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Abstract. In this paper, we study matrix-product unitary operators (MPUs)
for fermionic one-dimensional chains. In stark contrast to the case of 1D qudit
systems, we show that (i) fermionic MPUs (fMPUs) do not necessarily feature a
strict causal cone and (ii) not all fermionic quantum cellular automata (QCA)
can be represented as fMPUs. We then introduce a natural generalization of the
latter, obtained by allowing for an additional operator acting on their auxiliary
space. We characterize a family of such generalized MPUs that are locality-
preserving, and show that, up to appending inert ancillary fermionic degrees of
freedom, any representative of this family is a fermionic QCA (fQCA) and vice
versa. Finally, we prove an index theorem for generalized MPUs, recovering the
recently derived classification of fQCA in one dimension. As a technical tool for
our analysis, we also introduce a graded canonical form for fermionic matrix
product states, proving its uniqueness up to similarity transformations.
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1. Introduction

Among the achievements of tensor network (TN) theory, several results stand out in
the context of the classification of topological phases of matter, now a pillar in mod-
ern quantum many-body physics [1]. For one-dimensional (1D) systems, this problem
can naturally be formulated in terms of matrix product states (MPSs) [2, 3], and con-
sists, loosely speaking, of determining all the possible equivalence classes under suitably
defined smooth deformations. Arguably, the case where such a problem is best under-
stood is that of 1D bosonic symmetry-protected topological (SPT) phases [4–7], where
they have been completely classified by the second cohomology group [8–10] using the
previously-derived results for the canonical forms (CFs) of MPSs [3, 11].

Recently, increasing attention has been devoted to the classification of topological
systems far from equilibrium. This was also motivated by experimental advances in
atomic, molecular and optical physics, which now make it possible to probe quantum
many-body dynamics in exquisite detail [12–17]. The classification of periodically driven
Floquet systems, in particular, has attracted a lot of theoretical work in the past few
years [18–31].

In this context, a relevant problem pertains to the study of matrix product uni-
tary operators (MPUs) [10, 32–35] in one dimension, namely, matrix product operators
(MPOs) that are also unitary. This is intimately connected with the classification of two-
dimensional (2D) Floquet SPT phases [36]: indeed, given a 2D Floquet system which
exhibits many-body localization in the bulk, its edge dynamics are well described by an
MPU [32, 37–39].

The theory of MPUs was first developed in [33, 34] for 1D qudit systems (see also
[40], for a recent generalization in higher spatial dimensions). As a nontrivial result,
it was shown that all MPUs are in fact quantum cellular automata (QCA) and vice
versa [41, 42], i.e. MPUs feature a causal cone, strictly propagating information over a
finite distance only. This observation is particularly interesting, because it allows one
to address the analysis of QCA by means of the powerful tools developed within the
theory of MPSs. For example, based on the latter, it was proven that, in the absence of
symmetries, the equivalence classes of MPUs under smooth deformations are labeled by
an index which can be computed directly from their local tensors. This index quantifies
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the net quantum information flow through the MPU, and was shown to be equivalent
to the Gross, Nesme, Vogts, and Werner (GNVW) index introduced in [43]. Later, the
same problem was addressed in the presence of a local symmetry in [35], where it was
shown that a complete classification can be obtained by also taking into account the
cohomology class of the symmetry group, thus proving a conjecture raised earlier by
Hastings [44].

While, so far, MPUs have been exclusively studied for qudit systems, 1D fermionic
QCA (fQCA) have recently been analyzed in [45, 46]. In particular, it was shown that
while one can develop an index theory along the lines of [43], the fermionic index need
not be a rational number, as for qudits, but can also include a factor of the square root
of two. Furthermore, such a classification is only complete if we allow for a more general
notion of the stable equivalence of QCA, which involves enlarging the Hilbert space by
appending inert ancillary fermionic degrees of freedom (d.o.f.) [46]. We note that the
emergence of a richer picture might have been expected, based on previous studies on
fermionic SPT phases in one dimension [47–49]. In that case, by mapping fermions onto
qudits via the Jordan–Wigner (JW) transformation [50], it was shown that the fermionic
classification problem can be reduced to a bosonic one, in the presence of an additional
Z2-symmetry, corresponding to conserved fermionic parity [10, 49].

At this point, a fundamental question is whether fQCA are also equivalent to
fermionic MPUs (fMPUs), similarly to the case for qudits. For this problem, it is not
natural to reduce ourselves to the latter case via a JW transformation, since it typically
generates nonlocal terms for periodic boundary conditions (PBC). In fact, it is more
convenient to work using a genuinely fermionic formalism [51, 52], where the definition
of MPSs and MPOs can be generalized in a straightforward way. This is the approach
that we take in this work, where we provide a thorough study of fMPUs and their con-
nections to fQCA. Our results show that the picture is much richer with respect to the
case of qudits, as we outline in the following.

1.1. Summary of our results

1.1.1. fMPUs are not equivalent to fQCA. Based on [33, 34], one could expect that
any fMPU is automatically a quantum cellular automaton, i.e. it displays a strict causal
cone. Our first result is to show that this is not the case. In particular, in section 5.1
we exhibit an example of an fMPU with PBCs which is not locality-preserving. In fact,
the inverse statement is also untrue, and we find that the most natural generalization
of MPUs to fermionic d.o.f. is not enough to capture all fQCA. This is discussed in
section 5.2, were we built an MPO implementing a translation of Majorana modes. This
is a quantum cellular automaton [46], but we show that it cannot be written in the
expected form.

1.1.2. Characterization of locality-preserving fMPUs. As a second main result, we
introduce a class of ‘generalized’ fMPUs, and identify a condition on the correspond-
ing local tensors such that any representative of this family is an fQCA and vice
versa. This is discussed in section 6, where generalized fMPUs are defined by allow-
ing for an additional operator acting on the corresponding auxiliary space, and further
characterized in section 6.1. The condition guaranteeing a strictly causal cone is
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expressed in equation (62); it generalizes the simplicity condition introduced for qudits
[33]. In addition, we find that any tensor generating an fMPU with antiperiodic bound-
ary conditions (ABC) is necessarily simple after blocking, while this is not true in the
periodic case.

1.1.3. Index theory from fMPUs. Third, we show that for the class of locality-
preserving fMPUs, one can define an index based on the local tensors, which coincides
with that of [46]. Although our construction is analogous to the one carried out for
qudits [33, 34], there are some practical differences, and the definition for the index
contains additional signs, as discussed in section 7. Here, our main result is the Index
theorem 7.1, which states that the fermionic index displays all the expected stability
properties that are present in the case of qudits, and correctly classifies fMPUs with
respect to smooth deformations preserving unitarity.

1.1.4. Graded canonical form for fMPSs. Finally, as a byproduct of our work, we
introduce and study a new graded canonical form (GCF) for fMPSs, which is based on
the definition of irreducible fermionic tensors recently presented in [53]. This is detailed
in appendix D, where we prove the existence and uniqueness of the GCF in the case of
ABCs. This is a technical result which allows us to directly generalize some derivations of
[33], but which is also interesting per se and might have applications in other problems.

1.2. Structure of the paper

The rest of this work is organized as follows. We begin in section 2, where we briefly recall
the definition of QCA, and review some key results obtained in the recent literature. We
proceed with section 3, where we introduce the basic aspects of TNs in qudit systems,
and review some of the main results derived in [33] for MPUs. We move on to section 4,
where we introduce the standard language of fermionic TNs using the so-called fiducial
state formalism. In section 5, we discuss our first results for fMPUs, while generalized
fMPUs are finally introduced and analyzed in section 6. The corresponding index theory
is then developed in section 7, which represents the most technical part of our work,
and is carried out using the formalism of graded TNs. Finally, we report our conclusions
in section 8.

2. QCA and index theory

Before embarking on the study of fMPUs, we briefly recall some known facts about
QCA. While they are usually defined in terms of the automorphisms of the C∗ algebra
of local operators in infinite systems [43], one can also define them as unitary operators
acting on finite systems, which is the point of view taken in this work. Specifically, if
we first consider a 1D qudit system associated with the Hilbert space H =

⊗
jHj , with

Hj � C
d
j , a QCA of range r is a unitary operator U such that for any local operator Oj

acting non-trivially only on Hj , the transformed operator U †OjU acts non-trivially only
on the qudits k = j − r, j − r + 1, . . . , j + r. A completely analogous definition can be
given for fermionic d.o.f.
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QCA have been completely characterized for 1D qudit systems in [43]. There, it was
shown that any quantum cellular automaton is obtained by composing a finite number
of shift operators, and ‘finite depth’ quantum circuits, which are obtained by applying a
finite number of ‘layers’ of two-site local unitary gates acting on disjoint sets of qudits.
Moreover, QCA can be classified according to a rational index (denoted by GNVW
in this work), which measures the net quantum information flow through the system.
Two QCA have the same index if and only if they can be continuously deformed into
one another, or, equivalently, are related by the application of a finite-depth quantum
circuit. For instance, a one-site shift of qubits on a ring has a GNVW index of 2, and is
thus in a different class from a finite-depth quantum circuit, which has a GNVW index
of 1. Finally, it was shown that this index is multiplicative with respect to composition.

These results were generalized for 1D fermionic systems in [46]. In these works, it
was shown that one can define a similar index, although technical complications arise
due to the structure of the local fermionic algebra. Physically, the main result was the
discovery that the classification of fQCA is richer than in the case of qudits: indeed,
the fermionic index is not necessarily a rational number, but also includes factors of the
square root of two. This is due to the existence of a special fermionic quantum cellular
automaton: the Majorana-shift operator, which consists of the translation of Majorana
modes (rather than physical fermions). A physical picture of this fermionic quantum
cellular automaton was already given in [45], where it was shown that this shift can
be understood as a unitary operator that exchanges the topological phases of the 1D
complex fermion chain [47]. For PBC, the latter have different parity, implying that the
Majorana-shift fermionic quantum cellular automaton with PBC necessarily does not
preserve parity.

The above picture provides a strong motivation for the study of fMPUs. In par-
ticular, since ‘plain’ fermionic MPOs (i.e. with no additional operator acting on the
auxiliary space) are by construction parity-preserving, cf section 4.1, one could expect
that the most natural generalization of MPUs defined for qudits [33] would not ade-
quately capture the Majorana-shift fQCA. Furthermore, a natural question is whether
the fermionic index can be extracted from the local tensors of fermionic MPOs defining
the associated unitary operators, by analogy with the case of qudit MPUs [33]. These
issues will be addressed in the rest of this work.

3. Basics of matrix product states

In this section, we recall some basic definitions and results of MPSs, following the
treatment in [54].

We consider a Hilbert space Hd of dimension d, with an orthonormal basis denoted
by {|i〉}d−1

i=0 . We introduce the tensor A, which is defined by its elements An
α,β , with

n = 0, . . . , d− 1, and α, β = 0, . . . ,D − 1. We define n and α, β as the physical and bond
(auxiliary) indices, respectively. The tensor A defines a family of translation-invariant
states |V (N)〉 ∈ H⊗N

d

|V (N)〉 =
d−1∑

n1,...,nN=0

cn1,...,nN
|n1〉 ⊗ · · · ⊗ |nN 〉, (1)

https://doi.org/10.1088/1742-5468/abd30f 6
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where

cn1,...,nN
= tr [An1 . . . AnN ] , (2)

and where An denotes the D ×D matrix with elements An
α,β . We call |V (N )〉 the MPS

generated by the tensor A.
MPSs admit a convenient graphical representation [54], as we now briefly recall.

First, the individual tensors are denoted by

(3)

where the horizontal (vertical) lines represent the bond (physical) indices. The MPS

|V (N )〉 is then represented as

(4)

Here, the lines that join different tensors indicate that the corresponding indices are
contracted, while the vertical lines represent the physical indices. The curvy lines at the
end indicate that the last and first tensors are also contracted, mimicking the presence
of the trace in equation (2).

An important object in the theory of MPSs is the so-called transfer matrix (TM),
which can be defined as

E =
d−1∑
n=0

An ⊗ Ān, (5)

and which admits the graphical representation

(6)

In equation (5), Ān is the complex-conjugated matrix of An, and corresponds to a black
circle in equation (6). In the following, we will let λE denote the spectral radius of E,
i.e. its eigenvalue with the largest absolute value.

A fundamental result is that MPSs of the form (2) can be brought into a CF [3,
54], which is particularly important when comparing the MPSs generated by different
tensors. We recall here the precise definition, which we will refer to later on.

Definition 3.1. We say that a tensor A generating an MPS is in CF if: (i) the matrices
are of the form An = ⊕r

k=1μkA
n
k , where μk ∈ C and the spectral radius of the TM, Ek,

associated with An
k is equal to one; (ii) for all k, there exists no projector, Pk, such that

An
kPk = PkA

n
kPk for all n.

https://doi.org/10.1088/1742-5468/abd30f 7
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Loosely speaking, this means that the matrices An are written in a block-diagonal
form, and that the blocks cannot be decomposed into smaller ones. It is also useful to
recall the following

Definition 3.2. We say that a tensor A generating an MPS is irreducible if there exists
no projector, P , such that AnP = PAnP for all n. Furthermore, we say that A is normal
if it is irreducible and its associated TM has a unique eigenvalue of magnitude (and
value) equal to its spectral radius, which is equal to one.

Given two tensors A and B, it is straightforward to show that they generate the
same MPS if they are related to one another by a gauge transformation, namely
Bn = XAnX−1, for some invertible D ×D matrix, X. One can also see that for a normal
tensor it is always possible to find a gauge transformation defining a new normal tensor
that is in canonical form II (CFII).

Definition 3.3. Let A be a normal tensor, and Φ and ρ be the left and right eigenvectors
of E corresponding to the eigenvalue 1. We say that A is in CFII if

(Φ| =
D−1∑
n=0

(n,n| , (7a)

|ρ) =
D−1∑
n=0

ρn |n,n) , (7b)

where ρn > 0 and (Φ|ρ) = 1.

Note that in equation (7) we have used round brackets, to indicate that the bra and
ket states correspond to the auxiliary space. Note also that Φ and ρ can be considered
as D ×D matrices or as vectors in HD ⊗HD, and by definition, we have the graphical
equations

(8)

(9)

where a rectangle denotes the tensor corresponding to ρ (while Φ corresponds to the
identity operator, simply denoted by a continuous line).

When discussing notions of locality and renormalization procedures, a natural con-
cept is that of blocking . In essence, this consists of grouping k neighboring sites to form
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a single one, which we can associate with a blocked tensor Ak. This is formalized in the
following.

Definition 3.4. Given the tensor A generating an MPS, we denote the blocked tensor
by Ak, which is defined by the graphical representation

(10)

Note that the physical and auxiliary dimensions of the blocked tensor Ak are dk = dk

and D, respectively. We recall that the blocking procedure is important because, after
blocking, for any tensor B it is always possible to obtain another one, A, in CF that
generates the same MPS [54].

While the above definitions have been given for MPSs, they can be straightforwardly
extended to MPOs. To this end, we recall that an MPO M (N ) admits the graphical
representation

(11)

where the lower and upper vertical lines correspond to the input and output qudits,
respectively. Any MPO can then be trivially mapped onto an MPS by grouping both
input and output lines to form a single physical index (corresponding to a local space
with dimension d2), with a graphical identification

(12)

In this way, the definitions of TM, CF, and blocking can also be naturally extended to
MPOs.

3.1. MPUs in qudit systems

Let us consider a tensor U that generates a family of MPOs U (N ) of the form in
equation (11), such that U (N ) is a unitary operator for all non-negative integers N .

The resulting MPOs U (N ) are called matrix product unitaries, and were investigated in
[33, 34]. In preparation for the fermionic case, we now review some of their properties,
and present the main results derived in [33].

First, by viewing U as a tensor generating an MPS as in equation (12), we can define
the normalized TM

(13)

which plays an important role in the analysis of MPUs. In particular, the starting point
of [33] is the observation that EU has just one nonzero eigenvalue, which is equal to
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one, and that U/
√
d is a normal tensor. This follows simply from the unitarity condition

U (N)†U (N) = �, and

1

dN
tr
[
U (N)†U (N)

]
= tr

[
EN

U
]
. (14)

Using this observation, it was possible to prove that for any tensor U generating an
MPU, there exists some k � D4 such that the blocked tensor Uk is simple. In general,
we define a tensor U to be simple, if two tensors a, b exist, such that

(15a)

(15b)

It is also clear, using a graphical proof, that any simple tensor generates an MPU,
making the characterization of [33] complete.

The simplicity condition also made it possible to derive a standard form for the tensor
U , by means of which a fundamental theorem of MPUs was proven in [33]. The latter
stated that two tensors U and V generate the same MPU for all non-negative integers
N iff they have the same standard form (up to single-site gauge transformations).

Importantly, a simple corollary of these results is that for qudit systems, any MPU
(with finite bond dimensions) is a 1D quantum cellular automaton, and vice versa. This

means that any MPU U (N ) maps any operator O supported on a finite region into
another one, U (N)†OU (N), which is also supported on a finite spatial region. Such an
identification between MPUs and QCA is based on the classification of [43], according
to which any given quantum cellular automaton can be represented by a finite number
of layers of finite-depth circuits and translations.

The aim of the rest of this work is to explore if and how such a picture generalizes
to fermionic 1D systems. As we have already anticipated, significant differences emerge,
as we lay out in the following. We begin our study in the next section, by introducing
fermionic 1D TNs.

4. Fermionic tensor networks

We consider a chain of N sites, and in each site we have nF fermionic modes with
(physical) annihilation operators ax,j , x = 1, . . . ,N , j = 1, . . . ,nF. The creation and
annihilation operators satisfy canonical anticommutation relations

{ax,j, a†y,k} = δx,yδj,k, (16a)

{ax,j, ay,k} = 0. (16b)
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In the following, we denote the physical vacuum by |Ω〉, with ax,j |Ω〉 = 0, while we
introduce the short-hand notation(

a†x
)n

=
(
a†x,1

)n(1)

. . .
(
a†x,nF

)n(nF)

, (17)

where (n(1), . . . ,n(nF)) is the binary decomposition of n. We can define a fermionic parity
operator P satisfying P|Ω〉 = |Ω〉, and

P
(
a†x,1

)n(1)

. . .
(
a†x,nF

)n(nF)

= (−1)|n|
(
a†x,1

)n(1)

. . .
(
a†x,nF

)n(nF)P (18)

where

|n| =
nF∑
j=1

n(i) (mod 2). (19)

Using the above notations, any state in the system can be represented as

|Ψ〉 =
d−1∑

n1,...,nN=0

cn1,...,nN
a†n1
1 . . . a†nN

N |Ω〉, (20)

where d = 2nF. In the following, we will always work with states that have well-defined
parity, namely

P|Ψ〉 = (−1)|Ψ||Ψ〉. (21)

This implies that cn1,...,nN
is zero unless

∑N
j=1 |nj| ≡ |Ψ| (mod 2).

