so by controlling the coupling of Θ
to the reservoir, and many physical implementations (e.g.
all approaches related to laser cooling ideas) are possible.

C. Gradient descent as a goal

Suppose that Θ is initialized in some random config-
uration Θ(−T ). Now, we prepare Ψ in the input state,
and we let it interact with Θ. After a time interval T ,
we will obtain the output state. The error in the output
is quantified by means of a cost function. In general, a
cost function can be any function

C(Ψ(0),Ψtarget) = C(Ψ(−T ),Ψtarget,Θ(−T )) (2)

of the output Ψ(0) and its corresponding target configu-
ration that is minimized when both are equal. The func-
tion displayed here is the sample-specific cost function.
The training procedure will try to minimize its sample-
averaged version (averaging over all training input sam-
ples Ψ(−T ) that are provided alongside their respective
target Ψtarget). After averaging, the cost function still
depends on the learning variables Θ(−T ), since these de-
termine the mapping from input to output.

For reasons that will become apparent later, we take
our cost function to have units of energy (and in fact
it will represent a physical Hamiltonian later in this sec-
tion). In order to improve the performance of the SL ma-
chine, we have to minimize the cost function. In princi-
ple, the problem of optimizing the cost function is a very
hard nonlinear optimization problem, but in the context
of ML it is usually sufficient to find a local minimum.
In the context of ANN’s, this is normally done by the
stochastic gradient descent method. In this method, the
gradient of the cost function is computed (for one or sev-
eral randomly chosen training samples) and the learning
parameters are subsequently updated, according to the
rule

θ(Tf ) = θ(−T )− η ∂C

∂θ(−T )
. (3)

D. Introducing Hamiltonian Echo Backpropagation

Our goal is to realize the stochastic gradient update
rule in a fully autonomous way, via physical dynamics.
The sample-specific cost function depends on the output

and the target state. For this reason, if one hopes to im-
plement gradient descent without external intervention,
some information about the output must be sent back-
wards from the output to the input. This immediately
suggests the use of a time reversal operation, which was
already recognized in early proposals [4], although it was
employed in a manner different than what we will de-
scribe now.

To understand the qualitative idea of our approach, we
start from a general observation that is well known from
discussions of backpropagation in ANNs. The change of
the cost function induced by a small change in a learning
parameter θ is given by

δC = 2δθRe

{
∂Ψ(0)

∂θ

∂C

∂Ψ(0)

}
(4)

In other words, we need to know both the perturbation
in the output configuration δΨ(0) = ∂Ψ(0)

∂θ produced by
a small parameter change, as well as the "error signal"
∂C
∂Ψ(0) at the output.
Since we consider weak perturbations, δΨ(0) can be

understood in terms of the linear response of the sys-
tem. In other words, δΨ(0) is in fact proportional to
the Green’s function associated with the linearized equa-
tions of motion. At this point we can introduce the most
important idea of our approach: if we physically time-
reverse the whole field Ψ, we can instead interpret the
error signal, ∂C

∂Ψ(0) as the source of a perturbation that is
"riding on top of" the time-reversed nonlinear wave field
(see Fig. 3). This is at the heart of our new procedure
to realize self-learning, "Hamiltonian Echo Backpropaga-
tion" (HEB).

As we will see later, the idea is related to the fact
that in a linear system of differential equations there is a
symmetry between the source of a field at t and its effect
at t′ (the so-called self-reciprocity principle) [? ].

Let us go through the individual steps of the HEB
procedure. First, Ψ is prepared in the input state, at
time t = −T . Note that we choose to start the process at
time t = −T to make explicit the time-reversal symmetry.
Thus, the output is produced at t = 0, and the echo of
the input will form at t = T . In order to simplify the
calculations, let us also assume first that the canonical
momentum of θ is initially zero. After the interaction
between Ψ and Θ, we obtain an output field Ψ(0).

In the next instant, we need a way to inject the error
signal required for the subsequent backward pass. This
we achieve by imposing on Ψ an interaction Hamiltonian
proportional to the (sample-specific) cost function, given
the desired target field configuration. We assume that
the duration of this interaction, ε, is small enough. In
practice, this implies that the field is slightly changed
according to Ψ(0)→ Ψ(0)− iε∂Ψ∗(0)C

Before going further in the discussion of HEB, let us
introduce a useful notation we will employ in the rest of
the paper. In order to make our equations more com-
pact, we condense each pair of canonical coordinates in a
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Figure 3. Physical backpropagation and physical gra-
dient update. (a) Forward pass (nonlinear evolution) of the
"evaluation" wave field Ψ in the presence of a background
potential landscape provided by a "learning field" Θ. Any
small perturbation δΘ will affect the output, as indicated
here, which in turn changes the value of the cost function.
(b) Instead of testing the cost function response for many
potential updates of the learning field Θ, Hamiltonian Echo
Backpropagation automatically produces the required update
in a single backward pass, via physical dynamics. After ap-
plying a time-reversal operation (Ψ 7→ Ψ∗), the subsequent
nonlinear wave field evolution is a time-reversed version of
the forward pass. A small variation δΨ injected on top can
now be used to backpropagate the error signal (variation of
the cost function at the output); see main text. This then
leads to the required update of the learning field θ, via the
physical interaction between Ψ and θ, realizing a fully au-
tonomous learning machine.

single complex variable. We will reserve the capital greek
letters for the complex variables, as follows: Ψ = ψ+iπψ,
Θ = θ + iπθ, where the canonical coordinates and mo-
menta have been rescaled to obtain the same dimension
(nominally, square root of an action). This will make the
notation for the time-reversal especially convenient, as
it corresponds to a complex conjugation of the dynam-
ical variables. Furthermore, one can easily check that
Hamilton’s equations can now be written in a particu-
larly convenient manner:

Ψ̇ = −i∂Ψ∗H,

where one has to formally treat Ψ,Ψ∗ as independent
variables (or more technically, ∂Ψ∗ represents a Wirtinger
partial derivative).

As a concrete example, let us assume that our cost
function is simply the overlap between the target state
and the output state. Then, the prescription above tells
us we just have to inject a weak perturbation propor-
tional to the target state: Ψ(0)→ Ψ(0)− iεωΨtarget.

After this step, we time-reverse , which in our com-
plex notation means to phase conjugate the fields, e.g.
Ψ → Ψ∗. In the limit ε → 0, Ψ will evolve backwards
precisely to the input configuration, because the Hamilto-
nian is time-reversal-invariant. However, when ε is small

but finite, we obtain a small variation in the fields, both
in Ψ and Θ. One can understand such variation as a per-
turbation traveling on top of the time-reversed field, from
output to input. Once the back-propagation is complete,
one obtains a slightly perturbed echo of both Ψ and Θ,
at t = T . Since we have perturbed the field at t = 0, the
echo is not perfect: there is a small variation given by
Θ(T ) = Θ∗(−T ) + δΘ(T ). In order to have the correct
sign for the momentum of the learning field required for
our approach, we time reverse again, Θ(T )→ Θ∗(T ). Us-
ing the self-reciprocity principle, one can then show that
the final configuration of Θ in the echo step is simply
given by

Θ(T ) = θ(−T )− iε ∂C

∂Θ∗(−T )
. (5)

We will show below how to prove that result, which en-
capsulates the central idea of our proposal, mathemati-
cally (Sec. IV).

We note that the procedure introduced here differs
in an important way from previous approaches to self-
learning dynamics [4], which never considered a full time-
reversal of the nonlinear wave field and instead treated
a weak perturbation traveling against a strong forward-
propagating field. It is a consequence of this choice
that these approaches work only for some specific care-
fully chosen wave dynamics, and not in the general,
Hamiltonian-independent way that we outline here.

The final step of HEB will be the update of the learning
field, to be discussed now.

E. Implementing the physical learning field update

At this step, the dynamics of the learning field Θ al-
most looks like gradient descent, but not completely: we
have been able to impart a momentum kick to Θ that
is proportional to the gradient of the cost function, but
what we really want is to update the position θ. We now
need to convert the update in the canonical momentum
into a shift in the position. For this purpose, we need a
dissipative step. This is not surprising, because we have
only used Hamiltonian evolution and time reversals so
far, while the overall gradient descent procedure is con-
tractive.

For simplicity, we will explain this step by means of
an example that contains all the key ingredients needed.
In this example, we assume that the effect of dissipation
may be modelled by a damping force of the form −Γ(t)πθ,
where Γ(t) can be controlled in a time-dependent fash-
ion. Furthermore, we assume that the dynamics of Θ in
the absence of interaction corresponds to a free-particle
Hamiltonian, Hθ = Ωπθ

2/2 (Note that in our convention
π2
θ has units of action, which implies that Ω has units of

frequency). The stable manifold would be given by the
particle at rest at any location, with πθ = 0. This is,
however, only one example out of all the systems that
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can be trained with HEB; in the next subsection we will
consider the most general case.

During this final step of the HEB procedure, we switch
on the dissipation, π̇θ = −Γπθ, and apart from that we
let Θ evolve freely. If we wait long enough, the final con-
figuration of Θ is given by θ(−T ) + ε ∂C

∂πθ(−T ) − ε
Ω
Γ

∂C
∂θ(−T )

(to first order in ε), while the canonical momentum de-
cays to zero. The update step finishes in the end of the
decay step, at time Tf � Γ−1. In the limit of large de-

cay times, i.e. Ω
Γ �

∂C
∂πθ(−T )

(
∂C

∂θ(−T )

)−1

, we recover the
usual gradient descent update rule

θ(Tf ) = θ(−T )− η ∂C

∂θ(−T )
, (6)

with a learning rate given by η = εΩ
Γ . Repeating this

procedure in a sequential way, for many injected training
samples, will realize stochastic gradient descent (SGD).
Apparently, the learning rate is proportional to ε, which
represents the duration during which the "cost function
Hamiltonian" is active.

