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ABSTRACT

Recent developments in attosecond technology led to table-top x-ray spectroscopy in the soft x-ray range, thus uniting the element- and state-
specificity of core-level x-ray absorption spectroscopy with the time resolution to follow electronic dynamics in real-time. We describe recent work in
attosecond technology and investigations into materials such as Si, SiO2, GaN, Al2O3, Ti, and TiO2, enabled by the convergence of these two capabili-
ties. We showcase the state-of-the-art on isolated attosecond soft x-ray pulses for x-ray absorption near-edge spectroscopy to observe the 3d-state
dynamics of the semi-metal TiS2 with attosecond resolution at the Ti L-edge (460 eV). We describe how the element- and state-specificity at the tran-
sition metal L-edge of the quantum material allows us to unambiguously identify how and where the optical field influences charge carriers. This pre-
cision elucidates that the Ti:3d conduction band states are efficiently photo-doped to a density of 1.9 � 1021 cm�3. The light-field induces coherent
motion of intra-band carriers across 38% of the first Brillouin zone. Lastly, we describe the prospects with such unambiguous real-time observation of
carrier dynamics in specific bonding or anti-bonding states and speculate that such capability will bring unprecedented opportunities toward an engi-
neered approach for designer materials with pre-defined properties and efficiency. Examples are composites of semiconductors and insulators like Si,
Ge, SiO2, GaN, BN, and quantum materials like graphene, transition metal dichalcogens, or high-Tc superconductors like NbN or LaBaCuO. Exiting
are prospects to scrutinize canonical questions in multi-body physics, such as whether the electrons or lattice trigger phase transitions.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020649

I. INTRODUCTION

Until the last decade, ultrafast soft x-ray spectroscopies were nearly
exclusively available at synchrotrons, where tens- to hundreds-of-pico-
seconds temporal resolution was “state-of-the-art.” Femto-slicing was

developed to improve the time resolution to the �150 femtoseconds
range,1,2 but at the expense of photon flux. Table-top laser-driven
plasma sources are an alternative that provides incoherent emission
of soft and hard x-ray bursts of radiation with temporal duration in
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the sub-100 femtosecond range.3,4 A challenge for these sources is
the need for shielding from debris and the requirement for high
numerical aperture x-ray optics to capture the incoherent x-ray
emission. With the discovery of high-harmonic generation
(HHG),5,6 the first table-top technology became available, which
yields fully coherent radiation and achieves attosecond temporal res-
olution. HHG suffered from the low flux and low photon energies in
the extreme ultraviolet (XUV) range. These issues precluded its util-
ity for core-level x-ray spectroscopy since the conditions to achieve
element- and state-specificity could not be met. However, several
breakthroughs were made during the last years to leverage the pros-
pects of ponderomotive scaling of HHG.7,8 Isolated attosecond soft
x-ray pulses9–12 with water-window coverage9,13–15 are available,
and the utility of attosecond technology for x-ray absorption near-
edge spectroscopy (XANES)9,16,17 and extended x-ray absorption
fine structure (EXAFS)18,19 was demonstrated. In parallel with these
developments, the first self-amplified spontaneous emission (SASE)
operation of an accelerator has been shown to yield x-ray radia-
tion.20 This achievement has led to the development of so-called
“4th generation light sources” in the accelerator community, namely
large-scale x-ray free electron laser facilities (XFELs), which provide
unsurpassed photon flux (mostly) at hard x-ray photon energies.
Due to the SASE process’s inherent randomness, intensive develop-
ments are underway to achieve reproducible pulse duration and
temporal synchronization. Presently, only a handful of XFELs exist
worldwide, each having distinct parameters with only recently dem-
onstrated capability to deliver sub-femtosecond pulses with good
coherence and sufficiently high repetition rates.21

Further, performing experiments at such billion-euro-scale facili-
ties poses its challenges. Interestingly, one can witness a convergence
of technologies and investigations across table-top and large-scale
facilities due to the tremendous prospects for investigation. Suffice it
to say that the ability to bring sub-femtosecond, broadband x-ray sour-
ces to the table-top has enabled a new era of ultrafast science.

In our article, we will discuss the table-top technology. We will
begin Sec. I with a discussion of state-of-the-art generation of attosec-
ond pulses in the soft x-ray (SXR) regime using high-harmonic gener-
ation (HHG). We will then discuss the investigative techniques,
namely XANES and EXAFS spectroscopy, enabled by the broadband
nature of ultrafast HHG sources. Next follows an overview of recent
works investigating the sub-cycle, nonlinear optical response in solid-
state materials based on absorption spectroscopy. In Sec. II, we discuss
the state-of-the-art method that unites isolated attosecond pulse reso-
lution with core-level XANES. We present a case study in which we
use attosecond XANES to investigate the quantum material tita-
nium disulfide (TiS2). This experiment is the first investigation of a
semi-metallic22–24 transition metal dichalcogen (TMDC) with an
attosecond soft x-ray (SXR) probe at the Ti L2,3 edge. This section
intends to showcase what is currently possible with attosecond
XANES in the water-window SXR regime to stimulate interdisci-
plinary collaborations between the solid-state, materials, ultrafast
x-ray, and attoscience communities. The realization of such collab-
orations will guide the development of attosecond table-top x-ray
sources, further x-ray spectroscopy theoretical methods to better
model complicated material systems, and advance our understand-
ing of complex multi-component quantum materials of relevance
to address today’s problems.