Before discussing fMPSs, it is useful to recall that, in the case of fermions, there are
two natural types of boundary condition to be considered: periodic and antiperiodic.
Accordingly, one can define two types of translation operator. If PBCs are assumed, we
define T P by its action

TP|Ω〉 = |Ω〉, (22a)

TPa
†
x,jT

−1
P = a†x+1,j , 1 � x � N − 1, (22b)

TPa
†
N ,jT

−1
P = a†1,j , (22c)

while for ABCs, we define TAP by

TAP|Ω〉 = |Ω〉, (23a)

TAPa
†
x,jT

−1
AP = a†x+1,j, 1 � x � N − 1, (23b)

TAPa
†
N ,jT

−1
AP = −a†1,j . (23c)

Using equations (22) and (23), one can easily find a condition of the coefficients cn1,...,nN

for which the state (20) is invariant under T P or TAP. Specifically

TP|Ψ〉 = |Ψ〉 ⇔ cn1,...,nN
= (−1)|n1|(|Ψ|+1)cn2,...,nN ,n1

,

TAP|Ψ〉 = |Ψ〉 ⇔ cn1,...,nN
= (−1)|n1‖Ψ|cn2,...,nN ,n1

.
(24)
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We stress that both types of boundary condition appear frequently when working
with fermionic systems. For instance, using equation (24), one can easily see that a state
obtained by occupying each fermionic mode (with nF = 1) is invariant under translations
with PBCs or ABCs, depending on whether N is odd or even. Accordingly, both types
of boundary condition will be studied in this work.

4.1. Fermionic MPSs

Up until now, several equivalent formulations have been developed for fermionic TNs
[51–53, 55–60]. Here, we will focus on the fiducial-state formalism introduced in [51, 52],
whose appeal lies mainly in its physically motivated construction. In the second, more
technical part of the paper, however, we will also make use of the formalism of graded
TNs recently introduced in [53, 59] (see also [61, 62]), which is reviewed in appendix B.

For qudit systems, one can think of MPSs (or, more generally of projected-entangled-
pair states (PEPS)) as being obtained from a sequence of local projections onto maxi-
mally entangled pairs of auxiliary qudits [63]. The idea described in [51, 52] is that the
same construction can be carried out for fermionic systems, provided that the auxiliary
d.o.f. are taken to be fermionic particles themselves. As a technical point, it is conve-
nient to choose auxiliary particles such as Majorana fermions. Furthermore, one needs
to enforce a given fermionic parity on the local projectors, in order to ensure that the
fMPS itself has well-defined parity.

A detailed discussion of this construction is provided in appendix A, while here
we only report the final result for the coefficients in equation (20). The explicit form
of the latter depend on whether PBCs or ABCs are assumed. In particular, we have,
respectively,

cn1,...,nN
= tr (ZAn1 . . . AnN ) , (PBC) (25)

cn1,...,nN
= tr (An1 . . . AnN ) (APB) (26)

Here we have introduced the parity operator Z

Z =

(
�e 0
0 −�o

)
, (27)

where �e, �o are identity operators acting on the even and odd subspaces of dimensionsDe

and Do, with De = Do = D/2, and D = 2NF, for some positive integer NF. Furthermore,
in order to ensure that the fMPS has well-defined parity, we require that the matrices
An satisfy5

ZAn = (−1)|n|AnZ, (28)

where |n| is defined in equation (19). In the following, we will thus define a periodic
(antiperiodic) fMPS to be a state taking the form of (20), where the coefficients can
be cast as in equation (25) (equation (26)), and where the local tensors satisfy (28).

5We note that equation (28) implies that A is an even tensor. One could also consider fMPSs built out of odd local tensors, which
would lead to states with well-defined parity for each non-negative integer N . However, choosing A to be even is not a restriction,
since blocking an odd tensor twice yields an even one.
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Note that it is straightforward to verify that the coefficients (25) and (26) satisfy
equation (24).

The parity operator, Z↪ allows us to assign a Z2-grading structure to the auxil-
iary space CD, which simply means that HD can be divided into two complementary
subspaces of even and odd states. Here we define a state to be even or odd if it is
a superposition of Z-eigenstates with eigenvalues +1 or −1, respectively. If |α) is an
eigenstate of Z, we will denote the corresponding eigenvalue by (−1)|α|, with |α| = 0
(|α| = 1) for even (odd) states, namely

Z |α) = (−1)|α| |α) . (29a)

The observations above also allow us to define the parity of tensors acting on both the
auxiliary and physical spaces in a natural way. In particular, let An

α,β �= 0 be an element
of the tensor A. We can then define the parity of A as

|A| = |n|+ |α|+ |β| ( mod 2). (30)

Clearly, this definition only makes sense if it is independent from the choice of n, α and
β. This is the case if An satisfies equation (28), which in fact implies that A is an even
tensor.

Given the parity operator (27), it is possible to write down the general form of the
matrices An satisfying equation (28). In particular, it is easy to show that, in the basis
where Z is written as in equation (27), An must have the following block structure

An =

(
Bn 0
0 Cn

)
, |n| = 0, (31)

An =

(
0 Bn

Cn 0

)
, |n| = 1, (32)

where Bn, Cn are arbitrary matrices.
So far, we have considered D = 2NF, d = 2nF. However, this can be naturally relaxed

as the tensor A can have many zeros and thus we can compress its dimensions. This
happens when for some values of n, An

α,β = 0 for all α, β or, alternatively, for some

α, An
α,β = An

β,α = 0 for all n and β. In this case we can restrict ourselves to subspaces

of C
d and C

D with dimensions d′ and D′, respectively. We can also call Z ′ and P′

the projection of Z and P onto these subspaces: importantly, they remain diagonal
with diagonal elements ±1, meaning that the reduced spaces maintain the Z2-grading
structure. In the following, we will consider that this is the case and drop the primes in
the notation, so that d and D can take arbitrary values.

It is straightforward to also employ the fiducial-state formalism to treat fMPOs. In
general, any fermionic operator U (N ) can be written in the form

U (N) =
d−1∑

n1,...,nN=0
m1,...,mN=0

cn1,...,nN
m1,...,mN

fn1,m1
1 . . . fnN ,mN

N . (33)
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Here, we introduce the operators fn,m
j , defined by fn,m

j |Ω〉 = δm,0(a
n
j )

†|Ω〉, and

fn,m
j

(
a†k

)p

= (−1)(|n|+|m|)|p|
(
a†k

)p

fn,m
j , j �= k, (34a)

fn,m
j

(
a†j

)p

= δm,p

(
a†j

)n

, (34b)

where (a†j)
n was defined in equation (17). Note that from these equations it also follows

that [
fn,m
j

]†
= fm,n

j . (35)

For example, in the case nF = 1, we have f 0,0
j = aja

†
j, f

0,1
j = aj, f

1,0
j = a†j and f 1,1

j = a†jaj.
Analogously to fMPSs, fMPOs are defined by a specific form for the coefficients

cn1,...,nN
m1,...,mN

, which is obtained by following the construction outlined in appendix A. Once
again, we have to distinguish between PBCs and ABCs, for which we obtain, respectively,

cn1,...,nN
m1,...,mN

= tr (ZUn1,m1 . . . UnN ,mN ) , (PBC) (36)

cn1,...,nN
m1,...,mN

= tr (Un1,m1 . . . UnN ,mN ) (ABC) (37)

Here, Z is defined as in equation (27), while Un,m are D ×D matrices which must satisfy

ZUn,m = (−1)|n|+|m|Un,mZ. (38)

It is important to note that elementary operations with fMPSs and fMPOs, such
as blocking or composition, in general result in additional signs for the corresponding
tensors. Since these signs are at the root of some qualitative differences arising in the
case of fMPUs, we discuss them in some detail in appendix A.2.

5. Fermionic matrix product unitaries

We now finally introduce the fMPUs. There are two main results in this section: the
construction of a translation-invariant fMPO which is unitary but not a QCA (cf
section 5.1), and the derivation of the TN form of the Majorana-shift operator for
open and PBCs, cf equations (52), and (54).

Based on the formalism of fermionic TNs, we can formulate a very natural generaliza-
tion of the definition of MPUs (presented in section 3.1) to fermionic systems. Namely,

we call U (N ) an fMPU if is it an fMPO and
[
U (N)

]†
U (N) = � for all N � 1. Furthermore,

as opposed to the case for qudits, it makes sense to define fMPUs both for PBCs and
ABCs, corresponding to the coefficients (36) and (37), respectively.

Arguably, one of the most important questions regarding fMPUs is whether they are
all locality-preserving. We find that this is not the case for periodic fMPUs, in stark
contrast with the case of qudits. We show this in the next subsection, by providing an
explicit example of such a non-locality-preserving fMPU. Technically, this qualitative
difference between fermions and qudits arises because of the presence of the operator Z
in the trace in equation (36), which makes it possible for the TM of periodic fMPUs to
display a nontrivial spectrum, cf also equation (A33).
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5.1. Non-locality-preserving fMPUs

We now provide an explicit example of a periodic fMPU which is not locality-
preserving. Once again, we use the fiducial-state formalism, but our example can be
straightforwardly translated into the language of graded TNs, cf appendix B.

Let us consider a chain of N sites, with two fermionic modes per site, nF = 2, cor-
responding to the annihilation operators ax,1, ax,2, x = 1, . . . ,N . Let U (N ) be a periodic
fMPO of the form given in (33), with the coefficients given in equation (36). In order to
construct our example, we choose D = 3, so that

Z =

⎛⎝+1 0 0
0 +1 0
0 0 −1

⎞⎠ . (39)

We stress, once again, that the bond-dimension can be taken to be a power of two, by
simply appending arbitrarily many lines and columns filled with zeros. We now define
the local tensor U , by specifying its non-zero matrix elements Um,n

α,β , which are

U 0,0
α,β = δα,β , α, β = 0, 1, 2, (40)

Un,m
α,β = δα,n−1δβ,m−1, α, β = 0, 1, 2, n,m = 1, 2, 3. (41)

For completeness, we also tabulate the explicit matrices Un,m in appendix C.1, from
which it is possible to verify that they satisfy equation (38), and thus generate a legit-

imate periodic fMPO. In the following, we prove the unitarity of U (N ), and analyze its
properties.

5.1.1. Spectral properties of the TM. First of all, it is interesting to note that the
spectrum of the TM (defined in equation (A32) for fMPOs), denoted by SE, is nontrivial.
In particular, a direct calculation gives SE = {λj}8j=0, with λ0 = 1 and λj = 1/4, for
j = 1, . . . , 8. This is already a point of departure with respect to the case of qudits,
where the TM of an MPU has a single nonzero eigenvalue, which is equal to one. By
further inspection, one can see that the eigenvector of E associated with λ0 = 1 is also
an eigenstate of Z ⊗ Z with eigenvalue +1. Analogously, one can see that the rest of
the eigenvectors associated with λj, j > 0, are also eigenstates of Z ⊗ Z: four of them
have the eigenvalue +1, and the other four have the eigenvalue −1. Thus, we obtain
from equation (A33), (1/dN ) trU (N )†U (N ) = 1 + (4/4N)− (4/4N) = 1, as should be the
case for a unitary operator.

5.1.2. Proof of unitarity. Next, we show that U (N ) is unitary. One could do this by
checking that the fMPO generated by the tensor U

(N) defined in equation (A31) is an

identity. Here, we follow a different strategy, which is based on the action of U (N ) on basis
states. In particular, from the explicit form of the local tensors, we show in appendix
C.1 that

U (N)|Ω〉 = |Ω〉, (42)

and, ∀P = 1, . . . ,N , {j�}P�=1 ∈ {1, 2, 3}P ,

U (N)aj1†i1
aj2†i2

. . . ajP †iP
|Ω〉 = (−1)γajP †i1

aj1†i2
. . . a

jP−1†
iP

|Ω〉. (43)
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Here {ik}Pk=1 is a strictly increasing sequence of integers, with 1 � ik � N , which label
the site at which the creation operators act. Furthermore, (−1)γ is a sign which depends
on the specific state. Note that in equation (43), j� takes a value in the set {1, 2, 3},
namely j� �= 0, and that U (N ) does not act as a translation operator, but only shifts the
creation operators at fixed positions. From equations (42) and (43), it is clear that U (N )

maps two orthonormal bases one onto another, and it is thus unitary.

5.1.3. Proof of non-locality. Finally, we explicitly prove that the operator U (N ) is not
locality-preserving, i.e. there exists a local operator Oj , acting only on site j, such
that the support of U †OjU is not contained in any finite region. In order to see this,

consider the state |Ψj,k〉 = a†j,1a
†
k,1|Ω〉 and choose the operator Oj = a†j,2aj,1. Then, using

the explicit action in equation (43), we have

U †OjU |Ψj,k〉 = (−1)γU †Oj|Ψj,k〉

= (−1)γU †a†j,2a
†
k,1|Ω〉 = (−1)γ

′
a†j,1a

†
k,2|Ω〉, (44)

where we chose j �= k and where (−1)γ, (−1)γ ′ are signs that are irrelevant for our
discussion. We see that the operator U †OjU induces a modification of the mode at site
k, which can be taken arbitrarily far away from j, and thus it is not localized in the
neighborhood of site j.

In conclusion, we have exhibited an example of an fMPU with PBCs which is not
locality-preserving. The choice of PBCs was important: indeed, as we discuss in the next
section, fMPUs with ABCs are necessarily QCA.

5.2. The Majorana-shift operator

The results of the previous subsection show that, in general, fMPUs are not QCA. On the
other hand, it is also true that fMPUs with coefficients in the form of either equation (36)
or equation (37) do not exhaust all the possible QCA (even after blocking), once again
in stark contrast to the case of qudits. This was already mentioned in section 2, where
we anticipated the special role played by the translation of Majorana modes [45, 46].
We review it explicitly in this subsection, where we also derive the corresponding TN
representation.

Let us consider a chain of N sites, with one fermionic mode per site, nF = 1, associ-
ated with the fermionic annihilation operators an. We can introduce the 2N Majorana
modes γn by

an =
1

2
(γ2n−1 + iγ2n) , (45)

a†n =
1

2
(γ2n−1 − iγ2n) . (46)

We now consider two automorphisms of the operator algebra αP, αAP, defined by the
following action

αP(γj) = γj+1, j = 1, . . .2N − 1, (47)

αP(γ2N) = γ1, (48)
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and

αAP(γj) = γj+1, j = 1, . . .2N − 1, (49)

αAP(γ2N) = −γ1. (50)

Clearly, αP and αAP implement an fQCA, which we will refer to as the Majorana shift
(or translation).

Importantly, both αP and αAP can be represented by a unitary operator.

Namely there exist M
(N)
P , M

(N)
AP , such that M

(N)
P M

(N)†
P = M

(N)
AP M

(N)†
AP = �, and αP(O) =

M
(N)
P OM

(N)†
P , αAP(O) = M

(N)
AP OM

(N)†
AP , for all operators O. Let us focus, for instance, on

the case of ABCs. After a bit of guesswork, it is not difficult to arrive at the following
explicit expression for the operator MAP

6

M
(N)
AP =

(1− γ1γ2)√
2

(1− γ2γ3)√
2

. . .
(1− γ2N−1γ2N)√

2
. (51)

Note that the order of the factors is important here, since they do not all commute with

one another. Starting from equation (51), one can rewrite M
(N)
AP as in equation (33),

where the coefficients read

cn1,...,nN
m1,...,mN

=
1√
2
tr (Mn1,m1 . . .MnN ,mN ) (ABC). (52)

Here the trace is over a 2D space, and we introduced

Mn,m =
1√
2
imσn+m

x , n,m = 0, 1, (53)

in terms of the Pauli matrix σx. A proof of equation (52) is reported in appendix C.2.
Note that the matrices Mn,m satisfy (28), with Z = diag(1,−1), so that (52) admits a
fiducial-state representation. Note also that the local tensor of the inverse shift can be
obtained using equation (A21).

In order to obtain MP, one could be tempted to simply insert the operator Z =
diag(1,−1) into the trace in equation (52). However, due to the specific form of the
tensors Mn,m, the resulting coefficients are all vanishing. In fact, as we show in appendix
C.2, it turns out that a unitary operator with PBCs is obtained if the matrix X = σx is

inserted instead. In particular, the unitary operator M
(N)
P can be represented as shown

in equation (33), where the coefficients are given by

cn1,...,nN
m1,...,mN

=
1√
2
tr
(
XM̃n1,m1 . . . M̃nN ,mN

)
(PBC), (54)

with

M̃n,m =
1√
2
(−i)mσn+m

x , n,m = 0, 1. (55)

6 Interestingly, in [46] it was shown that M
(N )
AP can also be written as a Gaussian operator, namely as the exponential of an expression

which is quadratic in the Majorana modes. This provides an alternative representation to the one given here in terms of fermionic
TNs. We also note that an equation similar to (51) has appeared recently in [64] for PBCs.
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Crucially, viewing the auxiliary space as a graded space with parity Z = diag(1,−1),
the operator X is odd, namely |X| = 1. Furthermore, [X,Mn,m] = 0 for all n, m. Thus,
using equation (24), we immediately see that MP is indeed invariant under translation
with PBCs.

Although they appear different, a legitimate question is whether the coefficients (52)
and (54) can be cast in the forms (36) and (37). In fact, this is not the case, and for
PBCs this can be seen very easily. Indeed, the presence of X in the trace (54) implies

that M
(N)
P is an odd operator (namely, it maps even states into odd ones, and vice

versa), while any fMPU defined by (36) is necessarily even. The same conclusion holds
for ABCs, as can be seen by an inspection of the corresponding CF, discussed in the
next section.

Finally, it is instructive to apply a JW transformation to M
(N)
AP . In fact, starting

from equation (51) and using standard techniques, it is possible to rewrite it as a qubit
(d = 2) MPO with open boundaries. A crucial point, however, is that the bulk tensors
of this MPO do not generate an MPU when PBCs are imposed. This example shows
that fQCA cannot be simply understood in terms of periodic MPUs on qudit chains.

6. Generalized fermionic MPUs

In this section, we present our second main result; i.e. we introduce a class of ‘generalized’
fMPUs (section 6.1), and identify a condition on the corresponding local tensors such
that any representative of this family is an fQCA and vice versa (sections 6.2, and 6.3).

The main motivation for generalized fMPUs is to have a class of fMPOs that also
includes the Majorana-shift operators (52) and (54). A natural way to do this is to allow
for an additional operator acting on the auxiliary space, such that it has well-defined
parity and that it implements the correct boundary conditions. More precisely, we say
that U (N ) is a generalized fMPU if it is unitary for N � 1, and can be written as in (33),
with coefficients of the form

cn1,...,nN
m1,...,mN

= tr (SUn1,m1 . . . UnN ,mN ) . (56)

As usual, we require that all the local tensors have well-defined parity. Namely, the
trace in equation (56) is over a graded space with the parity operator, Z defined in
equation (27), and where the matrices Un,m satisfy equation (28). Furthermore, the
operator S must also have well-defined parity, and satisfy particular commutation rela-
tions with Un,m. Since these depend on the boundary conditions chosen, it is convenient
to separate the periodic and antiperiodic cases. For PBCs, we allow for S to be even or
odd, but we require that

SUn,m = (−1)(|S|+1)(|n|+|m|)Un,mS (PBC). (57)

On the other hand, it can be shown, using equation (24), that there are no odd states
or operators that are invariant under translations with ABCs. Therefore, in the latter
case we require that S is even, and satisfies

[S,Um,n] = 0, |S| = 0 (ABC). (58)

https://doi.org/10.1088/1742-5468/abd30f 18

https://doi.org/10.1088/1742-5468/abd30f


J.S
tat.

