
R E S E A R CH A R T I C L E

The variability of MR axon radii estimates in the human white
matter

Jelle Veraart1 | Erika P. Raven1,2 | Luke J. Edwards3 | Nikolaus Weiskopf3,4 |

Derek K. Jones2,5

1Bernard and Irene Schwartz Center for

Biomedical Imaging, Department of Radiology,

New York University Grossman School of

Medicine, New York, New York

2CUBRIC, School of Psychology, Cardiff

University, Cardiff, UK

3Department of Neurophysics, Max Planck

Institute for Human Cognitive and Brain

Sciences, Leipzig, Germany

4Felix Bloch Institute for Solid State Physics,

Faculty of Physics and Earth Sciences, Leipzig

University, Leipzig, Germany

5Mary MacKillop Institute for Health Research,

Australian Catholic University, Melbourne,

Victoria, Australia

Correspondence

Jelle Veraart, Bernard and Irene Schwartz

Center for Biomedical Imaging, Department of

Radiology, New York University Grossman

School of Medicine, New York, NY, USA.

Email: jelle.veraart@nyulangone.org

Funding information

Bundesministerium für Bildung und Forschung,

Grant/Award Number: 01EW1711A & B;

Engineering and Physical Sciences Research

Council (EPSRC), Grant/Award Number: EP/

M029778/1; Eunice Kennedy Shriver National

Institute of Child Health and Human

Development, Grant/Award Number:

1F32HD103313-01; FP7 Ideas: European

Research Council, Grant/Award Number:

616905; H2020 European Research Council,

Grant/Award Number: 681094; National

Institute of Biomedical Imaging and

Bioengineering, Grant/Award Numbers: P41

EB017183, R01 EB025133; National Institute of

Neurological Disorders and Stroke, Grant/Award

Number: R01 NS088040; Wellcome Trust,

Grant/Award Numbers: 096646/Z/11/Z,

104943/Z/14/Z

Abstract

The noninvasive quantification of axonal morphology is an exciting avenue for

gaining understanding of the function and structure of the central nervous system.

Accurate non-invasive mapping of micron-sized axon radii using commonly applied

neuroimaging techniques, that is, diffusion-weighted MRI, has been bolstered by

recent hardware developments, specifically MR gradient design. Here the whole

brain characterization of the effective MR axon radius is presented and the inter- and

intra-scanner test–retest repeatability and reproducibility are evaluated to promote

the further development of the effective MR axon radius as a neuroimaging bio-

marker. A coefficient-of-variability of approximately 10% in the voxelwise estimation

of the effective MR radius is observed in the test–retest analysis, but it is shown that

the performance can be improved fourfold using a customized along-tract analysis.
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1 | INTRODUCTION

The white matter of the central nervous system is an intricately orga-

nized system of neural pathways that link together anatomical areas

to create functional circuits. These neural pathways are formed by

bundles of densely packed micrometer-thin axons that are responsible

for the transfer of information. The caliber of the axon and the pres-

ence of myelin are the most important morphological determinants

that control the conduction velocity of action potentials (Drakesmith

et al., 2019; Waxman, 1980).

Axons are susceptible to a variety of insults, in part due to their

unique morphology and energy requirements (Conforti, Gilley, &

Coleman, 2014; Perge, Koch, Miller, Sterling, & Balasubramanian, 2009;

Wu, Williams, & Nathans, 2014). Axonal degeneration and/or dysfunc-

tion has been linked to physical trauma, oxygen and glucose depriva-

tion, inflammation, and gene mutations (reviewed by Stassart, Möbius,

Nave, & Edgar, 2018). Axonal degeneration is an early feature of neuro-

degenerative diseases, such as Alzheimer's disease (e.g., Blazquez-

Llorca et al., 2017) and multiple sclerosis (e.g., Evangelou et al., 2001).

In injury, axonal loss may occur depending on the extent of injury in

affected white matter tracts (reviewed in Nashmi & Fehlings, 2001).

There is also evidence to suggest that altered features of axons, such

as distributions of axon calibers or focal swellings, may contribute to

various pathologies (Bartzokis, 2011) and neurodevelopmental disor-

ders (Raven et al., 2020; Stassart et al., 2018). For example, in an animal

model of Angelman syndrome, a rare genetic disorder linked to autism,

widespread reductions in white matter volumes were linked to reduced

numbers of axons with large radii (Judson et al., 2017). Similar observa-

tions were made in children with autism spectrum disorder (ASD),

where electron microscopy identified a lower percentage of large-radii

axons in the corpus callosum compared to age-matched typical devel-

oping children (Wegiel et al., 2018). Zikopoulos and Barbas (2010)

reported a significantly lower relative density of extra-large axons in

prefrontal white matter in brains of adults with ASD. These postmortem

studies demonstrate the potential of the noninvasive quantification of

axon radii (including the ability to perform longitudinal assessment in

the same individual), for understanding neuropathology in clinical

research and, potentially, diagnostics. Critically, and as discussed below,

diffusion-weighted MRI methods for mapping axon diameter are more

sensitive to larger axons than smaller axons, and so this preferential

loss of axons with large radii in various disorders means that the tech-

nique holds great promise as a biomarker.

