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We derive exact expressions for the finite-time statistics of extrema (maximum and minimum) of
the spatial displacement and the fluctuating entropy flow of biased random walks. Our approach
captures key features of extreme events in molecular motor motion along linear filaments. Our
results generalize the infimum law for entropy production and reveal a symmetry of the distribution
of its maxima and minima. We also show that the relaxation spectrum of the full generating
function, and hence of any moment, of the finite-time extrema distributions can be written in
terms of the Marčenko-Pastur distribution of random-matrix theory. Using this result, we obtain
estimates for the extreme-value statistics of stochastic transport from the eigenvalue distributions of
suitable Wishart and Laguerre random matrices. We confirm our results by numerical simulations of
stochastic models of molecular motors and discuss as illustrative example our theory in the context
of sports.

I. INTRODUCTION

Life is a non-equilibrium phenomenon characterised by
fluxes of energy and matter at different scales. At the
molecular level, molecular motors play a key role for the
generation of movements and forces in cells. Examples
are vesicle transport, muscle contraction, cell division
and cell locomotion [1, 2]. A molecular motor consumes a
chemical fuel, adenosine triphosphate (ATP), that is hy-
drolysed to adenosine diphosphate (ADP) and inorganic
phosphate. The chemical energy of this reaction is trans-
duced to generate spontaneous movements and mechani-
cal work. Single-molecule experiments have revealed that
the activity of single or a few molecular motors displays
strong fluctuations [3–13] which can be captured by the
theory of stochastic processes [14–21].

An important question is to understand general fea-
tures and universal properties that govern the statistics of
fluctuations of stochastic transport processes that include
the motion of molecular motors. Universal relations for
the fixed-time statistics of time-integrated currents, such
as the distance traveled and the work performed, have
been investigated in the framework of non-equilibrium
stochastic thermodynamics [22–25]. These results pro-
vide e.g. universal bounds for the efficiency of molecular
motors given by the ratio between the mechanical power
and the chemical power put in the motor [26]. Timing
statistics of enzymatic reactions, such as those power-
ing the motion of molecular motors, have been discussed
within the framework of Kramers theory [27]. Recent
theory and experiments in Kinesin have revealed symme-
try relations between forward and backward cycle-time
distributions of enzymatic reactions [28–30]. Related re-
sults have been derived in the context of waiting times of
active molecular processes [31] and transition-path times
in folding transitions of DNA hairpins [32].

When discussing dynamic processes, it is also suffi-

cient to study averages and small fluctuations. How-
ever, rare events and large fluctuations play an impor-
tant role when resilience and reliability of a system are
investigated. In this context, the statistics of extreme
values and of extreme excursions from the average play
an important role, as has been discussed in fields rang-
ing from statistical mechanics to climate [33, 34] and fi-
nance [35–37]. Extreme events are also important in bio-
physics and are key to understand the robustness of bi-
ological processes. Illustrating examples are microtubule
catastrophes or a sperm winning a race against a bil-
lion competitors. Here we consider the extreme value
statistics of transport processes. In spite of the signif-
icant progress in research on steady-state currents and
time fluctuations, little is known yet about extreme-value
statistics of stochastic processes such as active biomolec-
ular processes. Extreme-value theory has provided use-
ful insights for e.g. long-range correlations of DNA se-
quences [38, 39] and DNA replication statistics in frogs’
embryonic cells [40]. However, extreme-value statistics
of molecular motors have not been discussed so far. For
example, what is the maximal excursion of a stochastic
motor against or in the average direction of its motion
within a given time? How long does it take a motor to
reach its maximum excursion against the chemical bias?
What is the entropy production associated with an ex-
treme fluctuation of a molecular motor?

In this article, we provide novel insights on the
aforementioned questions by deriving exact results for
extreme-value statistics of simple models of stochastic
transport given in Eqs. (3-4) and (9-15). We discuss the
statistics of the maximum and minimum excursion (with
respect to its initial location) and the associated extremal
entropy changes. Moreover, we investigate the timescales
associated with those extrema, combining concepts from
stochastic thermodynamics, random walks and random-
matrix theory. As we show below, our results provide
insights on extreme-value statistics beyond recently de-
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rived inequalities for the finite-time infimum statistics of
entropy production [31, 41], and relate to record statistics
of correlated stochastic processes [42–49].

The article is organized as follows: Sec. II describes
the stochastic model of stochastic transport used in this
paper and provides exact extreme-value statistics for one
dimensional (1D) biased random walks. Sec. III discusses
the connection between extrema of 1D biased random
walks and random matrix theory. In Sec. IV we apply our
theory to two-dimensional stochastic models of molecular
motors and discuss its implications using sports as illus-
trative example. Sec. VI concludes the paper. Details on
the mathematical derivations and numerical simulations
are provided in the Appendices.
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Figure 1. (a) Sketch of a one-dimensional (1D) biased random
walk with hopping rates k+ and k− with displacement X. (b)
Example of a trajectory X(t) (black), its maximum Xmax(t)
(red), minimum Xmin(t) (blue) and its average over many
realizations 〈X(t)〉 (thick gray) as a function of time t. The
trajectories are obtained from a numerical simulation of a
1D biased random walk with hopping rates k+ = 1.05 and
k− = 0.95 in the positive and negative direction, respectively.
The entropy production along the trajectory X(t) is S(t) =
AX(t), with A = ln(k+/k−) = 0.1.

II. EXTREME-VALUE STATISTICS OF 1D
BIASED RANDOM WALKS

Many nonequilibrium phenomena at mesoscales can be
described at a coarse-grained level as a continuous-time
Markov jump process between discrete states x, y, z etc,
with exponential waiting times. The transition rate from
x to y can be written as [50–52]

k(x, y) = ν(x, y)eA(x,y)/2 , (1)

with ν(x, y) = ν(y, x) symmetric and A(x, y) = −A(y, x)
antisymmetric with respect to the exchange x → y. If
local detailed balance holds A(x, y) = β[W (x) −W (y)]

with W (x) the potential energy of state x, β = (kBT )−1

with kB Boltzmann’s constant and T the temperature of
a thermostat. First, we consider the simple case of a 1D
biased random walk on a line with discrete states denoted
by the integer x ∈ Z (see Fig. 1a for an illustration). The
forward and backward jump rates are given by k± ≡
k(x, x±1) = νe±A/2. Here ν > 0 is a rate and A > 0 the
affinity, which satisfy

ν =
√
k+k−, A = ln(k+/k−) . (2)

This biased random walk describes e.g. the motion
of a molecular motor along a periodic track fuelled by
ATP [19]. In the simplest case, A = β∆µ, with ∆µ =
µATP − (µADP + µP ) the chemical potential difference of
ATP hydrolysis, often of the order of 20kBT , and the rate
ν depends on ATP concentration and internal timescales
that determine the dwell-time statistics of the motor.

An individual trajectory of a motor starting from a
reference state X(0) = 0 at time t = 0 is denoted by
X[0,t] = {X(s)}ts=0. It contains jumps j = 1, 2, . . . from

state x−j to state x+
j that occur at random times tj . The

entropy production in units of kB associated with this
trajectory is S(t) = ln[P(X[0,t])/P(X̃[0,t])] = AX(t) [31].