M
ech.

(2021)
013107

Fermionic quantum cellular automata and generalized matrix-product unitaries

The conditions imposed above constitute the minimal requirement in order to have
an fMPO with well-defined parity that is invariant under translations with PBCs and
ABCs, respectively.

It is immediately visible that the Majorana-shift operators are indeed generalized
fMPUs. In particular, for PBCs and ABCs, we see from equations (52) and (54) that
S = X/

√
2 and S = 112/

√
2, respectively. On the other hand, we know from section 5.1

that not all generalized fMPUs are QCA, so a natural question is to ask which conditions
of S and Un,m guarantee that U (N ) is locality-preserving.

To address this problem, we need to introduce some technical definitions that gener-
alize those presented in section 3 for irreducible and normal tensors. These are inspired
by the work described in [53], where it was pointed out that the notion of an irreducible
tensor should be modified in the fermionic case, due to the requirement that all the
tensors are even. We begin with the following

Definition 6.1. Let V be a graded Hilbert space, with a parity operator Z, and W ⊂ V
with an associated orthogonal projector PW . We say that W is a graded subspace if
[PW ,Z] = 0. Accordingly, an even tensor A is said to be graded irreducible (GI) if there
is no proper graded subspace which is left invariant by all the matrices An.

Clearly, if A is GI, there are two possibilities: either there is no invariant subspace, or
there is an invariant subspace that is non-graded. In the latter case, we prove in appendix
D (see also [53]) that there exists a quite precise characterization of the matrices An,
which, up to an even gauge transformation, takes the form

An = (σx)|n| ⊗Bn, (59)

where Bn are D/2×D/2 matrices, and where the parity operator is Z = σz ⊗ �. Note
that in this case, the auxiliary space splits into even and odd subspaces with the same
dimensions.

Next, we generalize the notion of normal tensors and CF, which will be of great
importance for the classification of fMPUs.

Definition 6.2. We say that an even tensor A is a graded normal tensor (GNT) if (i):
there is no non-trivial graded invariant subspace; (ii) the corresponding TM has either
exactly one or two eigenvalues of magnitude and value equal to its spectral radius which
is equal to 1. In the first case we say that the GNT is non-degenerate, while in the
second case we say that it is degenerate.

Definition 6.3. We say that an even tensor A generating an fMPS is in GCF if: (i):
the matrices are of the form An = ⊕r

k=1μkA
n
k , where μk ∈ C and the spectral radius of

the TM Ek associated with An
k is equal to one; (ii): the parity operator Z has the same

block structure as An and, for all k, Ak is a GNT.

Here, it is useful to mention that for ABCs, we can always change the sign of the
parity operator, Z↪ in the auxiliary space without modifying the state. This is because Z
does not enter into the trace defining the fMPS coefficients (26) and, if ZAi = (−1)|i|AiZ,

we also have Z̃Ai = (−1)|i|AiZ̃ with Z̃ = −Z. Furthermore, if A is in GCF, we have the
freedom to changing the sign of the parity for each graded normal block independently,
without modifying the state.
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The GCF is discussed in detail in appendix D, where it is shown that, in the case
of ABCs, it is possible to derive a series of results that nontrivially generalize those for
the CF of MPSs. In particular, we prove the following fundamental theorems.

Theorem 6.4. After blocking, for any even tensor, A, it is always possible to obtain
another even tensor, AGCF, in GCF and generating the same fMPS with ABCs.

Theorem 6.5. Consider two (even) tensors A and B in GCF, with diagonal parity
operators in the auxiliary space Za, Zb. If they generate the same fMPS with ABCs
for all N then: (i) the dimensions of the matrices Ai and Bi coincide; (ii) there exists
an invertible matrix X, and a permutation matrix Π such that Ai = XΠBiΠ−1X−1, and
[X,Za] = 0.

6.1. Type-I and type-II generalized fMPUs

The definition of GNTs gives us a hint of the reason why fMPUs of the form (36) and (37)
are not enough to capture all fQCA. In the case of PBCs, for instance, one can see from
equation (59) that a degenerate normal tensor yields vanishing coefficients when plugged
into equation (36). On the other hand, the additional operator S in the definition (56)
allows us to ‘close the trace’ in such a way that degenerate normal tensors give non-
vanishing contributions. In fact, this is exactly what happens for the Majorana-shift
operator (54).

Motivated by this discussion, we define two special classes of generalized fMPUs.
These provide a ‘minimal’ subset of the operators (56) which allow for both degenerate

and non-degenerate normal tensors. In particular, for PBCs, we say that U(N) is a
generalized fMPU of the first kind (or type I) if it can be cast in the form (56) with
S = eiαZ, while it is of the second kind (or type II) if

S =
eiα√
2
σx ⊗ � and Um,n = (σx)|n|+|m| ⊗Nn,m, (60)

for α ∈ R and arbitrary Nn,m, and with a parity operator Z = σz ⊗ �. Analogously, for
ABCs, we say that U(N) is a generalized fMPU of the first kind if it can be cast in the
form (56) with S = eiα�, while it is of the second kind if

S =
eiα√
2
� and Um,n = (σx)

|n|+|m| ⊗Nn,m, (61)

for α ∈ R and arbitrary Nn,m, and with a parity operator Z = σz ⊗ �. We note that, for
fMPUs of the second kind, the boundary tensors bear a normalization constant 1/

√
2,

which takes into account the fact that degenerate normal tensors have two eigenvalues
equal to one.

We are now in a position to address the relation between fMPUs and QCA. At
this point, it is convenient to distinguish between PBCs and ABCs, since the emerging
picture is quite different.
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6.2. FMPUs and QCA: antiperiodic boundary conditions

We begin our discussion with the case of ABCs, where a quite strong statement holds:
namely, all type-I and type-II fMPUs introduced in section 6.1 are 1D fQCA and vice
versa. This section is devoted to establishing this equivalence. For clarity, we will report
here only the main statements, while we refer the reader to appendix E for all the
technical proofs. As a first step, it is useful to characterize the GCF for tensors generating
type-I and type-II fMPUs.

Proposition 6.6. Let U be in GCF, and suppose U generates a type-I (type-II) fMPU

U(N) with ABCs. Then, U/
√
d is graded normal non-degenerate (degenerate).

We report the proof in appendix E. This proposition is a direct generalization of
the one given in [33] for MPUs in qudit systems. In fact, one could push the analogy
further, and show that, after blocking, any tensor U generating a type-I or type-II fMPU
is simple, where one also needs to generalize the notion of simplicity as follows:

Definition 6.7. We say that an even tensor U with a TM EU is simple if

(62a)

(62b)

and E2
U = EU , where we denote the TM EU by a square, and where we use the graphical

notation explained in appendix A.2 for fermionic TNs.

Note that for type-I fMPUs, this condition coincides with equation (15) because,
after blocking, the TM reads E = |r〉〈l|, where |l〉, |r〉 are the left and right eigenvectors
associated with the eigenvalue 1. However, for type-II fMPUs the simplicity condition
is different, because the TM has two eigenvectors associated with 1. In appendix E, we
prove the following.

Proposition 6.8. Suppose that the tensor U generates a type-I (type-II) fMPU U(N)

with ABCs. Then, there exists a k � D4 such that Uk is simple (according to
definition 6.7).

Given a tensor U , the simplicity condition VI.7 clearly implies that U(N) is locality-
preserving. In order to establish an equivalence between fMPUs and fQCA, it remains
to be shown that the latter can always be represented as a type-I or type-II fMPU. This
is proved in appendix E, and we arrive at the main result of this section.

Proposition 6.9. Up to appending inert ancillary fermionic d.o.f., any type-I or type-II
fMPU with ABCs is a 1D fermionic quantum cellular automaton and vice versa.
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6.3. FMPUs and QCA: periodic boundary conditions

As we have seen in section 5.1, fMPUs with PBCs are not necessarily locality-preserving
and in this case, we need to impose further conditions on the tensors. An important
point is that any tensor U (in GCF) generating a type-I or type-II fMPU with ABCs
also generates one in the periodic case. Indeed, let U be a non-degenerate normal tensor

generating a type-I fMPU U
(N)
A with ABCs. Then, by blocking a finite number of times,

we can assume that it is simple. Let U
(N)
P be the fMPU with PBCs, obtained by inserting

the operator Z into the trace. In order to show that U
(N)
P is unitary, we can apply the

simplicity condition to U
(N)†
P U

(N)
P , and obtain

(63)

where we denote the parity operator, Z, by a small black box. Now, because each tensor
is even, and Z2 = �, we have

(64)

Finally, as is shown in appendix E, for a normal non-degenerate tensor, the right
eigenvector associated with the eigenvalue 1 of the TM E is even, which implies

(Z ⊗ Z)EU = EU . Thus, since Z2 = �, we have U
(N)†
P U

(N)
P = �. In a similar way, one can

show that if U is a normal degenerate tensor generating a type-II fMPU with ABCs,
then it also generates a type-II fMPU in the periodic case. To see this, one has to
use the fact that X = σx ⊗ � commutes with Ui,j = (σx)|i|+|j| ⊗Ni,j for all i, j, and that
(X ⊗X)EU = EU , which follows from the properties of the TM EU associated with a
graded normal degenerate tensor, cf appendix E.

The above discussion, together with the results of the previous subsection, tells us
that any fQCA can be represented as an fMPU with PBCs. It also allows us to identify
which properties we need to require in order for periodic fMPUs to be locality-preserving.
In particular, if U(N) is a type-I fMPU, then we require that the corresponding tensor
U is simple, and that (Z ⊗ Z)EU = EU , while if U(N) is a type-II fMPU, we require
that (X ⊗X)EU = EU (in addition to the simplicity condition). With these additional
constraints, we finally have an identification between fMPUs and fQCA in the case of
PBCs. We can summarize the results of this section in the following theorem.

Theorem 6.10. Up to appending an inert ancillary fermionic d.o.f., any fQCA can be
represented as an fMPU of type I or type II with either PBCs or ABCs. Furthermore

(a) any type-I or type-II fMPU with ABC is necessarily a fermionic quantum cellular
automaton;

(b) any type-I fMPU with PBC is a fermionic quantum cellular automaton if it
is generated by a simple tensor U , and the TM EU satisfies (Z ⊗ Z)EU = EU ,
tr(EU) = 1;
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(c) any type-II fMPU with PBC is a fermionic quantum cellular automaton if it
is generated by a simple tensor U , and the TM EU satisfies (X ⊗X)EU = EU ,
tr(EU) = 2.

Note that the fMPU discussed in section 5.1 is not simple, and, accordingly, is not
locality-preserving.

7. Index theory for generalized fMPUs

In this section, we finally discuss how to extract an index to classify the locality-
preserving fMPUs defined in section 6.1, thus recovering the results recently derived
in [46], where the GNVW index [43] was generalized to the case of fermionic systems.
Our logic is very similar to the one employed in [33], but there are non-trivial practical
differences, due once again to the fermionic nature of the elementary d.o.f.

First of all, we recall the definition of the index for qudits. Let U be a tensor gener-
ating an MPU, and we denote the corresponding elements using Un,m

α,β . One can define

two maps M1,2 :C
d ⊗ C

D → C
d ⊗ C

D, as

M1 : |m〉 ⊗ |α〉 �→ Un,m
α,β |n〉 ⊗ |β〉, (65a)

M2 : |m〉 ⊗ |β〉 �→ Un,m
α,β |n〉 ⊗ |α〉. (65b)

Denoting the rank of these maps by r, and �, respectively, the MPU index was defined
in [33] as ind = (1/2)[log2(r)− log2(�)], where it was also shown to coincide with the
index first introduced in [43].

Let us now consider the fermionic case. First of all, we need to consider only the class
of locality-preserving fMPUs, namely tensors U that become simple after blocking for a
sufficient number of times. Now, if U is an even tensor, with elements denoted again by
Un,m

α,β , generating a type-I or type-II fMPU, one could be tempted to define the index as
is defined for qudits, in terms of the maps M1,2 introduced above. However, this turns
out not to be a valid definition for the fermionic index. In order to see the reason why
not, consider a depth-two quantum circuit, with an elementary two-site gate defined by

Uj,j+1 =
1√
2
(�− YjXj+1) , (66)

with Yj = −i(aj − a†j), Xj = (aj + a†j). It is straightforward to construct the correspond-
ing fMPU, which is characterized by local and physical dimensions d = D = 2. The
associated tensor U is normal, non-degenerate and simple. However, one can see that
a definition based on equation (65) would yield a non-vanishing index, which is the
wrong result for a quantum circuit (cf [46]). Furthermore, we note that blocking does
not remedy this problem7.

In fact, it turns out that the construction for qudits must be modified by introducing
additional signs in the definition of the maps M1,2. In particular, in the fermionic case,

7 Importantly, we recall that in order to obtain the blocked tensors of fMPOs, one needs to introduce additional signs, as specified
by equation (A37). These signs are crucial, since in general they modify the ranks of the operators defined when discussing the
fermionic index.
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we define

Mf
1 : |m〉 ⊗ |α〉 �→ (−1)|n‖m|Un,m

α,β |n〉 ⊗ |β〉, (67a)

Mf
2 : |m〉 ⊗ |β〉 �→ Un,m

α,β |n〉 ⊗ |α〉. (67b)

where the label f, specifying that we are dealing with the fermionic case, will be omitted
when it does not generate confusion. We are now in a position to define the fermionic
index.

Definition 7.1. Let U be a tensor in GCF generating a type-I or type-II locality-
preserving fMPU. Take k such that the blocked tensor Uk is simple, and define r, � as
the ranks of the maps Mf

1, Mf
2 in equation (67), respectively. The (fermionic) index of

U is defined as indf = (1/2)(log2(r)− log2(�)), while we denote the exponentiated index

using If =
√

r/�.

For clarity, we first state our main result for the fermionic index, which will be proved
in the rest of this technical section.

Theorem 7.1 (fermionic index theorem). Let U be an even tensor in GCF generating
a locality-preserving fMPU. Then:

(a) the exponentiated index If is a rational number for type-I fMPUs, while If =√
2(p/q) for type-II fMPUs, with p, q ∈ N and coprime;

(b) the index does not change by blocking;

(c) the index is additive by tensoring and composition;

(d) the index is robust, i.e. by continuously changing U (and remaining in the class of
locality-preserving fMPUs), one cannot change it;

(e) two tensors have the same index iff they are equivalent.

Here, we have introduced the notion of equivalence, which will be defined in a precise
way later on. Loosely speaking, two tensors are equivalent if they can be transformed
continuously into one another, by blocking and attaching ancillas, respectively. The
proof of theorem 7.1 is carried out in the rest of this section, which represents the most
technical part of our work. While one could carry out the discussion using the fiducial-
state formalism employed so far, the notation becomes significantly simpler when the
language of graded TNs is exploited, as recently developed in [53, 59]. The latter is
reviewed in appendix B, where it is shown to be in one-to-one correspondence with the
fiducial-state formalism.

Finally, from now on, we will focus on the case of ABCs, where any generalized fMPU
is guaranteed to be locality-preserving. On the technical level, this allows us to exploit
the uniqueness of the GCF (cf appendix D), which is needed in order to carry out some
proofs, and to exclude a priori the possibility of non-locality-preserving fMPUs. We
stress, however, that this is not a restriction, because we have shown in the previous
section that tensors generating locality-preserving fMPUs in the periodic case, are also
fMPUs with ABCs.

https://doi.org/10.1088/1742-5468/abd30f 24

https://doi.org/10.1088/1742-5468/abd30f


J.S
tat.

M
ech.

(2021)
013107

Fermionic quantum cellular automata and generalized matrix-product unitaries

7.1. Standard form for type-I fMPUs

We begin by showing that any type-I fMPU admits a standard form, analogous to the
form of the qudit MPUs defined in [33]. Unless specified otherwise, in the rest of this

section we will assume that U/
√
d is graded, normal, and non-degenerate, where the left

and right eigenvectors of the TM EU corresponding to the eigenvalue 1, (Φ| and |ρ), are
of the form

〈Φ| =
D∑

n=1

(n,n| , (68a)

|ρ) =
D∑

n=1

ρn |n,n) . (68b)

This can be done without loss of generality, as it follows from the results in appendices D
and E.

We recall that, in the graded TN formalism (cf appendix B), a given local tensor U
is represented as

(69)

where |α) |n〉〈m| (β| is a shorthand notation for |α)⊗g|n〉⊗g〈m|⊗g (β|, and ⊗g is the
graded tensor product. Analogously, the tensor Ū generating the conjugate transposed
operator, reads

Ū =
∑

n,m,α,β

(−1)|β|+|α‖β|(Ūn,m
α,β ) |α) |n〉〈m| (β| . (70)

By simply using the contraction rules for graded TNs explained in appendix B, one
could immediately write down the transfer operator

EU =
1

d

∑
j,k

Ū j,k
γ,δU

j,k
α,β |α) |γ) (δ| (β| , (71)

where the repeated indices are summed over. Note that the order of the bra and ket
vectors on the right-hand side is important.

Following [33], we now consider two different singular value decompositions of U .
Since this requires us to rearrange its indices, this procedure introduces additional non-
trivial signs w.r.t. the qudit case, as we now explain. Our goal is to rewrite

(72)
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Importantly, every diagram here corresponds to an even-graded tensor. Specifically, we
define

(73a)

(73b)

(73c)

(73d)

We show that we can always decompose U as in equation (72), with Xi, Yi even tensors.
First, we note that U defines the linear function

|β)⊗g|m〉 �→ C(U|β)⊗g |m〉) = Un,m
α,β |α)⊗g|n〉, (74)

where C is the contraction map introduced in appendix B. This map can be represented
as a matrix, Mf

2, with elements Un,m
α,β . Using a singular value decomposition, we can

write

Mf
2 = V †

2 D2W2, (75)

where V 2, W 2 are isometries, fulfilling V2V
†
2 = W2W

†
2 = �, while D2 is a diagonal positive

matrix of dimension �. Crucially, we can choose these matrices to be even, when they
are seen as operators acting on graded spaces. Indeed, let us consider the matrix Mf

2

in the basis associated with the elements Un,m
α,β . We reorder the basis vectors, in such

a way that the even vectors come first. Since U is even, Mf
2 is now a block diagonal,

with two blocks corresponding to the even and odd subspaces, respectively. We can then
apply a singular value decomposition to each block individually, yielding isometries V e,o

2 ,
W e,o

2 and diagonal matrices De,o
2 . The desired decomposition in terms of even matrices

is simply obtained by choosing V2 = V e
2 ⊕ V o

2 , W2 = W e
2 ⊕W o

2 and D2 = De
2 ⊕Do

2. Next,

defining the matrices X2 = V †
2 and Y 2 = D2W 2, we have

U = X2Y2, (76)

where appropriate contractions are implied. Since the matrices X2, Y 2 are even, X2, Y2

are even-graded tensors, and the second decomposition in equation (72) is established.
The first decomposition in equation (72) can be derived in a similar way, but we need

to be careful with the signs arising from the reordering of the graded tensors. Rewriting

U = (−1)|n‖m|+|α|+|m|Un,m
α,β |n〉 (β| ⊗g |α) 〈m|, (77)

https://doi.org/10.1088/1742-5468/abd30f 26

https://doi.org/10.1088/1742-5468/abd30f


J.S
tat.