Diffusion-weighted MRI (dMRI) is a particularly relevant neuroim-

aging modality to probe cellular features, far below the resolution of

the imaging experiment (Alexander et al., 2010; Assaf Blumenfeld-

Katzir, Yovel, & Basser, 2008; Fan et al., 2020; Huang et al., 2020;

McNab et al., 2013; Romascano et al., 2020; Sepehrband, Alexander,

Kurniawan, Reutens, & Yang, 2016; Veraart et al., 2020). Indeed, dMRI

is sensitive to a wide range of tissue microstructural parameters

because the signal is sensitized to the micrometer length scale of the

diffusion of water molecules (Tanner, 1979). The development of

axon diameter mapping using dMRI has been challenged by various

confounding factors that resulted in a significant and contested

overestimation of the axon radius using MRI (Burcaw, Fieremans, &

Novikov, 2015; Horowitz et al., 2015; Innocenti, Caminiti, &

Aboitiz, 2015; Lee et al., 2018; Lee, Jespersen, Fieremans, &

Novikov, 2020; Nilsson, Lasič, Drobnjak, Topgaard, & Westin, 2017).

Novel insights in biophysical modeling and hardware developments

improved the accuracy of axon radius mapping significantly (Jones

et al., 2018; McNab et al., 2013; Veraart et al., 2020). However, MR

axon radius mapping cannot replace in vivo microscopy. First, in the

absence of strong a priori distributional assumptions (Assaf

et al., 2008; Sepehrband et al., 2016), the information obtained from

dMRI is typically limited to a single scalar representing the entire

underlying axon distribution (e.g., Alexander et al., 2010; Fan

et al., 2020; Veraart et al., 2020). Second, this scalar is strongly biased

towards the largest axons, with nearly no sensitivity to the bulk of the

axons (Burcaw et al., 2015; Nilsson et al., 2017). Note that we here

adopt the term “effective MR radius” to refer to the MR-derived axon

radius (Veraart et al., 2020). In contrast, microscopy is a highly repro-

ducible technique for the extraction of the bulk of the smaller axons,

but suffers from a poor precision in the quantification of the under-

represented larger axons (Aboitiz, Scheibel, Fisher, & Zaidel, 1992).

Large-radii axons are nevertheless important in brain function,

especially in mammals with increased brain size. First, axons of large

radii are capable of more rapid conduction, which is advantageous for

time-sensitive processes. Second, it has been hypothesized that the

large-radius axons of long-range neurons are essential to maintaining

neural synchrony (Buzsáki, Logothetis, & Singer, 2013). However,

large-radii axons come at a disproportionate cost in terms of energy

use and spatial constraints (Knowles, 2017; Perge et al., 2009). Histo-

logical studies have extensively reported axon radii to be in the range

0.25–1 μm for human brain (Aboitiz et al., 1992; Caminiti, Ghaziri,

Galuske, Hof, & Innocenti, 2009; Liewald, Miller, Logothetis, Wagner, &

Schüz, 2014; Tang, Nyengaard, Pakkenberg, & Gundersen, 1997), with

only 1% of all axons having a radius greater than 1.5 μm (Caminiti

et al., 2009). Indeed, despite different white matter tracts having very

different lengths and interconnecting entirely different functional cir-

cuits, in common they share a skewed axon radius distribution, charac-

terized by mostly thin axons (Aboitiz et al., 1992; Caminiti et al., 2009;

Liewald et al., 2014; Perge et al., 2009; Tomasi, Caminiti, &

Innocenti, 2012). The radii of the bulk of smaller axons do not vary sig-

nificantly across mammals with varying brain size. However, it has

been shown that larger brains have more large axons and an increased

maximal radius (Olivares, Montiel, & Aboitiz, 2001; Schüz &

Preiβl, 1996). Notably, this observation promotes MR axon diameter

mapping in the human brain.

In recent work, the accuracy of effective MR radius estimation

using dMRI was assessed through a comparison of microscopy and

MRI in fixed white matter tissue of the rodent brain (Veraart

et al., 2020). In addition, the feasibility of the technique for in vivo

human MRI has already been established by comparing MR-derived

values in the human corpus callosum to values reported in the liter-

ature (Fan et al., 2020; Veraart et al., 2020). Here, we will:

(a) present the whole brain characterization of the effective MR

radius; and (b) evaluate the inter- and intra-scanner test–retest
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reliability (repeatability and reproducibility) to promote the further

development of the effective MR radius as a neuroimaging

biomarker.