Here P is the path probability and X̃[0,t] = {X(t−s)}ts=0

is the time reversed path. Thus, the entropy production
S(t) is a stochastic variable that undergoes a biased ran-
dom walk of step size A with trajectories S[0,t] = AX[0,t].
For A positive, both the average velocity v = 〈X(t)〉/t =
(k+−k−) = 2ν sinh(A/2) and the average rate of entropy
production σ = 〈S(t)〉/t = vA are positive. Here and
in the following we denote by 〈 · 〉 averages over many
realizations of the process X(t). However, due to fluc-
tuations, the stochastic variables X(t) and S(t) can in
principle take any value with finite probability and even
become negative.

We now derive exact expressions for the statistics of the
minimum Xmin(t) = minτ∈[0,t]X(τ) and the maximum
Xmax(t) = maxτ∈[0,t]X(τ) of the position of the motor
with respect to its initial position, see Fig. 1b for illustra-
tions. We also discuss the global minimum and maximum
of the stochastic entropy production S(t) = AX(t) de-
noted by Smin(t) and Smax(t), respectively. We first dis-
cuss the statistics of the global extrema of the position
Xmin ≡ limt→∞Xmin(t) and Xmax ≡ limt→∞Xmax(t),
and of the entropy production, Smin and Smax. The prob-
ability that the global minimum of the discrete position
is −x, with x ≥ 0, is P (Xmin = −x) = Pabs(−x) −
Pabs(−x − 1), where Pabs(−x) = e−Ax [31] is the prob-
ability that X(t) reaches an absorbing site in −x at a
finite time. Thus, the global minimum follows a geomet-
ric distribution

P (Xmin = −x) = P (Smin = −Ax)

= e−Ax(1− e−A) , (3)

for x ≥ 0 and P (Xmin = x) = P (Smin = Ax) = 0 for
x > 0. From Eq. (3) we obtain the mean global minimum
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of a 1D biased random walk and of its associated entropy
production:

〈Xmin〉 =
−1

eA − 1
, 〈Smin〉 =

−A
eA − 1

. (4)

Therefore, the global minimum of the position diverges
in the limit of small bias A whereas the entropy produc-
tion minimum is bounded for all A ≥ 0 and obeys the
infimum law 〈Smin〉 ≥ −1 [31]. This bound is saturated
in the limit of small affinity, which corresponds to the
diffusion limit [53]. Because S(t) and X(t) have positive
drift, the average global maxima of entropy production
and displacement are not defined. However the differ-
ence limt→∞[〈Smax(t)〉 − 〈S(t)〉] = A/(eA − 1) is finite
and obeys symmetry properties that we discuss below.

Finite-time extrema statistics of the 1D biased random
walk may be obtained from the finite-time absorption
probabilities

P (Xmin(t) = −x) = P (Smin(t) = −Ax) (5)

= Pabs(−x; t)− Pabs(−x− 1; t) ,

where Pabs(−x; t) is the probability that X reaches
an absorbing site at −x at any time smaller or equal
than t. The absorption probability Pabs(x; t) = δx,0 +∫ t

0
Pfpt(T;x)dT, with δi,j Kronecker’s delta and

Pfpt(T;x) = eAx/2
|x|
T
Ix(2νT)e−2ν cosh(A/2)T , (6)

is the first-passage time probability for the motor to first
reach an absorbing site in x, with |x| ≥ 1, at time
T ≥ 0 [54, 55], see Appendix A. Here Ix denotes the
x−th order modified Bessel function of the first kind.
Note that

∫∞
0

dTPfpt(T;x) = Pabs(x) ≤ 1. We iden-
tify in Eq. (6) two timescales. The smaller timescale
τ1 = (k++k−)−1 = (2ν cosh(A/2))−1 is the average wait-

ing time between two jumps, and τ2 = (2
√
k+k−)−1 =

(2ν)−1 is inversely proportional to the geometric mean
of the transition rates; their ratio τ2/τ1 = cosh(A/2) ≥ 1
increases with the bias strength. Normalizing (6) by
Pabs(x), we obtain the mean 〈T〉 = |x|A/σ and variance
Var[T] = (coth(A/2)/|x|)〈T〉2 of the first-passage time,
in agreement with the first-passage time uncertainty re-
lation Var[T]/〈T〉 ≥ 2/σ [56]. Furthermore, the first-
passage time probability density (6) obeys the following
symmetry properties. First, the ratio

Pfpt(T;x)/Pfpt(T;−x) = eAx , (7)

is independent on T, as follows from the stopping-time
fluctuation theorem [28, 31, 57]. Second, the conju-

gate” first-passage time probability P̃fpt(T;x), obtained
exchanging k+ by k− (i.e. A by −A), obeys

Pfpt(T;x)/P̃fpt(T;x) = eAx . (8)

These two properties imply P̃fpt(T;x) = Pfpt(T;−x),
which has interesting consequences for random walks [58]
and for the extrema statistics of S(t), see below.
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Figure 2. Average minimum 〈Smin(t)〉 (blue open sym-
bols) and average of the maximum minus the final value
〈Smax(t)〉 − 〈S(t)〉 (red filled symbols) of stochastic entropy
production as a function of time of a 1D biased random walk.
The symbols are averages over 10 sets of 103 numerical simu-
lations; the error bars are the standard deviation of the mean
values obtained from these sets. The black lines are obtained
from numerical integration of Eq. (9) using the trapezoidal
method. Simulation parameters: A = 1, ν = 0.5 (squares);
A = 2, ν = 2 (circles); A = 0.1, ν = 100 (diamonds). The
horizontal orange lines at ±1 correspond to the bound ob-
tained using martingale theory [31]. Inset: 〈Smin(t)〉− 〈Smin〉
as a function of time rescaled by τ∞ = [2ν(cosh(A/2)−1)]−1.
The different curves correspond to ν = 1 and 0.5 ≤ A ≤ 5.
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Figure 3. Empirical probability density of −Smin(t) (blue
open symbols) and Smax(t) − S(t) (red filled symbols) ob-
tained from 108 numerical simulations of a 1D biased random
walk with parameters A = 1 and ν = 1. Different symbols
represent different integration times t = 10−2 (squares),
t = 10−1 (circles), t = 1 (up triangles), t = 10 (down
triangles). The black lines are the theoretical distributions
for different values of t (from left to right) evaluated using
Eq. (5). The orange line is an exponential distribution with
mean value equal to one.