We must remark that in the general case, when Hθ is
not necessarily a free-particle Hamiltonian, the relation
of η to ε may be different. However, we can always ex-
pect these two quantities to be proportional, due to the
assumption of injecting only a weak perturbation.

F. Summarizing the general scheme of
Hamiltonian Echo Backpropagation

We are now in a position to summarize the general ap-
proach (Fig. 4). Let us assume that Hint is an arbitrary
time-reversible Hamiltonian, and Hθ is some Hamilto-
nian with a degenerate ground state. Let us suppose
further that Θ starts in one of the ground states of Hθ.
The HEB procedure consists of a sequence of multiple
events (Fig. 4a), but they can be subdivided into two big
steps:

1. Echo step. We randomly draw an input sample
from the training data set, and we use it to ini-
tialize Ψ(−T ). Following the nonlinear dynam-
ics of the interacting system, the output is ob-
tained at t = 0. At that point, the evaluation
field is weakly perturbed according to Ψ(0) →
Ψ(0) − iε∂Ψ∗(0)C, which can be brought about
via the dynamics induced by an extra interaction
Hamiltonian (the "cost function Hamiltonian"), as
explained above. Immediately afterwards, both Ψ
and also the learning field Θ are time-reversed (i.e.
phase-conjugated). At t = T , a perturbed echo of
the initial configuration will be obtained. We then
time-reverse Θ again at t = T . The final result
of this whole process is equivalent to the following
update of the learning field:

Θ(T ) = Θ(−T )− iε∂Θ∗(−T )C. (7)

a b

input

evolution 
(forward pass)

inject error signal

evolution 
(backward pass)

learning field 
dissipation

time reversal

tim
e

time reversal

ψ θ

πθ

c 

d

θ bw. 
pass

decayfw
. 

pas
s

-T 0 T 2T -T 0 T 2Ttt

Figure 4. Ingredients of a self-learning machine based
on Hamiltonian Echo Backpropagation. (a) Sequence
of events. (b) Use of ’pseudo-dissipation’ via ancillary modes.
The learning field Ψ is here decomposed into a number of
discrete modes. As time progresses, more and more modes
do not participate any longer in the physical interaction (yel-
low boxes), becoming ancillary modes. Both these ancillary
modes and the learning field θ also take part in time-reversal,
however. (c) Time-evolution of the learning field momentum
(left) and the field itself (right) during one forward-backward
pass, including the effects of time-reversal (we show a sin-
gle value of the field at one location). The momentum decays
back to zero, but the field has been updated suitably. (d) The
intrinsic dynamics of the learning field has a continuously de-
generate ground state (i.e. a manifold attractor). Right: The
effect of the training dynamics is to break this degeneracy and
produce a minimum determined by the cost function.

To be clear, C here always is the sample-specific
cost function. We show in detail how to prove this
result in general in the next section. It has a simple
interpretation: to first order in ε, the evolution of
Θ satisfies Hamilton’s equations, with an effective
Hamiltonian equal to the cost function.

2. Dissipative step. The dissipation is switched on
for a time interval TD, and there is no interaction
with Ψ (because Ψ = 0 during this step). The evo-
lution of Θ is given by Hθ together with the dissi-
pative effect of the coupling to the thermal bath.
This will ensure the suitable update of the Θ field
needed to implement SGD via the physical proce-
dure explained here. Finally, proceed with the next
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training sample.

The evolution of the learning field during the whole
procedure is schematically depicted in Fig. 4c. Imag-
ine that these two steps are alternated many times, with
suitable small values for ε and TD. Then the average dy-
namics of Θ is approximately described by an effective
Hamiltonian given by

Heff =
1

ε+ TD
(εC + TDHθ + TDHbath) , (8)

where C here represents the sample-averaged cost func-
tion. Remember that, in the absence of interaction with
Ψ, the phase space of Θ has a stable manifold. Consider
what happens in the low-temperature limit of the ther-
mal dissipative reservoir that is used to act on Θ. When
we set ε > 0, we break the degeneracy of Hθ (see Fig. 4d).
The dynamical process we described will tend to equili-
brate the temperatures of Θ and the reservoir, so that Θ
will tend to minimize the cost function, constrained to
the manifold of ground states of Hθ. Once the training
has converged, we can stop performing perturbed time
reversals (in terms of the effective Hamiltonian, that is
equivalent to setting ε = 0). Since we have converged
to one of the many degenerate ground states of Hθ, we
are still in a stable point. In consequence, if the tem-
perature of the reservoir is low enough, Θ will remain
near the learned configuration for arbitrarily long times.
That is of course important to ensure that, after train-
ing is completed, the SL machine doesn’t quickly forget
the result of the learning process. This line of reasoning
does not depend on the particularities of Hθ, as long as
it possesses some manifold of degenerate ground states.

This concludes our overview. The steps of the ap-
proach are illustrated in Fig. 5 in terms of a very simple
mechanical Hamiltonian system, highlighting the gener-
ality of the procedure.

We now present a few additional considerations.
At first sight, one may argue that assuming the con-

tinuous degeneracy of Hθ is already a strong restriction
on the possible physical implementations of Hamiltonian
self-learning machines. In fact, if one can perform per-
fect time reversal operations outside the device, this as-
sumption can also be dropped. Consider, for example, a
device where both the evaluation and learning variables
are given by wave fields that are sent through the device.
In this way, the learning field is given by a superposition
of wave packets that enter the device, interact with the
evaluation field, and finally come out of the device at the
end of the forward step. In this case, the time reversal
operation (for both learning and evaluation fields) is per-
formed outside the device. The learning field (as well as
the evaluation field) then propagates backwards, realiz-
ing the echo step. At the end of the echo step, it comes
out at the original input, where it has to be time-reversed
again, also outside the device. The decay step would also
be performed externally. The decay step would include

time reversal
& inject error signal

Ψ
Θ

+
+

completed 
learning update

forward pass
backward pass &

a b c

Figure 5. Hamiltonian Echo Backpropagation in a sim-
ple mechanical model. (a) A charged ball Ψ is launched
with a velocity representing the input to the machine. Its
trajectory is deflected depending on the position of another
charged ball Θ, which can freely move along a rail and which
experiences a momentum kick due to this interaction. (b)
Eventually, the velocities of both balls are reversed, and the
ball Ψ is slightly adjusted according to its deviation from the
desired outcome ("error signal"). (c) Afterwards, it retraces
almost exactly its initial trajectory, delivering yet another
momentum kick to the Θ particle. Finally, any remaining
velocity of Θ is dissipated and converted into a finite dis-
placement, representing the training update. Of course, the
expressive power of this machine, containing only these two
degrees of freedom, is very limited (i.e. it can only produce
very rough approximations to most input-output relations).
Nevertheless, it illustrates the generality of the procedure –
e.g. an arbitrary (even unknown) static force field acting on
the Ψ particle will not spoil the learning procedure.

controllable dissipation and potentially other simple op-
erations on Θ. For example, an operation that simulates
the effect of a free-ballistic Hamiltonian, together with a
controllable damping term, would make possible to real-
ize SGD exactly, as discussed in the subsection 6. Cru-
cially, all the external operations during the decay step
must be also independent of the Hamiltonian of the de-
vice and they have to be realized in an autonomous way
by means of physical processes. If this process is repeated
sequentially, we can realize HEB even when the Hamilto-
nian of the device is not degenerate in θ. This is because
the time-reversal operation is able to remove the over-
all effect of the Hamiltonian of the device during a full
echo step. Therefore, our training method can be used
in a way that is truly independent of the Hamiltonian of
the physical device, with the only assumption that it is
time-reversible.

Nevertheless, we considered in our analysis the pres-
ence of a degenerate term, Hθ, for two reasons. First,
having a degenerate ground state manifold to which Θ
can converge is helpful in order to improve the long term
stability of Θ once it is trained: Unlike the most general
case discussed in the preceding paragraph, this means we
do not need to continue (external) time-reversal opera-
tions just to keep Θ stable.

Second, in many possible setups for a SL machine, it
could be impossible to perform the time reversal opera-
tion and the decay step externally. When that is the case,
the equations of motion during the echo step are given by
iΘ̇ = ∂Θ∗(Hθ+Hbath). Then, the learning variables have
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the freedom to minimize the cost function only when the
term Hθ has a degenerate ground state.

Consider now what happens when the set of stable
ground states of Hθ is in fact not continuous, but ac-
tually discrete. This may be the case if, for example,
Θ describes a collection of degenerate parametric oscilla-
tors. In this situation, a gradient descent strategy would
not succeed, as Θ cannot change continuously between
fixed points. Nevertheless, our procedure for training
can still minimize the cost function. Indeed, consider
that we start from a relatively high temperature in the
thermal reservoir. The thermal fluctuations in the reser-
voir would result in random jumps between the stable
points. As our training procedure advances, we decrease
the temperature of the reservoir, inducing annealing. In
the end, if the system converges to a thermal equilib-
rium, the configuration of Θ would be found in one of
the minima of the cost function.

In practice, controllable dissipation may be a too strin-
gent requirement. Actually, we do not need to have con-
trol over the dissipation on Θ if the dissipation timescale
is large enough. In order to see this, we require that
the damping constant is weak enough that its effect can
be neglected during one single evaluation step: i.e. the
damping time-scale Γ−1 is much longer than the dura-
tion of the evaluation step T . The core of our procedure
is to enact an effective force on θ that is proportional
to the slope of the cost function. If the dynamics were
purely conservative, that would not be sufficient, as Θ
would oscillate around the stable manifold without ever
converging anywhere. It is clear then that we need such a
damping term. In consequence, we distinguish two time
scales: the short time scale T of an evaluation step, in
which all dynamics is approximately Hamiltonian and
time-reversible, and the long time scale of the total train-
ing time, in which dissipation ensures that, in the end,
Θ converges to the stable manifold.