A. Attosecond high harmonic generation sources
in the soft x-ray regime

Key to the development of table-top x-ray sources has been the
advancement of HHG,25 a process by which visible and infrared (IR)
laser photons are coherently energy up-converted to wavelengths
spanning the XUV and SXR regimes. Briefly, optical light is focused
into a gas medium where valence electrons are ionized as the driving
pulse’s electric field reaches its maximum. Each newly freed electron is
accelerated away from its parent ion, picking up kinetic energy as it
travels along a negative gradient potential energy surface. When the
oscillating electric field eventually reverses sign, the electron reverses
its direction and recombines with its parent ion, resulting in a release
of the excess kinetic energy it picked up from the laser field as a burst
of x-rays. Because the HHG process is fully coherent and preserves the
driving laser’s properties, the resulting x-rays exhibit extraordinary
spatio-temporal coherence and cover broadband spectral ranges with
down to sub-100-attosecond temporal durations.12 While HHG per-
formed with widely used Ti:Sapphire 800-nm driving pulses has been
a highly successful method for producing femtosecond and sub-
femtosecond XUV pulses up to 120 eV, the last decade has seen a
tremendous advancement in source development, enabling the genera-
tion of attosecond x-ray pulses extending well into the SXR regime.9,14

Here, we discuss these advancements by highlighting the tunable
parameters of the HHG process.

For one, the maximum possible energy of up-converted photons
is given by

Ecutoff ¼ Ip þ 3:17Up / ILk
2
L; (1)

where Ip is the ionization potential of the gas target, almost always
chosen to be a noble gas, and Up is the quiver energy that scales with
the intensity and square of the wavelength of the driving laser.26 In ini-
tial works, the approach to increase Ecutoff simply increased the inten-
sity of the optical driver, which was often done by shortening its
duration to the near single-cycle limit.25 However, this method proves
to be limited, as plasma effects beyond the tunnel ionization regime
severely limit the effective generation of high harmonic emission.

Given Eq. (1), an alternative approach, first demonstrated by
Shan et al.,27 is to increase the optical pulse’s wavelength, thereby
increasing the electron’s excursion distance in the continuum to
acquire higher recollisional energy upon recombination.27 It is
now standard practice for HHG setups to use parametric
amplification8,19,28–32 to down-convert 800-nm photons to wave-
lengths between 1.3 and 3 lm. However, the wavelength cannot be
increased indefinitely to scale HHG due to dispersion of the con-
tinuum electron wavepacket, since this reduces the probability of
recombination as k–a, where 5 < a < 6.26,33–35 With carefully tuned
phase matching conditions,36 i.e., by balancing the choice of driv-
ing wavelength, intensity, and HHG medium, HHG sources can
reach wavelengths spanning the XUV to the SXR regimes [Figs.
1(a) and (b)]. Based on this concept, the first sources to reach the
SXR water window with the carbon K-shell edge at 284 eV were
based on 1-kHz Ti:Sapphire laser amplifier systems, which
pumped optical parametric amplifiers (OPAs) at 1.5 lm37 produc-
ing 20 ph/eV/s at 284 eV,13 OPAs at 1.3 lm38 with 107 ph/s/1%
with cutoff at 300 eV, and a 1-kHz Ti:Sapphire-pumped OPA at
1.85 lm, which produces 1.9x107 ph/s/1% at 300 eV9 with cutoff at
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450 eV. Common to all of these systems are pump energies from
the Ti;Sapphire frontend from 1 to 3 mJ. Recently, further up-
scaling of the Ti:Sapphire pulse energy has led to a much improved
SXR photon flux. For instance, pumping a 2.1-lm37 OPA with
19.5-mJ, 20-fs pulses from a 1-kHz Ti:Sapphire system yielded 109

ph/s/1% bandwidth19 in the SXR water window.
Further increasing pulse energy at a lower repetition rate of

100Hz, a 1.85-lm OPA produced 40-mJ, 40-fs pulses and a SXR flux
of 8� 106 ph/s integrated across entire water window.32 Most recently,
Fu et al., demonstrated 3.5-nJ energy harmonics in the SXR water win-
dow from a 10-Hz, 100-mJ OPA with wavelength of 1.2–2.4 lm.39

While there are currently various laser implementations for SXR gen-
eration,15,40–42 the demonstrated SXR pulse energy scaling provides a
route toward single-shot SXR spectroscopy and ultrafast SXR imaging
by scaling the laser technology. Another essential building block in
establishing attosecond spectroscopy and imaging is the capacity to
measure the time-structure of the generated SXR radiation. The conse-
quentially broader bandwidth of an attosecond pulse in the SXR water
window in combination with the dramatically lower absorption cross
section, and the fact that several shells contribute to photo-emission,
present significant obstacles for photoelectron spectroscopies and to
attosecond streaking, which relies on the unambiguous mapping of

electron spectra to the attosecond pulse spectrum.11 To circumvent
such issues, photonic streaking was employed by Silva et al.10 to dem-
onstrate single isolated attosecond pulse generation in the SXR water
window at 300 eV. Shortly afterward, several measurements were pub-
lished, which are nevertheless based on attosecond streaking and the
measurement of photoelectrons.12,43 Despite such complications for
attosecond pulse characterization, the broad bandwidth of attosecond
SXR pulses are a decisive advantage for absorption spectroscopy of
multi-component material systems. Simultaneously, access to the mul-
tiple component absorption edges allows disentangling lattice, charge,
and spin dynamics44 of all the material’s elemental components at
once. The SXR regime is especially vital for such investigations, as
compared to the XUV, since elemental edges overlap less and the cor-
respondingly high photon energies allow access to K- and L-edges of
many first-row transition metals and common material constituents,
like S, C, N, and O. Attosecond SXR radiation are thus ideal tools for
organic chemists, biochemists, materials scientists, and solid-state
physicists alike45 since investigations of composite materials, quantum
materials, adsorbates, organic electronics, twisted bilayer gra-
phene,46–48 high-temperature superconductors,49 metal-organic
frameworks,50,51 carbon nanomaterials,52,53 NV-diamond centers,54,55