M
ech.

(2021)
013107

Fermionic quantum cellular automata and generalized matrix-product unitaries

we see that, in order to arrive at a decomposition of the form U = X1Y1, with X1, Y1

as in equations (73a) and (73b), we need to apply a singular value decomposition to
the matrix Mf

1 with elements (−1)|n‖m|+|α|+|m|Un,m
α,β . Once again, this can be done by

choosing even matrices, so that Mf
1 = V †

1 D1W1, where V 1, W 1 are isometries, and D1 is

a diagonal positive matrix of dimension r. Now we choose X1 = V †
1

[
V1 (�⊗ ρ)V †

1

]−1/2

,

so that

X†
1 (�⊗ ρ)X1 = �, (78)

where ρ is the positive matrix corresponding to the right eigenstate (68b).
Since all the matrices involved are even, X1 is also even, and similarly for

Y1 =
[
V1 (�⊗ ρ)V †

1

]1/2
D1W1. Thus, we have established the first decomposition in

equation (72).
Importantly, the dimensions of the diagonal matrices D1,2 introduced above, r and

�, coincide, by construction, with the ranks of the maps Mf
1,2 in equation (67). For the

map in equation (77), this follows from the fact that the factor (−1)|α|+|m| clearly does
not change the rank, r. Next, in terms of the previous decomposition, we introduce

(79a)

(79b)

where, as usual, joined legs denote the contraction of the corresponding graded spaces.
Following [33], we can now prove two important statements

Lemma 7.2. For any tensor U , u†u = � and hence r� � d2.

Proof. The proof follows the same steps as given for lemma III.7 in [33]. We present
it for completeness here, to show how to deal with the additional fermionic signs. First,
we have

(80)

which follows from the fact that U (N ) is unitary for all N . Given the order of bra and
ket states in equation (71), the left eigenstate is

(81)

while the right eigenstate is

(82)
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where, once again, the order of the bra and ket states is important. With these defini-
tions, we can explicitly perform the contractions on the left-hand side, keeping track of
the signs as we move the ket and bra states close together. Note that this procedure is
well-defined because all individual tensors have well-defined parity. Using X†

2X2 = � and
equation (78), a direct calculation shows that the left-hand side is simply u†u, where
u is the graded operator defined in equation (79). Thus, u†u = �, and the statement is
proved. �

Note that this lemma implies that u is an isometry. Next, we can also prove the
following proposition.

Proposition 7.3. The following are equivalent for an even tensor U generating an
fMPU:

(a) U is simple;

(b) r� = d2;

(c) u is unitary;

(d) v is unitary.

We omit the proof of this statement, because it follows the one presented in the
reference without modification [33]. Note that this result allows us introduce a standard
form for type-I fMPUs. In particular, by blocking a simple tensor twice, we have

(83)

where u is unitary, and we use the notation introduced in equation (79) for the unitary
v. As for the case of qudits [33], the standard form is essentially unique, up to single-site
unitary invertible matrices acting on the legs defining u or v.

Proposition 7.4. Two simple tensors, U and W with standard forms

(84)

generate the same type-I fMPU, i.e. U(N) = V(N) for all N, iff even unitaries x, y and z
exist, such that

(85a)

(85b)
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7.2. Standard form for type-II fMPUs

Let us now consider a type-II fMPU U(N), generated by a graded degenerate normal
tensor U . It follows from corollary E.3 in appendix E that the local graded space Hj has
even dimensions d, with even and odd subspaces of the same dimension, de = do = d/2.
Hence, we can assume without loss of generality that Hj � H1

j⊗gH2
j , with dim(H2

j ) =

d/2 while H1
j � C1|1, namely H1

j is isomorphic to the 2D complex coordinate space

with parity operator P = diag(1,−1). We can then introduce a type-II fMPU M
(N)
A

implementing a Majorana translation (defined in equation (52)) on the local spaces H1
j ,

and acting as the identity on H2
j . Finally, we define

Ũ (N) = U (N)M
(N)†
A , (86)

which is clearly a unitary operator for all N. Now, Ũ (N) is the product of two type-II
fMPUs, so that it follows from proposition E.4 that it can be represented as a type-
I fMPU, generated by a graded normal non-degenerate tensor Ũ . Inverting the above
relation, we get the following form for type-II fMPUs

U (N) = Ũ (N)M
(N)
A . (87)

By blocking for a sufficient number of times, the tensor Ũ becomes simple and we can
cast it in standard form. This gives us a standard form for the tensor U itself and,
due to proposition 7.4, this is also unique up to single-site (even) invertible matrices.

Note, however, that the tensor U obtained by composing Ũ and M, corresponding to
the Majorana shift, is not necessarily in GCF.

7.3. Index

Based on the constructions carried out so far, we are now in a position to prove theorem
7.1, which is the main result of this section. Before doing so, however, we need to precisely
state the definition of equivalent graded tensors. Let us consider two even tensors, U and

V generating fMPUs, of physical dimensions da,b (with even/odd subspaces d
e/o
a,b ), and let

us denote two coprimes by pa,b, such that pada = pbdb. We also denote by �x the identity

operator acting on a (graded Hilbert) space of dimension x, and by U (x) = U⊗g�x, i.e.
the tensor generating the fMPU U (N)⊗g�

⊗N
x .

Definition 7.5. Two even tensors U and V, with auxiliary parity operators ZU , ZV and

in GCF are strictly equivalent if d
e/o
a = d

e/o
b and there exisys a continuous path W(p) of

even tensors with respect to parity ZW (p), not necessarily in GCF, with p ∈ [0, 1] such
that W(0) = U , W(1) = V, and ZW (0) = ZU , ZW (1) = ZV .

Definition 7.6. Two even tensors U and V are equivalent if k, pa, pb ∈ N exist, such that

U (pa)
k and V (pb)

k are strictly equivalent.

Here, it is important to stress that in the above definitions we allow for the ancilla
to be a graded space where the dimensions of the even and odd subspaces are arbitrary.

As we have seen in section 7.1, type-I fMPUs admit the same kind of standard form
as qudit MPUs. For this reason, their indices can be analyzed in the exact same way as
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shown in [33]. In particular, following the same steps therein, the properties of stability
of the index for type-I fMPUs can be established without additional difficulties. Then,
one arrives at the following result, for which we omit the proof (since, once again, it is
completely analogous to the one for qudit MPUs).

Proposition 7.7. For type-I fMPUs the exponentiated index If is a rational number,
and

(a) the index does not change by blocking; furthermore, if k is such that Uk is simple
and q > k, then rq = rkd

q−k, �q = �kd
q−k, where rk,q, �k,q are the right and left ranks

of Uk,q, while d is the local physical dimension;

(b) the index is additive by tensoring and composition;

(c) the index is robust, i.e. by changing U continuously, one cannot change it;

(d) two tensors have the same index iff they are equivalent.

Even though the proof of the above proposition is the same for fermions and qudits,
it is useful to stress one difference between the two cases, which was already pointed
out in [46]. Let us consider two even simple tensors UA, UB generating type-I fMPUs,
and suppose that they both have an index of 0, with the same local dimension, d.
Both fMPUs admit a standard form in terms of the unitaries uA,B , vA,B introduced in
equation (79), and since both tensors have vanishing indices all input and output legs
are associated with the same dimension, d. Now, in the case of qudits, this would imply
that a continuous path of unitaries exists, connecting uA, vA with uB, vB. However, this
is not always true for fermions, if we also require that all unitaries have well-defined
parity, because graded spaces of the same dimension are not necessarily isomorphic.
Specifically, using HA

j , HB
j to denote the local spaces associated with the output of uA,

uB in the above example, we can only conclude that HA
j � CpA|qA , HB

j � CpB |qB with
pA + qA = pB + qB = d. At this point, however, a continuous path of even unitaries can
always be constructed by appending an ancillary space H̃j � C1|1, since HA,B

j ⊗gH̃j �
C

p̃A,B |q̃A,B and p̃A = q̃A = p̃B = q̃B = d.
Next, in order to complete the proof of theorem 7.1, we analyze the index for type-II

fMPUs. In fact, this can be done quite easily based on their standard form introduced
in section 7.2. However, at this point we need two additional lemmas, that are proved
in the following.

Lemma 7.8. Let M be the tensor associated with the Majorana shift (53), and consider
M(x) = M⊗g�x. Using d = 2x to denote the dimension of the associated physical local

space, the right and left ranks for the tensor M(x)
k , obtained by blocking k times, are

rk = 2dk, �k = dk.

Proof. Let us first consider the right rank r. Clearly, M(x) and M have the same
bond dimension, and (normalized) TM EM. Now, recalling that for any operator A,
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rank(A) = rank(A†A), we have

(88)

where we separated input and output with a gray dotted line. Note that the pictures on
both sides of this equation define linear maps on graded spaces, and the rank refers to
these maps. Next, for the Majorana shift tensor M(x), we have

(89)

Here, we used the fact that the identity operator corresponds to the even eigenstate of
the TM with an eigenvalue of 1, while σx corresponds to the odd eigenstate with the
same eigenvalue, and

(90)

Using the simplicity condition, we can simplify the right-hand side of equation (88) by
iterating equation (89) k − 1 times. In the resulting diagram, we have k − 1 identities,
whereas in the leftmost site we have the same tensor appearing on the left of the right-
hand side of equation (89). For this tensor, the rank can be computed directly, obtaining
2d, which yields rk = 2dk. Applying a similar procedure for the left rank, we can also
show that � = dk, thus completing the proof. Note that it is crucial to keep track of
the signs arising from rearranging the tensors in the different diagrams as they are
contracted, since these are at the root of the difference between the right and left ranks.

�
Lemma 7.9. Let U(N) be a type-II fMPU in the standard form (87), and use Ũ , M to

denote the tensors in GCF associated with Ũ (N) and M
(N)
A , respectively. U defines the

tensor obtained by composing Ũ and M, and let k be such that Ũk is simple. Then, the
exponentiated index for Uq with q � 2k is If =

√
2Ĩ f, where Ĩ f is the index of Ũ k.

Proof. We use d to denote the local physical dimension, and use the following notations
for the tensors blocked k and k′ = q − k � k times (where k is such that Uk is simple)

(91a)

(91b)

Here, Mk denotes the tensor obtained by blocking the tensor associated with the
Majorana shift appearing in equation (87) k times. Finally, dk denotes the physical
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dimension associated with the blocked tensors, dk = dk, and r2, r̃2, R2 denote the right
rank corresponding to Uq, Ũ q and Mq, respectively (and analogously for �2, �̃2, L2). Due

to point (a) in proposition 7.7, we have r̃2 = r̃dk′ , where r̃ is the right rank of Ũ k. On the
other hand, from lemma 7.8, we have R2 = 2dkdk′. Since this is the maximum possible
rank, it is clear to see that r2 = 2r̃2 = 2r̃dk′ . Let us now consider the left rank, �2. As a
first step, we define the maps

Fα : |β)⊗g|i〉⊗g|j〉 �→ (Mq)
(x,y),(i,j)
α,β |x〉⊗g|y〉, (92)

for α = 0, 1, which correspond to the operators on graded spaces with the graphical
representation

(93)

where we separate local input and output spaces with a gray dashed line. Note that the
output associated with the auxiliary space is fixed to |α), while (i, j), (x, y) label the
input and output physical spaces, respectively. We also introduce the operators

(94)

with explicit actions defined by

Gα : |β) |δ) |i〉|j〉 �→ (Uq)
(x,y),(i,j)
(α,γ),(β,δ) |γ) |x〉|y〉, (95)

K : |β) |δ) |i〉|j〉 �→ (Uq)
(x,y),(i,j)
(α,γ),(β,δ) |α) |γ) |x〉|y〉. (96)

where repeated indices are summed over. Repeating the steps in lemma 7.8, we obtain
rank(F0) = rank(F1) = dkdk′. It follows that rank(G0) = rank(G1) = �̃2 = �̃dk′ , where �̃ is

the right rank of Ũk. In turn, this implies that �2 � �̃dk′. Indeed, let |v1〉, . . . , |v�̃2〉 be a

basis for an image of G0, and take {|wj〉}�̃2j=1 such that G0|wj〉 = |vj〉. Then,

K|wj〉 = |0)⊗g|vj〉+ |1)⊗g|zj〉, (97)

for some |zj〉, where we used the fact that Mk has a bond dimension of 2. Thus,

{K|wj〉}�̃2j=1 are linearly independent, i.e. rank(K) = �2 � �̃dk′ . On the other hand, from
the graphical representation of K in equation (94), it is clear that rank(K) = �2 �
(�̃dk

′−kdk) = �̃dk′, where we used the fact that the left rank of Ũk′ is �̃d
k′−k (proposition

7.7) and that the left rank of Mk is dk (lemma 7.8). Thus, �2 = �̃dk′. In summary, we

have r2 = 2r̃dk′ and �2 = �̃dk′, which proves the claim. �
At this point it is important to note that the tensor Uq, obtained by composing

Ũ q and Mq, is not necessarily in GCF. On the other hand, the index was defined for
tensors in GCF, so that one needs to make sure that the index of Uq coincides with that
computed in the corresponding GCF (which is unique, due to theorem 6.5). This is true,
up to blocking q̃ � 4k times, and we report the proof of this statement in appendix E.2.
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By now combining proposition 7.7 with lemma 7.9 it is straightforward to prove the
following proposition:

Proposition 7.10. For type-II fMPUs the exponentiated index is in the form
If =

√
2(p/q), with p, q ∈ N and coprime. Furthermore

(a) the index does not change by blocking;

(b) the composition (or tensor product) of two type-II fMPUs is a type-I fMPU, and
the index of the latter is obtained by summing the indices of the former two;

(c) the index is robust, i.e. by continuously changing U , one cannot change it;

(d) two tensors have the same index iff they are equivalent.

Note that in order to prove point 4, one needs to use the fact that if U is a tensor
generating an fMPU, then it can be deformed continuously to a tensor in GCF generating
the same fMPU, which is easily proved based on the fact that U has a single block in the
GCF. Now, putting together propositions 7.7 and 7.10, we finally arrive at the statement
of theorem 7.1, anticipated at the beginning of this section.

8. Conclusions

In this work, we have studied matrix product unitaries for fermionic 1D chains, and
highlighted several qualitative differences with respect to the case of qudits. In partic-
ular, we have shown that (i) fMPUs are not necessarily locality-preserving and (ii) not
all fQCA can be represented as standard fMPUs, with either PBCs or ABCs. Next, we
have defined the class of generalized fMPUs, and identified a subset of the latter that are
equivalent to the family of fQCA. Finally, we have shown how the index for fQCA [46]
can be extracted directly from the tensors generating fMPUs. As a technical byproduct
of our work, we have also introduced a GCF for fermionic MPSs, which might be useful
for more general problems. Overall, our work shows that fMPUs display significantly
richer features compared to the case of MPUs.

There are several interesting questions that remain open. For example, we have
shown that fMPUs of the second kind are always generated by a tensor that is obtained
by composing a Majorana shift and another tensor Ũ , generating an fMPU of the first
kind, cf equation (87). However, one could wonder whether a more explicit standard
form exists for GNTs generating type-II fMPUs, by analogy with equation (83) for
type-I fMPUs.

Clearly, another natural question pertains to the classification of fMPUs in the pres-
ence of additional symmetries, which was recently addressed for the case of qudits [35].
While the tools introduced in this work allow us to tackle this problem, based on the
case of qudits we expect that additional difficulties will arise, and we leave this question
for future investigations.
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Appendix A. Fiducial-state formalism

A.1. General definitions

In this appendix, we develop a fiducial-state formalism for 1D fermionic systems, follow-
ing the construction introduced in [52] for two spatial dimensions. The latter is a natural
generalization to that carried out for qudits, and consists of performing a sequence of
projections onto maximally entangled auxiliary fermionic modes. While in [51], this was
done by associating each lattice site with two auxiliary real fermions, a slightly sim-
pler formulation can be obtained by considering maximally entangled Majorana modes
instead [52]. Here we follow the latter approach, which is detailed in the following.

As in the main text, we consider a chain of N sites labeled by x = 1, . . . ,N . We
associate each site with nF fermionic modes with (physical) annihilation operators ax,j .
Furthermore, we introduce two sets of auxiliary Majorana operators {�x,μ} and {rx,μ}
with x = 1, . . . ,N , and μ = 1, . . . ,NF, where NF is some non-negative integer, while �
and r stand for left and right, respectively. The Majorana operators are self-adjoint and
satisfy

{rx,μ, �y,ν} = 0, (A1)

{rx,μ, ry,ν} = {�x,μ, �y,ν} = 2δx,yδμ,ν . (A2)

As a starting point, we introduce the local fermionic tensors acting on one physical
site, and two adjacent auxiliary Majorana modes:

Fx =
D−1∑
α,β=0

d−1∑
n=0

An
α,β�

α
x

(
a†x
)n
rβx x = 1, . . . ,N , (A3)

where An
α,β are complex numbers, and D = 2NF, d = 2nF. Here, we have used the short-

hand notation introduced in equation (17) for
(
a†x
)n
, and also

�αx = �α
(1)

x,1 . . . �α
(NF)

x,NF
, (A4)

rβx = rβ
(NF)

x,NF
. . . rβ

(1)

x,1 , (A5)

where (n(1), . . . ,n(nF)) is the binary representation of n, and analogously for α and β.
Importantly, the order of the factors in the product of equation (A5) is reversed with
respect to (A4). While this is just a convention, it simplifies some of the subsequent
algebraic manipulations.
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For our construction, it is crucial that Fx has a well-defined fermionic parity (with
respect to all physical and auxiliary modes). As in the main text, we can define

|n| =
nF∑
i=1

n(i), |α| =
NF∑
j=1

α(j), |β| =
NF∑
j=1

β(j). (A6)

Then, saying that Fx has well-defined fermionic parity means that An
α,β = 0 if

|n|+ |α|+ |β| (mod2) (A7)

is 1 or 0, depending on whether Fj is even or odd. As we have already mentioned in
the main text, in the following we will always assume Fx to be even, which is not a
restriction if we are allowed to perform blocking. Next, we introduce a projection onto
the neighboring Majorana modes

ηx,y =
D−1∏
μ=0

ηx,y,μ, (A8)

where

ηx,y,μ =
1

2
(1 + irx,μ�y,μ) . (A9)

We note that, after interacting with ηx,y,μ, the Majorana fermions rx,μ, �y,μ become
maximally entangled, forming a pure fermionic state.

Now, an fMPS is obtained in two steps. First, we act on the fermionic vacuum (with
respect to all modes) with the operators Fx, x = 1, . . . ,N . Second, we ‘concatenate’
them by projecting neighboring Majorana modes onto maximally entangled pairs with
ηx,y [52]. Importantly, using this procedure we can generate fermionic states that are
invariant under translation with either PBCs or ABCs. Let us consider the former case.
Then, applying the prescription above, we obtain

|Ψ〉 = 〈ηN ,1η1,2 . . . ηN−1,NF1 . . . FN 〉a|Ω〉. (A10)

Here, the expectation value is expressed with respect to the auxiliary vacuum |Ωa〉,
defined by

(rx−1,μ − i�x,μ)|Ωa〉 = 0, (A11)

while we use |Ω〉 to denote the physical one, anx|Ω〉 = 0 for n �= (0, . . . , 0). Since we always
have an even number of auxiliary operators, we can associate a tensor product structure
between the spaces of the real and auxiliary fermions, and the expression above is well
defined.