G. Two variants of the self-learning machine
architecture

A standard neural network architecture builds up the
network out of layers, where information processing oc-
curs sequentially. To avoid confusion, we emphasize right
away that such a spatial arrangement and sequential pro-
cessing are not at all needed for the general approach de-
scribed here: all the degrees of freedom may be evolving
in a nontrivial fashion all of the time. However, in some
physical implementations it may be beneficial to choose
such a layered structure anyway.

In practice, we can imagine two ways in which the SL
machine is operated (Fig. 6). Perhaps the most straight-
forward way to realize HEB is that the time-reversal is ef-
fectuated by a time-reversal device outside the machine.
In this case, the input and output of the SL machine
must be some traveling pulses of excitations. For exam-
ple, it is possible to conceive a setup in which Ψ is an

a

b

Time reversal operation time

Figure 6. Different architectures of a self-learning ma-
chine (a) Time-reversal of the fields outside the device. In
this setup, the input wave packets enter in the device, where
they interact nonlinearly. As a result, an output wave field
is produced, which continues to propagate until it is time-
reversed by a phase-conjugating mirror (PCM). In addition,
a perturbation is injected according to the target output (here
indicated by additional waves). (b) Time-reversal inside the
device. In this more general scenario, there is no clear direc-
tion of propagation. The time reversal operation cannot be
realized by a PCM outside the device; instead all the fields
have to be time-reversed simultaneously. Although we repre-
sent here continuous wave fields for simplicity, this could be
more feasible experimentally in the case of a discrete lattice
implementation, in which each node can be time-reversed at
the same time.

optical pulse propagating in a given direction. The wave
packet enters inside a photonic circuit (or a free-space
setup), propagates inside, and finally exits at the output.
Then, it arrives at a phase-conjugating mirror where it
is time-reversed and sent back to the circuit (assuming
a symmetric shape of the pulse in the propagation di-
rection, or alternatively that the time-reversal is realized
with an instantaneous time-mirror like in [20]). In prin-
ciple, the Θ field could also be an optical pulse that is
time-reversed in the same way.

However, in our derivation of the HEB, we will not
need to assume such a specific implementation, with the
Ψ field propagating through the device along a particular
direction. In fact, there is a second - more general - pos-
sibility in which both Ψ and Θ are just fields interacting
inside a device, with no predefined direction of propaga-
tion. This scenario requires the ability to instantaneously
time-reverse the fields everywhere in the device at a par-
ticular time. We can imagine, for example, that both
Ψand Θ are optical fields inside an array of cavities. Us-
ing four-wave mixing it is possible to time-reverse all the
cavities at the same time, thus realizing the backpropa-
gating signal. Other physical platforms may offer differ-
ent means of achieving the same goal, and we will discuss
the time-reversal operation itself in subsection VC.

H. Invertible Dynamics vs. Contractive Maps

Before going any further, it is useful to introduce the
concept of pseudo-dissipation. The goal of supervised
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learning (both for classification and regression) is often to
approximate a map from a set of high dimensional input
vectors to a lower dimensional space. This is an inher-
ently contractive process. Nevertheless, the fact that our
theory of SL machines is based on reversible dynamics
during the evaluation (forward pass) does not imply that
it cannot be used for this purpose. It is always possible
to embed contractive maps inside a higher-dimensional
reversible map. In physical terms, we can introduce
pseudo-dissipation: by introducing additional ancillary
dynamical variables (which will also be considered part
of Ψ in our formalism), we can simulate the effect of dis-
sipation (Fig. 4b). We call it pseudo-dissipation because,
unlike for real dissipation, we can still time-reverse the
whole system, including the ancillary modes.

Pseudo-dissipation not only makes it possible to learn
contractive maps, it is also useful to avoid chaotic dynam-
ics. A practical SL machine must have a very complex
dynamics, but it seems advisable to avoid the strong sen-
sitivity on the input that is implied by chaotic dynamics.
Pseudo-dissipation can prevent chaos in highly complex
nonlinear systems, while preserving the feature of time-
reversibility that is so important for our echo backprop-
agation approach.

To avoid confusion, we emphasize that this conceptual
split of Ψ into the original evaluation field and additional
ancillary degrees of freedom is irrelevant with respect to
the following analysis of the echo step. Therefore, to
simplify the notation we just consider the full vector Ψ
without specifying how or whether it is split.

IV. ANALYSIS OF THE ECHO STEP

We now prove more formally that the crucial ingredient
of our scheme, the echo step, indeed works as advertised
above, deriving equation (7) in the most general setting.

In order to simplify the notation, we define Φ :=

(
Ψ
Θ

)
as the joint configuration of all dynamical variables of
the system. The dynamics of Φ is given by the following
equation of motion

iΦ̇ = ∇Φ∗H, (9)

where H[Φ] is the Hamiltonian. Crucially, we assume H
to be time-reversal-invariant, which meansH[Φ] = H[Φ∗]
in this notation. Let us remark here that time-reversal-
invariance is the only assumption in this section (we do
not need to assume a degenerate ground state for the
expressions derived in this section). The operator ∇Φ∗

involves the derivatives ∂/∂Φ∗i and is formally defined
as (∇Φ∗f)i = ∂f/∂Φ∗i . We stress that we will, at the
moment, study the dynamics purely in the absence of
coupling to the dissipative reservoir. In the notation of
Eq. (1), H[Φ] corresponds to the first three terms of the
SL Hamiltonian, H = Hψ +Hint +Hθ, without the bath.

A. Expression for the gradient of the cost function
in terms of an ’advanced’ backpropagating

perturbation

In a SL machine, the output of an evaluation step is a
function of the input Ψ(−T ) and the learning field, whose
configuration at the initial time is given by Θ(−T ). In
the following, we want to obtain a formal expression for
the gradient of C with respect to Θ(−T ), which will later
form the basis for physical backpropagation. Since Ψ and
Θ are treated on an equal footing in Eq. (9), we will set
out to find the gradient of C with respect to the initial
value of the joint state Φ(−T ):

(
∇Φ∗(−T )C
∇Φ(−T )C

)
= D

(
∇Φ∗(0)C
∇Φ(0)C

)
, (10)

where the matrix D is defined as

D :=

(
∇Φ∗(−T ) ⊗ Φ∗(0) ∇Φ∗(−T ) ⊗ Φ(0)
∇Φ(−T ) ⊗ Φ∗(0) ∇Φ(−T ) ⊗ Φ(0)

)
(11)

and [a⊗ b]ij = aibj . Here the operatorD obviously maps
back changes in the output to corresponding changes in
the input, and we will now relate it to the Green’s func-
tion of the problem.

Suppose that Φ(t) is the solution of the nonlinear
Hamiltonian equations when the initial conditions are
given by Φ(−T ). Let us consider what happens if we
perturb Φ(−T ) by some small δΦ(−T ). This results in
a weak perturbation δΦ(t) traveling forward on top of
the zero-th order solution. One can write δΦ(t) as the
solution to the linearized equations of motion:

LΦ(t)

(
δΦ(t)
δΦ∗(t)

)
= δ(t+ T )

(
−iδΦ(−T )
iδΦ∗(−T )

)
. (12)

Here we introduced the linear differential operator

LΦ(t) = i

(
+1
−1

)
d

dt
−
(
∇Φ ⊗∇Φ∗ ∇Φ∗ ⊗∇Φ∗

∇Φ ⊗∇Φ ∇Φ∗ ⊗∇Φ

)
H[Φ(t)]

in compact notation, with [∇Φ ⊗∇Φ∗ ]ij = ∂2

∂Φi∂Φ∗
j
and

so on. If the vector Φ has M components, the operator
LΦ(t) acts on a space of dimension 2M . The inhomoge-
neous term on the right-hand side of the preceding equa-
tion is there to enforce the initial conditions, assuming
that δΦ = 0 for t→ −∞.

The solution of Eq. (12) can be written in terms of the
retarded Green’s function associated to LΦ[t]:(

δΦ(t)
δΦ∗(t)

)
= GΦ(t,−T )

(
iδΦ(−T )
−iδΦ∗(−T )

)
. (13)

The Green’s function GΦ(t,−T ) is a linear operator such
that

LΦ(t′)GΦ(t′, t) = δ (t′ − t) I, (14)
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where I is the identity matrix of size 2M . Note that both
LΦ and GΦ(t,−T ) depend on the zero-th order solution
Φ(t) of the nonlinear dynamical equations, around which
we have linearized. We chose GΦ(t,−T ) to be the re-
tarded Green’s function, meaning that δΦ(t) originates
at t = −T and propagates in the forward direction of
time. Causality dictates that GΦ(t′, t) = 0 for t′ < t.

Employing the derivatives of the output Φ(0) with re-
spect to the input Φ(−T ), defined in Eq. (10), we see
that

GΦ(0,−T ) = −D†iσz , (15)

where σz is the Pauli matrix. Therefore, we have D =
−iσzGΦ(0,−T )†, and we can now express the change of
the cost function in terms of the Green’s function. How-
ever, we will see presently that it is helpful in terms of
physical interpretation to introduce the advanced Green’s
function for this purpose, which also obeys Eq. (14) but
has Gadv(t′, t) = 0 for t′ > t and represents a signal going
backward in time. It is related to the retarded Green’s
function via

G†Φ(t′, t) = GadvΦ (t, t′). (16)

Combining Eqs. (16), (15) and (10), we finally obtain a
formula relating the gradient of C that is required for the
learning update to the advanced Green’s function and the
(easily obtained) gradient of C with respect to the output
fields:

(
∇Φ∗(−T )C
∇Φ(−T )C

)
= −iσzGadvΦ (−T, 0)

(
∇Φ∗(0)C
∇Φ(0)C

)
. (17)

This is still a formal expression at this point, but in the
next section we will show how it can be implemented
physically.

B. Time reversal of the perturbation: physical
backpropagation

How can we produce the signal of Eq. 17 in practice,
in order to allow the training update to take place? Ap-
parently, we need to inject the source term ∇Φ∗(0)C as a
perturbation and follow its "backwards time evolution".