2 | THEORY AND METHODS

2.1 | Axon diameter mapping

In an experimental regime in which the extra-cellular signal can be

assumed to be fully suppressed, the spherically-averaged signal
�
Sμ can

be modeled as:

�
Sμ = β

S⊥c rjq,δ,Δð Þffiffiffi
b

p , ð1Þ

with b = q2δ2(Δ − δ/3) (Veraart et al., 2020). The b-value quantifies

the diffusion-weighting strength for the monopolar Stejskal-Tanner

pulse sequence with diffusion gradient duration δ and diffusion gradi-

ent separation Δ (Le Bihan et al., 1986; Stejskal, 1965). The prefactor

β≈ fffiffiffiffi
Dk
a

p is a function of the intra-axonal signal fraction f and the paral-

lel intra-axonal diffusivity Dk
a . The radial signal attenuation is modeled

using the Gaussian phase approximation (Murday & Cotts, 1968) of

the signal from protons trapped inside a cylinder with radius r:

lnS⊥c rð Þ= −
2q2r4

D0

X∞
m=1

tc
α6m α2m−1

� � �

2α2m
δ

tc
−2+2e−α2mδ=tc +2e−α2mΔ=tc −e−α2m Δ−δð Þ=tc

�

−e−α2m Δ+ δð Þ=tc
i
+O q4

� �
,

ð2Þ

where q = γG is the diffusion-weighting wave vector with γ the gyro-

magnetic ratio for protons and G the gradient strength (Neuman, 1974;

van Gelderen, DesPres, van Zijl, & Moonen, 1994). Furthermore, D0 is

the diffusivity of the axoplasm, αm is the mth root of dJ1(α)/dα = 0, and

J1(α) is the Bessel function of the first kind. Here, tc = r2/D0 is the diffu-

sion time across the cylinder. The applicability of the Gaussian phase

approximation in the context of axon diameter mapping has been stud-

ied in detail by Fan et al. (2020).

Under the assumption that the extra-cellar water is relatively

mobile, that is, the extra-cellular diffusivity is nonzero in the radial

direction, then its spherically-averaged signal decays exponentially

fast, much faster than the intra-axonal signal that decays as 1=
ffiffiffi
b

p
.

In Veraart, Fieremans, and Novikov (2019), it has been observed that

from b = 6 ms/μm2 upwards the extra-cellular signal does not contrib-

ute significantly to the dMRI signal decay in the healthy human white

matter. In comparison, earlier simulation studies reported the cut-off

for extra-cellular signal to be as low as b = 3 ms/μm2 (Raffelt

et al., 2012). In this work, we adopt the higher threshold to minimize

the impact of this potential confound.

The associated software is available for download (Veraart &

Novikov, 2019).

2.2 | Effective MR radius

In the wide pulse limit (Neuman, 1974), r in Equations (1) and (2)

denotes the effective MR radius, a scalar metric that represents the

entire axon radius distribution captured within a single voxel, with

minimal loss of accuracy (Veraart et al., 2020). As explained in detail in

Burcaw et al. (2015) and Veraart et al. (2020), r4 equals the ratio

between the sixth-order and second order moment of the axon radii

distribution. The sixth-order in the numerator arises from the combi-

nation of biquadratic relation between lnS⊥c rð Þ and r (Neuman, 1974),

and of the subsequent volume-weighting that emphasizes the thickest

axons by an extra quadratic factor (Alexander et al., 2010; Packer &

Rees, 1972). Therefore, the effective MR radius is heavily weighted

by the largest axons within the voxel or, more specifically, the largest

Martin's radius in case of non-cylindrical axons (Andersson

et al., 2020).

2.3 | Diffusion MRI experiments

Five healthy adult volunteers were recruited and data were collected

on two different scanning sessions for each participant with exactly

the same imaging protocol on a Siemens Connectom 3T MR scanner

using a 32-channel receiver coil and 300 mT/m gradient coils at the

Cardiff University Brain Research Imaging Centre (CUBRIC), UK. For

each volunteer, the two scanning sessions (“test” and “retest”) were

performed one after the other, with a short break (10 min) between

them. For both sessions, the subjects were positioned by the same

operator. For one subject, the experiment was repeated 8 weeks after

the initial experiments on an identical Siemens Connectom 3T MR

scanner at the Max Planck Institute for Human Cognitive and Brain

Science (MPI-CBS), in Germany using identical imaging protocols.

Data were collected under the approval of: (a) the Cardiff Univer-

sity School of Psychology Ethics Committee (CUBRIC); and (b) the

ethics committee of the Medical Faculty at Leipzig University. The

participants gave written informed consent before participation in the

study.

Diffusion weighting was applied with b = 0.5,1,2.5,6, and

30 ms/μm2, for 30, 30, 30, 120, and 240 gradient directions that were

isotropically distributed on a sphere, respectively (Jones, Horsfield, &

Simmons, 1999). The diffusion gradients were characterized by

Δ/δ = 30/15 ms and maximal gradient amplitude of 273 mT/m—see

Supplementary material for considerations regarding this protocol

design. The following scan parameters were kept constant: TR/

TE : 3500/66 ms, matrix: 88 × 88, and 54 slices with a spatial resolu-

tion of 2.5 × 2.5 × 2.5 mm3. Data were acquired with a multi-band

blipped-CAIPI accelerated (SMS = 2) EPI sequence with additional

GRAPPA acceleration (R = 2) (Setsompop et al., 2012). Partial Fourier

encoding was turned off. In addition, non-diffusion-weighted images

were acquired with the same (N = 23) and reversed phase encoding

(N = 10) for susceptibility-induced geometrical distortion correction.