In order to derive exact finite-time extrema statis-
tics, it is often convenient to use generating func-
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tions and Laplace transforms. The generating func-
tions of the distributions of finite-time entropy pro-
duction extrema are defined as Gmin/max(z; t) =∑∞
x=−∞ zxP

(
Smin/max(t) = Ax

)
Θ(∓x), with Θ the

Heaviside function. Their Laplace transforms are given
by Ĝmin/max(z; s) =

∫∞
0

dte−stGmin/max(z; t) = s−1[1 −
P̂fpt(s;−1)]/[1 − z∓1P̂fpt(s;−1)]. Here, P̂fpt(s;n) =

eAx/2e−|x| cosh−1[s/2ν+cosh(A/2)]−δx,0 is the Laplace trans-
form of the first-passage-time probability density at site
x. These expressions enable the computation of the
Laplace transform of all the moments of the extrema
from successive derivatives of the generating functions
with respect to ln z. In particular, the Laplace trans-
form of the average minimum of entropy production
reads s〈Ŝmin(s)〉 = −A/[P̂fpt(s;−1)−1 − 1]. In the
time domain, we may write this equality as 〈Smin(t)〉 =

−A
∫ t

0
dT
∑∞
x=1 Pfpt(T;−x) [48] which can be written as

(see Appendix B):

〈Smin(t)〉 = − A

2π

∫ 1

−1

1− e−2νt(cosh(A/2)−y)

(cosh(A/2)− y)
2

√
1− y2 dy .

(9)
Numerical simulations of the 1D biased random walk are
in excellent agreement with Eq. (9) (Fig. 2, blue sym-
bols). Note that Eq. (9) can also be expressed in terms
of the Kampé de Fériet function F as 〈Smin(t)〉/A =

−k−t + 2+0F1+1

[
[2 1] , ∅ , ∅

3 , 2 , 2

∣∣∣− k−t , −k+t
]

(k−k+t
2)/2

(see Appendix E). Interestingly, our simulations reveal
(Fig. 2, red symbols) that the average maximum of en-
tropy production minus the average entropy production
at time t equals to minus the right-hand side of Eq. (9):

〈Smax(t)〉 − 〈S(t)〉 = −〈Smin(t)〉 . (10)

Equation (10) follows from the symmetry relation of the

1D biased random walk P̃fpt(T;x) = Pfpt(T;−x) and the

relation 〈Smax(t)〉 − 〈S(t)〉 = A
∫ t

0
dT
∑∞
x=1 P̃fpt(T;x).

Moreover, this symmetry extends to the distribution of
minima and maxima of entropy production

P (S(0)− Smin(t) = s) = P (Smax(t)− S(t) = s) , (11)

where, in this case, S(0) = 0. Figure 3 shows empiri-
cal distributions of entropy-production minima and max-
ima obtained from numerical simulations, which fulfil the
symmetry relation (11).

III. RANDOM-MATRIX APPROACH

We now explore a connection between entropy-
production extrema and random-matrix theory. More
precisely, we relate the previously derived expressions for
the average and distribution of extrema with eigenvalue
distribution of specific random matrices. Equation (9)
can also be written as (see Appendix C)

〈Smin(t)〉 = 〈Smin〉
(

1−
∫ τ∞

τ0

e−t/τρ(τ/τ̄)
dτ

τ̄

)
. (12)

Here τ0 ≡
(√

k+ +
√
k−
)−2

is the minimal relax-
ation time of the extreme value statistics and τ∞ ≡(√

k+ −
√
k−
)−2

is the maximal extrema relaxation
time. Here ρ is the Marčenko-Pastur distribution, where
times are normalized by τ̄ ≡ k+/(k+ − k−)2. The
Marčenko-Pastur distribution is given by [59]:

ρ(λ) ≡

 1

2πδ

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 if λ /∈ [λ−, λ+],

(13)
with

∫∞
0
ρ(λ)dλ = 1, where δ = k−/k+ = e−A and

λ± =
(

1±
√
δ
)2

= (
√
k+ ±

√
k−)2/k+. Interestingly,

ρ(λ) is the distribution of eigenvalues in the large size
limit of Hermitian matrices drawn from the ensemble of
the Wishart-Laguerre random matrices [60–62], whose
structure is explained below. The average (12) follows
from the generating function of the distribution of the
minimum (see Appendix C)

Gmin(z; t) = 1 +
1− z
eA − 1

∫ τ∞

τ0

1− e−t/τ

1 + f(z)τ
ρ(τ/τ̄)

dτ

τ̄
, (14)

where f(z) = k+(z − 1) + k−(z−1 − 1).

Equations (12-14) imply that the time at which the dis-
tribution of the extrema relax to their long time limit is
given by the largest timescale of the relaxation spectrum
τ∞ = τ̄λ+. We demonstrate this result in an example
shown in the inset of Fig. 2 which shows this for the case
of 〈Smin(t)〉. Furthermore, it implies that the following
trace formula holds:

〈Smin(t)〉 = 〈Smin〉
(

1− lim
m→∞

1
m Tr e−M

−1t/τ̄
)

, (15)

where M is a m×m random matrix. Eq. (15) holds for
M drawn from one of two random matrix ensembles: (i)
Wishart matrices M = n−1RRT , where R is a m × n
rectangular random matrix, RT its transpose where n =
deAme. Its entries Rij are independent and identically
distributed Gaussian random numbers with zero mean
and unit variance; (ii) Laguerre matrices M = n−1RRT ,
where R is a m×m square matrix with Rij independent
but not identically distributed random variables, drawn
from specific χ distributions [63], see Appendix D.

Eq. (15) can be approximated numerically using ran-
dom matrices with finite but sufficiently large m. In prac-
tice, we use the following estimate:

〈Smin(t)〉 ' 〈Smin〉

(
1− 1

m

m∑
i=1

e−t/(τ̄λi)

)
, (16)

where λi is the i-th eigenvalue of M drawn from either
the Wishart or Laguerre ensembles.

In Fig. 4 we illustrate the validity of our random-
matrix approach. More precisely, we compare the
theoretical value of the average minimum of entropy pro-
duction with the estimate given by the right-hand side
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Figure 4. Finite-time average minimum of entropy production
associated with 1D biased random walks as a function of time:
exact result (Eq. (12), black line) and estimates obtained from
the spectrum of a single m×m random matrix drawn from the
Wishart (blue filled symbols) and the β-Laguerre ensembles
(β = 2, open cyan symbols). The random-matrix estimates
are obtained evaluating the right-hand side in Eq. (15), i.e.

〈Smin〉[1 − m−1∑m
i=1e

−t/(τ̄λi)] with 〈Smin〉 = −A/(eA − 1),

τ̄ ≡ k+/(k+ − k−)2 = eA/2/(4ν sinh2(A/2)), and λi the i-
th eigenvalue of the corresponding Wishart/Laguerre random
matrix. Values of the parameters: A = ν = 1.

of Eq. (15). For this purpose, we compute numerically
the eigenvalues of a single random matrix of the Wishart
ensemble and of a matrix drawn from the β−Laguerre
ensemble with parameter β = 2. Notably, using a single
64 × 64 random matrix from the Wishart or Laguerre
ensembles, we obtain an estimate of the average entropy
production minimum that differs with respect to the
exact value only by about 2% at all times.

IV. EXTREMA STATISTICS OF MOLECULAR
MOTORS

We now investigate whether similar results also hold
for more complex stochastic models of molecular motors.
We consider a biochemical process where a molecular mo-
tor’s fluctuating motion is described by a continuous-time
Markov jump process on a potential energy surface in two
dimensions x and y (Fig. 5a). Here x denotes the spatial
displacement of the motor along a discrete track of pe-
riod `, and y is a chemical reaction coordinate denoting
the net number of fuel molecules spent by the motor.