It is not difficult to see that |Ψ〉 is invariant with respect to translations with PBCs,
due to the presence of the projector ηN ,1. If one is instead interested in the case of ABCs,
it is sufficient to replace it with η1,N . Since, for the sake of our present discussion, both
types of boundary conditions can be treated analogously, in the following we only focus
on the periodic case.
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By taking the expectation value with respect to the auxiliary vacuum, one can cast
the state (A10) into the form (20), where the coefficients are written as in equation (25).
This can be seen as follows. We first rewrite equation (A10) as

|Ψ〉 = An1
α1,β1

. . . AnN
αN ,βN

〈Ωa|ηN ,1 . . . ηN−1,N

× �α1
1

(
a†1

)n1

rβ11 . . . �αN
N

(
a†N

)nN

rβNN |Ωa〉 ⊗ |Ω〉, (A12)

where repeated indices are summed over. Moving rβNN to the left and using the
anticommutation relations, we obtain

|Ψ〉 = An1
α1,β1

. . . AnN
αN ,βN

〈Ωa|ηN ,1 . . . ηN−1,N (−1)p|βN |

× rβNN �α1
1

(
a†1

)n1

rβ11 . . . �αN
N

(
a†N

)nN

|Ωa〉 ⊗ |Ω〉, (A13)

where

p =
N∑
j=1

|nj|+
N∑
j=1

|αj|+
N−1∑
j=1

|βj | ( mod2). (A14)

We can now move each ηj,j+1 to the right until it acts on |Ω〉. This procedure yields zero
unless βj = αj+1 (with the identification αN+1 = α1). Furthermore, for the non-vanishing
terms, we have

(−1)p|βN | = (−1)|α1‖βN | = (−1)|α1|. (A15)

Next, we can move each remaining product to the right r
αj

j �
αj

j+1, which gives (−i)NF when

acting on |Ωa〉. Finally, we can rearrange the product of the elements An
α,β into a trace

over an auxiliary graded space, which is generated by the basis vectors |α〉, with parity
|α|. Putting all this together, we get

|Ψ〉 = (−i)NNF tr
[
Z̃An1 . . . AnN

] (
a†1

)n1

. . .
(
a†N

)nN

|Ω〉. (A16)

Here Z̃ is a diagonal matrix with entries +1 and −1 which acts as the parity operator
on the auxiliary space. As a last step, we perform a gauge transformation corresponding
to a reordering of the basis vectors, and absorbing the factor (−i)NNF into the matrices
An we arrive at the form in equation (36). Note that the commutation relations (28)
follow from the parity of the tensor Fx in equation (A3).

It is straightforward to extend this formalism to define fMPOs. In this case, we
consider the same setting as that used for fMPSs, but the local tensors (A3) must be
replaced by

Gx =
D−1∑
α,β=0

d−1∑
n,m=0

Mn,m
α,β �αxf

n,m
x rβx x = 1 , . . .N , (A17)

where fn,m are the fermionic operators introduced in equation (34). We can then define
fMPOs as

M = 〈ηN ,1η1,2 . . . ηN−1,NG1 . . .GN 〉a, (A18)
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where the expectation value is with respect to the auxiliary vacuum, as in
equation (A10). Repeating the derivation above, it is straightforward to cast M as
in equation (33), with the coefficients in the form (36).

A.2. Elementary operations with fMPOs

As for the case of qudits, one can see that the family of fMPOs is closed with respect to
elementary operations such as sum, conjugate transposition or composition. However,
some differences arise when computing the corresponding local tensors, as we now dis-
cuss. Let us first consider the case of the conjugate transposition of a given fMPO U (N ).
From equation (33), we have

[
U (N)

]†
=

d−1∑
n1,...,nN=0
m1,...,mN=0

c̄n1,...,nN
m1,...,mN

[
fnN ,mN

N

]†
. . .

[
fn1,m1
1

]†
. (A19)

We would like to rewrite this expression as in equation (33), with the coefficients cn1,...,nN
m1,...,mN

in the form of (36) or (37). In fact, this can easily be done by making use of the identities[
fn,m
j

]†
= fm,n

j , (A20a)

fm,n
x fp,q

y = (−1)(|p|+|q|)(|m|+|n|)fp,q
y fm,n

x , (A20b)

fm,n
x fp,q

x = δn,pf
m,q
x , (A20c)

which can be established by computing the matrix elements of both sides of the equations

on basis (Fock) states. As a final result, we find that
[
U (N)

]†
is an fMPO with local

tensors defined by8

Ũ i,j
α,β = (−1)|β|+|α‖β|Ū ji

α,β , (A21)

where, as usual, we use x̄ to denote the complex conjugate of x ∈ C.
Next, let us consider two fMPOs U (N ), V (N ), and define W (N ) = U (N )V (N ). By

exploiting the fiducial-state formalism, W (N ) can again be written as an fMPO, where
the local tensors are now defined by

Wk,i
(α,γ),(β,δ) =

∑
j

(−1)|γ|(|k|+|j|)Uk,j
α,βV

j,i
γ,δ . (A22)

This formula is similar to the corresponding one for qudits, but additional signs
appear. In order to prove equation (A22), it is convenient to exploit the fiducial-state
representation (A18). Define

U (N) =
〈
ηUN ,1η

U
1,2 . . . η

U
N−1,NG

U
1 . . .GU

N

〉
a
, (A23)

V (N) =
〈
ηVN ,1η

V
1,2 . . . η

V
N−1,NG

V
1 . . .GV

N

〉
a
, (A24)

8More generally, if an additional operator X is inserted into the trace, for instance as in equation (54), one also needs to replace
X → X̃, with X̃α,β = (−1)|β|(|α|+|β|)X̄α,β .
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where

GU
x =

D−1∑
α,β=0

d−1∑
n,m=0

Un,m
α,β

(
�Ux
)α
fn,m
x

(
rUx

)β
, (A25)

ηUx,y =

D−1∏
μ=0

1

2

(
1 + irUx,μ�

U
y,μ

)
, (A26)

and analogously for GV
x , η

V
x,y. Note that here, we consider two different sets of Majorana

operators, labeled by U , V . Defining W (N ) = U (N )V (N ), and exploiting the parity of the
local tensors, we have

W (N) =
〈
ηUV
N ,1η

UV
1,2 . . . ηUN−1,NG

UV
1 . . .GUV

N

〉
ã
. (A27)

The expectation value is now taken with respect to the vacuum |Ωã〉 of all auxiliary
Majorana fermions, satisfying

(rUx−1,μ − i�Ux,μ)|Ωã〉 = (rVx−1,μ − i�Vx,μ)|Ωã〉 = 0. (A28)

Furthermore, we introduce ηUV
x,y = ηUx,yη

V
x,y, and

GUV
x = GU

xG
V
x = Uk,j

α,βV
j′,i
γ,δ

(
�Ux
)α
fk,j
x

(
rUx

)β(
�Vx

)γ
f j′,i
x

(
rVx

)δ
= (−1)|γ|(|k|+|j|)Uk,j

α,βV
j,i
γ,δ

(
�Ux
)α(

�Vx
)γ
fk,i
x

(
rVx

)δ(
rUx

)β
, (A29)

where the repeated indices are summed over. Note that in the last line, we have moved(
rUx

)β
to the left, for consistency with the conventions (A4) and (A5).

From equations (A27) and (A29), we see that W (N ) is already written in the form
(A18). Thus, repeating the derivation in the last subsection, we find that the local tensors
appearing in (36) can be read directly from equation (A29), thus proving equation (A22).

Using the results above, it is also straightforward to derive the local tensor associated

with U(N) =
[
U (N)

]†
U (N). In particular, up to an even gauge transformation of the form

G(α,γ),(β,δ) = (−1)|α‖γ|δα,βδγ,δ, (A30)

a direct computation yields

U
k,i
(α,γ),(β,δ) =

∑
j

(−1)|β|(|k|+|i|)Ū j,k
α,βU

j,i
γ,δ. (A31)

Accordingly, by taking k = i and summing over i, we can also define the fermionic TM
E, whose elements simply read

E(α,γ),(β,δ) =
1

d

∑
i,j

Ū j,i
α,βU

j,i
γ,δ, (A32)

completely analogously to the case of qudits. This definition allows us to write down a
relation similar to equation (14) for fermionic MPOs, which is important when discussing
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fMPUs. In particular, in the case of PBCs, we immediately derive

1

dN
tr
[
U (N)†U (N)

]
= tr

[
(Z ⊗ Z)EN

U
]
, (A33)

while for ABCs we simply have

1

dN
tr
[
U (N)†U (N)

]
= tr

[
EN

U
]
. (A34)

Finally, one can also define the blocking procedure for fermionic TNs. Consider the
fMPO (33), and suppose that we are interested in blocking pairs of neighboring sites.
The annihilation operators associated with the ‘doubled site’ at position j are

ã
(n,m)
j = an2ja

m
2j+1. (A35)

Now, it is easy to verify that

f̃
(n,m),(q,p)
j = (−1)|m|(|p|+|q|)fm,n

2j f q,p
2j+1, (A36)

satisfy equation (34), with the replacement anj → ã
(n,m)
j . Accordingly, blocking leads to

an fMPO, where the local tensor UB is defined by(
U

(n,m),(p,q)
B

)
α,β

= Un,m
α,γ Up,q

γ,β(−1)|m|(|p|+|q|). (A37)

Based on these formulas, one can extend the graphical notation introduced in the
case of qudits to fermionic TNs, where it is always understood that one should multiply
the elements of the local tensors by the correct signs, as specified by the above equations.
We note that a similar discussion can be carried out using the formalism of graded TNs,
which has the advantage of offering a more transparent way to translate the algebraic
formulation into a graphical one (and vice versa), cf appendix B.

Appendix B. Graded tensor networks

In this appendix we review the formalism of graded TNs, as introduced recently in Refs.
[53, 59]. Here, we only sketch the main definitions, and the interested reader is referred
to the latter works for a more systematic treatment.

Given a Hilbert space V , we say that V is Z2-graded if there is a parity operator P
and a decomposition

V = V e ⊕ V o, (B1)

such that P|v〉 = |v〉 for all |v〉 ∈ V e, and P|v〉 = −|v〉 for all |v〉 ∈ V o. We say that
V e, V o are the even and odd sectors of the graded space V , respectively. Let us now
introduce a set of local Z2-graded Hilbert spaces Hj, with decomposition

Hj = He
j ⊕Ho

j . (B2)

We use {|i〉}d−1
i=0 to denote a local basis, and |i| ∈ {0, 1} to denote the parity of each basis

vector, so that P|i〉 = (−1)|i||i〉. In the following we will use de and do for the dimensions
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of He
j and Ho

j , respectively. Next, we introduce the notion of a graded tensor product,
denoted by ⊗g. This is a tensor product equipped with a canonical isomorphism F
between different orderings of the local spaces. Specifically, given the graded spaces V ,
W , the canonical isomorphism F is defined by

F :V⊗gW →W⊗gV , (B3)

|i〉⊗g|j〉 → (−1)|i‖j||j〉⊗g|i〉. (B4)

Making use of F , we can identify states in different ordered tensor products of the same
local spaces.

Importantly, the Z2-grading structure is inherited by the dual space V ∗, generated by
the basis {〈i|}d−1

i=0 , and the isomorphism F can naturally be extended to tensor products
also containing local dual spaces. Furthermore, a state in V ∗ ⊗ V can be naturally
mapped onto C via the linear map

C :V ∗⊗gV → C : 〈ψ |⊗g|φ〉 → 〈ψ|φ〉. (B5)

Note that C acts on the ordered graded tensor product V ∗ ⊗ V . However, one can extend
the action of C to a different ordering, by first applying the canonical isomorphism F .
For instance, using this prescription, we can compute

C (|i〉⊗g〈j|) = (−1)|i‖j|C (〈j |⊗g| i〉) = (−1)|i|δi,j . (B6)

The above definitions allow us to generalize the construction of MPSs to graded
Hilbert spaces. In particular, we can define the local tensors A as

A[j] =
∑
i,α,β

Ai
α,β |α)j−1⊗g|i〉j⊗g(β|j ∈ Vj⊗gHj⊗g(Vj+1)

∗, (B7)

where round kets and bras correspond to the bases of the auxiliary space Vj � CDj and
its dual. An fMPS is then constructed by concatenating local tensors, and gluing them
together by applying the contraction map C [53, 59]. In the case of PBCs, for instance,
this leads to

|ψ〉 = C(A[1]⊗gA[2]⊗g · · · ⊗gA[N ]). (B8)

A crucial requirement is that the local tensors A have well-defined parity, which we
can assume to be even without loss of generality. This ensures that the fMPS have well-
defined parity and that no ambiguity arises in the definition of some useful constructions
to manipulate them [53].

As in the case of qudits, we can introduce a natural graphical representation for
graded TNs. For instance, local tensors A are depicted by

(B9)

When different tensors are joined together, it is always understood that the linear map
C is applied to the corresponding spaces. As usual, before applying C, the local spaces
in the graded tensor product must be reordered using the canonical isomorphism F .
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Clearly, the above formalism can be applied directly to also treat MPOs in graded
spaces. To this end, we simply replace the local tensor (B7) with

M[j] =
∑
i,α,β

Mm,n
α,β |α)j−1⊗g|m〉j⊗g〈n|j⊗g(β|j . (B10)

Finally, the contraction in equation (B8) can easily be performed using the parity of the
local tensors, leading to the more explicit form

|ψ〉 =
d−1∑

i1,...iN=0

tr
(
PDA

i1 . . . AiN
)
|i1〉⊗g · · · ⊗g|iN 〉. (B11)

Here, PD is the parity operator acting on the auxiliary graded space with dimensions
D. Note that, due to the parity of A, we have PDA

n = (−1)|n|AnPD.
Based on equation (B11), we now see an explicit correspondence between the

fiducial-state and graded TN formalisms for fermionic MPSs. Indeed, the coefficients
in equation (B11) are the same as those appearing in equation (25) (up to an even
gauge transformation, corresponding to a reordering of the basis vectors in auxiliary
space). Furthermore, using the above prescription for the contraction of graded tensors,
it is straightforward to derive, e.g. equations (A21) and (A22) for the adjoint and com-
position of fMPOs. In fact, the fermionic operators f n,m introduced in equation (34)
simply correspond to |n〉⊗g〈m|.

Appendix C. Examples of fMPUs

C.1. Non-locality-preserving fMPUs

In this appendix, we provide further details for the fMPU constructed in section 5.1.
First, for completeness, we tabulate all 16 matrices Un,m corresponding to the elements
Un,m

α,β in (40) and (41). They read

U 0,0 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ , U 0,1 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ , U 0,2 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ , U 0,3 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ ,

(C1a)

U 1,0 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ , U 1,1 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , U 1,2 =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠ , U 1,3 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ ,

(C1b)

U 2,0 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ , U 2,1 =

⎛⎝0 0 0
1 0 0
0 0 0

⎞⎠ , U 2,2 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ , U 2,3 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ ,
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(C1c)

U 3,0 =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ , U 3,1 =

⎛⎝0 0 0
0 0 0
1 0 0

⎞⎠ , U 3,2 =

⎛⎝0 0 0
0 0 0
0 1 0

⎞⎠ , U 3,3 =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ .

(C1d)

Next, we prove equation (42). We have

U |Ω〉 =
(∑

tr [ZUn1,m1 . . . UnN ,mN ] fn1,m1
1 . . . fnN ,mN

N

)
|Ω〉. (C2)

The vacuum is annihilated by fnj ,mj , unless mj = 0. Since Unj ,0 is non-vanishing only if
nj = 0, there is a single non-vanishing term in the sum, corresponding to nj = mj = 0
for all j and

U |Ω〉 =
(
tr
[
Z (�3)

N
])

|Ω〉 = (1 + 1− 1) |Ω〉 = |Ω〉. (C3)

Now, let us prove equation (43). We have

Uaj1†i1
aj2†i2

. . . ajP †iP
|Ω〉 =

(∑
tr [ZUn1,m1 . . . UnN ,mN ] fn1,m1

1 . . . fnN ,mN

N

)
× aj1†i1

aj2†i2
. . . ajP †iP

|Ω〉. (C4)

Now, consider r �= ik, for k = 1, 2, . . . ,P . Arguing as before, we find that the only non-
vanishing terms in the sum correspond to mr = nr = 0, for which Unr,mr = �3. Thus, the
above expression simplifies to

Uaj1†i1
aj2†i2

. . . ajP †iP
|Ω〉 =

(∑
tr [ZUni1

,mi1 . . . UniP
,miP ] f

ni1
,mi1

i1
. . . f

niP
,miP

iP

)
× aj1†i1

aj2†i2
. . . ajP †iP

|Ω〉, (C5)

where the sum is now restricted over all the sequences {ni�}P�=1, {mi�}P�=1 with ni�,mi� =
1, 2, 3. From the explicit form of the local tensors, we see that this expression is, up to
a sign, a translation of the fermionic modes on an effective chain of P sites, where each
site is associated with three possible fermionic modes a1 = a2, a

2 = a1, a
3 = a1a2. This

shows that equation (43) is proven. We stress that we do not need to specify the sign
(−1)γ appearing in equation (43), because this does not affect unitarity.

C.2. Majorana-shift operator

In this appendix, we show that the fMPO M
(N)
AP defined by equation (52) provides a

valid representation for the translation of Majorana modes.
First of all, it is straightforward to verify that the fMPO corresponding to (52) is

unitary. This can be seen, for instance, by constructing the matrices Uk,i in (A31), and
observing that they generate the identity operator. Next, we show

M
(N)
AP γ2n = γ2n+1M

(N)
AP , n �= N , (C6)

https://doi.org/10.1088/1742-5468/abd30f 42

https://doi.org/10.1088/1742-5468/abd30f


J.S
tat.

M
ech.