Let us consider that, at t = 0, we have obtained the
output Φout. Suppose that we have a way to implement
an interaction Hamiltonian C[Φ] that is proportional to
the cost function (written as a function of the output).
Let us further suppose that we can control this inter-
action Hamiltonian, so that we can switch it on during
some short period of time, and later switch it off again. In
theory this is always possible, because a cost function is
just a real function of the output. In practice, we will see
that, depending on the cost function, this corresponds to
driving the system, or applying phase shifts, or, for more

complicated cost functions, to realizing some nonlinear
interactions. In any case, this operation is a function
only of the output, not requiring any knowledge of or
feedback on the internal degrees of freedom of the au-
tonomous self-learning machine. As we will discuss later,
a practical implementation is possible for several stan-
dard cost functions with relatively simple setups. For
the moment, we consider the general case in which C is
an arbitrary cost function. When we realize such an in-
teraction Hamiltonian C, according to Hamilton’s equa-
tions, the evolution will be given by iΦ̇ = ∇Φ∗C. Let us
suppose that we only realize such interactions during an
infinitesimally small time interval, ε. The result of such
a brief Hamiltonian evolution is to update the fields as
Φ(0) 7→ Φ(0)− iε∇Φ∗C.

The advanced Green’s function evolves a perturbation
of the output backwards in time to obtain the correspond-
ing perturbation of the input. In order to realize this
physically, we need to induce the time-reversed evolu-
tion of the system. In a time-reversal invariant system
(such as the one considered here), this is possible by im-
plementing a time-reversal operation and then letting the
natural dynamics proceed from there forwards in time. In
the present complex notation, we know that a time rever-
sal is equivalent to phase conjugation, Φ 7→ Φ∗, flipping
the momenta. By means of phase conjugation, applied
to the already perturbed field, we produce a perturbed
echo given by Φ∗(0) + iε∇ΦC ≡ Φecho(0) + δΦecho(0).

Importantly, the whole configuration of the system is
time-reversed, and, as a consequence, the evolution for
t ∈ [0, T ] is, to leading order, given by the fully time-
reversed nonlinear evolution: Φecho(t) = Φ∗(−t). The
first order correction δΦecho(t) is the linear response of
the system to the perturbation iε∇ΦC in the initial con-
ditions, evolving on top of Φ∗(−t).

Now we come to the crucial step. In any time-reversal
invariant system, the advanced and retarded Green’s
functions of linear perturbations propagating on top of
the original nonlinear dynamics and its time-reversed
counterpart, respectively, are connected in the following
way:

Gadv
Φ (t′, t) = T Gret

Φecho
(−t′,−t)T , (18)

where T = σx is the time-reversal operation, interchang-
ing δΦ and δΦ∗. Therefore:

GadvΦ (−T, 0)

(
∇Φ∗(0)C
∇Φ(0)C

)
= T Gret

Φecho
(T, 0)

(
∇Φ(0)C
∇Φ∗(0)C

)
(19)

It is now obvious that the left-hand-side, which (as we
have already found above) formally yields the update
needed for the gradient descent, can be physically im-
plemented in terms of the right-hand-side version, with
a suitable perturbation injected and propagated forward
in time on top of the echo. Finally, as we can see from
Eq. (19), at t = T we have to perform a final time-reversal
(phase-conjugation) again.
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Overall, after the whole process is completed, we ob-
tain a replica of the initial configuration at t = −T , but
importantly with a small correction that is proportional
to ε. The result of the whole physical process can be
summarized as(

Φ(T )
Φ∗(T )

)
=

(
Φ(−T )
Φ∗(−T )

)
+ T Gret

Φecho
(T, 0)

(
ε∇Φ(0)C
ε∇Φ∗(0)C

)
.

(20)
We can convince ourselves that this is the learning update
that was needed, by reformulating the deviation (second
term on the right-hand-side) with the help of Eq. (19)
and subsequently Eq. (17)]. This produces:

(
Φ(T )− Φ(−T )

Φ∗(T )− Φ∗(−T )

)
= −iεσz

(
∇Φ∗(−T )C
∇Φ(−T )C

)
(21)

This is exactly the learning update that was needed, ac-
cording to Eq. (7), for the learning parameters Θ. Inci-
dentally, the evaluation degrees of freedom Ψ have also
changed, but they will be discarded when the next input
is injected into the learning machine.

V. POTENTIAL INGREDIENTS OF PHYSICAL
IMPLEMENTATIONS

The most important feature of our new method is its
generality. It can be used to train any time-reversible
Hamiltonian physical system. It is not our intention here
to give a full description of all possible implementations
of the SL machine. On this general level, we cannot even
decide which ones are optimal, as the most suitable archi-
tecture is heavily dependent on the machine learing task
of interest. Nevertheless, we can give some guidelines.

The main ingredients of any SL machine of the type
presented here are: a time-reversal-invariant Hamilto-
nian system with two sets of dynamical variables Ψ and
Θ; a device or method to transform the output according
to the cost function Hamiltonian (injecting the error sig-
nal), and a device that can time-reverse Ψ and Θ. There
must be a physical distinction between Ψ and Θ, in that
Θ needs to be multi-stable, i.e. it can remain indefinitely
in one location of a higher-dimensional attractor, in the
absence of its interaction with Ψ – turning it into the
’learning field’. In theory we also need a way to control
dissipation; in practice it may be enough to ensure that
its effect is negligible during the echo step. In this sec-
tion, we will discuss each of these ingredients on a general
level, and we will provide a summary of some of the most
promising possibilities for their realization.

A. Ingredients of the Hamiltonian: Linear and
nonlinear parts

The dynamics of Ψ and Θ is given by the Hamiltonian
HSL. In Eq. (1) we split HSL in four terms. The first two

terms, HΨ and Hint, are the ones that govern the evo-
lution of Ψ and its interaction with the learning degrees
of freedom. The second term, HΘ, is concerned with the
stabilization of the learning degrees of freedom. The only
goal of HΘ is to provide a degenerate ground state for Θ,
so that the phase space of Θ has many different stable
points to which it can converge during training. The
fourth term, Hbath, accounts for the controllable time-
dependent damping that is necessary for the dissipative
step of HEB. The details of Hbath are not important. We
only require that its effect can be made negligible during
the echo step, and that it doesn’t break the degeneracy
of HΘ .

Let us start with the discussion of HΨ and Hint. If one
wants to use a SL machine for any useful task, the dynam-
ics of Ψ must be complex and nonlinear. The expressive
power of ANN’s can only be matched if the equations of
motion for Ψ incorporate nonlinear interactions, as well
as interactions with the learning parameters encoded in
Θ. However, the input-output relation must be deter-
ministic and robust to small amounts of noise. These
considerations should guide the choice of the Hamiltoni-
ans.

As we discuss later in this section, there is a consider-
able amount of theoretical and experimental work about
the time reversal of wave fields, especially in nonlinear
optics. For this reason, here and henceforth we will con-
centrate on approaches based on nonlinear wave fields.
Here, Ψ(x) and Θ(x) are complex fields defined on a con-
tinuous space, or in a discrete lattice. Although we make
extensive use of a notation that is reminiscent of optical
fields, we must remember that, actually, the setting is
completely general (the real and imaginary parts of the
field are the two conjugate coordinates of a completely
general Hamiltonian degree of freedom). However, the
fact that we have now assumed Ψ(x) and Θ(x) to be
fields allows us to make use of the notion of locality.

In a SL machine based on wave fields, HΨ would be
composed of two parts: a free-field Hamiltonian H0, and
a second term HNL containing local self-interactions. We
can define a free-field Hamiltonian as any quadratic func-
tion of Ψ,Ψ∗ and its time- and space-derivatives. More
restrictively, we can ask that H0 is invariant with re-
spect to a global phase shift of Ψ, so that the total inten-
sity,

∫
dDx |Ψ|2, is a conserved charge. In that case, H0

can only contain second-order terms that are bilinear in
Ψ,Ψ∗.

To produce non-linear dynamics, we introduce the self-
interacting term, HNL. Often, this will be a local term.
Typical examples of self-interaction Hamiltonians would
be the familiar Kerr nonlinearity, g|Ψ|4, or a Josephson
nonlinearity, χ cosψ, that can become relevant for super-
conducting circuit quantum electrodynamics.

The free-field Hamiltonian together with a self-
interaction is enough to obtain very complicated dynam-
ics. But if we want to train the SL machine, we still need
to introduce some dependence on the learning parameters
through the interaction Hamiltonian, Hint. In analogy



14

with ANN’s, we may ask that the interaction produces
dynamics linear in Ψ, although this is not a requirement.
Moreover, Hint will also be local in most realistic set-
tings. Therefore, the most reasonable choices for Hint
are gΘ∗ΘΨ∗Ψ (in nonlinear optics, this is called cross-
phase modulation), or g(Θ + Θ∗)Ψ∗Ψ (the standard χ(2)

interaction in optics, or equivalently an optomechanical
interaction), or in general some interaction of the form
f(Θ,Θ∗)Ψ∗Ψ. Alternatively, parametric interactions of
the type f(Θ,Θ∗)Ψ∗Ψ∗ + c.c. could also be considered,
leading to a different kind of dynamics, although we will
not discuss them here.

The Hamiltonian terms we described could be homo-
geneous across space, like in the case of an optical field
propagating inside a nonlinear crystal, or they could be
implemented using discrete building blocks, as it would
be the case for a photonic or microwave circuit with non-
linear elements. It can be argued that the evolution of Ψ
under the joint action of H0 +Hint +HNL is very similar
to the evaluation of an ANN (as argued in other works
before, see e.g. [4, 12, 21]). On the one hand, the effect
of HNL is to induce a nonlinear activation function. On
the other hand, the part H0 +Hint is quadratic in Ψ and
can be thought of as implementing the trainable matrix
of weights.