The motion of the motor is biased along the track by
a mechanical force fext applied to the motor. In addi-
tion, the motor hydrolyzes ATP with chemical potential
difference ∆µ. We consider that both fext and ∆µ to be
independent of the state of the motor, which corresponds
to the limits where the external force and the concentra-
tion of fuel molecules are stationary. States (x, y) of the
motor are in local equilibrium at temperature T = β−1.
The dynamics of the motor is as follows. From a given
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Figure 5. Entropy production extrema for a two-dimensional
stochastic model of a molecular motor. (a) Sketch of the
model with states given by the vertices of the 2D grid and
the possible transitions from state (2,1) marked with ar-
rows. (b) Finite-time average minimum of entropy production
(〈Smin(t)〉, blue open symbols) and average maximum of the
entropy production minus its final value (〈Smax(t)−S(t)〉, red
filled symbols) for values of the external force fext = −2.5pN
(squares, solid line), -1.5pN (circles, dashed line), -0.5pN (up
triangles, dash-dot line), 0.5pN (down triangles, dotted line).
The lines are estimates obtained using Eq. (9) with effec-
tive parameters Aeff and νeff given by Eqs. (17-18), see text
for further details. (c) Cumulative distribution of −Smin(t)
(blue open symbols) and of Smax(t)−S(t) (red filled symbols)
for fext = −1.5pN (circles) and 0.5pN (down triangles), and
t = 50 ms. The black symbols are estimates given by Eq. (3)
with effective parameters Aeff , and the orange line is an ex-
ponential distribution with mean one. Values of the simula-
tion parameters: kBT = 4.28pN·nm, ` = 8nm, ∆µ = 4kBT ,
νm = 10Hz, νc = 5Hz, νmc = 25Hz, and νcm = 1Hz. The nu-
merical data were obtained from 108 simulations done using
Gillespie’s algorithm.
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state the motor can perform, at a random time, a jump
to eight adjacent states corresponding to the following
four transitions and their reversals: (i) sliding along the
track by a distance ` (−`) without consuming fuel but
generating work in (against) the direction of the force, at
a rate k+

m (k−m), with k−m = k+
me
−βfext`; (ii) consumption

of one ATP (ADP) molecule without generating work, at
a rate k+

c (k−c ), with k−c = k+
c e
−β∆µ; (iii) work genera-

tion in (against) the external force using ATP (ADP) at
a rate k+

mc (k−mc), with k−mc = k+
mce
−β(fext`+∆µ) and (iv)

work generation against (in) the external force using ATP
(ADP) at a rate k+

cm (k−cm), with k−cm = k+
cme

β(fext`−∆µ).
We use transition rates of the form k±α = ναe

±Aα/2,
where να give different weights to each transition type.

A single trajectory of the motor is a 2D random walk
containing snapshots (X(t), Y (t)) of the state of the mo-
tor at time t. Here X(t) is the spatial coordinate of
the motor (with respect to its initial position) and Y (t)
is the reaction coordinate representing the net number
of ATP molecules consumed up to time t. Note that
when Y (t) is negative, the motor has consumed more
ADP than ATP molecules. The entropy production as-
sociated with a single trajectory of the molecular motor is
S(t) = AmX(t)+AcY (t), where Am = βfext`, Ac = β∆µ
are the mechanical and chemical affinities. Thus S(t) is
a random walk with four different step lengths Am, Ac,
Amc ≡ Am +Ac and Acm ≡ −Am +Ac corresponding to
the jumps along the X, Y and the diagonal directions,
respectively.

We perform numerical simulations of this 2D stochastic
model of the molecular motor using Gillespie’s algorithm,
and evaluate the entropy flow associated with different
trajectories of the motor. Obtaining exact extreme-value
statistics in this model is challenging. However the fol-
lowing simple approximation provides good estimates.
The finite-time average (Fig. 5b) and the distribution
(Fig. 5c) of the entropy production extrema obtained
from simulations can be approximated by Eq. (9) and
Eq. (3) replacing A and ν by the effective parameters

νeff =
∑
α

να , (17)

Aeff = 2cosh−1

(∑
α

να
νeff

cosh
Aα
2

)
, (18)

where the index α runs over the four types of transitions
α = m, c, mc and cm. This approximation based on ef-
fective parameters follows from considering effective 1D
models with jumping rate k+

eff+k−eff =
∑
α k

+
α+k−α . More-

over, the symmetry between the time-dependent distri-
bution of the extrema (11) is yet satisfied with high ac-
curacy in our numerical simulations, even though these
distributions can have very irregular shapes depending
on the ratios of the affinities (Fig. 5c).

The average extrema of the mechanical and chemical
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Figure 6. Numerical results of mechanical and chemical cur-
rents and of entropy production extrema as a function of the
force for the two-dimensional stochastic model of a molecular
motor of Fig. 5. (a) Average long time minima and max-
ima of mechanical steps 〈Xmin /max〉 (blue and red squares
respectively) and average minima of chemical steps at long
time 〈Ymin〉 (blue circle) are shown as a function of the ex-
ternal force. The black lines are analytical results obtained
using Eq. (4) with effective affinities Ax/y = ln(k+

x/y/k
−
x/y).

For comparison, we also show the mechanical stepping rates
k+

x − k−x (dashed grey line) and the chemical stepping rate
k+

y − k−y (dotted grey line). k±x/y are defined in Eq. (19). (b)

Average long time minima of total entropy production (blue
circles) and rate of total entropy production (grey line) as a
function of the external force. The black line is an estimation
obtained using Eq. (4) with the effective parameters Aeff and
νeff given by Eqs. (17-18). The values of the fixed parameters
are the same as in Fig. 5. The averages at long time in (a)
and (b) were obtained at t = 0.5s from 106 simulations done
using Gillespie algorithm.

currents are shown in Fig. 6 as a function of the external
force. The behavior of these currents can be understood
from a mapping to 1D biased random walks X(t) and
Y (t) with effective forward and backward hopping rates
given, respectively, by

k±x = k±m + k±mc + k∓cm, k±y = k±c + k±mc + k±cm . (19)

This yielding effective affinities Ax/y and rates νx/y de-
fined as in Eq. (2). This allows us to calculate the ex-
treme value statistics of the numbers of step X(t) and
Y (t), as illustrated in Fig. 6 (a) as solid lines. Note that
Ax = β(fext−fstall)` is related to the mechanical affinity
Am = βfext` and the stall force

fstall =
1

β`
ln

(
1 + k−mc/k

−
m + k+

cm/k
−
m

1 + k+
mc/k

+
m + k−cm/k

+
m

)
. (20)

In the examples shown in Figs. 5,6, fstall ' −1.2pN in
the simulations. Ay and the chemical affinity Ac obey
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a similar relationship. We observe in Fig. 6 that the
largest average extreme values of entropy production oc-
cur when the external force applied to the motor is near
the stall force. Interestingly, the minima and maxima of
the displacements, Xmin and Xmax, show diverging av-
erages when the stall force is approached from above or
below respectively. Such behavior could be observable in
experiments on the statistics of the stepping of molecular
motors near stall forces. Note that in Fig. 6 the long time
limit of the average extrema is already reached at 0.1s,
see Fig. 5.