(2021)
013107

Fermionic quantum cellular automata and generalized matrix-product unitaries

M
(N)
AP γ2n−1 = γ2nM

(N)
AP , (C7)

M
(N)
AP γ2N = −γ1M

(N)
AP , (C8)

where

γ2n−1 = a†n + an = δ̃i,j+1f
i,j
n , (C9)

γ2n = i
(
a†n − an

)
= i(−1)j δ̃i,j+1f

i,j
n (C10)

are the Majorana modes introduced in equation (46), and where f i,j
n are given in

equation (34). Here, we introduce the function

δ̃a,b =

{
1 a ≡ b ( mod2),

0 otherwise.
(C11)

In order to prove equations (C6)–(C8) we can use the explicit form

ci1,...,iNj1,...,jN
=

2√
2

1

2N/2
iJ δ̃I,J , (C12)

where |I| = |i1|+ · · · |iN |, |J | = |j1|+ · · · |jN |. For instance, using the latter, the left-
hand side of (C6) can be written as (repeated indices are summed over)

M
(N)
AP γ2n =

2√
2

1

2N/2
i|j1|+···+|�n|+···+|jN |δ̃I,|j1 |...+|�n|+···+|jN |f

i1,j1 . . . f in,�n . . . f iN ,jN

× δ̃�n,jn+1i(−1)jnf �n,jn

=
2√
2

1

2N/2
iJ(−i)|�n|−|jn|δ̃�n,jn+1i(−1)jn(−1)

∑
m>n(|im|+|jm|)

× δ̃I,J+1f
i1,j1 . . . f iN ,jN

= − 2√
2

1

2N/2
δ̃I,J+1i

J(−1)
∑

m>n(|im|+|jm|)f i1,j1 . . . f iN ,jN , (C13)

while, in the same way, one can compute

γ2n+1M
(N)
AP = − 2√

2

1

2N/2
δ̃I,J+1i

J(−1)
∑

m>n(|im|+|in|)f i1,j1 . . . f iN ,jN , (C14)

yielding (C6). Equations (C7) and (C8) can be proved in the same way. Thus, using

unitarity, we obtain M
(N)
AP γnM

(N)†
AP = γn+1 for n �= 2N and M

(N)
AP γ2NM

(N)†
AP = −γ1.

Similarly, we can analyze the operator M
(N)
P corresponding to the coefficients in

(54). First, constructing the fMPO representation for M
(N)
P M

(N)†
P , and paying attention

to the boundary operator X, it is easy to show that M
(N)
P is unitary. Next, rewriting

the coefficients in (54) as

ci1,...,iNj1,...,jN
=

2√
2

1

2N/2
(−i)J δ̃I,J+1, (C15)
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and by means of calculations similar to those reported in equations (C13) and (C14),
we can also show

M
(N)
P γn = γn+1M

(N)
P , (C16)

with the identification γ2N+1 = γ1. Putting all these together, we find that the fMPO
corresponding to the coefficients in (54) provides a valid representation for the Majorana
shift with PBCs.

Appendix D. The graded canonical form for antiperiodic boundary conditions

In this section, we provide all the proofs needed to establish the existence and uniqueness
of the GCF for ABCs. Throughout this section, we will always work with even tensors,
unless specified otherwise, and use |V (N)(A)〉 to denote the fMPS with ABCs generated
by A. Furthermore, we will use Z to denote the parity operator acting on the space of
the matrices Ai.

First, recalling definition 6.1 for GI tensors, we introduce the graded irreducible form
(GIF) as follows.

Definition D.1. We say that an even tensor A generating an fMPS is in GIF if: (i):
the matrices are of the form An = ⊕r

k=1μkA
n
k , where μk ∈ C and the spectral radius of

the TM Ek associated with An
k is equal to one; (ii) the parity operator, Z has the same

block structure as An and, for all k, Ak is a GI (even) tensor.

Proposition D.2. Given any even tensor A, one can always find another even tensor
B in GIF that generates the same fMPS with ABCs.

Proof. Let Z be the parity operator on the auxiliary space. First, if there are no non-
trivial invariant graded subspaces, A is a GI tensor, and thus already in GIF. Otherwise,
take P to be the orthogonal projector onto an invariant graded subspace that does not
contain any other non-trivial invariant graded subspace, and define Q = �− P . Since
[P ,Z] = 0, setting ZP = PZP and ZQ = QZQ we have ZP (PA

iP ) = (−1)|i|(PAiP )ZP ,
ZQ(QAiQ) = (−1)|i|(QAiQ)ZQ. Furthermore, Z2

P = P , Z2
Q = Q. Thus, it is easy to see

that the tensors Ai and PAiP +QAiQ generate the same state, and both PAiP and
QAiQ generate valid fMPSs, with the parity operators on the auxiliary spaces given by
ZP and ZQ, respectively. We can now consider QAiQ and decompose it into smaller
blocks using the same steps. This procedure can be iterated until we end up with a
tensor in GIF. �

The following statement already appeared in [53], but here we give a detailed proof.

Proposition D.3. Let A be a GI tensor, such that a non-graded invariant subspace
exists for all Ai. D denotes the dimension of the matrices Ai, and using De, Do to
denote the dimensions of the even and odd subspaces, we have D = 2De, and an even
gauge transformation exists such that

Ai =

(
Bi 0
0 Bi

)
= �⊗Bi if |i| = 0 (D1a)
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Ai =

(
0 Bi

Bi 0

)
= σx ⊗Bi if |i| = 1, (D1b)

and Z = σz ⊗ �. Furthermore, the following are true:

(a) an index i exists, such that |i| ≡ 1 and Bi �= 0;

(b) there is no projector P such that

Bi1 . . .BipP = PBi1 . . .BipP ∀{ik}pk=1, (D2)

namely there is no invariant subspace for the algebra generated by the matrices Bi;

(c) there is no projector Pe such that

Bi1 . . .BipPe = PeB
i1 . . .BipPe

∀{ik}pk=1 :

p∑
r=1

|ir| ≡ 0,
(D3)

namely there is no invariant subspace for the even subalgebra generated by the
matrices Bi.

Proof. Let P be the orthogonal projector onto a proper non-graded invariant subspace
of Aj, S1, containing no smaller non-trivial invariant subspace. Defining Q = ZPZ we
have [P ,Z] �= 0, and thus, if Q projects onto S2 = ZS1, we have S1 �= S2. If Y is an
even invertible matrix, then Aj

Y = Y AjY −1 leave the subspaces YS1, YS2 invariant with
the corresponding orthogonal projectors PY , QY . Note that PY �= YPY −1, since YPY −1

is non-Hermitian and that, since Y is even, QY = ZPY Z. We claim that it is always
possible to find an even Y such that PYQY = PY ZPY Z = 0.

To show this, it is useful to construct a Jordan decomposition of the Hilbert space
for P , Q into 1D and 2D orthogonal graded subspaces that are invariant under both
P and Q. To this end, we note that Π = P +Q is Hermitian and commutes with Z.
Hence, there is a common basis for eigenstates. Let |φ〉 be an element of this basis, so
that Π|φ〉 = λ|φ〉 and Z|φ〉 = ±|φ〉. If P |φ〉 ∈ span(|φ〉), then span(|φ〉) is a 1D invariant
graded subspace for both Pand Q. Otherwise, it is easy to see that |φ〉, P |φ〉 generate
a 2D space left invariant by P and Q. If λ �= 0, this space is generated by P |φ〉 and
ZP |φ〉, and taking the even and odd combination of these, we see that the subspace is
graded. Otherwise P |φ〉 = ±ZP |φ〉 so that P |φ〉 also has well-defined parity, and so in
any case the subspace is graded. This procedure gives us a basis for the Hilbert space
B = {|v1〉, |w1〉, . . . , |vr〉, |wr〉, |u1〉, . . . |uk〉}, where (|vj〉, |wj〉) and |uj〉 generate 2D and
1D invariant graded subspaces, respectively. Note that this basis is not orthogonal, since
〈vj |wj〉 �= 0.

Now, let Ri be the orthogonal projector onto a graded invariant subspace for P , Q
of dimension 2. Since [Ri,Z] = 0, we have that RiPRi = |vi〉〈vi| and RiQRi = |wi〉〈wi|,
with |wi〉 = Z|vi〉, and |vi〉 = αi|ai〉+ βi|bi〉, where |ai〉 (|bi〉) is even (odd). It must
be the case that αi, βi �= 0, otherwise |vi〉, |wi〉 are proportional. Then, we can define
the 2D matrix Y i = diag(βi,αi) which is invertible. Next, for all 1D blocks we define
Yi = 11. We claim that Y = ⊕iY i is the desired gauge matrix. Indeed, consider the basis
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BY = {Y |v1〉, Y |w1〉, . . . , Y |vr〉, Y |wr〉, |u1〉, . . . , |uk〉}. By construction, this is an orthog-
onal (although not normalized) basis: indeed, 〈vj|Y †Y |wj〉 = |αiβi|2 − |αiβi|2 = 0, while
the other orthogonality relations are immediate. Furthermore, in this basis PY , and QY

are diagonal matrices, with elements that are only 0 or 1. Thus, since PY �= PQ, neces-
sarily PYQY = 0: if this were not the case, then since PY , and PQ have the same rank,
PYQY would project onto an invariant subspace of S1 with strictly smaller dimensions,
which is a contradiction.

Thus, up to an even gauge transformation, we can assume that PQ = 0. Now, since
P +Q is an invariant subspace projector that commutes with Z, it must be equal to
the identity, because A is GI. In the basis where Z has the form (27), this imposes the
following structure on P and Q = �− P = ZPZ

P =
1

2

[
� U
U †

�

]
, Q =

1

2

[
� −U

−U †
�

]
, (D4)

where idempotence requires UU † = U †U = �. Hence, this is only possible if De = Do

and U is a unitary matrix. Now, the condition AiP = PAiP implies that the matrices
Ai are of the following form

Ai =

(
Ci 0
0 U †CiU

)
if |i| = 0

Ai =

(
0 Ci

U †CiU † 0

)
if |i| = 1.

(D5)

We can then map this to the form (D1) using an even-parity gauge �⊕ U .
Next, condition (b) follows from (c), so we only need to prove the former. We do this

by contradiction. We use S(e)(Bi) to denote the even subalgebras generated by Bi, while

we define S(o)(Bi) to be the linear space generated by the odd products Bi1 . . .Bik with∑
j |ij| ≡ 1 (mod2) (note that S(o)(Bi) is not an algebra, since it is not closed under the

product). Let P e be the projector onto an invariant subspace for S(e)(Bi), denoted by
Se, containing no smaller invariant subspace, and define the linear space

So = {|w〉 = B(o)|ve〉 : |ve〉 ∈ Se,B
(o) ∈ S(o)(Bi)}. (D6)

Specifically, So is the space generated by applying all possible odd products to Se. P o

denotes the orthogonal projector onto So. By definition

BiPe = PoB
iPe, ∀|i| = 1, (D7)

and also

BiPo = PeB
iPe, ∀|i| = 1. (D8)

To see this, we note that |w〉 ∈ So ⇒ |w〉 = B(o)|ve〉, with |ve〉 ∈ Se, and B(o) ∈ S(o)(Bi),

and thus, Bi|w〉 = BiB(o)|ve〉. Since |i| = 1, BiB(o) is in the even algebra, and thus
BiB(o)|ve〉 ∈ Se due to equation (D3). In the same way, we also have

BiPo = PoB
iPo, ∀|i| = 0. (D9)
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Indeed, if |w〉 ∈ So, then |w〉 = B(o)|ve〉, with |ve〉 ∈ Se, and B(o) ∈ S(o)(Bi), and thus

Bi|w〉 = BiB(o)|ve〉. Since |i| = 0, BiB(o) is odd, and thus by the definition of So,
Bi|w〉 ∈ So. Now, consider the projector

P̃ =

(
Pe 0
0 Po

)
. (D10)

Clearly, [P̃ ,Z] = 0. Furthermore, AiP̃ = P̃AiP̃ , because this condition is equivalent to

BiPe = PeB
iPe, ∀|i| = 0, BiPo = PoB

iPo, ∀|i| = 0,

BiPe = PoB
iPe, ∀|i| = 1, BiPo = PeB

iPo, ∀|i| = 1.
(D11)

The first equation is verified by definition, while the others correspond to (D7)–(D9).

The existence of P̃ contradicts the assumptions, and we thus conclude that also property
(c) is true. �
Corollary D.4. Let A be an even tensor in the form of (D1). Then, A is GI iff there is
no projector Pe such that

Bi1 . . .BipPe = PeB
i1 . . .BipPe

∀{ik}pk=1 :

p∑
r=1

|ir| ≡ 0.
(D12)

Proof. Due to proposition D.3, we only need to prove that if there is no such P e then A
is GI. Suppose this is not true, and take a projector P with AiP = PAiP , and [P ,Z] = 0.
From the latter condition, we can write P in the form

P =

(
Pe 0
0 Po

)
. (D13)

Using the explicit matrix representation for Ai, it is easy to see that P e is an invari-
ant projector for the even matrix subalgebra generated by Bi, which is the desired
contradiction. �

We can now proceed to characterize GNTs, introduced in the definition 6.2. We
begin with a simple observation.

Lemma D.5. Let A be a graded normal degenerate tensor. Then, up to an even gauge
transformation, Ai are in the form (D1), and two indices i, j exist with |i| = 1, |j| = 0,
such that Bi �= 0, Bj �= 0.

Proof. Since the TM associated with A has two eigenvalues equal to 1, then necessarily
there are invariant subspaces for Ai which, by definition, can only be non-graded. Thus,
due to proposition D.3, there is an even gauge transformation mapping Ai into the
form (D1), and there is an i, with |i| = 1, such that Bi �= 0. Hence, we only need to
prove that one index i exists, with |i| = 0, such that Bi �= 0. Suppose that there is no
such i, and take Ai in the form (D1). Then, Aj = σx ⊗Bj for all j. Using EA and EB

to denote the transfer matrices associated with Aj and Bj, respectively, this implies
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EA = σx ⊗ σx ⊗ EB, in a suitable basis. It follows that the spectral radii of EA and EB

coincide. Thus, an eigenstate of EB exists that is associated with an eigenvalue, λ, with
|λ| = 1, and hence there are four eigenstates of EA associated with an eigenvalues μj

with |μj| = 1. This contradicts the fact that A is a graded normal degenerate tensor. �
Next, we introduce the completely positive map associated with a tensor A, which

is of great importance for the study of normal tensors.

Definition D.6. For any tensor A, we define the CPM

EA(X) =
∑
j

AjXAj†. (D14)

Analogously to the case of qudits, it is possible to characterize the fixed points of
the CPM associated with GNTs.

Lemma D.7. Let A be a GNT. If A is non-degenerate, then the unique fixed point of
EA is an even operator, which is strictly positive. If A is degenerate, then one can choose
the two fixed points to be a pair consisting of an even and an odd operator. Furthermore,
in the standard graded basis where Z = �⊕ (−�), they can be chosen in the form of

ρe =

(
ρ 0
0 ρ

)
, ρo =

(
0 ρ
ρ 0

)
, (D15)

where ρ is a strictly positive operator.

Proof. First, we note that one can always choose the fixed points of the map (D14) to
have a well-defined parity. Now, if A is non-degenerate, then its unique fixed point X
is a strictly positive operator [65]. This implies tr[X] > 0. On the other hand, the trace
of any odd operator is vanishing. Hence, X is even.

Suppose now that A is a degenerate GNT. Then, we can assume w.l.o.g. that Aj is
in the form of (59). Define the unitary matrix

u =
1√
2

(
� �

−� �

)
. (D16)

Note that u does not commute with the parity, Z. We have

Ãj = uAju† =

(
Bi 0
0 Ci

)
, (D17)

where

Ci =

{
Bi |i| ≡ 0,

−Bi |i| ≡ 1.
(D18)

Defining the CPM

EÃ(X) =
∑
j

ÃjXÃj†, (D19)
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we have EÃ(X) = uEA(u†Xu)u†, so that EA and EÃ have the same spectrum and the
eigenstates are related by a similarity transformation. Next, due to proposition D.3, the
tensor B defined by Bi is irreducible. Furthermore, the map EB cannot have eigenvalues
λ with λ �= 1 and |λ| = 1, otherwise they would be also eigenvalues of EA. Hence, B is
normal, and the map EB has a unique fixed point ρ > 0. Furthermore, the maps EB and
EC clearly coincide (where the tensor C is defined by the matrices Ci). Accordingly

ρ1 =

(
ρ 0
0 0

)
, ρ2 =

(
0 0
0 ρ

)
, (D20)

are two eigenvectors of EÃ(·) with λ = 1. Since A is normal, these must be the only
fixed points of EÃ(·). Now taking the inverse similarity transformation with respect to
u, we find that the eigenspace associated with λ = 1 of the map EA(·) is spanned by the
matrices

ρe =

(
ρ 0
0 ρ

)
, ρo =

(
0 ρ
ρ 0

)
. (D21)

�
Definition D.8. For graded normal non-degenerate tensors, we say that A is in graded
canonical form II (GCFII) if Φ = � is the only fixed point of

E′
A(X) =

∑
j

A†jXAj, (D22)

while the fixed point of the CPM (D14) is a diagonal positive and full-rank matrix ρ.
For graded normal degenerate tensors, we say that A is in GCFII if

Φ1 =

(
� 0
0 �

)
, Φ2 =

(
0 �

� 0

)
(D23)

are the only fixed points of the CPM (D22), while the fixed points of (D14) are given
in (D15), where ρ is a diagonal positive and full-rank matrix.

From lemma D.7 it is easy to show that for any normal tensor there is always an
even gauge transformation mapping it into GCFII.

Proposition D.9. Let A be an even tensor, and denote by EA, EA the corresponding
TM and the associated completely positive map, respectively. Then

(a) A is normal and non-degenerate iff (i) EA has a unique eigenvalue λ with |λ| = 1;
(ii) the corresponding left and right eigenvectors Φ, ρ of the TM are positive definite
operators ρ, Φ > 0;

(b) A is normal and degenerate iff (i) EA has exactly two eigenvectors associated with
the eigenvalue λ = 1, and no other eigenvalue μ with |μ| = 1; (ii) the corresponding
right (left) eigenvectors ρ1, ρ2 (Φ1, Φ2) of the TM are even and odd, respectively;
(iii) the even eigenvectors Φ1, ρ1 are positive definite operators ρ > 0.