It is known that local controllable shifts together with
fixed unitary operations are enough to realize any uni-
tary transformation [22]. Of course, it needs to be noted
that standard ANNs can have arbitrary weight matrices
between layers, which seem to go beyond the unitary ma-
trices available in the present setting. However, any arbi-
trary matrix can be embedded in a larger unitary matrix
(with proper rescaling). For this reason, the structure of
the linear part of the ANN can always be replicated in a
SL machine. Alternatively, we may view an SL machine
with unitary evolution as realizing a particular case of an
invertible neural network.

B. Pseudo-dissipation

As we said in an earlier section, pseudo-dissipation can
be a useful feature in a SL machine. We can imagine that
in our SL machine there are dynamical variables that are
coupled to Ψ until some particular time, after which they
evolve separately. Instead of explicitly switching off the
couplings as a function of time, we might also just have
wave fields propagating out of the region where inter-
actions are present. This can easily be arranged, e.g.
in photonic circuits. The ancillary dynamical variables
carry away part of the information, reconciling the con-
tractive mapping with the overall time-reversal symme-
try of the SL machine. We start with a high dimensional
input, but as time passes, the dimension of the interact-
ing part of the system is increasingly reduced. In the
end, the dimension of the output may be much smaller
than the original input dimension. Importantly, in the
echo step of HEB, the output and the ancilla must be

both time-reversed.
Pseudo-dissipation via ancillary modes can play an im-

portant role for the activation functions implemented
via nonlinearities. As we already mentioned, the non-
linear evolution induced by the self-interaction Hamilto-
nian can be understood as an activation function. It is
desirable to choose HNL in such a way that the induced
activation function is not oscillatory and has a bounded
derivative. Ideally, a monotonic function would be the
best option, reproducing standard ANN activation func-
tions. In most previous approaches to physical learning
with nonlinear optical devices, the nonlinearity is pro-
vided by a homogeneous Kerr self-interaction. The effect
of a Kerr nonlinearity is to induce a phase shift propor-
tional to the intensity of the field. Qualitatively, we can
think of a Kerr medium as a deep neural network where
the activation function is of the form f(Ψ) = eig|Ψ|

2

Ψ.
This is an oscillatory function, which is an undesirable
property for an activation function in an ANN. What
is worse, the derivative of the Kerr phase shift grows
without bounds for increasing intensity. If we want to
mimick the behaviour of a sigmoid or ReLU activation
function, we must incorporate ancillary degrees of free-
dom, because all such standard activation functions are
contractive. One possible choice is to use a χ(2) nonlin-
earity, and to couple an ancillary mode to the evaluation
field: HSI = χ(2)

(
Ψ∗ancΨ

2 + ΨancΨ
∗2). When the ancil-

lary field is initially Ψanc = 0, the absolute value of Ψ(t)
as a function of the absolute value of the input is quali-
tatively similar to a sigmoid function (although it is not
a monotonic function):

Ψ(t) = Ψ(0)sech
(

2−1/2χt|Ψ(0)|
)
. (22)

Aside from χ(2) nonlinearities, it is certainly also pos-
sible to produce an adequate activation function by a
judicious combination of ancillary modes and a Kerr
self-interaction Hamiltonian, or other kinds of self-
interaction. Sigmoid-like thresholders based on optical
Kerr effect have been previously described[23], as well as
bistable optical switches [24]. It is known that the Kerr
interaction in combination with linear operations can be
used to construct the Fredkin gate, and therefore it is
universal for classical reversible computation [25].

C. Time reversal

For any time-reversible Hamiltonian, the evolution can
be reversed by inverting the momenta: π → −π. In our
complex notation, that means to perform a phase conju-
gation of the fields: Φ→ Φ∗. Importantly, this step can-
not be realized with purely Hamiltonian evolution, not
even by breaking time-reversal symmetry momentarily.
A time-reversal operation does not preserve the Poisson
brackets, so it is not a canonical transformation. How-
ever, one can circumvent this problem by using ancillary
modes. Let us consider that we have a dynamical variable
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Φ that we want to phase-conjugate. Additionally, we also
have a second, ancillary dynamical variable Ξ. An im-
portant assumption is that the initial value of the ancilla
is Ξin = 0. The phase conjugation can then be realized
in three steps. First, we couple Φ and Ξ in such a way
that, after a fixed time, we have that Ξ = Φ∗in. This step
can be realized with Hamiltonian dynamics. For exam-
ple, a Hamiltonian of the "parametric interaction” form
H = χ (ΦΞ + Φ∗Ξ∗) would result in the desired outcome
after an interaction time t = χ−1 log

(
1 +
√

2
)
. Second,

we swap both modes, so that Φ = Φ∗in. This step can
also be the result of Hamiltonian evolution, now choos-
ing H = χ (ΦΞ∗ + Φ∗Ξ). Third, we erase the state of the
ancilla, so that Ξ = 0 again.

Time-reversal has been experimentally realized in
several platforms. In nonlinear optics [26], phase-
conjugating mirrors are routinely implemented by means
of three- and four-wave mixing processes [27]. In a theo-
retical paper by Miller [20] it was shown that four-wave
mixing can be used to time-reverse optical pulses. This
can be extended to any platform where four-wave mix-
ing is possible, from microwave circuits [28] to cold-atom
clouds [29].

D. Stabilization of the learning field

Once training via HEB has been completed and the
cost function has been minimized, the learning parame-
ters should remain stable for long times. The problem
then is how to choose a physical system with degrees of
freedom that can remain stable in a continuum of states.
Mechanical degrees of freedom would be a priori a good
selection. The position of freely moving nanoparticles
or the orientation of a (possibly levitated) rotor (e.g. a
molecule or nanorod) are examples of systems that could
store a degree of freedom for indefinitely long times. The
problem is that the time-reversal of mechanical systems
has no straightforward solution. The possible exception
to this statement are optomechanical systems, where the
coupling to the light field can be employed to time-reverse
mechanical motion, but then the mechanical degree of
freedom oscillates around a single equilibrium position,
making it unsuitable for our purposes absent any addi-
tional ingredients. By contrast, in the case of wave fields,
the experimental techniques for phase conjugation are
better known, but storing information for longer times is
more problematic.

The solution is to engineer a suitable physical system
that has the desired characteristics. Modern systems in
integrated nonlinear optics and in superconducting mi-
crowave circuits allow for the design of a wide range of
nonlinear interactions between localized modes of the ra-
diation field. In the following, we provide two examples
of how this flexibility might be exploited to design a de-
generate ground state manifold for a learning field.

In the first example, we consider a cavity that has
two modes α1,α2 with the same frequency (like coun-

terpropagating modes in a microresonator). Inside the
cavity there is a nonlinear material that induces a re-
pulsive Kerr-type interaction. Both modes have the
same lifetime. In order to have stable states with non-
zero amplitude, we couple both modes to a parametric
drive. Let us define the quadratures of the field modes as
q1,2 = Re{α1,2}/

√
2, p1,2 = Im{α1,2}/

√
2 and introduce

the abbreviations Q2 := q2
1 + q2

2 , P 2 := p2
1 + p2

2. In terms
of the quadratures, the full Hamiltonian reads

H = −χβQ2 + gQ4 +
(
χβ + 2gQ2

)
P 2 + gP 4. (23)

This Hamiltonian is written in the frame rotating at the
mode frequency, and we assumed the parametric drive
amplitude β is purely real-valued. It is not hard to see
that this Hamiltonian is qualitatively similar to that of
a point particle moving inside a ’Mexican hat’ potential.
Using this analogy, it is clear that any state with P = 0
and Q2 = χβ/(2g) is a ground state. We could consider
the angle in the (q1, q2)-plane as our learning parameter
θ. In order to couple to this parameter, the simplest
option we found is to suppose that Ψ interacts differently
with α1 and α2. For example, let us consider that there
is a nonlinear element that couples Ψ only to α1, through
a cross-phase modulation. The interaction Hamiltonian
then can be written in terms of the learning parameter
as Hint = g cos2 θΨ∗Ψ.

Of course, storing a learning parameter in the ampli-
tudes of parametrically driven Kerr oscillators is not the
only possibility. As a further example, we briefly present
another setup in which θ is the relative phase between two
modes. Consider two modes α1, α2 that are also para-
metrically driven. The two modes α1, α2 have different
frequencies given by ω1, ω2, respectively. This physi-
cal system can be modelled by a Hamiltonian given by
χ(2) (βα∗1α2 + β∗α1α

∗
2) +

∑2
j=1 ωjα

∗
jαj . It is clear that

this Hamiltonian is invariant with respect to any global
phase shift αj → eiϕαj , j = 1, 2. Let us introduce the
notation αj ≡ |αj | eiϕj , where ϕ1, ϕ2 are the phases of
α1, α2, respectively. We define the learning parameter
as θ := ϕ1 + ϕ2. Because of the symmetry of the Hamil-
tonian, θ is a free parameter in the ground state. The
challenge is now to find a way to couple Ψ to the learn-
ing parameters. One possible way is to consider that
Ψ has two components (field modes) Ψ1, Ψ2. Choosing
adequately the frequency of the modes Ψ1, Ψ2, the prod-
uct gα1α2Ψ∗1Ψ2 + c.c. can be made resonant. Then, θ
parametrizes a linear interaction between the two com-
ponents of Ψ. This requires frequency stabilization of the
difference frequency of Ψ1 and Ψ2 vs. the sum frequency
of α1 and α2. The advantage, though, is that now the
symmetry of the Hamiltonian is more robust.