V. ILLUSTRATION OF EXTREME VALUE
STATISTICS USING DATA FROM SPORTS

Our analysis of extreme values in Sec. II applies to any
stochastic process described by a biased random walk,
e.g. scores during a sports match. Let us consider a game
where two teams (Team 1 and Team 2) play against each
other. We denote the number of points scored by each
team up to time t by N1(t) and N2(t), respectively. We
can define the average rate of scores for Team 1 and Team
2 as k+ and k−, where we consider without loss of general-
ity k+ > k−. Here k± are the expected number of points
scored per unit of time (e.g. goals per minute). Their
difference X(t) = N1(t)−N2(t) is the net score in favor
of Team 1, i.e. it is positive when Team 1 is winning,
zero when the match is tied, and negative when Team
2 is winning. When applying our minimal model we as-
sume for simplicity that the score of each team follows
Poissonian statistics, i.e. we do not take into account
correlations and non-stationary effects [64].

We now discuss our results in the context of this sim-
plified model of sports. At finite time t, the stronger
team is expected to lead by 〈X(t)〉 = (k+ − k−)t, with
variance Var[X(t)] = (k+ + k−)t. The following ques-
tions then appear naturally: “By how many points do
we expect the weaker team to lead over the stronger
one during the game?”, “How long should a match last
in order to see an exciting game with comebacks of the
weaker team?”. We provide insights on these questions
in terms of Xmin(t) i.e. the maximum net score against
the stronger team up to time t. Knowledge on the char-
acteristic time of the score’s extrema statistics is use-
ful for the design of an exciting game that takes our
breath away as long as possible: the longer the game,
the more certain the stronger team is to win but the
more predictable is the game, whereas the shorter the
game, the more random it is. Our theory reveals a con-
tinuous spectrum of the characteristic relaxation times of
the score extrema, following the Marčenko-Pastur distri-
bution (12-13). An exciting game with comebacks should

last at least τ0 =
(√

k+ +
√
k−
)−2

. This is because τ0 is
the timescale for the first action in the game. It should

not be longer than τ∞ =
(√

k+ −
√
k−
)−2

because after
that time the weaker team is not expected to lead any-

Soccer teams Women Men

Goals scored GF 113 108

Goals conceded GC 16 42

Number of matches MP 30 48

k+ (goals/min) 0.042± 0.006 0.025± 0.010

k− (goals/min) 0.006± 0.002 0.009± 0.002

As = ln(k+/k−) 1.95± 0.27 0.94± 0.18

νs =
√
k+k− (goals/min) 0.016± 0.002 0.016± 0.001

τ0 =
(√
k+ +

√
k−
)−2

(min) 13± 1 15± 1

τ1 = (k+ + k−)−1 (min) 21± 2 29± 2

τ̄ = k+(k+ − k−)−2 (min) 32± 5 110± 30

τ∞ =
(√
k+ −

√
k−
)−2

(min) 61± 13 280± 100

Table I. Number of goals scored and conceded by the teams
qualified 1st at the end of the group stage in Women’s (10
teams out of 40) and Men’s (8 teams out of 32) UEFA Cham-
pions League in the 2018-2019 season, and their total num-
ber of matches. Estimation of the 1D model parameters
from data of the season 2018-2019 of the soccer champions
leagues (women and men). The scoring rates are given by
the goals scored and goals conceded divided by the number
of matches and the duration of a match (τmatch = 90min), i.e.
k+ = GF/(τmatchMP) and k− = GC/(τmatchMP). The rest of
the parameters are obtained from our expressions correspond-
ing to the 1D biased random walk: the scoring affinity As and
rate νs [Eq. (2)], and the extreme-value timescales τ0, τ1, τ̄
and τ∞, see Sec. III. The uncertainties are obtained by prop-
agating the standard error of the mean Poissonian numbers
of goals per match.

more. Indeed, τ∞ corresponds to the time after which
the weaker time falls behind for the rest of the match.
Interestingly the smallest timescale τ0 is shorter than
the expected time for the first point τ1 = (k+ + k−)−1,
which defines the maximum of the Marčenko-Pastur den-
sity function.

We illustrate these results using data from soccer,
corresponding to the 2018-2019 season of Men’s and
Women’s UEFA Champions League, see Table I. We col-
lect data of the total number of goals scored (GF) and
goals conceded (GC) by all teams that qualified 1st at
the end of the group stage. We estimate the parame-
ters k+ and k− for a typical match between the group
leader against an average team, see Appendix. We find
that the effective scoring affinity As = ln(k+/k−), which
measures the strength difference between group leaders
and average soccer teams, is twice larger for Women’s
than for Men’s soccer. This striking difference is not
likely to be a fundamental difference in the way soccer
is played for each gender, as suggested by their equal
scoring rate νs = 0.016goals/min. It rather indicates
more heterogeneity between strong and average teams
within the Women’s Champions League as compared
to Men’s. This difference however changes drastically
the relaxation timescales of the extreme statistics, as
revealed in Fig. 7. The distribution of extreme-value
timescales peaks close to the first half of the match both
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for Women’s (21min) and Men’s (29min) soccer. On the
other hand, their largest timescale for comebacks differ
strongly, τ∞ ' 61min for Women’s whereas τ∞ ' 280min
for Men’s. For Women’s soccer matches one that there-
fore does not expect a comeback of the weaker after about
60 minutes, whereas for Men’s soccer such a comeback is
possible until the end of the game. Indeed, only 50% of
the relaxation timescales in Men’s soccer can take place
in a match of 90min (Fig. 7 inset). This suggests that
shorter matches of less than 70min for Women’s soccer
would remain exciting until the final whistle blows, be-
cause the weaker team would yet have chances to win the
match.

It is interesting to compare soccer to other sports such
as handball and basketball, see Fig. 8. We estimate the
parameters k+ and k− in a similar manner. For both
handball and basketball, men and women, the scoring
affinities are close to A ' 0.14. The scoring rates ν are
given in the caption of Fig. 8, in which we can appreciate
the difference compared to soccer. For handball and bas-
ketball the larger tails towards shorter timescales τ0 in
the Marčenko-Pastur distributions indicate that the first
action or comebacks can happen much more rapidly than
for soccer. Handball, basketball and mens soccer share
a game duration which falls within the relaxation time
spectrum. The long timescale τ∞ exceeds significantly
the game duration, for all cases except women’s soccer.

VI. DISCUSSION

We have derived analytical expressions for the distribu-
tion and moments of the finite-time minimum and max-
imum values of continuous-time biased random walks.
Such stochastic processes provide minimal models to de-
scribe the fluctuating motion of molecular motors and
cyclic enzymatic reactions that take place in a thermal
reservoir and under non-equilibrium conditions induced
by e.g. external forces and/or chemical reactions.

Our key results are: (i) exact statistics of the ex-
trema of the position and the entropy production of
a biased random walk (ii) a novel connection between
extreme-value statistics of biased random walks and the
Marčenko-Pastur distribution of random matrix theory;
(iii) symmetry relations between distributions of extrema
of stochastic entropy production; (iv) estimates of ex-
treme value statistics from spectral properties of random
matrices.