The axon diameter mapping pipeline employed here only uses the

diffusion-weighted data with b = 6 and 30 ms/μm2, which were
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acquired in 24 min per session. The additional data with b ≤ 2.5

ms/μm2 were only used for diffusion tensor imaging (DTI; Basser,

Mattiello, & LeBihan, 1994) and diffusion kurtosis imaging (DKI;

Jensen, Helpern, Ramani, Lu, & Kaczynski, 2005) analysis. The total

scan time, covering both sessions, was 55 min.

2.4 | Image processing

The diffusion-weighted images were corrected for Gibbs ringing

(Kellner, Dhital, Kiselev, & Reisert, 2016), geometric susceptibility-

and eddy current distortions and subject motion (Andersson &

Sotiropoulos, 2016), signal outliers (Andersson, Graham, Zsoldos, &

Sotiropoulos, 2016). The b-values were scaled to account for the gra-

dient nonlinearities (Bammer et al., 2003; Rudrapatna, Parker, Rob-

erts, & Jones, 2020). The data from both scan sessions were aligned

to their common midway space using a rigid transformation prior

(Maes, Collignon, Vandermeulen, Marchal, & Suetens, 1997).

The spherically averaged signal
�
Sμ bð Þ was estimated as the zeroth

order spherical harmonic coefficient for each b-value. The spherical

harmonic coefficients, up to the sixth order, were estimated using a

Maximum Likelihood estimator to account for the Rician data distribu-

tion (Sijbers, den Dekker, Scheunders, & Van Dyck, 1998). The spa-

tially varying noise level was estimated prior to the fitting to boost the

precision of the estimator (Veraart, Fieremans, & Novikov, 2016).

The diffusion tensor and kurtosis tensor coefficients were esti-

mated by fitting the DKI model to diffusion-weighted images with

b ≤ 2.5 ms/μm2 using a weighted linear least squares estimator

(Veraart, Sijbers, Sunaert, Leemans, & Jeurissen, 2013).

2.5 | Segmentation

We used tract-density imaging (Calamante, Tournier, Jackson, &

Connelly, 2010) based on whole-brain probabilistic fiber-tracking

(Tournier, Calamante, Connelly, et al., 2012) of the b = 30 ms/μm2-

shell to identify all WM voxels using MRtrix 3.0 (Tournier et al., 2019).

To minimize partial voluming effects, we retained the top 75% voxels

from the tract density map. Moreover, we applied TractSeg for the

automated segmentation of individual fiber tracts using the fiber ori-

entation distribution functions as estimated using constrained spheri-

cal deconvolution (Wasserthal, Neher, & Maier-Hein, 2018). The

segmented tracts included projection tracts: corticospinal tract (CST),

optic radiation (OR); commissural tracts: rostrum, genu, body, and

splenium of the corpus callosum; and association tracts: arcuate fas-

ciculus (AF), superior longitudinal fasciculus (SLF), inferior longitudinal

fasciculus (ILF), and inferior fronto-occipital fasciculus (IFO).

2.6 | Along-tract analysis

In addition to a voxel-wise estimation of the effective MR radii, we

estimated the effective MR radius along the length of individual tracts,

by adopting a novel averaging strategy inspired by methods such as

along fiber quantification (AFQ; Yeatman, Dougherty, Myall,

Wandell, & Feldman, 2012).

The spherically-averaged signals were compressed in twenty

interspaced segments per white matter tract prior to computing the

effective MR radius. For each tract, this compression included the fol-

lowing steps: (a) generate 10,000 tract-specific streamlines; (2) for

each b-value compute the interpolated value of
�
Sμ bð Þ in each of the

streamline nodes, which must be spaced along each streamline by a

distance smaller than the voxel size; (3) compute the center line of the

fiber bundle (Klein, Hermann, Konrad, Hahn, & Peitgen, 2007);

(4) divide the center line in N segments with equal length LN, here

N = 20. The tangent of the center line in the midpoint of the ith seg-

ment forms the axis of a cylinder with height LN. The radius of the cyl-

inder equals the maximal distance between an individual streamline

and the tangent line within the segment; (5) average the signals of all

streamline nodes within the segment-specific cylinder. To minimize

partial voluming with neighboring tissue, the contribution of an indi-

vidual streamline was weighted by the inverse of its distance to the

centerline.

After computing the segment-averaged
�
Sμ bð Þ for each b-value,

the effective MR radius can be estimated with a higher precision.

Since the spherical mean of the signal is formally a rotationally invari-

ant feature (Mirzaalian et al., 2016), the curvature of the underlying

fiber within the segment is assumed not to have a significant impact

on the signal averaging and therefore on the estimation.