As we illustrated above, in order to engineer a physical
system that can store a continuous learning parameter,
we need to realize a Hamiltonian with some continuous
symmetry. The problem is that in any real implementa-
tion we may expect that any continuous symmetry will
be broken at some energy scale. If that is the case, most
configurations of the learning field after training will have
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a finite lifetime. Remember that we assume that, after
training, the learning field ends in one of the degenerate
ground states of Hθ, which is an ideal, exactly degenerate
Hamiltonian. If the true Hamiltonian of the system is in-
stead given by Hθ +H ′, the learning field will slide down
in the energy landscape of H ′. Eventually, it will end up
very far from the configuration that had been obtained
as a result of training, unless the training is periodically
repeated to stabilize the "memory" of the system.

That potential problem could be avoided if the learning
parameters were stored in a discrete set of states. Con-
sider that now Hθ possesses a discrete set of degenerate
ground states. In such a case, a small perturbation in Hθ

does not affect the long term stability of θ, as long as it
is much smaller than the energy barrier between the de-
generate states. Stochastic gradient descent (SGD) is a
strategy used to optimize continuous degrees of freedom.
Although HEB is originally motivated by the search of
a physical realization of SGD, we already argued that it
can still be useful for training discrete parameters. In
that case, HEB works in an analogous fashion to thermal
annealing. In this picture, one can think of θ as a spin
system that can be approximately described by a thermal
distribution. The probability of each state is then given
by e−βHeff[Θ], where Heff[Θ] is the effective Hamiltonian
of Eq. (8). If the temperature is slowly reduced, the sys-
tem will undergo annealing, and Θ would end in one of
the local minima of Heff[Θ]. Spin-like degrees of freedom
can be realized, for example, with Optical Parametric
Oscillators [30].

E. The cost function Hamiltonian

The cost function is another essential ingredient in the
design of a SL machine. In our prescription for HEB, one
crucial step is to inject the learning signal by perturbing
the output fields according to Ψ(0) − iε∇Φ∗C, where C
is a Hamiltonian that is proportional to the cost func-
tion. For arbitrary cost functions, this could always be
achieved via some external processing and feedback, but
as a general rule of course we want to avoid such steps.
However, for simple cost functions, it could be possible
to engineer a physical system whose evolution is actually
described by the cost function Hamiltonian C.

In the case of the Mean Square Error (MSE) cost func-
tion, a physical implementation is relatively easy. The
MSE cost function is defined as the squared difference
between the actual output and the target output:

C[Ψ(0)] =

∫
dx g(x) |Ψ(0)−Ψtarget|2 . (24)

Here g(x) is position-dependent and will be zero in
the areas that correspond to the ancillary degrees of
freedom (which will be time-reversed, but not com-
pared against any target). Expanding the square, we
can write the corresponding Hamiltonian as C[Ψ(0)] =

g(x) |Ψ(0)|2 − 2g(x)Re
{

Ψ(0)Ψ∗target
}

(where we have

dropped |Ψtarget|2, which is just an irrelevant constant
term). In terms of a physical wave field, the first term,
g |Ψ(0)|2, is just a shift in the frequency of the field. Its
effect on Ψ(0) is to induce a phase shift given by e−iεg(x).
The second term, −2gRe

{
Ψ(0)Ψ∗target

}
, is nothing but a

drive proportional to the target. In other words, this
term can be realized straightforwardly by injecting a
weak copy of the target field distribution, adding it to
the wave field Ψ.

Alternatively, the MSE cost function can be also re-
alized using the intensity of the field. Now, instead
of forcing Ψ(0) to match a target field, we only try
to match a target intensity distribution. In that case,
the cost function Hamiltonian is given by C[Ψ(0)] =

g |Ψ(0)|4 − 2g |Ψ(0)|2 Itarget. The experimental realiza-
tion of C[Ψ(0)] is reduced to a homogeneous Kerr non-
linearity combined with a phase mask proportional to the
target intensity pattern.

Other cost functions may be realized with different in-
teractions. Which one is optimal would depend on the
problem at hand and how the output is encoded in the
physical fields. In many cases, the choice of the cost
function would not be a critical feature.

VI. ILLUSTRATION IN NUMERICAL
EXPERIMENTS

In this section we illustrate Hamiltonian Echo Back-
propagation in two specific examples, by means of numer-
ical simulations. Both examples rely on nonlinear wave
propagation, of the kind that might be implemented in
photonic neural networks. In the first case, we consider
a self-learning machine with a very simple setup and we
train to learn a logical function. In the second exam-
ple, we consider a more elaborate architecture inspired by
convolutional neural networks. We train the self-learning
machine to perform classification on the standard MNIST
handwritten digits data set. We believe that a more so-
phisticated architecture or other choices of the activation
function and the cost function could improve the results
even further, beyond the validation accuracy of 97.5%
observed here. However, our primary goal here is to illus-
trate the concept, rather than constructing the optimal
setup. In both scenarios, we simulated the full Hamil-
tonian Echo Backpropagation procedure, involving both
the forward and the backward pass.

The setup considered in the first example consists of
a nonlinear wave field. The dynamics of the evaluation
field Ψ is given by the nonlinear Schrödinger equation
coupled to the learning field

iΨ̇ =
β

2
∇2Ψ +

(
χθ + g|Ψ|2

)
Ψ. (25)

The learning field Θ permeates the nonlinear medium and
it interacts with the evaluation field through an interac-
tion of the optomechanical (or χ(2)) type. The evalua-
tion field is initially prepared in a superposition of wave-
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Figure 7. Training a self-learning machine (simulations). (a) Time-evolution of the "evaluation field" intensity |Ψ|2
during a forward pass for a machine that has learned to implement XOR (b = a1 ⊕ a2). The region in which the interaction
with the learning field occurs is enclosed by yellow dashed lines. (b) Time evolution of the learning field momentum πθ during
a single training step. The pattern builds up from left to right as the Ψ pulse propagates. It is time reversed and then partially
deleted as the Ψ pulse travels back. The finite remainder at time T is due to the injected error signal and produces the desired
learning update. (c) Evolution of the learning field θ during many training steps. The training started with a smooth random
configuration, and there are 600 HEB steps (each for a different randomly chosen training sample). (d) Analyzing the influence
of a noisy time-reversal operation on training. Cost function during training for different values of the learning rate, at a fixed
finite noise level whose standard deviation is given by σ2

noise = 0.05I (see Appendix A for details). (e) Setup of a self-learning
machine that learns to classify handwritten digits (MNIST). The outcome is a one-hot encoding of the detected digit, i.e. one
of 10 patches "lights up". (f) Training error evolution of the MNIST setup for different strengths of the wave field nonlinearity.
χ1 and χ2 are the nonlinear strengths at the convolutional and dense layers, respectively. (g) Final validation set classification
accuracy.

packets that encode the input (Fig. 7), with initial mo-
mentum kz > 0. Thus, they propagate from left to right,
accumulating the effect of the nonlinear self-interaction
and the interaction with the learning field. The output
intensity is measured at two points, xout0 ,xout1 . The out-
put is considered a logical 0 if |Ψ(xout0 , 0)| > |Ψ(xout1 , 0)|;
otherwise, it is a logical 1 (for more details, see Appendix
A). The goal is to learn the exclusive-or (XOR) function
mapping from input to output. As can be seen in Fig. 7,
this is achieved rapidly.

The operation of a SL machine is independent of the
Hamiltonian, and therefore one does not even need to
know the particularities of the device (including any pos-
sible deviations from intended fabrication) to make it
work. This is true because the time-reversal operation
produces an exact inversion of the Hamiltonian evolu-
tion, for any time-reversible Hamiltonian. One could
then wonder how sensitive HEB becomes to the preci-

sion of the time reversal. In fact, since the nonlinear
processes used to phase-conjugate signals can also am-
plify noise, there are practical limits to the performance
of a time-reversal mirror. Nevertheless, we will show here
that the effects of noise in the time-reversal can be mit-
igated, although at the price of a longer training time.
In 7(b), we compare the results using a perfect time-
reversal (red line) with the results obtained in the case
of a noisy phase conjugation, for several values of the
learning rate (orange and blue), as well as for a suit-
ably chosen time-dependent learning rate ("learning rate
schedule", an approach also known for ANNs, with n
denoting the training step index). As it could be ex-
pected, the performance of the SL machine deteriorates
when the time-reversal is noisy. However, one can ob-
serve that decreasing the learning rate improves the fi-
nal accuracy. This is because the overall update after
several steps will approximately cancel out the random
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noise, if the learning rate is small enough. Indeed, the
backpropagating perturbation is a linear function of the
error signal, to first order in ε. Therefore, the update of
Θ in each step will be the sum of the appropriate gradi-
ent update plus a random signal that is proportional to
the noise in the time-reversal. If each update step does
not change the value of Θ significantly, the overall change
after several steps will average out the unwanted noise.
Note that this behaviour only applies to temporally fluc-
tuating noise. In case of static systematic deviations from
the correct time-reversal operation, an independent cal-
ibration of that operation would be required. Impor-
tantly, however, that would not rely on any knowledge of
the internal dynamics of the SL machine.

The setup that we consider for the second example is
inspired by the photonic neural network introduced theo-
retically by Ong et al [31]. It is composed of three convo-
lutional layers followed by a dense fully-connected layer.
The nonlinearity is provided by a χ(2) optical nonlinear-
ity, as described in Eq. (22). The convolutional layers
can be implemented by a combination of Discrete Fourier
Transforms (DFTs) and learnable phase shifts. The pro-
posal by Ong et al. did not address the problem of how
to implement the dense layers; we introduce an imple-
mentation of the dense layers that is based on a sequence
of DFTs, learnable phase shifts and a linear interaction
with ancillary degrees of freedom (see Appendix B). As
a cost function, we choose the mean square error on the
intensity.

In this setup, the learning parameters are all in the
form of phase shifts. We assume that these phase shifts
are produced by an interaction of the type Hint = θΨ∗Ψ
inside some optical cavities through which the evaluation
wave field travels.