For biased random walks, our results provide insights
beyond the infimum law for nonequilibrium steady states,
〈Smin(t)〉 ≥ −1, which states that the entropy production
of a mesoscopic system plus its environment cannot be re-
duced on average by more than the Boltzmann constant.
For continuous systems this bound is approached at large
times, limt→∞〈Smin(t)〉 = −1. Here we have shown that
the effects of discreteness are very important. At large
times we find that a model dependent bound above −1 is
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Figure 7. Marčenko-Pastur density ρ(τ/τ̄)/τ̄ as a function of
the relaxation time τ for the extreme-value statistics corre-
sponding to a 1D biased random walk, where τ̄ is a charac-
teristic timescale. The distributions are estimated for scores
of women’s soccer (red line) and men’s soccer (blue line), see
parameters in Table I. The inset shows the corresponding cu-
mulative distributions. The vertical dashed line at 90min cor-
responds to the duration of a soccer match. The characteristic
times are estimated in Table I. The dashed line corresponds
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Figure 8. Marčenko-Pastur density ρ(τ/τ̄)/τ̄ as a function of
the normalized relaxation time τ/τmatch for the extreme-value
statistics corresponding to a 1D biased random walk, esti-
mated for different sports. Here τmatch is the game duration
of the respective sports. Parameters are: handball - women
(men)Ah = 0.13±0.04 (0.15±0.04), νh = 0.46±0.01goals/min
(0.49 ± 0.01goals/min); basketball - women (men) Ab =
0.13± 0.02 (0.15± 0.02), νb = 1.79± 0.02points/min (1.95±
0.02points/min); soccer as in Table I. The dashed line corre-
sponds to the duration of the match.

reached, see Eq. (4) and Fig. 2. Equations (10) and (11)
reveal that, for this class of models, the maximum differ-
ence between the entropy production and its initial value
has the same statistics as the maximum difference be-
tween its maximum and its final value, for any given time
interval [0, t]. Moreover, this result reveals that a ”supre-
mum law” for entropy production bounds the average of
the difference between entropy production’s maximum
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and its value at a fixed time t ≥ 0, i.e.

〈Smax(t)〉 − 〈S(t)〉 ≤ 1 . (21)

The inequality (21) follows applying the results of Sec. V

in Ref. [31] to the process R(t) = P(X[0,t])/P(X̃[0,t]),
which is a martingale with respect to the time-reversed
measure. We have shown that the inequalities for the
average extrema of entropy production and displacement
of a biased random walk saturate in the limit of small
affinity A � 1. This limit corresponds to systems that
exchange a small amount of heat with their environment
— below the thermal energy kBT — in each forward or
backward step of the walker. For larger values of A, our
analytical expressions reveal that details on the discrete-
ness in the walker’s motion have strong influence in the
extrema statistics. At large times, the time-asymmetric
parameter A fully determines the distribution of extrema,
whereas extrema at finite times are determined by both
A and the time-symmetric rate constant ν, see Eq. (2).
Moreover, our results for 1D biased random walks also
apply to homogeneous 2D biased random walks describ-
ing the motion of molecular motors, upon suitable defi-
nitions of effective affinity and rate parameters given by
Eqs. (17) and (18).

We have also revealed a connection between the statis-
tics of finite-time extrema of biased random walks with
random-matrix theory, Eqs. (12) and (14). We show
that the average of finite-time extrema (minimum and
maximum) of a 1D biased random walk has a relax-
ation time spectrum given by Marčenko-Pastur distri-
bution of eigenvalues of a random matrix ensemble, see
Eq. (13). Therefore, efficient estimates for the extreme-
value statistics of biased random walks can be obtained
from the eigenvalue distributions of suitable Wishart and
Laguerre random matrices [60–62]. Our numerical sim-
ulations show that random-matrix estimates can over-
perform the accuracy and convergence of Monte Carlo
simulations to determine extrema statistics. We remark
that the connection between extrema and random-matrix
theory developed here is of distinct nature to the relation
between statistical properties of stochastic processes (e.g.
interface growth) and extreme eigenvalues of random ma-
trices described by a Tracy-Widom distribution [65–68].
We expect that this surprising link of stochastic ther-
modynamics with random matrix theory may turn out
to be more general, through the universal convergence
of Wishart-Laguerre random matrices in the Marchenko-
Pastur theorem, and could hold for larger classes of sys-
tems in a similar way.

Our work has important consequences for the theory
of nonequilibrium fluctuations of active molecular pro-
cesses and biomolecules. For example, the statistics of
the maximum excursion of a motor against its net mo-
tion along a track provides insights on the physical limits
of pernicious effects of fluctuations at finite times, which
can be relevant in e.g. the finite-time efficiency of enzy-
matic reactions responsible of polymerization processes,

muscle contraction by molecular motors, etc. We have
shown that the displacement of motors with small cycle
affinity exhibits large extreme values on average. How-
ever, the associated extreme entropy flows are on average
always bounded in absolute value by the Boltzmann con-
stant. Insights of our theory could be also discussed in
the context of more complex biomolecular stochastic pro-
cesses (e.g. microtubule growth [7, 69] and transport in
actin networks [70]). It will be interesting to extend our
theory to Markovian and non-Markovian processes with
time-dependent driving [71–76], stochastic processes with
hidden degrees of freedom [77, 78], and also to explore
whether extrema statistics from single-molecule experi-
mental data reveal relaxation spectra described by the
Marčenko-Pastur distribution.

We have illustrated our results in simple stochastic
models of sports (soccer, handball and basketball) yield-
ing the following conclusions. The Marčenko-Pastur dis-
tributions of the extreme-value relaxation times gives an
interesting representation of the thrill of the game across
timescales, which is both dependent on the rate ν, quite
characteristic of the sport, and the strength difference
A between the teams. The duration of the game acts
as a cursor within this distribution that balances the
predictability versus the randomness of the game, fa-
voring the possibility for the weaker team to win from
a great coup. Women’s soccer appears as an outlier in
the comparison of several champions leagues for differ-
ent sports and genders, that makes the outcome of the
game more deterministic. In order to guarantee exciting
games, women’s soccer matches duration may thus be
optimized to shorter durations (60 to 75min, based on
the women to men ratio of τ0 or τ1) without affecting the
comeback possibilities.

We acknowledge fruitful discussions with Izaak
Neri, Simone Pigolotti, Ken Sekimoto, Carlos Mej́ıa-
Monasterio, and enlightening discussions with Pierpaolo
Vivo. AG acknowledges MPIPKS and ICTP for their
hospitality, and Bertrand Fourcade for his guidance to-
wards MPIPKS, and EUR Light S&T for funding.

APPENDIX

Appendix A: First-passage-times, large deviations,
and absorptions probabilities of biased random walks

In this section we review some knowledge of random
walk theory (e.g. first-passage statistics [54]) to derive
Eq. (6) in the Main Text i.e. the exact formula for the
first-passage time distribution of a 1D continuous-time
biased random walk. We also discuss large-deviation
properties of this model, absorption probabilities using
martingale theory, as well as parameters estimation from
observed trajectories.
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1. Model and solution of the Master equation

We consider a continuous-time biased random walk
in a discrete one-dimensional lattice, where X(t) =
{0,±1,±2, . . . } denotes the position of the walker at time
t ≥ 0. We assume that X(0) = 0 and that the walker
can jump from state X(t) = x to x+ 1 (x− 1) at a rate
k+ (k−).