and TMDCs22,56 will be possible.
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FIG. 1. Output energies of HHG-based
attosecond sources and schematic of
XAFS measurements. (a) Representative
isolated attosecond pulse spectra gener-
ated with an 800-nm single-cycle driver
pulse covering relevant absorption edges
of the XUV region. (b) A representative
spectrum of an isolated attosecond pulse
covering over 300 eV in the SXR regime
generated with a single-cycle 1800-nm
driver pulse. Multiple element edges are
covered with K-edges, L-edges, and M-
edges in orange, green, and blue, respec-
tively. Panels (b) with permission from
Ref. 13 and (c) with permission from Ref.
25. (c) XANES measures unoccupied
valence states (VS) using a core-electron
excited by a high energy SXR photon and
is, therefore, energetically relevant around
absorption edges. In time-resolved
XANES, an optical pulse typically first trig-
gers an out-of-equilibrium dynamic in the
valence states. EXAFS spectroscopy
instead probes a larger energy window
above the edge where modulations in the
absorption spectrum stem from photoelec-
trons with enough excess energy to scat-
ter multiple times and auto-interfere with
itself.
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X-ray absorption spectroscopy (XAS) can be easily implemented
with a table-top SXR source since it directly leverages the extreme band-
width of the attosecond pulse. The absorption of light by a sample is
directly related to the imaginary part of its dielectric function and XAS is
a sensitive probe of element-specific electronic structure when the inci-
dent light is resonant with an atomic edge, and if that transition is unique.
These conditions are fulfilled at high photon energies, which level core
transitions, thus avoiding multiplet effects and excessive photoionization.
XAS methods can be further divided into XANES and EXAFS, where the
difference lies in the spectral region around the absorption edge
probed18,57 [Fig. 1(c)]. Without an exact division of energy ranges,
XANES roughly covers the region from the edge onset to about 50 eV
above, such that absorption is dominated by resonant transitions from
occupied core states to unoccupied valence states. In this regime, infor-
mation about an atom’s density of states, site symmetry, oxidation state,
and coordination number can be obtained since the photoelectron’s
mean free path is on the order of the first-coordination shell. On the
other hand, EXAFS is characterized by high-energy photoelectrons that
travel far enough to encounter neighboring atoms. The existing auto-
interference between the different scattering pathways of a photoelectron
will modulate its scattering cross-section, resulting in undulations of the
absorption in the EXAFS regime, which can be processed by a Fourier
analysis to provide information about lattice spacings and symmetry.

Key to both of these x-ray absorption fine structure (XAFS) is the
ability to resolve subtle features in the absorption spectrum, which
necessitates high-brightness, stable x-ray sources. For this reason, the
development of synchrotron sources was instrumental to the viability
of XAFS techniques. With the shortening of pulse durations and the
advancement of timing schemes, time-resolved XAFS has become a
popular method for investigating nonequilibrium electronic structure
dynamics. Here, the >30 picosecond x-ray pulses from electron stor-
age rings can be shortened to hundreds-of-femtoseconds with “femto-
slicing” techniques. However, even these pulse durations are too long
to resolve electron wavepackets that dephase with a characteristic
timescale of femtoseconds.1 On the other hand, XFELs can offer tens-
of-femtosecond pulse durations but tend to be quite narrowband and
spectrally unstable. For XFELs, stability, longitudinal coherence, and
synchronization are significant challenges that render time-resolved
fine-structure studies challenging at the present time.

Attosecond transient absorption spectroscopy (ATAS) is there-
fore ideally suited to exploit the prospects of time-resolved XAFS tech-
niques to the sub-femtosecond timescales on which electron motion
typically occurs. Furthermore, the broadband nature of HHG-based x-
ray sources capable of covering hundreds of eV in the SXR regime
allows for the simultaneous acquisition of XANES and EXAFS in a
single shot with DE/E � 1/1000 spectral resolution. Our group
recently demonstrated combined static XAFS spectra covering over
300 eV around the Carbon K-edge in graphite, thus paving the way
for attosecond, time-resolved XAFS studies.18 Indeed, the ultrashort
pulse durations offered by HHG sources and their broadband spectral
characteristics will be indispensable in extending the toolbox for next-
generation ultrafast science.

B. Attosecond spectroscopy: The sub-cycle
optoelectronic response in solids

We now turn our discussion to the science that has been enabled
by table-top attosecond x-ray spectroscopy, with a specific focus on

ATAS applied to solid-state systems. For a more specified discussion
on ultrafast gas-phase dynamics, we refer the reader to recent excellent
reviews in Refs. 58 and 59. A series of landmark works have focused
on questions related to the speed and mechanisms with which optical
pulses affect material properties, with motivations driven largely by
the prospects of light-wave electronics controlled at petahertz (PHz)
frequencies. With single-cycle visible light pulses having few-
femtosecond pulse durations, attosecond probing pulses are necessary.
Further, the elemental-specificity and separation in energy-scale
between the optical and XUV pulses have been invaluable to interpret-
ing results.