In our simulations, the best results were obtained by
choosing values of the nonlinear coupling strength that
are different in the convolutional and the dense layers.
This can be explained by the fact that the intensity de-
cays as the wave packets propagate, as a result of the in-
teraction with the ancilla modes. Therefore, it is optimal
to choose that the nonlinearity in the dense layer, χ2, is
stronger than the nonlinearity in the convolutional layers,
χ1. The results in figure 7 show the training progress for
several values of χ1 and χ2. First we show the linear case,
when χ1 = χ2 = 0, and then we sweep across several val-
ues of χ2, with fixed χ1. One can see a sharp transition
in the achievable accuracy when χ2 is increased. When
the nonlinearity surpasses some threshold (χ2 ≈ 3), the
accuracy jumps from around 90% to above 95% (Fig.7g).
This result suggests that at this point the device becomes
a universal approximator. Our observations are in qual-
itative agreement with the findings by Marcucci et al.
[32], where the expressive power of information process-
ing using nonlinear wave fields was analyzed.

VII. POTENTIAL HARDWARE PLATFORMS

The elements for a SL machine that we have presented
so far can be realized in many platforms. In fact, many
of the ingredients needed for implementations of our pro-
posal have already been demonstrated experimentally. In
some cases, the physical platforms that we consider be-
low were even already studied in the specific context of
building new ML hardware, but it was not known how to
train them sucessfully with physical procedures, without
the use of external computation and feedback. Hamilto-
nian Echo Backpropagation can now provide a means to
do this. Our only aim here is to give a brief overview of
the possibilities. It is clear that for each platform sub-
stantial further research will be required to come up with
an optimized design respecting the particular hardware
constraints, and to analyze the potential performance as
well as to take steps towards first experimental realiza-
tions.

In the nonlinear optics approach to neuromorphic com-
puting, on-chip photonic circuits are one of the most dis-
cussed technologies for ML hardware. In a photonic cir-
cuit, Ψ is an optical field propagating inside an array
of waveguides, and Θ may be stored in a series of op-
tical cavities. We have pointed out above how suitable
parametric driving can stabilize the learning field in a
degenerate manifold. However, photonic circuits are not
the only possibility in the realm of nonlinear optics: in
the spirit of [4], Ψ and Θ could be optical pulses of light
propagating inside a homogeneous nonlinear crystal. In
principle, the storage of Θ could be achieved by recording
its configuration in a hologram [4, 5], which at the same
time also provides the means for its phase conjugation.
While the ingredients are therefore known, additional re-
search is undoubtedly needed on how to apply HEB in
this kind of platform.

Microwave circuits are yet another promising platform
for the implementation of a SL machine. The neces-
sary nonlinearity can be provided by superconducting ele-
ments [33]. The advantage of superconducting microwave
circuits is that these nonlinearities can be made arbi-
trarily strong and present experiments have reached an
exceedingly high level of control, thanks to the drive to-
wards quantum computation and simulation. Of course,
such devices are inherently less compact than those in
optics.

Approaches not based on electromagnetic fields are
also possible. Clouds of cold atoms or molecules, possibly
trapped in optical lattices, offer the possibility of storing
information in the density distribution or the molecular
orientation, making longer-term storage of the learning
field Θ in principle less challenging than in the case of op-
tical cavities. The interaction of an optical field Ψ with
the atomic or molecular cloud would also provide strong
nonlinear self-interactions. Alternatively, Ψ itself could
be a (macroscopically populated, classical) matter wave,
interacting with the cloud.

Likewise, spin waves share all the required ingredients
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for a SL machine. We must remark that time-reversal
symmetry must not be broken, which means that spin-
spin interactions may be acceptable, but not (for exam-
ple) light-magnon interactions via the Faraday effect. In
the case of spin waves, there are already experimental
demonstrations of strong nonlinear interactions that give
rise to sigmoid-like activation functions [34].

Physical fields in real space are not the only possibility.
So-called Ising machines have received a lot of attention
in recent years [30, 35]. An Ising machine is a time-
multiplexed train of pulses inside a fiber loop with a de-
generate optical parametric oscillator (OPO). Due to the
interaction with the OPO, the pulses have two degenerate
stable states that can be treated as spin-like variables. A
linear device in the fiber loop couples the pulses in a way
that is reminiscent of an Ising Hamiltonian. In this way,
an artificial lattice can be implemented with just a single
fiber loop. This setup has all the elements needed for
our proposal: it has very complex nonlinear dynamics, it
is possible to engineer a degenerate ground state for Θ,
and it can be time-reversed. As opposed to a standard
photonic circuit, it is only necessary to realize a single
nonlinear element, the OPO.

SL machines could potentially offer significant advan-
tages in both the processing of and training on big data
sets at high speeds. For example, optical SL machines
would benefit from high parallelism and fast all-optical
nonlinearities. A photonic circuit with L layers and N -
dimensional inputs would be able to perform a full HEB
step at once (forward and backward pass) that is equiv-
alent to O(LN2) operations on a digital computer. The
rate of training steps would be constrained by the la-
tency per layer of the circuit (because two pulses cannot
be inside at the same time), and the time required to im-
plement a time reversal. The speed of the time-reversal
operation is limited by the response time of the Kerr non-
linearity, which can be on the order of 100fs [27]. Using a
conservative estimate of the length of the layers on the or-
der of 1mm, the latency would be less than 10ps. There-
fore, a conventional computer would have to perform on
the order of N21011 multiply-accumulate (MAC) oper-
ations per second in order to match an optical SL ma-
chine. Furthermore, in many big-data applications, the
real bottleneck in the speed of training is in the RAM
bandwidth. For large ANN’s, storing or retrieving the
updated weights at each step can be the most important
contribution to the training time. That is possibly one of
the biggest advantages of the SL machines: the memory
(the learning field) is updated at the same time that the
evaluation field propagates in the device, so there is no
overhead associated to memory retrieval.

Another potential advantage is energy efficiency. It
has been suggested that optical neural networks [10] can
be orders of magnitude more efficient in terms of power
than their electronic counterparts. Moreover, we shall
remark that there is no loss during the time-reversible
Hamiltonian evolution in a SL machine. Therefore, all
the power consumption comes from: (1) preparing the

input and injecting the error signal, (2) time-reversing
the output, and (3) the decay step. A calculation of the
power consumption would depend on the details of the
particular implementation, but since the matrix multi-
plications and nonlinear activation functions are realized
in the time-reversible lossless step, it is reasonable to ex-
pect a better energy efficiency than current electronic
hardware.

VIII. CONCLUSIONS

In this work we have introduced a general method,
Hamiltonian Echo Backpropagation, to train SL ma-
chines based on Hamiltonian physical systems. For any
physical device that meets some general assumptions, our
method is guaranteed to realize gradient descent opti-
mization of a cost function. The HEB procedure up-
dates the learning parameters autonomously and in situ,
leveraging all the advantages of a neuromorphic device.
Whether the physical device could achieve a good per-
formance on a particular task will depend on its size
and its expressive power, but our method can always
find a local minimum of the cost function via physical
dynamics. Our numerical simulations illustrate how it
can be applied both to simple physical systems and also
to other more sophisticated architectures. In fact, we
showed an example of its application in the case of a pho-
tonic convolutional neural network used for image recog-
nition. Although there are many previous proposals and
even experimental implementations of photonic learning
machines, most of their potential advantages cannot be
leveraged without a training method that is fully au-
tonomous. We believe that when HEB is directly applied
to such photonic devices, this will greatly enhance their
capabilities.

Going beyond the realm of photonics, there are many
other promising physical platforms for machine learning
hardware. To name a few, spin devices, clouds of cold
atoms or superconducting microwave circuits are exam-
ples of nonlinear physical systems where a backpropaga-
tion scheme has not been realized yet. We believe that
our method would be especially helpful when there is no
control over the internal dynamics of the device. Indeed,
since none of the steps in HEB depend on the underly-
ing Hamiltonian, one can use the physical device as a
black box. Our method not only allows to consider vari-
ous physical platforms, it will also make easier to explore
new architectures. As opposed to other previous pro-
posals, HEB does not rely on a sequential multi-layered
structure, which means that it can be used to train new
architectures going beyond the structure of a standard
ANN.
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Appendix A EXAMPLE: XOR FUNCTION

The first example of a SL machine that we show has
a particularly simple architecture. The evaluation dy-
namical variable is a nonlinear wave field propagating in
a 2D square lattice. We consider a tight-binding model
with hard-wall boundary conditions in which every node
of the lattice is coupled to its nearest neighbours. At
each site of the lattice there is a nonlinear attractive
Kerr self-interaction. The learning dynamical variable
is given by another field that does not propagate. We
assume that the learning field and the evaluation field in-
teract through a term in the Hamiltonian given by θΨ∗Ψ,
which is the simplest term that can produce local phase
shifts.

During the time-reversible steps, the equations of mo-
tion for both fields are given by

iΨ̇ =
β

2
∇2Ψ +

(
χθ + g|Ψ|2

)
Ψ, (26)

iΘ̇ = iΩπθ + χ|Ψ|2. (27)

The hard-wall boundary conditions are given by Ψ(x =
0, z) = Ψ(x = W, z) = Ψ(x, z = 0) = Ψ(x, z = L) = 0.

During the decay step, the evolution of θ is given by
θ̇ = Ωπθ, π̇θ = −Γπθ.

The goal of this example is to learn a simple logical
function. In particular, we choose the XOR function,
b = a1 ⊕ a2, since it is well known that it cannot be
learned by a single-layer perceptron. For each logical
input, (a0, a1), we provide a physical input as a superpo-
sition of wave packets, Ψ(x,−T ) = f0(x, a0) + f1(x, a1).
Each wave packet, fs(x, as), is a gaussian wave packet
centered around ((2s + 1)W/8 + asW/2, lin), s ∈ {0, 1}
whose standard deviation is given by σ. In addition,
each wave packet has an initial positive momentum in the
propagation direction. In this way, each input boolean
variable as is encoded in the position of the center of the
corresponding wave packet.