This presented strategy is also suited to biophysical models that

are derived from rotationally-invariant signal features (Novikov,

Fieremans, Jespersen, & Kiselev, 2019; Raven et al., 2020) and that

might suffer from poor robustness to noise or partial volume effects.

2.7 | Statistics

The voxel-wise test–retest reliability of each diffusion metric θ was

evaluated per subject and per tract using the test–retest variability

and the intraclass correlation coefficient (McGraw & Wong, 1996).

The test–retest variability (TRV) of estimates of parameter θ was

computed across N voxels as:

TRV=

ffiffiffi
π

p
2

1
N

XN
i=1

jΔθ xið Þ j
μθ xið Þ , ð3Þ

with Δθ(xi) and μθ(xi) the difference and the average of the test and

retest estimates of parameter θ in the ith voxel xi, respectively.

The intraclass correlation coefficients (ICC) were calculated for

two-way mixed effects, single measurement, with absolute agree-

ment. ICC estimates were interpreted based on the following guide-

lines. Values less than 0.5 indicate poor reliability, values between 0.5

and 0.75 indicate moderate reliability, values between 0.75 and 0.9

indicate good reliability, and values greater than 0.90 indicate excel-

lent reliability. ICC values were interpreted considering the 95% confi-

dence interval.
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The TRV and ICC were also computed using the nodes derived

from our tract-specific approach instead of the voxels to evaluate the

increase in test–retest reliability of along-tract analysis instead of a

voxel-wise analysis of the dMRI data.

3 | RESULTS

3.1 | Whole brain characterization of the effective
MR radius

In Figure 1, the voxel-wise maps of the effective MR radius are shown

for 3 slices. The spatial variability of the effective MR radius is appar-

ent, but, overall, the maps are broadly symmetrical. The inter-tract

variability is further highlighted in Figures 2 and 3.

In Figure 2, the distribution of effective MR radius per tract is

shown. All voxels of the left and right hemisphere, for all subjects, were

considered. In addition, we show the tract-averaged effective MR radius

per subject, and per tract, for the test and retest data to demonstrate

that the inter-tract variability exceeds the inter-subject variability.

In Figure 3, the trend of the effective MR radius in the mid-

sagittal cross section of the CC is shown. This cross section covers

the various segments of the CC, including the rostrum, genu, body

and splenium. The box plots show the median and 95% confidence

interval of the effective MR radius across the 5 subjects.

In Figure 4, the along-tract analysis of the effective MR radius is

shown. We show the average trend and its confidence interval,

computed across all five subjects, including the test and retest data.

For completeness, the trends are also shown for each individual sub-

ject. The metric changes widely along and across the various tracts.

3.2 | Correlation matrix

In Figure 5, the correlation matrix shows the Pearson's Correlation

Coefficient ρ computed between all pairs of diffusion metrics: frac-

tional anisotropy (FA), mean diffusivity (�D), radial diffusivity (D⊥), axial

diffusivity (Dk), mean kurtosis (�K ), radial kurtosis (K⊥), axial kurtosis

(Kk),
�
Sμ b=1ð Þ , �

Sμ b=6ð Þ , �
Sμ b=30ð Þ , β, and r. The calculation of ρ

included segmented WM voxels for which all diffusion metric were

within biophysically-plausible bounds. The selected voxels are

obtained from both the test and retest data of the five subjects, but

are limited to the WM voxels with a tract density exceeding the

subject-specific 75th percentile to minimize partial voluming effects.

In total 218,562 voxels were included in the correlation analysis.

In addition, scatter plots show the relation between r and FA, D⊥,

and
�
Sμ b=30ð Þ . Overall, the effective MR radius r shows no to small

correlations with other diffusion metrics. No significant correlations

were observed with radial kurtosis K⊥. A very weak linear relationship

jρ j <0.1 was observed for FA, D⊥, Kk,
�
Sμ b=6ð Þ, and β. The correlation

coefficient between r and �D , �K , K⊥, and
�
Sμ b=6ð Þ was weak with ρ=

0.15, −0.18, −0.15, and −0.18, respectively. A strong negative corre-

lation was observed between r and
�
Sμ b=30ð Þ with ρ = −0.61. This

correlation analysis demonstrates that the effective MR radius

F IGURE 1 The maps of the effective MR radius (μm) in three slices for the test and retest data. The transparency of the map is set by the
tract density to suppress voxels that are not identified as white matter. The red arrow points to the anterior commissure
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provides additional information to the various metrics that are more

routinely used in dMRI studies.

3.3 | Test–retest reliability

In Figure 6, Bland–Altman plots show the agreement between repeated

measurements. We show the Bland–Altman plots for the five intra-

scanner test–retest experiments and the single inter-scanner experiment.

For the latter, only the “test” data set from each scanner was considered.