Proof. Point (a) follows directly from proposition 3 in [66]. Let us prove point (b),
along similar lines. We only need to prove that conditions (i), (ii), (iii) imply that A
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is normal and degenerate, because the inverse statement follows directly from lemma
D.7. First, we assume w.l.o.g. that A is in the form of (D1) (with the parity operator
Z = σz ⊗ 11) and in GCFII. This means that the channel (D14) is trace preserving. We
use De, Do to denote the dimensions of the even and odd subspaces, and D = De +Do.
We use {|j〉}Dj=1 to denote a basis of vectors with well-defined parity. Following [66],
we define Sn(A) ⊆ MD×D as the linear space spanned by all the possible products of
exactly n matrices Aj, where MD×D is the space of complex D ×D matrices. Similarly,
we define Se

n(A) ⊆ MD×D as the linear space spanned by all possible even products of
Aj , Aj1 . . . Ajn, with

∑
k |jk| ≡ 0 (mod2). Finally, given the map E , we introduce the

Choi matrix ω(E) := (E ⊗ �) (Ω), where Ω =
∑D

i,j=1 |ii〉〈jj|. Since the channel is trace-
preserving, the eigenvalues of the TM EA with |λ| = 1 have trivial Jordan blocks (see
proposition 6.2 of [67]). Then, from (i) we have

lim
n→∞

En
A = E∞

A , (D24)

and

E∞
A (X) = ρ1 tr (X) + ρ2 tr (Φ2X) , (D25)

where Φ2 is given in equation (D23).
We need to show that no proper graded subspace exists which is left invariant by all

Aj . First, we note that each element, Ae ∈ Se
n(A) is a block diagonal matrix

Ae =

(
Ae

1 0
0 Ae

2

)
, (D26)

where Ae
1 ∈ MDe×De

, Ae
2 ∈ MDo×Do

. We claim that there exists some n such that
PeS

e
n(A)Pe = MDe×De

, where P e is the projector onto the even subspace of dimension
De. This amounts to showing that the matrices Ae

1 span MDe×De
. Suppose that this is

not the case. Then, an

Fn =

(
Gn 0
0 0

)
, (D27)

exists, such that tr(A
(n)
k Fn) = 0, for all A

(n)
k ∈ S

(e)
n (A) (and this is so for all A

(n)
k ∈ Sn(A),

since Fn is even). Thus

∣∣tr (ρ1F †
nFn

)∣∣ = ∣∣∣∣∣ ∑
k1,...,kn

|tr (Ak1 . . . AknFn) |2 − tr
(
ρ1F

†
nFn

)∣∣∣∣∣
=

∣∣∣tr [Ω (
En
A ⊗ �

) (
F̃ nΩF̃

†
n

)]
− tr

(
ρ1F

†
nFn

)∣∣∣ , (D28)

where F̃ n = Fn ⊗ �. We claim

tr
(
ρ1F

†
nFn

)
= tr

[
Ω
(
E∞
A ⊗ �

) (
F̃ nΩF̃

†
n

)]
. (D29)
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Indeed, using equation (D25), we have

tr
[
Ω
(
E∞
A ⊗ �

) (
F̃ nΩF̃

†
n

)]
= tr

(
ρ1F

†
nFn

)
+ tr

(
ρ2F

†
nΦ2Fn

)
. (D30)

Now, using the fact that ρ2 and Φ2 are odd operators, it is straightforward to show
tr
(
ρ2F

†
nΦ2Fn

)
= 0, which follows from (D27) and the fact that odd matrices are block

off-diagonal in this basis. Then, from equation (D28), we have∣∣tr (ρ1F †
nFn

)∣∣ � cn‖Ω‖∞ tr
(
F̃ nΩF̃

†
n

)
= Dcn tr

(
FnF

†
n

)
, (D31)

where limn cn = 0. On the other hand, using the fact that if ρ is full rank, then tr(ρX) �
1

‖ρ−1‖tr(X) for all X � 0, we have

∣∣tr (ρ1F †
nFn

)∣∣ � 1

‖ρ−1
1 ‖

∣∣tr (F †
nFn

)∣∣ , (D32)

and we obtain a contradiction. In the same way, we can prove that some n exists
such that PoS

e
n(A)Po = MDo×Do

, where P o is the projector onto the odd subspace of
dimension Do.

Now, suppose that a graded subspace V � CD′ ⊂ CD exists, with D′ < D, which is
left invariant by all matrices Ai. Since V is graded, we can take a basis for V of the form
{|v1〉, . . . , |vr〉, |w1〉, . . . , |ws〉}, where |vj〉 are even and |wj〉 are odd. Furthermore, since
D′ < D, either r < De, or s < Do. Suppose w.l.o.g. that the former is true, and choose
|u〉 to be even with 〈u|vj〉 = 0 for all j. Now taking n such that PeS

e
n(A)Pe = MDe×De

,

A
(n)
k ∈ S

(e)
n (A) exists such that 〈u|A(n)

k |v1〉 �= 0. This is a contradiction, since we assumed
that V was left invariant by all matrices Aj. �
Corollary D.10. Let A be a degenerate (non-degenerate) GNT. Then, the blocked tensor
Ak is still a degenerate (non-degenerate) GNT.

We are finally in a position to prove the existence and uniqueness of the GCF intro-
duced in definition 6.3. We begin with the following theorem, which provides a procedure
for casting any even tensor A into GCF.

Theorem D.11. After blocking, for any even tensor, A, it is always possible to obtain
another even tensor, AGCF, in GCF that generates the same fMPS with ABCs.

Proof. By proposition D.2 we can assume w.l.o.g. that A is in GIF. Furthermore,
from corollary D.10, any graded normal block remains so after blocking, so that we can
restrict ourselves to the study of the case where tensor A has a single block in its GIF.
We can also assume w.l.o.g. that the spectral radius of EA is one. There are only two
possibilities for the tensor A: (i) there is no invariant subspace for the matrices Aj or
(ii) there are non-graded invariant subspaces for the matrices Aj .

Consider case (i). If there is a single eigenvalue with |λ| = 1, then λ = 1 and we are
done. Otherwise, there are p eigenvalues ei2πq/p, with gcd(q, p) = 1, where p divides the
bond dimension D [65]. We can then block p times and consider the blocked tensor Ap.
Now, the CPM associated with Ap has exactly p > 1 eigenvalues equal to 1. Accordingly,
there is necessarily an invariant subspace for Ai

p. If there are invariant graded subspaces,
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we can decompose the block further with a projector P , such that [P ,Z] = 0 and restart
the procedure for each block. Otherwise we fall into case (ii), detailed below.

Now we consider case (ii), namely suppose that A has a single block in the GIF,
with non-graded invariant subspaces for the matrices Aj. If Aj is a degenerate GNT we
are finished. If this is not the case, we show below that the matrices Aj can be strictly
decomposed into smaller blocks after blocking. Since the bond dimension D is finite,
this is enough to conclude the proof.

From proposition D.3, we can assume without loss of generality that Aj has the form
(D1). Since there is no invariant subspace for the matrices Bi, cf proposition D.3, the
CPM

EB(X) =
∑
j

BjXBj† (D33)

can either have a single eigenvalue λ with |λ| = 1, (we call this case (j)) or exactly p
eigenvalues ei2πq/p, with gcd(q, p) = 1, where p divides the bond dimension D/2 (we call
this case (jj)). Consider case (jj) and take the tensor Ap obtained by blocking p times.
The matrices corresponding to Ap are

AI
p =

(
BI

p 0
0 BI

p

)
= �⊗BI

p if |I| = 0, (D34a)

AI
p =

(
0 BI

p

BI
p 0

)
= σx ⊗BI

p if |I| = 1. (D34b)

where I = (i1, . . . , ip), |I| = |i1|+ · · ·+ |ip| and

BI
p = Bi1 . . .Bip. (D35)

Now, since EBp
has p > 1 eigenvalues equal to one, there must be an invariant subspace

for all BI
p . Thus, from proposition D.3 the matrices AI

p can be decomposed further
into smaller blocks with projectors commuting with Z. Now consider (j). In this case,
the tensor B is normal. Repeating the construction of lemma D.7, we consider the

tensor Ã in equation (D17), which is related to A via the similarity transformation u in
equation (D16). It is clear from the diagonal structure of (D17) that EÃ (and thus EA)
have at least two eigenvalues equal to one. Since we are assuming that A is not normal,
there must be other eigenvalues with an absolute value of one. It follows from lemma
A.2 in [33] that this is only possible if there is a non-singular matrix S and a phase φ
such that

Bi = eiφSCiS−1, (D36)

specifically, using equation (D18),

Bi = eiφSBiS−1, |i| = 0 (D37a)

Bi = −eiφSBiS−1, |i| = 1. (D37b)

Since S is invertible, there are μ �= 0 and |v〉 �= 0 such that

S|v〉 = μ|v〉. (D38)
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Since B is normal, for any n there are Bi1 . . .Bin such that Bi1 . . .Bin|v〉 �= 0. By making
repeated use of equation (D37), we get

SBi1 . . .Bin|v〉 = (−1)
∑

j |ij | eiφnμBi1 . . .Bin|v〉 (D39)

namely, S has an eigenvalue of the form ±eiφnμ for all n. Since S is a finite-dimensional
matrix, this is only possible if φ = 2πq/p with p, q ∈ N and gcd(q, p) = 1. Blocking p
times, we now obtain a new tensor in the form of (D34), where now

BI = SBIS−1, |I| = 0 (D40a)

BI = −SBIS−1, |I| = 1. (D40b)

Next, we prove by contradiction that the even subalgebra generated by the matrices
BI has invariant subspaces, so that the blocked tensor Ap can be decomposed further by
proposition D.3. If this is not true, then by Burnside’s theorem [68] the even subalgebra
coincides with the full matrix algebra. On the other hand, from equation (D40), we
know that S must commute with any element of the even algebra, and thus S = α�,
where w.l.o.g. α �= 0. Thus

BI = −BI ∀|I| = 1 ⇒ BI = 0, ∀ |I| = 1. (D41)

By proposition D.3, this means that Ap has invariant graded subspaces, and using
corollary D.4, we arrive at a contradiction. �

Having established the existence of the CGF for any even tensor A, we now prove
that the GCF is essentially unique. Our strategy closely follows the one for qudits [54].

Definition D.12. The even tensors Aj (j = 1, . . . , g) form the basis of graded nor-
mal tensors (BGNT) of a tensor A if: (i) Aj are graded and normal (degenerate or
non-degenerate); (ii) for each N , |V (N)(A)〉 can be written as a linear combination
of |V (N)(Aj)〉; (iii) some N 0 exists such that for all N > N 0, |V (N)(Aj)〉 are linearly
independent.

Lemma D.13. Let |Va,b〉 be two fMPSs (with ABCs) generated by two graded NTs Aa,b,
with Dα × Dα matrices Ai

α and parity Zα. Then

lim
N→∞

〈Vα|Vα〉 = cα, (D42a)

lim
N→∞

|〈Vb|Va〉| = 0 or ca, (D42b)

where ca = 1 if Aa is non-degenerate, and ca = 2 if it is degenerate. In the case where the
limit (D42b) is non-vanishing, Aa,b are either both non-degenerate or both degenerate.
Furthermore, an invertible matrix X, a permutation matrix Π and a phase φ exist, such
that Ai

a = eiφXΠAi
bΠ

−1X−1, with [X,Za] = 0, and Π−1ZaΠ = ±Zb.

Proof. Equation (D42a) is obvious, so we only need to prove (D42b). Suppose that Aa,b

are both non-degenerate, and that the limit (D42b) is non-vanishing. Then, it follows
from lemma A.2 in [54] that Da = Db, and a phase φ and a non-singular matrix Y exist,
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such that Ai
a = eiφY Ai

bY
−1. Now, define ζa = YZbY

−1, and Sa = Zaζa. It can be seen at
once that Sa commutes with Ai

a for all i. Hence, since Ai
a is normal, Sa = α�, namely

Za = αY ZbY
−1. (D43)

Since Z2
a = Z2

b = 11, we have α = ±1. Furthermore, since Za and αZb are both diagonal
and related by a similarity transformation, they have the same number of 1’s and 0’s
on the diagonal and a permutation matrix Π exists, such that αZb = Π−1ZaΠ. Plugging
this into (D43), we get [Za, YΠ−1] = 0, and the statement follows.

Suppose now that Aa is a graded normal degenerate tensor, so that w.l.o.g. Ai
a are

in the form (D1). First, we prove by contradiction that if Ab is non-degenerate, then
limN→∞|〈V b|V a〉| = 0. Suppose that this is not true, and that limN→∞|〈V b|V a〉| = c �= 0.
Using a similarity transformation that does not have well-defined parity, Aa can be
brought into the block-diagonal form (D17). Then, it follows from lemma A.2 in [54]
that an invertible matrix X and a phase φ exist, such that

Ai
b = eiφXBiX−1 or Ai

b = eiφX(−1)|i|BiX−1. (D44)

Since Aa is a normal degenerate tensor, the even algebra generated by Bi does not have
invariant subspaces, and so the same is true for Ai

b due to equation (D44). On the other

hand, we have [Zb,A
j1
b . . . Ajn

b ] = 0 for all products Aj1
b . . . Ajn

b with
∑

k |jk| ≡ 0 (mod2).
Since there are no invariant subspaces for the even algebra, this implies Zb = ±�. By

the parity of the tensor Ab, it must be the case that A
|i|
b ≡ 0 for all i with |i| = 0 (mod

2), or A
|i|
b ≡ 0 for all i with |i| = 1 (mod2). Using equation (D44) and lemma D.5, we

arrive at a contradiction.
Finally, suppose that both Aa and Ab are degenerate normal tensors, and that the

limit (D42b) is non-vanishing. Applying a permutation and an even gauge transforma-
tion, we can cast both tensors in the form of equation (D1), namely Ai

a,b = (σx)|i| ⊗Bi
a,b.

Reasoning as before, it follows that either Bi
b = eiφY Bi

aY
−1, or Bi

b = eiφ(−1)|i|Y Bi
aY

−1

for some invertible matrix Y and φ ∈ R. In both cases, the statement easily follows. �

Remark D.14. Note that permutations do not necessarily have a well-defined par-
ity. However, they leave the parity operator Z in a diagonal form, which is a necessary
condition in order to represent a state defined by (26) as an fMPSs. In fact, it is straight-
forward to show that, if G is a gauge transformation such that GZG−1 is diagonal, then
G = ΠX, where [X,Z] = 0, and Π is a permutation.

We have now all the necessary ingredients to state the following fundamental theorem
for fMPSs.

Theorem D.15. Let A and B be two tensors in GCF, with BGNT Ai
ka
, Bi

kb
(ka,b =

1, . . . , ga,b), and corresponding parity operators Za
ka

and Zb
kb
, respectively. If, for all N,

A and B generate fMPSs that are proportional to each other, then: (i) ga = gb = : g;
(ii) for all k there are jk, φk, an invertible matrix Xk, and a permutation Πk such that
Bi

k = eiφkXkΠkA
i
jk
Π−1

k X−1
k , with [Xk,Z

b
k] = 0, Π−1

k Zb
kΠk = ±Za

jk
.

Equipped with lemma D.13, the proof of this statement follows the one presented
in [54] for theorem 2.10 without modification. Finally, theorem 6.5 follows as a simple
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corollary. Note that, using the same notation as that used in the statement of theorem
6.5, we know that Za and ΠZbΠ

−1 have the same block-diagonal structure as A, and in
each block they coincide up to a global minus sign.

Appendix E. fMPUs with antiperiodic boundary conditions

E.1. GCF of fMPUs with ABC

In this appendix, we provide the technical proofs of the statements presented in section 6.
We begin with the characterization of the GCF of tensors generating fMPUs with ABCs.

Proposition E.1. Let U be in GCF, and suppose U generates a type-I (type-II) fMPU

U(N) with ABCs. Then, U/
√
d is graded normal non-degenerate (degenerate).

Proof. Let us first consider the case where U (N ) is an fMPU of the first kind, i.e. as
shown in equation (56) with S = eiα�, α ∈ R. W.l.o.g., we can assume that the tensor

U is in GCF. We show that U/
√
d is necessarily graded, normal, and non-degenerate.

Indeed, since U (N ) is unitary for all N , (1/d)N tr(U (N )†U (N )) = 1, specifically, using
equation (A34), trEN

U = 1 for all N > 1. Using lemma A.5 in [54], it follows that there

is only one nonzero eigenvalue of EU , which is 1, and thus the GCF of U/
√
d contains

only one normal non-degenerate block.
Next, suppose U (N ) is an fMPU of the second kind. Then, repeating the above argu-

ment, we get trEN
U = 2 for all N > 1, where the factor 2 comes from the normalization

1/
√
2 in equation (61). Again, using again lemma A.5 in [54], we have only two possibil-

ities: the GCF of U/
√
d has two normal non-degenerate blocks or only a single normal

degenerate block. Let us assume that the former is true, and arrive at a contradiction.
In this case, we can decompose U = V ⊕W, where both V and W are even, and thus
U (N) = (V (N) +W (N))eiα/

√
2, where V (N ) and W (N ) are standard fMPOs with ABCs.

Thus

� = U (N)†U (N) =
1

2
V (N)†V (N) +

1

2
W (N)†W (N) +

1

2
V (N)†W (N) +

1

2
W (N)†V (N). (E1)

Let us fix the value of N . We have the formal expansion

V (N)†V (N) = c1�+
∑

c
α1,...αj

i1,...ij
Aα1

i1
· · ·Aαj

ij
. (E2)

Here, Aα
j are traceless local operators (with well-defined parity) that, together with

�/
√
d, form an orthonormal basis of local operators corresponding to site j, namely

tr(Aα†
j Aβ

k) = δα,βδj,k, while c1, c
α1,...αj

i1,...ij
are some complex coefficients. Note that, since

V (N )†V (N ) is even, the sum in equation (E2) is over all possible sequences {αj}, {ij}
such that

∑
j |αj| ≡ 0 (mod 2), where |αj| is the parity of Aαj . Similar expansions

hold for W (N )†W (N ), V (N )†W (N ), W (N )†V (N ). Now, we can multiply equation (E1)

by 1/dN and take the trace: using the fact that V/
√
d, W/

√
d are normal and non-

degenerate with a spectral radius equal to 1, and lemma A.5 in [54], we immediately
obtain (1/dN)tr

[
V (N)†V (N)

]
= 1, (1/dN)tr

[
W (N)†W (N)

]
= 1, (1/dN)tr

[
W (N)†V (N)

]
= 0,
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and (1/dN)tr
[
V (N)†W (N)

]
= 0. In particular c1 = 1 in equation (E2). Next, we show

that c
α1,...αj

i1,...ij
in equation (E2) are all vanishing. To this end, we multiply both sides of

equation (E1) by A
αj†
ij

· · ·Aα1†
i1

, with
∑

j |αj| ≡ 0 (mod2), and take the trace, obtaining

0 = tr [MV ,V ] + tr [MW ,W ] + tr [MW ,V ] + tr [MV ,W ] . (E3)

Here, MV ,V is a product of matrices Ṽ [ij,αj] with elements Ṽ β,γ[ij,αj] =∑
n,mb

n,m
β [ij ,αj]V

n,m
β,γ , where V

n,m
β,γ corresponds to the tensor generating V (N )†V (N ), as

defined in equation (A31), while bn,mβ [ij,αj] are complex numbers, determined by the

choice of A
αj†
ij

. The matrices MW ,W , MW ,V , MV ,W are defined similarly. Note that there

is no additional parity operator Z in the trace, which is due to the fact that A
αj†
ij

. . . Aα1†
i1

is even. Note also that tr [MV ,V ] = c
α1,...αj

i1,...ij
. Now, we consider a chain of kN sites, for

k � 1. We repeat the steps above, but multiply by

A
αj†
ij+(k−1)M . . .Aα1†

i1+(k−1)MA
αj†
ij+(k−2)M . . .Aα1†

i1+(k−2)M . . .A
αj†
ij

. . . Aα1†
i1

. (E4)

We get

0 = tr
[
Mk

V ,V

]
+ tr

[
Mk

W ,W

]
+ tr

[
Mk

W ,V

]
+ tr

[
Mk

V ,W

]
, (E5)

for all k � 1. Once again, using lemma A.5 in [54], we conclude that each trace in
equation (E3) is vanishing, and thus c

α1,...αj

i1,...ij
in equation (E2) is zero, as anticipated. In

conclusion, the operators V (N ) and W (N ) satisfy

V (N)†V (N) = W (N)†W (N) = �, (E6)

V (N)†W (N) = W (N)†V (N) = 0, (E7)

where the second equality follows from the argument above, and the fact that
tr
[
V (N)†W (N)

]
= tr

[
W (N)†V (N)

]
= 0. However, equations (E6) and (E7) are inconsistent

with each other, and we have arrived at the desired contradiction. �
We are now in a position to prove that any tensor U generating one of the fMPUs

introduced in section 6.1 is necessarily simple, according to definition 6.7.