Initial optical pump–XUV probe experiments were performed
on SiO2 and pure Si in the strong-field excitation regime (1012 W
cm�2). These experiments leveraged near-critical electric fields of 2.5
V/Å and sub-bandgap pulse energies, conditions under which nonlin-
ear effects are expected to play a leading role. Indeed, reversible oscilla-
tions occurring only during the time-overlap of the pump and probe
pulses at twice the pump frequency (2x) and step-like excitation
behavior following the optical pulse time-trace were observed, respec-
tively.16,60 In another experiment, on GaN, which is a 3.35 eV bandgap
semiconductor, weak-field excitation yielded photo-excited 3x dipole
oscillations, thus showing PHz field control of carrier dynamics via a
three-photon absorption process.61 The wide bandgap insulator Al2O3

doped with Cr ions was subsequently studied in a similar experiment.
It was shown that multi-PHz frequency manipulation was possible via
interference of multiphoton processes with frequency tunability
offered by choosing the identity of the chemical dopant.62

While the experiments mentioned above highlight optical control
of semiconductors and dielectrics in the strong field regimes, Lucchini
et al. sought to understand the competition between intra- and inter-
band effects at intermediate field strengths.63 In this mixed regime, the
optoelectronic response should be described by a hybrid of the strong-
and weak-field extrema: in the weak- (strong-) field limit, inter- (intra)
band transitions should dominate with the pump light behaving like a
photon (field). Here a 5-fs carrier-envelope-phase (CEP) stabilized
below-gap IR pulse was incident on diamond, a dielectric with a 7.3
eV indirect bandgap. The XUV pulse is most commonly used to probe
core-to-valence excitations, the 250 as, 42 eV probe pulse excited
valence electrons to the CB continuum. The intent here was to distin-
guish between inter- and intra-band effects more cleanly. The resulting
transient absorption spectra revealed 2x oscillations, which were
attributed to the dynamical Franz Keldysh effect (DKFE). The DKFE,
in which the driving pulse’s electric field bends the crystal potential
enough to distort electronic wavefunctions to leak into the bandgap
and make possible photon-assisted tunneling, was shown to nearly
fully account for the measured signal. This experiment was recently
re-performed and found to be almost instantaneous, occurring with a
49 as time constant.64

Building on these findings, Schlaepfer et al. and Volkov et al.
used XUV-ATAS to investigate inter- and intra-band effects on the
sub-cycle optoelectronic response under two different circumstances,
namely, when the pump pulse is resonant with the bandgap of a semi-
conductor and when the material system is metallic with no bandgap
at all.65,66 In the former, it was expected that inter-band carrier
dynamics would come to the forefront. Surprisingly, the observed 2x
oscillations were, again, found to be dominated by intra-band currents,
though the coupling between inter- and intra-band effects was
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necessary to explain the enhanced excitation of carriers across the
bandgap. In the latter, ATAS was performed at the Ti M2,3 edge in
pure Ti in response to a 1 � 1012 W cm�2 near-infrared (NIR) pump
pulse (10 fs, 1.55 eV). It was anticipated that many-body electron cor-
relation effects (i.e., screening, collective electron motion) from the Ti
3d valence electrons would alter the relative weighting of intra- and
inter-band effects in the sub-cycle optoelectronic response. Unlike in
the nonzero bandgap materials where oscillatory effects were observed,
the time-resolved spectrograms instead depicted a quasi-instantaneous
linear response with an optical density transient following the pump
laser fluence. This finding was interpreted as a breakdown of the
independent-particle approximation, indeed, a consequence of
correlation-driven effects. The pump pulse was found to strongly
interact with conduction band electrons, causing increased electron
localization and therefore strong screening, which was confirmed by
theoretical calculations to manifest itself as ultrafast and linearly
dependent on pump fluence.

From the results above, we highlight several important observa-
tions. For one, in less than ten years, the realization of state-of-the-art
ATAS beamlines have greatly enhanced our fundamental understand-
ing of the light-matter interaction and has brought us one step closer
to realizing PHz-controlled light-wave electronics. The sub-cycle opto-
electronic response depends on the strength of the field, the size of the
material bandgap compared to the pump pulse’s photon energy, and
the inherent material properties intra- and inter-band effects playing
nonintuitive relative roles. The multi-variate nature of this problem,
though, leaves many unanswered questions and necessitates a more
precise probe of the electronic structure and its dynamics. Secondly,
we note that real advance for investigations necessitates probe pulses
above about 150 eV: shallow bound states, or semi-core states in the
XUV, are usually dipole-allowed small binding energies that make the
interpretation of measured dynamics only meaningful if multiplet
effects can be factored out.

Additionally, near-valence transitions suffer from parasitic pho-
toionization (r / Z5xXray

�9=2), thus altering the final states to be
probed significantly.67 With higher-energy SXR pulses extending up to
hundreds of eV, unambiguous state-selectivity can be achieved, which
permits a clean interpretation of spectra.68,69 Consequently, attosecond
sources at significantly higher photon energies,10,11,14,70 which are
much harder to implement, are highly sought-after for state-selective
ATAS spectroscopy, i.e., XANES and EXAFS. Lastly, we notice that
the field of attoscience has barely scratched the surface in terms of the
complexity of materials being studied. The prospects to bring attosec-
ond temporal resolution together with state and element selective
core-level XANES is expected to allow a precise investigation of multi-
body and correlation effects, which preclude our current understand-
ing of many interesting phenomena in material science, ranging from
Mott transitions to exotic new phases in composite quantum materi-
als. From an application point of view, simple thin-films, wafers, and
foils (i.e., SiO2, Si, Ti, etc.) have been the topics of most ATAS works
for several reasons: (1) A transmission geometry necessitates smooth
surface, thin-film samples, and only a handful of commercially avail-
able samples meeting these requirements exist, with few to none hav-
ing significantly novel emergent properties. (2) Except for the lightest
elements, most elements do not have core-states in the XUV regime,
which has previously been limited to ATAS. 3) Solid-state attoscience
is an entirely new field requiring expertise in ultrafast photonics and

custom instrumentation because there may exist a disconnect between
the those that develop the photonic means and the materials science
or synthetic chemistry communities that make interesting materials.