The absolute mean difference and its 95% confidence intervals are

shown. The percentage differences were 1.51, 1.00, 0.65, −1.67, and

1.17% for the 5 subjects of the intra-scanner analysis. In comparison, the

percentage difference for the inter-scanner repeatability was −1.19%.

The test–retest reproducibility in the voxel-wise estimation of the MR

axon radius was quantified by the TRV. When including all segmented WM

voxels, the TRV varied between 7.83 to 10.48% across the subjects on the

first scanner. Hence, the TRV was slightly higher, yet of the same order of

magnitude, as conventional DTI metrics (approximately 4% in this study;

data not shown). The inter-scanner reproducibility performance (TRV

=10.16%) was similar to the intra-scanner reproducibility (TRV = 10.48 and

9.04%, for the CUBRIC andMPI-CBS scanner, respectively).

In Table 1, we list all the TRV per subject and per tract. We

observe small fluctuation across tracts, but overall, the test–retest

reliability is fairly homogeneous across the brain. A dramatic reduction

of TRV, by on average a factor of four is observed, when evaluating

the TRV for along-tract segments instead of voxels. In Table 2, we

tabulate the voxelwise ICC for each subject and tract. The test/retest

reliability ranged from moderate to good with ICC values ranging

between 0.50 and 0.84 with a median value of 0.70. Evaluating the

lower bound on the 95% confidence interval did not alter the classifi-

cation of the reliability. For the approach in which the effective MR

radius is computed in a tract-specific segment instead of voxels, the

reliability is good to excellent with a median ICC of 0.84.

4 | DISCUSSION

The MR axon radius is a sensitive metric for the in vivo and noninva-

sive detection and quantification of large radii axonal (and possibly

glial) projections in human white matter. We demonstrated this by

evaluating the along- and inter-tract variability in comparison to

F IGURE 2 (top) The
distribution of MR axon radii
(μm). (bottom) The average MR
axon radii for each individual
subject (markers) is shown per
tract for all scan sessions

F IGURE 3 The box plots represent the average effective MR
radius (μm) within segments of the human CC, including rostrum (dark
blue) and genu to splenium (from left to right), for each of the
5 subjects. The median across the 5 subjects is shown by the red bar,
while the boxes cover the 95% confidence intervals. The
segmentation of the CC is shown in the inset mid-sagittal slice
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repeatability and reproducibility of the metric. In comparison to our

previous work (Veraart et al., 2020), we optimized the acquisition pro-

tocol in consideration of participant comfort and limitations imposed

by in vivo research studies by reducing the total acquisition time to

24 min.

The acquisition of two b-shells with strong diffusion-weighting is

required for the accurate and precise estimation of the effective MR

axon diameter (see Supplementary material). The precision of the esti-

mator benefits from a wide range of b-values with a minimal value of

b = 6 ms/μm2 to filter out the extra-cellular signal. We found that

b = 30 ms/μm2 provided a good compromise between TE and diffu-

sion time. However, widespread deployment of this technique in

human MRI is currently limited by the need for ultra-strong diffusion-

weighting gradients to achieve these scan settings (Jones et al., 2018;

McNab et al., 2013).

The effective MR axon radius estimation is intrinsically sensitized

towards large axons; therefore, it is not representative of the full distri-

bution of axon radii present in a voxel (Alexander et al., 2010; Burcaw

et al., 2015; Veraart et al., 2020). If it were, it would be much more

straightforward to compare and validate with microscopy data.

Sepehrband, Alexander, Clark, et al. (2016) studied the accuracy of vari-

ous parametric distributions to describe the axon distribution in the

mouse corpus callosum. All well-fitting distributions were described by

at least two parameters (Sepehrband, Alexander, Clark, et al., 2016), so

trying to reconstruct the parametric distribution from the effective MR

radius alone is ill-posed. This problem is highlighted in Figure 7 where

we show the relation between the average and effective radius of

Gamma distributions with varying shape α and scale γ parameters. In

order to obtain a unique mapping from the effective to the much lower

average radii, at least one parameter, α or γ, must be known or chosen

a priori. Unfortunately, distributions with different α and γ result in the

same effective radius, with a widely varying average radius, while the

corresponding shape of the distribution are all plausible candidates in

describing realistic axon distributions. When fitting a Gamma distribu-

tion to the distributions shown in Wegiel et al. (2018), we conclude that

the shape of the axon radius distribution, both in terms of α or γ, is sig-

nificantly different between typically-developing children and children

with ASD. This prevents us from fixing one of the distribution parame-

ters and, as such, from mapping the effective to the average radius

accurately.

On the bright side, the effective MR radius might be a very sensi-

tive metric to distinguish between cohorts. Based on data reported in

the postmortem study of Wegiel et al. (2018), we estimate that the

percentage difference in effective MR radius is about 18% in the

F IGURE 4 The trend of the effective MR radius r (μm) along the tract (posterior to anterior or inferior to superior) for each individual
measurements (5 subjects and 2 repetitions) are shown in shaded lines. In addition, we show the average (solid) and 95% confidence intervals
(dashed)
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splenium of the corpus callosum when comparing typically developing

children and children with ASD. With a voxelwise TRV of about 10%,

one would only need a total sample size of N=14, with equal repre-

sentation of both cohorts, to detect the difference in the effective

MR radius with a statistical power of 0.96 (Faul, Erdfelder, Buchner, &

Lang, 2009; Lakens, 2013). This preliminary power analysis highlights

the feasibility of MR axon radius mapping in future research studies.