We train such a self-learning machine to learn the XOR
function using Hamiltonian echo back-propagation. The
cost function is given by

C :=

∫
dx dz φ(x)|Ψ(x, 0)−Ψtar(x, b)|2, (28)

where φ(x, b) = 1
2πσ2

φ
.
∑1
j=0 e

−(x−xoutj )2/(2σ2
φ) is a sum of

two Gaussian functions centered around xout0 = (w, 0.8L)
and xout1 = (3w, 0.8L), respectively. The target field,
Ψtar(x, b), is also a Gaussian function centered around
xoutb . Therefore, our cost function is a version of the MSE
weighted by φ(x). In this way, the SL machine tries to fit
Ψ(x, 0) to Ψtar(x)inside the peaks of phi(x), where the
output is measured. We finally evaluate the accuracy by
the following prescription: if |Ψ(xout0 , 0)| > |Ψ(xout1 , 0)|,
the logical output is 0; otherwise it is 1.

In order to solve numerically the equations of motion
for the time-reversible steps, we used a split-step method.
In particular, we used the symmetrized Fourier split step
method, which takes half a time step using the linear op-
erator in momentum space, then takes a full-time step
with the nonlinear operator in position space, and then
takes a second half time step again with the linear op-
erator in momentum space. In order to satisfy hard
wall boundary conditions, the discrete sine transform was
used. We approximate the effect of the cost function per-
turbation by a single small Euler step at t = 0 (this is a
reasonable approximation when ε is small enough). For
the decay step, we assumed that we are in the regime in
which Eq.(6) applies. Therefore, for each HEB step we
simulate a forward pass, a backward pass and then we
update the parameters according to Eq.(6).

We used a square lattice with 50 × 150 sites. The
nonlinear strength was chosen as g = 102I−1T−1, where
I := (2σ)−2

∫
dxdz|Ψ|2 is a measure of the peak inten-

sity of the input field. In this way, the accumulated phase
shift due to the nonlinear self-interaction is much larger
than 2π. The dispersion coefficient has to be large enough
to prevent a self-focusing collapse. This implies that
β
2∇

2Ψ should be at least on the same order as g|Ψ|2Ψ.
In our numerical simulation, we set β = 102 (2σ)2

T . With
this choice of parameters, one can check in the numer-
ical simulations that the extent of the wave packets re-
mains in the order of (2σ)2 during the whole forward
pass. We choose the initial momentum of the wave pack-
ets as kz = 3

4
L
Tβ , so that they propagate a distance 3L/4

during the forward pass.

The parameter Ω determines the rate of change of θ.
In order to have results that can be more easily inter-
preted, we work in the regime in which θ remains al-
most constant during a single forward pass. Hence, we
choose Ω = 10−2T . Next, we must choose Γ so that
Ω
Γ �

∂C
∂πθ(−T )

(
∂C

∂θ(−T )

)−1

, if we want to work in the
regime in which Eq.(6) applies. Since the cost func-
tion depends on πθ only indirectly, through the evolution
of θ, one can estimate that ∂C

∂πθ(−T ) is on the order of
ΩT ∂C

∂θ(−T ) . Hence, we must make sure that 1/Γ � T .
In particular, we set Γ = 10−2T . After one training
step, the update in θ is of the order of εΩ

ΓχI. Hence,
the change in the phase shift in Ψ due to the interaction
with θ is in the order of εΩ

Γχ
2IT . On the one hand, this

update must be small enough so that the stochastic gra-
dient descent works. On the other hand, it should not
be so small that the training progress is too slow. We
choose χ = 102

(
Ω

ΓεIT

)1/2. In our numerical simulations,
we set I = 1, T = 1, L = 3, σ = 0.1.
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Appendix B EXAMPLE: IMAGE
RECOGNITION

As an illustrative example of a SL machine, we con-
sidered a device based on a photonic neural network pro-
posed by Ong et al [31], thereby showing how an existing
device design can profit from our self-learning procedure.
It is composed of three convolutional layers followed by
a dense fully-connected layer. The nonlinearity is pro-
vided by a χ(2) optical nonlinearity, as described in Eq.
(22). Both the convolutional layers and the fully con-
nected layer can be implemented by a sequence of discrete
Fourier transforms (DFTs) and learnable phase shifts. In
Ong et al., the activation function is a complex version
of the ReLU function. Instead, we choose the activation
function given by a χ(2) nonlinear interaction, which in
principle can be implemented in a physical setup. As a
cost function, we choose the mean square error on the
intensity.

The processing inside the photonic convolutional neu-
ral network that we consider is composed of a sequence
of operations acting on a 2D square grid of N×N modes.
In addition to the evaluation modes, there are learning
and ancillary modes that take part in the sequential op-
erations and also have to be time-reversed.

Any convolution (with periodic boundary conditions)
is diagonalized by the DFT. Therefore, the weight matrix
in a convolutional layer can be performed by applying
a DFT, then a diagonal matrix, and finally the inverse
DFT. In the case of a unitary convolution, the diagonal
matrix is of the form Djj = eiθj (i.e., a phase mask). All
these three operations are unitary operations that can be
implemented with a lossless photonic circuit. The DFT
matrix is of course fixed; all the learning parameters, θj ,
are contained in the phase mask.

The last two layers of the network are fully connected,
and they should be able to express any arbitrary complex
matrix. The implementation of these fully connected lay-
ers was not descibed in [31], so we provide a possible ver-
sion here. We use a decomposition based on the singular
value decomposition. In the singular value decomposi-
tion, any complex matrix can be cast as a product of
the form USV , where U , V are unitary matrices and S
is a diagonal matrix. The unitary matrices can always
be expressed as a product of the form U = D0

∏
FDi,

where F are DFT matrices and Di are diagonal unitary
matrices (phase masks) [36]. Finally, the singular value
matrix, S, can be implemented by means of a linear inter-
action with an ancilla, provided that the singular values
are bounded by Sii ≤ 1. This is achieved by coupling
every relevant mode to an ancilla mode by a means of a
general SU(2) linear transformation, when the ancilla is
initially zero. Any such transformation can be achieved
by means of the product of a 50-50 beam-splitter, a phase
shift, and another 50-50 beam-splitter. Since an overall
scaling factor in the weight matrix is unimportant, it is
sufficient that our implementation can produce any com-
plex matrix with |Sii| ≤ 1.

All the trainable parameters are contained in the phase
shifts, which in this example are realized by a local inter-
action Hamiltonian given by θΨ∗Ψ. Just like in the first
example, we assume that the machine operates in the
limit in which the dissipation time-scale is much longer
than the duration of a forward pass.

For the numerical implementation, we solved the evo-
lution of the evaluation and learning fields in a sequential
manner. There are three kinds of operations inside each
forward pass: (1) DFT’s, (2) the interaction of Ψ and Θ,
(3) the interaction of Ψ and Ψanc (the ancilla in the dense
layers), (4) the nonlinear activation function, and (5) the
cost function perturbation. Each of these steps represents
a different layer in the photonic device, and therefore they
can be solved separately. The 2D DFT was performed by
means of a fast Fourier transform algorithm. The step (2)
corresponds to the interaction described by the Hamilto-
nian H = χlθΨ

∗Ψ. The equations of motion for this step
can easily be solved analytically Therefore, we can calcu-
late the overall effect of the step (2) by means of a simple
formula. In the same way, the step (3) is described by
the Hamiltonian H = J(Ψ∗Ψanc + ΨΨ∗anc), which can
also be solved analytically. The step (4) is integrable
too, with the solution given by Eq.(22). The step (5)
is a small perturbation that can be well approximated
by a single Runge-Kutta step. For the backward, pass,
the same operations are performed, but starting with the
phase conjugation of the output of the forward pass. Of
course, one has to time-reverse not only the evaluation
field, but also all the ancillary and learning variables.

The photonic convolutional neural network that we
considered has three convolutional layers and two fully
connected layers. The convolutional layers are some-
what unconventional: they only have one filter, but it
has the same size of the output. As we already de-
scribed, this is accomplished by an alternation of a DFT,
a phase mask and another DFT. The first DFT acts on
the full input image with N2 modes, while the phase
mask and the second DFT act only on the innermost
M2 modes. The rest of the modes are considered to
be ancillary modes. In particular, the first layer has
(N,M) = (31, 31), the second has (N,M) = (31, 21),
and the third has (N,M) = (21, 17). The size of the in-
put and output of the fully connected layers are (17, 9)
and (9, 4), respectively. The input of the network is a
rescaled version of the corresponding image fromMNIST.
The intensity of the field at each input mode goes from 0
to Imax (which has units of the square root of an action).
In the numerical simulation, we set Imax = 1. Also, we
set that all the elementary steps (activation functions,
interaction with θ, etc.) have duration Ts = 1. At the
convolutional and dense layers we have two different val-
ues of the nonlinear strength, which are given by χ1 and
χ2 respectively. From Eq.(22) one can deduce that both
χ1 and χ2 have to be chosen so that χi|Ψ|Ts ≈ 1 for
the dynamics to be strongly nonlinear. The nonlinear
strength was chosen as described in figure 7. The cou-
pling to the ancilla is given by J = 101T−1

s , since we want
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to ensure that the mixing of the ancilla and the relevant
modes is on the order of 1.

With regard to the decay step, it is assumed that we
are in the regime in which Eq.(6) applies. Therefore, for
each HEB step we simulate a forward pass, a backward
pass and then we update the parameters according to
Eq.(6). The coefficient of the cost function perturbation

is taken to be ε = 10−2, and we set Ω = 10−1T−1 so
that the update of θ during a single forward pass can
be neglected. We use a damping coefficient given by Γ =
10−1T−1 so that the learning rate is given by η = 10−2T .
Finally, by a similar argument to the learning of the XOR

function, we set χl = 101
(

Ω
ΓεImaxT

)1/2

(see Appendix
A).
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