Moreover, most theoretical tools in solid-state physics have been
developed to predict static electronic structure. Here, entirely new
developments are needed to describe the nonlinear interactions arising
from the pump and probe photons, with the additional challenge
being to describe the multi-body state of correlated quantummaterials.
Nevertheless, with the elemental-specificity x-rays can offer, the study
of dynamics in more technologically relevant, multi-component mate-
rials of interest to the broader scientific community is only limited by
the energies accessible to HHG x-ray sources and the ability to inter-
pret the information contained in the absorption spectrum to extract
electronic, spin, and lattice information. Considering these prospects,
the recent development of attosecond SXR-HHG and spectroscopies
such as XANES is truly exciting.

In what follows, we will present a case study that unites all the
discussed requirements for the first time. This discussion on attosec-
ond XANES shows how state and element selectivity is achieved and
how it is used to extract the ultrafast, sub-cycle electronic occupation
of specific electronic states inside the semi-metallic TMDC TiS2. This
represents the first attosecond state-resolved spectroscopy measure-
ment of carrier-band dynamics in a TMDC at the Ti L2,3 edge and a
novel, previously unexplored, perspective on the ultrafast, sub-cycle
optoelectronic dynamics that ensue in a semi-metal system in the
weak field regime.

II. A CASE STUDY: SOFT X-RAY ATTOSECOND XANES
TO INVESTIGATE THE WEAK-FIELD OPTOELECTRONIC
RESPONSE IN THE TMDC SEMI-METAL TiS2

The exquisite electronic and optical properties of TMDCs
stem from their partially filled d-orbitals resulting in complex
phase diagrams and giving rise to correlated carrier dynamics that
could be exploited for revolutionary new devices71,72 in informa-
tion processing, energy harvesting, or high energy density stor-
age.22,23,73,74 TMDCs have been unexplored in ATAS because of
the difficulties of disentangling the involvement of electronic states
dependent on the material’s elemental constituents and the out-of-
equilibrium response of carriers of the complex energetic land-
scape of valence and conduction band states. To further under-
stand the behavior of these materials in optical control fields and
leverage their properties for future light-field-driven devices, it is
required to resolve the microscopic response of particular orbitals
on the sub-optical-cycle timescale, which requires attosecond-
duration and state-selective probes76–78 for XANES. Similarly,
ultrafast measurements of electron and hole dynamics may eluci-
date the exact pathways of charge transport, thus permitting the
discrimination of carrier scattering mechanisms and energy dissi-
pation pathways.

The chosen material, TiS2, exhibits attractive structural and elec-
tronic properties because of its semi-metal character; e.g., it has
extremely high electron and ion mobility, and its electronic and optical
properties are reminiscent of its 2D isomorph.78,79 The properties of
TiS2 arise from a tri-layered structure, shown in Fig. 2(a), which con-
sists of hexagonal sheets of cationic Ti4þ(3d0) atoms sandwiched
between sheets of S atoms. The atoms within the tri-layers (S-Ti-S) are
covalently bonded while the tri-layers are coupled by Van der Waals
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forces. This weak interlayer bonding results in physical properties that
are anisotropic to an extent that the material can be regarded as quasi-
two-dimensional solid and thus highly amenable to ion-intercalation
in Li-ion batteries.79 Moreover, the material’s band structure changes
only marginally when reducing dimensionality from the bulk to the
monolayer.80 These features render TiS2 of interest as a platform for
ultrafast optoelectronic devices and field-effect transistors,80 for solid-
state batteries,81 and for high-density energy storage.82 Most notably,
we point out that there is a great desire to apply ATAS to the study
state-specific carrier dynamics in equally anisotropic systems, e.g., 2D
TMDCs, which have garnered significant recent excitement due to the
discovery of their unique properties (i.e., Moire excitons,83–87 charge
density waves,88 superconductivity,89 valley-selective optical excita-
tion,90 magnetism,91 etc.) that are highly tunable with external stimuli
and not well understood. Understanding the carrier dynamics in a 3D
TMDC like TiS2 that exhibits a minimal change in band structure
with reduced dimensionality will also serve as a control case to provide
insight into edges to probe and properties to look for in future studies
performed in the 2D limit.

We will show that attosecond-resolution XANES,57,75,92,93 a vari-
ation of ATAS that focuses on the near-edge structure and achieves
state-selective interrogation of the 3d orbitals of the transition metal
atom Ti. Since XANES relies on dipole transitions from core-states,
this translates into accessing the 2p-core to 3d-valence transition in Ti
and requiring attosecond pulses at a photon energy of 460 eV. By
examining the optoelectronic response under previously unexplored
conditions, we show that semi-metals can be a viable material for
light-wave electronics in the more technologically relevant case of a
weak optical field.

A. Results: Attosecond XANES on TiS2

Here, we demonstrate a state- and attosecond-resolved investiga-
tion of the nonequilibrium dynamics of carriers in the 3d-character
conduction band in the presence of an electric control field that is
weak enough to be realistically achievable in devices, e.g., with plas-
monic nano-focusing,94,95 in contrast to the strong-field measure-
ments mentioned earlier. Figure 2(b) shows the semi-metallic band
structure of bulk TiS2 calculated from first principles in the density-
functional theory framework (DFT); see supplementary material. The
angular momentum character of the valence bands originates from
mixed sulfur 3p and 3s states. In contrast, the conduction bands are
nearly exclusively of Ti 3d character.