The good inter-site agreement also bodes well for the future inclusion

of effective MR diameter mapping in studies of rare or difficult-to-

recruit disorders or diseases, where multi-site studies are needed to

achieve the necessary statistical power to make a robust inference

about a given pathology (cf. Jahanshad et al., 2013).

The test–retest reliability was good to excellent when adopting

the along-tract analysis (Yeatman et al., 2012). This strategy is per-

fectly suited to the technique because the data are rotationally invari-

ant along tract segments. As segments are averaged prior to model

fitting, there is no loss of accuracy due to the underlying curvature of

the tract (Mirzaalian et al., 2016). With a TRV of only a few percent,

even in an inter-scanner evaluation, the sensitivity of the MR axon

radius mapping was able to detect subtle changes across the brain,

both inter- and along-tract within a single subject. Therefore, the

technique is sensitive down to the individual segments. This is a

potential limitation for very local effects; however, Yeatman, Wandell,

and Mezer (2014) found sensitivity to lesions in patients with multiple

sclerosis using along tract segments.

Moreover, “spherically-averaging” modeling approaches, such as

the axon diameter mapping presented here and others (Kaden, Kruggel,

& Alexander, 2016; Novikov, Veraart, Jelescu, & Fieremans, 2018;

Reisert, Kellner, Dhital, Hennig, & Kiselev, 2017) entail an implicit

assumption that dMRI data are perfectly shelled; that is, different gradi-

ent directions exist for a finite set of b-values. This assumption is usually

unmet due to gradient nonlinearities and poses an unnecessary con-

straint on experimental design (Bammer et al., 2003). Although we

corrected for the gradient nonlinearities by a spatially dependent scaling

of the b-values, we could not account for the potential directional vari-

ability of the gradient nonlinearities due to the need for shelled data (see

Afzali, Knutsson, Özarslan, and Jones (2020)). Alternatives to the spheri-

cal mean may well prove useful in the future, but is beyond the scope of

the current work.

The consistent tract variability of the estimated effective MR

radius within and between subjects is in agreement with histological

data across various species. The observed “low-high-low” trend in

axon radii across from the genu to splenium of the CC is in fair agree-

ment with the variations in axon radius distributions previously

reported in rat (Barazany, Basser, & Assaf, 2009; Sargon et al., 2003;

Veraart et al., 2020), rhesus monkey (LaMantia & Rakic, 1990), and

human (e.g., Aboitiz et al., 1992). The slightly larger radii in the ros-

trum of the corpus callosum are in qualitative agreement with Sargon

et al. (2003). Overall, this result demonstrates that the effective MR

radius detects differences in axon radius distribution across the

CC. Furthermore, the large radii of the CST, in comparison to other

tracts, have been reported extensively in the literature (Tomasi

et al., 2012). However, the comparison of MR to histology is chal-

lenged by the need for the full axon radius distribution, which is usu-

ally not reported.

The consistent inter-tract variability was also observed in the

recent work of Huang et al. (2020). However, despite some common

findings, we did not observe an anterior–posterior gradient in effec-

tive MR radii. The difference in results might be rooted in modeling

choices. In our approach, we aim to minimize modeling assumptions

by using the acquisition itself, that is, high b-value, to filter out both

extra-cellular signal and orientational dispersion prior to modeling the

intra-axonal signal.

Even after eliminating orientational dispersion, it is not under-

stood why we observe such strong along-tract variability of the MR

axon radii mapping in certain tracts (e.g., CST). Various additional con-

founding factors have been discussed, for example, diameter varia-

tions due to curvature or undulations of the axons (Andersson

et al., 2020; Brabec, Lasič, & Nilsson, 2020; Lee, Jespersen,

et al., 2020; Lee, Paioannou, Kim, Novikov and Fieremans 2020;

Nilsson, Lätt, Ståhlberg, van Westen, & Hagslätt, 2012). However, in

agreement with our previous hypothesis, this observation might also

be explained by the lack of specificity of the high b signal to axons

only. The density and variability of cells in the human brain is consid-

erable. It has been observed that the numerous and dispersed glial

processes, from astrocytes in particular, are abundant in the white

matter (Luse, 1956; Oberheim et al., 2009; Perge et al., 2009) and

have radii that exceed even the largest axons (Oberheim et al., 2009).

F IGURE 5 (a) The correlation matrix visualizes the Pearson's
correlation coefficient ρ that was computed between all pairs of
diffusion metrics. Most notably, the effective MR radius r shows a
minimal correlation with all diffusion metrics. (b) The 2D kernel
density plots show the relationship between r and FA, D⊥, and�
Sμ b=30ð Þ; Blue is low density and yellow is high density
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Even a relatively small fraction of these large glial processes might bias

the MR axon diameter mapping due to the nature of how signals are

encoded.