The waiting time at any site is exponentially dis-
tributed with the rate parameter k+ + k−. The prob-
ability Px(t) = P (X(t) = x) to find the walker at the
lattice site x at time t obeys the master equation

dPx(t)

dt
= k+Px−1(t)− (k+ + k−)Px(t) + k−Px+1(t) ,

(A1)
with initial condition Px(0) = δx,0. From this evolu-
tion equation, a velocity v = k+ − k− and a diffusion
coefficient D = (k+ + k−)/2 can be defined. Its so-
lution is the Skellam distribution [79] PSk(x;µ1, µ2) =
(µ1/µ2)x/2Ix(2

√
µ1µ2)e−(µ1+µ2) with parameters µ1 =

k+t and µ2 = k−t

Px(t) =

(
k+

k−

)x/2
Ix

(
2
√
k+k− t

)
e−(k++k−)t , (A2)

where Ix(y) denotes the x−th order modiffied Bessel
function of the first kind. Equation (A2) follows
from (A1) and the exact expression for the generating
function of the modified Bessel function of the first kind∑∞
x=−∞ zxIx(y) = ey(z+z−1)/2.

2. Large deviation and diffusion limit

We now discuss and review large deviation properties
of the 1D biased random walk [80, 81] and relate them
to the statistics of 1D drift diffusion process. For this
purpose we consider the scaling limit of Px(t) given by
Eq. (A2) for large x ∼ vt, with v = k+−k− the net veloc-
ity of the walker. We assume a large deviation principle
for Px(t) of the form

Px(t) ∼ e−2νtJ(x/vt) . (A3)

In order to derive an analytical expression for the rate
function J , we first approximate the modified Bessel
function in Eq. (A2) using a saddle point approximation

Ix(x/z) =
1

2π

∫ 2π

0

ex(z−1 cos θ−iθ)dθ (A4)

∼ ex(z−1 cos θ0−iθ0)

√
2πxz−1 cos θ0

=
ex(
√

1+z−2−sinh−1 z)√
2πx
√

1 + z−2
,(A5)

where the saddle point is given by i sin θ0 = z i.e.
iθ0 = sinh−1 z and we have used cos iθ0 = cosh θ0 and
z−1 cosh sinh−1 z =

√
1 + z−2. The rate function J(u)

with u = x/vt can be evaluated from the leading term of
Eq. (A2) which is found using Eq. (A5):

J(u) = J (z/ sinh(A/2))

≡ lim
t→∞

− lnP2νtz(t)

2νt

= lim
t→∞

2 cosh(A/2)νt− νtzA− ln I2νtz(2νt)

2νt

= cosh
A

2
+ z

(
sinh−1 z − A

2

)
−
√

1 + z2 , (A6)

where z = u sinh(A/2) = x/2νt and the change of vari-
ables (k+, k−)→ (A, ν) have been used for convenience.

In the vicinity of the minimum where u ∼ 1 and thus
z ∼ sinh(A/2), the large deviation function behaves as

J(u) =
sinh(A/2)2(u− 1)2

2 cosh(A/2)
+

sinh(A/2)4(u− 1)3

6 cosh(A/2)3
+O(u−1)4.

(A7)
Interestingly, the ratio between the second and the lead-
ing term of (A7), given by tanh(A/2)2(u−1)/3, vanishes
for small deviations u ∼ 1 but also for large deviations
in the limit of a small bias A� 1. The continuum limit
of the biased random walk for A small simplifies to the

drifted Brownian motion Px(t) = e−(x−vt)2/4Dt/
√

4πDt,
where the polynomial prefactor is recovered by normal-
ization, and we have used the expressions for the ve-
locity v = 2ν sinh(A/2) and the diffusion coefficient
D = ν cosh(A/2). In this regard, the 1D biased random
walk can be seen as a generalization of the drifted Brow-
nian motion for any bias. A finite bias modifies occur-
rences of extreme large deviations with respect to those
occurring in the drift diffusion process. Consequently, the
bias A is expected to affect the extreme value statistics
of the process, as shown below.

3. Martingales and absorption probabilities

In this subsection we employ martingale theory to de-
rive an analytical expression of the absorption probability
Pabs(−x) for a 1D biased random walk starting at x = 0
to ever reach an absorbing boundary located at −x < 0.

We first show explicitly that e−S(t) is a martingale pro-
cess with respect to X(t), i.e.

〈e−S(t)|X[0,t′]〉 = e−S(t′) , (A8)

for t ≥ t′. In words, the average of e−S(t) over all tra-
jectories with common history X[0,t′] up to time t′ ≤ t
equals to its value at the last time of the conditioning
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e−S(t′). The proof is as follows:

〈e−S(t)|X[0,t′]〉 = 〈e−[S(t)−S(t′)]|X[0,t′]〉 e−S(t′)

= 〈e−S(t−t′)〉 e−S(t′)

= e−S(t′)
∞∑

x=−∞
Px(∆t)

(
k−
k+

)x
= e−S(t′) e−(k++k−)∆t

×
∞∑

x=−∞

(
k+

k−

)−x/2
Ix

(
2
√
k+k−∆t

)
︸ ︷︷ ︸

=e(k++k−)∆t

= e−S(t′) . � (A9)

In the first and second lines we have used the additive
property and the Markov property of entropy production,
respectively. In the third line we have used the definitions
∆t ≡ t−t′ and S(t) = X(t) ln(k+/k−). In the fourth line

we have used the identity
∑∞
x=−∞ zxIx(y) = ey(z+z−1)/2.

We remark that the proof sketched above can
be simplified using the integral fluctuation relation
〈e−S(t−t′)〉 = 1 in the second line, which holds for any
t ≥ t′ [82, 83]. It has been shown [31, 84] that the mar-
tingality of e−S(t) implies a set of integral fluctuation
relations at stopping times

〈e−S(T)〉 = 1 , (A10)

where T is any bounded stopping time, i.e. a stochastic
time at which the process X(t) satisfies for the first time
a certain criterion. In particular, Eq. (A10) holds for the
first-passage time T2 of X(t) to reach any of two absorb-
ing barriers located at −x− and x+, with x+ and x−
two arbitrary positive integer numbers. When applying
Eq. (A10) to this particular stopping time, we can un-
fold the average in the left-hand side using the absorption
probabilities

〈e−S(T2)〉 = Pabs(x+)〈e−S(T2)〉+ + Pabs(x−)〈e−S(T2)〉−
= Pabs(x+)e−Ax+ + Pabs(x−)eAx−

= e−Ax+ + Pabs(x−)[eAx− − e−Ax+ ]

= 1 , (A11)

where in the second line we have used the fact
that e−S(T2) = e−Ax+ with probability Pabs(x+) and
e−S(T2) = eAx− with probability Pabs(x−). In the third
line we have used Pabs(x+) + Pabs(x−) = 1, and in the
fourth line Eq. (A10). Solving the third line Eq. (A11)
for the absorption probability we obtain

Pabs(x−) =
1− e−Ax+

eAx− − e−Ax+
. (A12)

Taking the limit x+ → ∞ in Eq. (A12) we obtain the
well-known analytical expression for the absorption prob-
ability

Pabs(x) = e−Ax , (A13)

which we used to derive the analytical expressions −
Eqs. (3) and (4) − of the distribution and mean of the
global minimum of entropy production in the biased ran-
dom walk.