The material’s optoelectronic response was probed by applying a
NIR optical control field at photon energy centered at 0.6 eV. Thus,
this optical field could directly bridge the 0.23 eV gap of the valence
and conduction bands between the C and A points by single-photon
excitation while avoiding excitation of high-lying conduction bands
excursions beyond the first Brillouin zone. Calculations using the opti-
cal spectrum (see supplementary material) show that the excitation is
localized around the C and A critical points [Fig. 2(c)]. Projecting the
momentum-dependent valence excitation onto the transition energy
[Fig. 2(d)] indicates energetically narrow contributions to the XANES
since the Pauli exclusion principle dictates that fermions cannot transi-
tion into already occupied electronic states, an effect often referred to
as “Pauli blocking.”

The control field consists of a CEP, stable, 1.8-cycle-duration (12
fs FWHM) laser pulse at a center wavelength of 1850nm, a low-
energy replica of the pulse that produced the isolated attosecond SXR
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pulse through high harmonic generation. The peak intensity of the
control field was 4.1 6 0.8 1011 W cm�2, corresponding to an electric
field amplitude of 0.08 V/Å (compared to the 2–2.5 V/Å fields imple-
mented in experiments mentioned in Sec. I B) inside the material and
an excitation of 0.03 electrons per unit cell, or a carrier density of 1.94
� 1021 cm�3. An essential aspect of resolving in the material response
on the scale of the electric field waveform of the control field is, in
addition to the SXR pulse attosecond duration, a fast core-hole decay
of the material.96 We estimate a core-hole decay of 3 fs for the Ti 2p
states from Ref. 97. The core-hole decay is faster than the cycle period
of the control field (6.1 fs at 0.6 eV), consistent with our measurement
that shows that the dynamics are indeed resolved on the sub-cycle
scale of the optical field.

In the experiment, the SXR attosecond probe interrogated a 150-
nm-thick, free-standing, mono-crystalline 1T-TiS2 sample at 26� inci-
dence of the basal plane normal to sample. A 20-lm-thick Ni pinhole
of 100-lm diameter was positioned on top of the TiS2 sample to define
the area of spatial overlap between the attosecond probe and the IR
control field. The measurement was taken with a home-built spec-
trometer consisting of a reflective 2400 lines/mm grating (Hitachi)
and a cooled CCD-camera (PIXIS, Princeton Instruments) readout.
To state-resolve the dynamics of carriers in the 3d-character conduc-
tion band with XANES, we use isolated 165-as-duration SXR14,18,98

pulses with a bandwidth covering 200 to 550 eV, thus accessing the Ti
2p core states at –458.4 eV (2p3/2) and –465.5 eV (2p1/2); see Fig. 3.
Shown in Fig. 3(b) is the XANES to identify the positions of the Ti L2
and L3 absorption edges that arise due to transitions from the 2p1/2
and 2p3/2 core states. The static XANES measurement, i.e., un-
pumped and non-time-resolved, serves as a reference, and it is in
excellent agreement with measurements taken at the ALBA

synchrotron light source ALBA (Barcelona) and well-reproduced by
theory (see supplementary material).

Figure 3(a) shows the differential absorption spectrum
(DT ¼ Tpumped � T0) normalized to the unpumped case (T0), as IR-
pump/attosecond-SXR-probe delay. White bars represent data points
that were sorted out when post-processing data based on the signal-to-
noise ratio. Negative time values correspond to the SXR probe arriving
before the IR control field. A positive (red) value reports an increasing
SXR transmission due to the material’s field-induced excitation, thus
an increased carrier population in conduction band states.
Immediately apparent in the measurement is a transient signal with a
maximum amplitude of 10%, at twice the oscillation frequency of the
IR optical field (2xIR). The signal exhibits oscillations with excursions
to both positive (red) and negative (blue) values; see the supplemen-
tary material for a Fourier analysis. Figure 3(b) depicts lineouts of the
differential absorption [Fig. 3(a)] at different time delays. It establishes
that the control-field-induced carrier dynamics occurs at the bottom
of the Ti 3d-character conduction band, closest to the Fermi level.
Resolved are the transitions to Ti 3d-character states originating from
the two spin-orbit split Ti core states 2p1/2 and 2p3/2, corresponding to
the absorption edges L2 and L3. In the following, we restrict our analy-
sis to the L3 edge to investigate the carriers’ dynamics in Ti 3d orbitals,
as the signal observed at the L2 edge may be mixed with transitions
from the L3 to higher-lying conduction band states.

B. State-resolved dynamics

To obtain a detailed physical insight into the underlying carrier
dynamics in TiS2, we turned to theory. We performed a first-
principles electron dynamics simulation of the full pump-probe exper-
iment based on real-time time-dependent density functional theory
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(RT-TDDFT).99 In addition to the ab initio model, we developed a
core-state-resolved Bloch equation model (cBE)100 to disentangle the
various concurrent inter- and intra-band contributions in response to
the control field. The cBE model retains the relevant seven bands in
three dimensions; it includes the three highest-occupied valence, two
lowest-unoccupied conduction band states together with the Ti-2p
core states, and bandgap renormalization (further details in supple-
mentary material).

The result of the theory, including the full inter- and intra-band
dynamics, is shown in Figs. 3(e), 3(g), and 4. The good qualitative
agreement between the measurement [Figs. 3(a) and 3(d)] and calcula-
tions [Fig. 3(e)] is depicted in Fig. 3(f), showing the differential absorp-
tion integrated over an energy interval of 5 eV where the changes are
most prominent (between 457 and 462 eV). Indicated in Fig. 3(c) is
the IR control field periodicity, which shows that carriers’ response
[Figs. 3(d)–3(f)] occurs on the sub-cycle temporal scale with 2xIR

oscillations. We note that the origin of the 2xIR-oscillation has been
previously attributed to the DKFE63,65 and arises due to the ac-Stark
effect caused by the external pump field that modulates the electronic
wavefunction when transitioning conduction band. From our model,
we find that inter-band transitions predominantly occur in the form of
one-photon transitions that directly bridge the gap between valence
and conduction bands around the C and A critical points, as indicated
in Fig. 2, and become observable in the transient XANES experiment.