In comparison with other regions identified from the whole brain

analysis, the MR axon radius is systematically very high in the most

anterior interhemispheric connections of the white matter, see

Figure 1. (LaMantia & Rakic, 1990) performed an in-depth cytological

characterization in rhesus macaque of these tissues, identifying a

functionally distinct sub-region of the anterior commissure - the basal

telencephalic commissure. The axon radii distribution for these inter-

hemispheric projections is comprised primarily of small axons; how-

ever, the basal telencephaplic commissure is encapsulated by glial

processes remaining from neural migration in early fetal development

(Lent, Uziel, Baudrimont, & Fallet, 2005). These glial cells have been

identified as GFAP-positive fibrous astrocytes, and might contribute

to the high axon radii estimates in that region.

MRI spectroscopy may offer some additional insight towards the

hypothesis that MR axon diameter mapping, and the interpretation of

F IGURE 6 The Bland–Altman shows high reproducibility between scan sessions on the same (left) and different scanner (right) and lack of
systematic errors. The solid lines represent mean difference and ±1.96× standard deviations of the difference

TABLE 1 The test-retest variability (TRV; [%]) for the entire WM and individual tracts is tabulated for the voxel- and segment-based analysis
for all five subjects

Voxels Tract segments

WM CST AF ILF IFO SLF OR WM CST AF ILF IFO SLF OR

1 10.48 7.83 9.89 11.02 10.27 9.68 9.25 2.02 2.53 1.93 2.09 1.34 2.64 1.22

1* 9.04 7.30 8.19 11.78 9.66 6.37 8.88 2.28 1.39 1.67 4.40 1.74 1.62 1.51

2 8.90 5.52 8.11 8.65 8.37 8.21 7.53 2.62 1.90 2.22 3.65 1.37 3.97 1.69

3 9.52 7.03 8.55 12.07 9.39 7.88 9.18 2.56 2.15 3.24 2.75 2.35 1.63 2.92

4 10.05 7.94 9.26 10.97 10.33 8.14 8.79 3.81 2.68 3.71 6.50 3.08 2.28 3.39

5 7.83 4.59 6.71 8.03 7.24 7.16 6.02 1.60 0.92 1.57 1.83 1.49 1.84 1.78

*This subject was scanned on the second scanner (MPI-CBS) due to the signal averaging of voxels within segment, the TRV of segments is significantly

reduced.

TABLE 2 The ICC for the entire WM and individual tracts is tabulated for the voxel- and segment-based analysis for the five subjects

Voxels Tract segments

WM CST AF ILF IFO SLF OR CST AF ILF IFO SLF OR

1 0.71 0.72 0.63 0.73 0.71 0.66 0.70 0.89 0.89 0.96 0.85 0.81 0.96

1* 0.74 0.56 0.70 0.65 0.73 0.77 0.76 0.73 0.94 0.95 0.89 0.84 0.93

2 0.75 0.84 0.70 0.65 0.75 0.77 0.74 0.96 0.86 0.69 0.89 0.63 0.85

3 0.70 0.70 0.65 0.50 0.68 0.69 0.61 0.58 0.74 0.84 0.77 0.92 0.64

4 0.70 0.64 0.69 0.65 0.71 0.74 0.69 0.72 0.79 0.61 0.53 0.85 0.74

5 0.76 0.81 0.72 0.74 0.79 0.73 0.79 0.97 0.64 0.93 0.84 0.90 0.79

*This subject was scanned on the second scanner (MPI-CBS).
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biophysical modeling using MRI in general, might be influenced by glial

cells. In Palombo, Ligneul, and Valette (2017), the effective MR radius

of glial processes was potentially larger than neuronal processes as

shown with diffusion-weighted signal decay at high b-values for various

metabolites. In along-tract analysis of metabolites, the ratio of Choline

(Cho) to N-acetyl aspartate (NAA) had similar trends to MR axon radius

in the CST (Govind et al., 2012). NAA is highly concentrated in neurons,

whereas Cho have been shown to originate predominantly from glial

cells. Further investigation is needed to disentangle these effects, which

may be aided by tissue regions with high levels of naturally present glial

cells, such as the basal telencephalic commissure.

5 | CONCLUSION

We demonstrated a good to excellent reliability in the quantification

of micron-sized effective MR radii using human dMRI if ultra-strong

diffusion-weighted gradients are employed. As a result, we were able

to observe the subtle inter- and along-tract variability that has previ-

ously been reported in histological studies. However, our results fos-

ter the hypothesis that dMRI signals at high b-values might not be

exclusively sensitive to neuronal processes or axons and that the con-

tribution of glial processes to the dMRI signal needs to be better

understood to allow for an unambiguous interpretation of morpholog-

ical parameters such as the effective MR radius.
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