Proposition E.2. Suppose that the tensor U generates a type-I (type-II) fMPU U (N)

with ABCs. Then, k � D4 exists, such that Uk is simple (according to definition 6.7).

Proof. The case for type-I fMPUs can be treated by following the same steps as in
the proof of proposition III.3 in [33], so here we will only consider type-II fMPUs.
Furthermore, in order to simplify the notation, we will make use of the formalism of
graded TNs, explained in appendix B.

Let us consider a tensor U generating a type-II fMPU with ABCs. Due to proposition
E.1, we can assume w.l.o.g. that U is a degenerate GNT. Using the graphical notation
explained in appendix B, we can write

(E8)
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We stress that here and throughout this proof, pictures correspond to graded operators,
and not to matrix elements. In particular, in the right-hand side, the first part of the
graded tensor products acts on the auxiliary indices, whereas the second part acts on
the physical ones. Furthermore, E is the TM associated with U . Finally, we choose σα

and Sα to be traceless operators with well-defined parity, and with mutually orthogonal
σα. By lemma D.7, the TM E has two eigenvalues equal to 1. Furthermore, there are
no Jordan blocks associated with the eigenvalue 1, whereas there may be one or several
Jordan blocks associated with the zero eigenvalues. Using J < D2 to denote the largest
size of all the Jordan blocks of E, we can block J sites and consider UJ . Since UJ also
generates a type-II fMPU, we can use the decomposition (E8) for it, where we will
denote the new operators by E ′ and S′

α.
Next, we multiply both sides of � = U (N)†U (N) by (σα1

1 ⊗g . . .⊗gσ
αm
m )†, with

∑
j |αj| ≡ 0

(mod2), where |αj | is the parity of the operator σαm
m . We obtain

tr(E ′S ′
α1
. . . S ′

αm
) = 0, (E9)

where S ′
α is the matrix associated with S′

α, namely

S
′
α = (Sα)x,y |x)⊗g (y| . (E10)

Note that there is no additional parity operator Z in equation (E9), since
∑

j |αj | ≡
0 (mod2). Now, we can assume w.l.o.g. that UJ is in GCFII, namely that the TM
associated with UJ is in the form

E ′ =
∣∣ρ(1)) (Φ(1)|+ |ρ(2))(Φ(2)|, (E11)

where

(Φ(1)| =
D−1∑
n=0

(n,n| , (Φ(2)| =
D−1∑
n=0

(n,D − 1− n| , (E12)

∣∣ρ(1)) = D−1∑
n=0

ρn |n,n) ,
∣∣ρ(2)) = D−1∑

n=0

ρn |n,D − 1− n) , (E13)

with ρn > 0. We show that

(Φ(a)|S ′
α1
. . . S ′

αm
|ρ(b)) = 0, for a �= b, (E14)

for all sequences {αj}. Note that we also prove this for
∑

j |αj| ≡ 1 (mod2). In particular,
equation (E14) can be established using the explicit representation (E8). First, we note

(E15)

Here c({in, kn}) are numerical coefficients arising from expanding σα in equation (E8) in
terms of the operators |l〉⊗g〈m| and reordering. Next, recall that, due to equation (61),
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Uj,k = (σx)|j|+|k| ⊗Bj,k, and

(E16)

where U
k,i
(α,γ),(β,δ) was defined in equation (A31), and corresponds to the matrix

U
k,i =

∑
j

(
U ∗j,k ⊗ Uj,i

) (
Z(|i|+|k|) ⊗ �

)
, (E17)

where Z = σz ⊗ �. We can now expand (Φ(a)|S ′
α1
. . . S ′

αm
|ρ(b)) using the above expressions,

arriving at

(Φ(a)|S ′
α1
. . . S ′

αm
|ρ(b)) =

∑
{in,jn,kn}

Λ({in, jn, kn})tr

×
[
(σx)a+1(σx)

∑
s
(|is|+|ks|)

(σz)
∑
s
(|is|+|ks|)

(σx)b+1
]
, (E18)

where Λ({in, jn, kn}) is a coefficient that does not depend on a and b, and whose exact

form is irrelevant for our discussion. Here, we used the fact that the eigenstates (Φ(a)| and
|ρ(a)), when viewed as operators, correspond to the matrices (σx)a+1 ⊗ � and (σx)a+1 ⊗ ρ
(importantly, ρ does not depend on a). Now, if a �= b then the traces on the right-
hand side are all zero, because they are either proportional to tr(σx) or tr(σz), and
equation (E14) follows immediately. Furthermore, since Λ({in, jn, kn}) does not depend
on a and b, we also have

(Φ(1)|S ′
α1
. . . S ′

αm
|ρ(1)) = (Φ(2)|S ′

α1
. . . S ′

αm
|ρ(2)). (E19)

It now follows from equations (E9), (E14) and (E19) that

E ′S ′
α1
. . . S ′

αm
E ′ = 0, (E20)

if
∑

j |αj| ≡ 0 (mod 2). On the other hand, equation (E20) is also true if
∑

j |αj| ≡ 1

(mod2). This is because equation (E14) still holds, and 〈Φ(j)|O|ρ(j)〉 = 0 if O is odd,

since 〈Φ(j)| and |ρ(j)〉 are either both even or both odd.
Now, any element, S, in the algebra generated by S ′

α must have zero eigenvalues.
Indeed, whether S is even or odd, S2 is even, and thus tr(S2N) =

∑
jλ

2N
j = 0 for all N ,

where λj are the eigenvalues of S. This means that λ2
j = 0 for all j, and thus λj = 0 for

all j. Accordingly, any element, S, in the algebra generated by S ′
α is nilpotent. It follows

then, from a result by Nagata and Higman [69, 70], improved later by Razmyslov [71],
that some J ′ < D2 exists, such that

S ′
α1
. . . S ′

αJ ′
= 0, (E21)

for any set of α’s. At this point the proof can be completed by following the one of
proposition III.3 in [33] without modification. �
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Corollary E.3. Let U be a type-II fMPU, and d, de and do denote the dimensions of the
local physical space, and the corresponding even and odd subspaces, respectively. Then,
d is even, and de = do.

Proof. We prove this by contradiction. First, note that if de �= do, then the same is
true by blocking arbitrarily many times. This can be simply proven by induction on the
number of blocked sites, k, and using the rearrangement inequality. Then, take k such
that Uk is simple, and assume w.l.o.g. that Uk is in the form (D1). Due to the structure
of the eigenstates of the TM associated with eigenvalue 1, one can construct an fMPU

U
(N)
p with PBCs by adding an operator X = σx ⊗ � into the trace (unitarity follows from

simplicity and the fact that (X ⊗X)EU = EU). It is immediately clear that U
(N)
p is an

odd operator. However, this is a contradiction, because for any N↪ the dimensions of the
even and odd subspaces are different, and there can be no odd invertible operator. �

Next, we show that the fMPUs introduced in section 6.1 feature a Z2 structure with
respect to composition. In fact, it is obvious that the product of two type-I fMPUs is
still a type-I fMPU. Analogously, using proposition 6.6, we know that the product of
a type-I and a type-II fMPU is still a type-II fMPU. In the following, we also show
that the product of two type-II fMPUs can be represented as a type-I fMPU. The proof
closely follows the logic of similar derivations presented in [53], and shows that the class
of fMPUs introduced in section 6.1 is closed with respect to composition.

Proposition E.4. Let U and V be two degenerate GNTs, generating type-II fMPUs U(N),
V(N). Then, a representation of U(N)V(N) exists as a type-I fMPU ∀N.

Proof. We use ZU and ZV to denote the parity operators acting on the auxiliary space
for U and V, respectively, and assume w.l.o.g. that they are in the form of (27). Let W
be the tensor obtained by composing U and V. Up to an even similarity transformation,
we have

Wk,i
(α,γ),(β,δ) =

∑
j

(−1)|γ|(|k|+|j|)Uk,j
α,βV

j,i
γ,δ ,

⇒ Wk,i =
∑
j

(�⊗ ZV )
|k|+|j| (Uk,j ⊗ V j,i

)
,

(E22)

while the parity operator associated with W is ZW = ZU ⊗ ZV . Since U and V are
degenerate, we can write

Uk,j = (σx)|k|+|j| ⊗Bk,j, (E23)

V j,i = (σx)|j|+|i| ⊗ Cj,i, (E24)

and ZU ,V = σz ⊗ �, so that permuting the basis elements, we have

Wk,i =
∑
j

[
(σx)|k|+|j| ⊗ (σz)|k|+|j|(σx)|j|+|i|]⊗Bk,j ⊗ Cj,i. (E25)

In this basis, the parity operator is ZW = σz ⊗ σz ⊗ �⊗ �. We now define the permu-
tation operator acting non-trivially only on the tensor product of the first two spaces,
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Π = Π̃⊗ �⊗ �, where

Π̃ =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠ (E26)

We have Π̃(σz ⊗ σz)Π̃−1 = σz ⊗ �, and also

Π̃(σx)|k|+|j| ⊗ (σz)|k|+|j|(σx)|j|+|i|Π̃−1 = (σx)|k|+|i| ⊗ r|k|,|i|,|j|, (E27)

where

r0,0,0 = r1,1,1 = �, r0,0,1 = r1,1,0 = y, (E28)

r0,1,0 = r1,0,1 = σx, r0,1,1 = r1,0,0 = σz, (E29)

and

y =

(
0 1
−1 0

)
. (E30)

Accordingly, using Π as a similarity transformation, we end up with a parity operator
in the form of (27) and

Wk,i = (σx)|k|+|i| ⊗Dk,i, (E31)

where

Dk,i =
∑
j

r|k|,|i|,|j| ⊗Bk,j ⊗ Cj,i, (E32)

From equations (E28), (E29), (E31) and (E32), we see that the even subalgebra gen-
erated by Dk,i commutes with the matrix y ⊗ �⊗ �, and is thus reducible. Accordingly,
there must be a graded invariant subspace for the matrix Wk,i. In particular, we can
write the corresponding projectors as

P =

(
P̃ 0

0 Q̃

)
Q = �− P =

(
Q̃ 0

0 P̃

)
(E33)

where

P̃ =
(�− iy)

2
⊗ �, Q̃ =

(�+ iy)

2
⊗ �. (E34)

Now, [P ,ZW ] = 0, and Wk,iP = PWk,iP , so that we can replace the tensors Wk,i with

Wk,i = PWk,iP +QWk,iQ, and the product U (N )V (N ) decomposes as the sum of two
fMPOs. It is easy to see that these are exactly the same. This can be seen as follows.
First we rewrite

Wk,i =

(
Dk,i 0
0 Dk,i

)
, |i|+ |k| = 0 (E35a)
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Wk,i =

(
0 Dk,i

Dk,i 0

)
, |i|+ |k| = 1, (E35b)

so that

PWk,iP =

(
P̃Dk,iP̃ 0

0 Q̃Dk,iQ̃

)
, |i|+ |k| = 0 (E36a)

PWk,iP =

(
0 P̃Dk,iQ̃

Q̃Dk,iP̃ 0

)
, |i|+ |k| = 1, (E36b)

and

QWk,iQ =

(
Q̃Dk,iQ̃ 0

0 P̃Dk,iP̃

)
, |i|+ |k| = 0 (E37a)

QWk,iQ =

(
0 Q̃Dk,iP̃

P̃Dk,iQ̃ 0

)
, |i|+ |k| = 1. (E37b)

It is now straightforward to see that PWk,iP = SQWk,iQS−1, where S = σx ⊗ �, and
PZWP = −SQZWQS−1. Since the overall sign of the parity does not play any role, and
recalling the overall factor 1/2 coming from the product of the prefactors 1/

√
2, we

find that U (N )V (N ) can be represented as a type-I fMPU generated by the (even) tensor
PWk,iP . �

Finally, we can now prove the main result of Section 6.2, namely the equivalence
between fQCA and fMPUs of the first and second kinds.

Proposition E.5. Up to appending an inert ancillary fermionic d.o.f., any type-I or
type-II fMPU with ABCs is a 1D fQCA and vice versa.

Proof. Any simple tensor obviously generates a locality-preserving fMPU, so we only
need to show that any fQCA can be represented as a type-I or type-II fMPU. In fact,
this is almost trivial if we recall that one of the main results derived in [46], states that,
after blocking and appending a finite number of fermionic ancillas, any 1D fQCA can
be obtained by composing a finite number of the following elementary operations: (i)
translations of fermionic modes (as defined in equations (22) and (23)); (ii) translations
of Majorana modes; (iii) depth-two quantum circuits made of unitaries u and v acting
on neighboring sites (importantly, u and v must have well-defined parity, which we
can assume to be even w.l.o.g.). In section 5.2, we have already shown that Majorana-
shift operators can be represented by type-II fMPUs. Furthermore, it is straightforward
to verify that translations of fermionic modes are implemented by type-I fMPUs, with
equal bond and physical dimensions and tensors T i,j

α,β = δjβδiα. It is also simple to see that
quantum circuits can be represented by type-I fMPUs. This can be done by following
the construction for qudits, as explicitly carried out, e.g. in [34], and showing that one
can always decompose the unitaries u and v in terms of even tensors. As a last step, one
needs to show that an arbitrary product of type-I and type-II fMPUs can be represented
as an fMPU of type I or type II. This follows from proposition E.5, so that, putting all
these together, the statement is proven. �

https://doi.org/10.1088/1742-5468/abd30f 61

https://doi.org/10.1088/1742-5468/abd30f


J.S
tat.

M
ech.

(2021)
013107

Fermionic quantum cellular automata and generalized matrix-product unitaries

E.2. Index theory for fMPUs with ABC

Let U (N ) be a type-II fMPU in the standard form (87), and use Ũ and M to denote

the tensors in GCF associated with Ũ (N) and M
(N)
A , respectively. U denotes the tensor

obtained by composing Ũ and M, and let k be such that Ũ k is simple. Then, it is shown
in lemma 7.9 that the exponentiated index for Uq with q � 2k is If =

√
2Ĩ f, where Ĩ f

is the index of Ũk. Now, the tensor Uq, obtained by composing Ũ q and Mq, is not
necessarily in GCF, so that one needs to make sure that the index of Uq coincides with
that computed in the corresponding GCF. In the following, we show that this is true if
we block q̃ times, with q̃ � 4k.

Lemma E.6. Using the previous notations, the index of the tensor Uq̃ is the same as
the one computed in the corresponding GCF, where q̃ � 4k.

Proof. First, from the explicit graphical representation, it can immediately be shown
thatW = Uq̃ is simple, and that the TM reads EW = |ρ1) (Φ1|+ |ρ2) (Φ2|, where |ρ1), |φ1)
are even, when seen as operators acting in the auxiliary space, and |ρ2), |φ2) are odd. Let
P and Q be the orthogonal projectors onto the support of Φ1 and ρ∗1, respectively, where
ρ∗1 is the complex conjugate of ρ1. We claim that WP = W (where matrix multiplication
is intended from right to left, as usual). To this end, we need to show that if |v) is a
state in the auxiliary space, such that P |v) = 0 and P⊥ |v) = |v), then

|w) = Wn,m
α,β |α) |n〉〈m|(β|v) = 0, (E38)

where Wn,m
α,β denotes the matrix elements associated with W. First, we note that since

Φ1 is even, its support is a graded subspace, and P is an even operator. Then, we can
assume w.l.o.g. that v is even, and compute

(E39)

where we used the fact that Φ1|v) = 0 (since P |v) = 0, and P projects onto the support
of Φ1). We see now that the right-hand side of equation (E39) is zero, because it is
proportional to the trace of ρ2. Indeed, the latter is zero, since ρ2 an odd operator. In
the same way, one can see that QW = W. Then, it is easy to show that Φ2P = Φ2,
and Qρ2 = ρ2. Now, following the proof of proposition IV.5 in [33], we show how to
obtain the GCF of W using P and Q. To this end, we use Jordan’s lemma, which
guarantees a decomposition of the space CD = (

⊕
iC

2)⊕ Ck such that, in that basis,
P =

⊕
i |0〉〈0|i ⊕R, Q =

⊕
i |vi〉〈vi| ⊕ S, where R and S are commuting projectors on

Ck. We can choose |0〉〈0|i, |vi〉〈vi|, R, S to be all even operators. Let us now define the

(even) projector P̃ :=
⊕

i|0〉〈0|i ⊕RS. We have the following properties:

(a) PP̃ = P̃ ;

(b) PQ = P̃Q;

(c) QP = QP̃ ;

(d) There exists an invertible Y such that P̃QY = P̃ .
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We claim that W̃ := P̃WP̃ is the GCF ofW, when restricted to the range of P̃ . First,
using the properties above, it is straightforward to see that W̃ and W define the same
fMPU for all N . Next, we need to show that W̃ is a degenerate GNT. To this end, we
observe that the transfer operator of W̃ is X �→ tr(P̃Φ1P̃X)P̃ρ1P̃ + tr(P̃Φ2P̃X)P̃ ρ2P̃ .

Using the properties of the projector P̃ , it can immediately be seen that P̃ ρiP̃ and P̃ΦiP̃
are the left and right eigenvectors. Furthermore, they are even (odd) for i = 1 (i = 2),

since P̃ is even, and using the properties of P̃ one can easily see that both P̃ ρ1P̃ and
P̃Φ1P̃ are full rank in the range of P̃ . Invoking proposition D.9 in appendix E, we find
that W̃ is a degenerate GNT.

Next, we show that W̃ has the same left and right ranks as the tensor Ŵ =√
Φ1W

√
ρ∗1, where, again, matrix multiplication is intended from right to left. For this,

we take invertible matrices X , Y , and Z such that X
√
Φ1 = P ,

√
ρ∗1Z = Q (this can

always be done: taking Z ′ invertible such that Z ′
√
ρ∗1 = Q, we have Z = Z ′†) and

PQY = P̃ . Then, it is simple to show that ZŴZY = W̃ , which proves the claim.
Finally, we show that the rank of Uq̃ is the same as Ŵ . Using that fact that for any

operator rank(A) = rank(A†A), we have

(E40)

where we separate input and output with a gray dotted line, and where we denote the
tensor Ū q̃ by a black box. Note that the cut determines the order of multiplication of
the matrices involved. Next, define

(E41)

where ρ̃ is the right eigenstate associated with eigenvalue 1 of the TM EŨ . Since Ũ is in
GCF, the rank of ρ̃ is maximum, and clearly the left and right ranks for Vq̃, Uq̃ coincide.

Finally, using once again the fact that rank(A) = rank(A†A), we also have

(E42)

Now, it is straightforward to verify that

(E43)

Here, we have used the fact that the right even eigenvector associated with the TM
EM̃ is simply the identity. We can now plug this expression into the right-hand side of
equation (E40), and express Uq̃ in terms of U . Finally, recalling that Uk is simple, and
making use of equation (89) for the Majorana shift operator, after a straightforward
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calculation we obtain the right-hand side of equation (E42), so that the left-hand sides
of equations (E40) and (E42) also coincide. Hence, since the ranks for Vq̃ and Uq̃ are
the same, we have just proved that multiplying on the right by

√
ρ1 does not change

the rank. In a similar way, using the fact that rank(A) = rank(AA†), we can show that

the rank does not change by multiplying the input auxiliary space by
√
Φ∗

1. Finally, the
same argument can be used for the NE–SW cut, thus completing the proof. �
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