Though beyond the scope of this discussion, we note that time-
resolved angle-resolved photoemission spectroscopy (trARPES) can
provide complementary information due to the ability to momentum
resolve carrier dynamics in the electronic band structure.101–107

Briefly, trARPES uses an XUV probe pulse with an energy that exceeds
the samples’ work function (typically 3–6 eV), with higher energies
allowing access across the first Brillouin zone. The newly freed elec-
trons are collected by a hemispherical analyzer, whereby the various
photoemission angles are tracked to map out the electronic dispersion.
Simultaneous measurements, while at first glance appealing due to

complementary information, are less straightforward due to trARPES
requiring a very narrowband spectrum (ideally 100meV or less band-
width) for retaining its energy resolution. At the same time, ATAS’s
key feature stems from its broadband and ultrafast probing. Besides,
trARPES is, like all photoelectron spectroscopies, limited to surface or
near-surface states while ATAS can probe the bulk.

We used both theoretical models to predict the magnitude of the
injection of carriers into the conduction band. Shown in Fig. 3(g) is
the result from a projection of the time-dependent wavefunction of
the seven-band cBE and the RT-TDDFT model onto the conduction
band state. We find excellent agreement among the simulations with
an excitation value of 0.2% to the 3d-character conduction band, cor-
responding to a carrier density of 1.94� 1021 cm�3.

In general, the transfer of electrons to the conduction band at a
specific k-space position results in Pauli blocking and, since the core-
level transition (Ti-2p to Ti-3d) accesses conduction band states, this
leads to the bleaching of the SXR absorption. Thus, vital is the role of
the intra-band motion of carriers. Depending on the mobility, it may
diminish (or increase) Pauli blocking at a particular k-space position
and manifest as a change of SXR absorption. Therefore, we further
investigated the state-resolved dynamics of electrons with a high-
resolution cBE calculation. Figure 4 shows the result. Despite the low
field strength, we find that immediately visible is the ubiquitous 2x-
oscillation to both positive and negative values, arising from both
inter- and intra-band motion. The oscillation to both positive and neg-
ative values was never observed before. The signal originated predomi-
nantly from intra-band currents, owing to the semi-metal carrier
mobility and confirming the absence of Rabi cycling. Overlaid as indi-
vidual lineouts in Fig. 4 is an energy-resolved decomposition of
observed carrier motion into inter- and intra-band contributions.
Striking is the dominance of intra-band (blue curves) over inter-band
(red curves) carriers and the absorption spectrum’s energy-dependent
modulation. The absence of apparent chirp is due to the strong and
near-instantaneous intra-band carriers’ response to the weak driving
field. Immediately apparent is the strong modulation of the absorption
signatures as a function of time. In the SI, we discuss the origin as
Fano-line profile modifications that arise during the optical control
field due to the time-modified dipole-phase from excitation into the
conduction band.

We further find that the intra-band currents stem from accelerat-
ing the carrier population only across 38% of the first Brillouin zone in
the presence of the weak electric field. It is worth noting that this rela-
tively small spread, which is driven by intra-band currents, confirms a
weak-field regime. This investigation thus contrasts to most strong-
field driven solid-state high harmonic experiments, which regularly
drive intra-band currents multiple times across the first Brillouin
zone.108

The intra-band process immediately spreads the conduction
band electrons and, thus, reduces the resonant inter-band excitation’s
energetic localization, reducing the contrast in the experiment for
observing carriers following the localized excitation. This result is
counter intuitive since one would expect minimal external electric field
results in tunneling close to the valence band A and conduction band
L points due to the semi-metallic band structure [Fig. 2(b)]. This is a
striking finding for optoelectronic applications of semi-metals since it
shows, despite gap energies in TiS2 between 0.23 and 4 eV and a
Keldysh parameter of 2.5, tunneling excitation is neither the only nor
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the dominant mechanism at play. Instead, the material’s response is
governed by predominantly one-photon transitions similar to a semi-
conductor or dielectric material at much higher field strengths.65,109 A
possible reason for this unexpected behavior of the material in a NIR
control field is the high density of states between the C and A critical
points in conjunction with the very high carrier mobility.

Having investigated which contributions are predominant to the
carrier dynamics, we turn to exploit the state-selectivity to visualize
carriers’ spatio-temporal flow. Figure 5 shows the time-dependent
charge density oscillations and the density of states (DOS) for two field
strengths. We depict the electron density distribution change since it
displays the change concerning the ground state (un-pumped case).
Red (blue) isosurfaces indicate increasing (decreasing) density. The
anisotropic distribution of this charge-density difference reflects the
hybridization between Ti-d and S-p states. We found charge depletion
along with the chemical bond and an associated increase of electronic
density on the Ti state with d-character. These measurement results
are consistent with Volkov et al.,66 who demonstrate optically induced
electron localization around Ti atoms. The charge redistribution
occurs within a femtosecond and over a distance nearing half the dis-
tance between Ti and S atoms of 2.4 Å. The charge re-distribution
increased in the distance with increasing field amplitude of the NIR
laser pulse, thus visualizing the NIR field-driven motion of charged
carriers within the unit cell. Interestingly, according to the RT-
TDDFT computations at the low field amplitude of 0.08 V/Å, used in
this study, the excitation profile of carriers promoted into the conduc-
tion band DOS mimics the pump spectrum with transitions originat-
ing from valence band states just below the Fermi energy into

conduction band states approx. 0.5–1 eV above the Fermi energy;
note, this is in excellent agreement with Fig. 2(d). Discernible is also
an energy gap between the depopulated valence and populated con-
duction band states.

The present measurement provides the first unambiguous inves-
tigation of the Ti:3d binding orbital, which determines the response of
the TMDC to an external light field. Our investigation reveals that
localization of electron density occurs around the Ti atoms within a
fraction of the optical control field’s single-cycle. The change in elec-
tronic density is huge for the weak optical excitation field. It modifies
the semi-metallic TMDC, leading to strong intra-band currents and
behavior like the DKFE, previously only observed in a wide-bandgap
system.63 This raises the interesting question as to whether the DKFE
is truly a strong-field effect, and we note that the relevant metric is
rather the strength of the control field relative to the size of the
bandgap. If the latter is true, semi-metals will be promising candidates
for light-wave electronics, requiring much weaker control fields.

III. CONCLUSIONS AND OUTLOOK

We have described the recent developments of attosecond tech-
nology and x-ray spectroscopy. We have detailed both how the con-
vergence of methods currently allows researchers to probe the fine
structure of an absorption edge in a multi-component material system
in real-time. This capability provides the state-resolved dynamics of
charge carriers in situ. Beyond the field’s background, we showcase the
state of the art with an attosecond XANES measurement at the Ti L2,3
edge at 460 eV of a TMDC quantum material. We described how the
core-state-resolved XANES method isolates Ti 3d orbitals’ spectral
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contributions, thus accessing the optoelectronic response of the semi-
metallic TMDC TiS2 with attosecond temporal resolution and orbital
selectivity. The results presented here suggest that TiS2 is a promising
candidate for PHz field-effect devices since very moderate optical fields
achieve efficient photo-doping to strikingly high carrier concentra-
tions. This means that weak optical fields can modulate the material
response quasi-instantaneously, i.e., without measurable delay, on an
optical field’s sub-cycle scale. Our investigation of the TMDC TiS2
provides new insight into the usage of semi-metal TMDCs as building
blocks, such as optical field-effect transistors for the next generation of
optoelectronic devices’ light-wave electronics. While showcasing what
is possible with attosecond soft x-ray XANES on the particular exam-
ple of the TMDC, we stress that such investigations will allow access to
the exact interaction of electrons, holes, and lattice modes. This
method will provide insight into the entire time-history of charge and
lattice dynamics in materials. The prospects are spectacular since the
method applies to gases, liquids, solids, and amorphous systems.
Monolayer systems such as graphene, BN, or TMDCs may be probed
in reflection. In contrast, nanometer-size systems such as composite
quantum materials like BN-sandwiched graphene and TMDCs, or
adsorbates, can be measured in transmission. We note that an insight-
ful connection between the measured absorption spectrum and the
embedded electronic and lattice dynamics is only possible in the sim-
plest of systems without theory. Therefore, new theories are needed to
describe the nonequilibrium dynamics of the multi-body state with the
pump and probe photons. Presently, such developments are already
underway (largely) based on real-time implementations of density
functional theory, either in real or reciprocal space. We also expect
that XFEL sources will provide attosecond temporal resolution and
sufficiently reduced timing jitter soon. XFEL sources will increase pre-
sent capabilities to the hard x-ray regime. The possibilities are excellent
to gain unprecedented and comprehensive insight into the intricate
interplay between charge carriers and lattice, which determine the
response of materials to an external stimulus. We believe that the
described tools will become decisive to move toward an engineered
approach to design advanced materials and devices based on exact
knowledge of their functionalities. While serendipity has served us sur-
prisingly well, e.g., with the recent discovery of twisttronics with
magic-angle graphene, today’s societal challenges demand drastically
new solutions that are tractable systematically and predictably. The
projected increased demand for energy-efficient information process-
ing and storage devices supersedes energy production growth over the
next 20 years. With the possibility to scrutinize loss channels in elec-
tronic transport and material excitation, we would have a tool to iden-
tify possible mitigation strategies to approach the long-sought
Landauer limit of information processing devices. We envision studies
of charge and lattice dynamics on heterostructures of conventional
and quantum materials such as, e.g., Si, Ge, graphene, graphite, BN,
TMDCs, and high-Tc superconductors like YBaCuO, TiBaBaCuO, or
K3C60. Based on the exact knowledge of the response of such materials,
computer models may be able to predict how combinations of materi-
als can achieve systems in which, e.g., ballistic transport is topologically
protected, or in which the valley and spin degrees of freedom are lever-
aged to store and switch information with THz to PHz speeds.
Intimately related with such a goal is the investigation of canonical
physics questions, since they have an immediate impact on society.
For instance, it is still debated what exactly triggers the

superconductive state of a high-Tc superconductor like LaBaCuO,
YBaCuO, or, e.g., K3C60, and contradicting theories exist to describe
the mechanism. New insights into Mott physics would be directly rele-
vant for multi-body quantum dynamics and further our understand-
ing of quantum simulators. As such, the application of ATAS toward
the study of materials will likely be of great benefit to re-examine long-
standing questions of, for example, phase-transitions,110,111 supercon-
ductivity in layered materials,112 and emergent electronic properties in
low-dimensional systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for further experimental details
such as the static XANES, calibration measurements at the synchro-
tron light source ALBA, investigation of the pump absorption and
dynamics, the data analysis, and information about the sample growth
and preparation. We also include information about the various
density-functional theory simulations and the core-resolved Bloch
Equation Model.
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