4. First-passage-time distribution

The first-passage-time density Pfpt(t
′;x) can be de-

rived from the solution of the Master equation (A1) with
an absorbing boundary at site x 6= 0, with x an integer
number [54]. It can also be derived from the distribu-
tion of the walker using Laplace transforms through the
renewal equation:

Px(t) =

∫ t

0

Pfpt(t
′;x)P0(t− t′)dt′ . (A14)

where P0(t) is the probability to be at a state at time t
when the system was at the same state at t = 0. This
convolution integral becomes a product in the Laplace
domain, for any x 6= 0:

P̂x(s) = P̂0(s)P̂fpt(s;x) =
eAx/2

(
h(s) +

√
h(s)2 − 1

)−x
2ν
√
h(s)2 − 1

,

(A15)
where

h(s) ≡ s+ k+ + k−

2
√
k+k−

=
s

2ν
+ cosh(A/2) , (A16)

and

P̂0(s) =

∫ ∞
0

dt e−stP0(t) =
1

2ν
√
h2(s)− 1

. (A17)

We thus obtain, using Eqs. (A16) and (A17) in (A15)

P̂fpt(s;x) = eAx/2
(
h(s) +

√
h(s)2 − 1

)−x
= eAx/2−|x| cosh−1(s/2ν+cosh(A/2)) .(A18)

In the above equations and in the following we will use
the variables ν = (k+k−)1/2 and A = ln(k+/k−), see
Eq. (2) in the Main Text. The inverse Laplace transform
of Eq. (A18) implies Pfpt(t;x) = (|x|/t)Px(t):

Pfpt(t;x) =
|x|
t
eAx/2Ix(2νt)e−2 cosh(A/2)νt , �

(A19)
which is Eq. (6) in the Main Text.

Appendix B: Exact extrema statistics
for the 1D biased random walk

In this section, we use generating functions to derive
the statistics of the finite-time extrema of entropy pro-
duction. In particular, we focus on the generating func-
tion for the probability Gmin of the minimum and the
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generating function for the absorption probability Gabs,
which are defined respectively as

Gmin(z; t) ≡
∞∑
x=0

z−xP (Smin(t) = −Ax) , (B1)

Gabs(z; t) ≡
∞∑
x=1

z−xPabs(−x; t) . (B2)

These two generating functions are related by

Gmin(z; t) = 1 +Gabs(z; t)(1− z) . (B3)

Moments and probabilities follow taking derivatives of
the generating functions (B1) with respect to z

〈Smin(t)m〉 =
∂mGmin(zA; t)

∂(ln z)m

∣∣∣∣
z=1

, (B4)

P (Smin(t) = −mA) =
∂mGmin(z; t)

m! ∂(z−1)m

∣∣∣∣
z−1=0

. (B5)

For instance, inserting (B3) into (B4) to compute the
first moment reduces to the simple expression

〈Smin(t)〉 = −AGabs(1; t) . (B6)

1. Finite time statistics in the Laplace domain

We rewrite the probability-generating function Gmin

using the first-passage-time density derived above (A18).
First we use the fact the the first-passage-time density is
the derivative of the absorption probability, P̂fpt(s;x) =

sP̂abs(x; s)− δx,0, which holds for any x. Equation (A19)

implies that the Laplace transform P̂fpt(s;−x) of the
first-passage-time probability to reach an absorbing site
located at −x, with x ≥ 1, can be expressed as the x−th
power of the Laplace transform P̂fpt(s;−1) of the first-
passage time probability to reach x = −1:

P̂fpt(s;−x) = P̂fpt(s;−1)x . (B7)

Consequently, the statistics of the minimum (maximum)

can be expressed in terms of just P̂fpt(s;−1) (P̂fpt(s; 1)).
Using Eqs. (B1-B3) and (B7), we derive the generating

functions in terms of P̂fpt(s;−1)

sĜabs(z; s) =

∞∑
x=1

z−xP̂fpt(s;−1)x =
z−1P̂fpt(s;−1)

1− z−1P̂fpt(s;−1)
,

(B8)

sĜmin(z; s) =
1− P̂fpt(s;−1)

1− z−1P̂fpt(s;−1)
. (B9)

Because P̂fpt(s;−1) = e−A/2(h(s) +
√
h(s)2 − 1) is alge-

braic, all the moments and probabilities, obtained from
Eqs. (B4-B5), are algebraic expressions. For instance,

the Laplace transform of the mean minimum is obtained
directly from (B6) and (B8):

s〈Ŝmin(s)〉 =
−A

P̂fpt(s;−1)−1 − 1
. (B10)

2. Integral representations of extreme value
statistics

We start from the first-passage-time density for-
mula (A19) and we exploit two properties of the mod-
ified Bessel function of the first kind. This allows us to
rewrite the absorption probability as a definite integral of
trigonometric and hyperbolic functions and the parame-
ters A and ν:

Pabs(x; t) =

∫ t

0

Pfpt(t
′;x)dt′

= eAx/2
∫ t

0

|x|
t′
Ix(2νt′)e−2 cosh(A/2)νt′dt′ (B11)

= eAx/2
∫ π

0

∫ t

0

e−2νt′(cosh(A/2)−cos θ)

×2νdt′ (cos [(|x| − 1)θ]− cos [(|x|+ 1)θ])
dθ

2π
(B12)

= eAx/2
∫ π

0

1− e−2νt(cosh(A/2)−cos θ)

cosh(A/2)− cos θ

× (cos [(|x| − 1)θ]− cos [(|x|+ 1)θ])
dθ

2π
. (B13)

In (B11) we have used Eq. (A19). In (B12) we have
used the definition Ix(y) = (1/π)

∫ π
0
ey cos θ cos(xθ)dθ and

the property Ix(y) = (y/2x)[Ix−1(y) − Ix+1(y)]. Finally
in (B13) we have performed the integration over t. Us-
ing Eq. (B13), we express the generating function of the
absorption probability as an integral:

Gabs(z; t) =

∞∑
x=1

z−xPabs(−x; t) (B14)

=

∫ π

0

1− e−2νt(cosh(A/2)−cos θ)

cosh(A/2)− cos θ

(sin θ)2

cosh(A/2 + ln z)− cos θ

dθ

2π
,

where we have used in the above equation the identity

∞∑
x=1

e−αx
(

cos ((x− 1)θ)−cos ((x+ 1)θ)
)

=
(sin θ)2

coshα− cos θ
,

(B15)
which follows from the generating function of Chebyshev
polynomials of the first kind Tx(cos θ) ≡ cos(xθ). Per-
forming the change of variable y = cos θ in Eq. (B14),
and setting z = 1 (we recall 〈Smin(t)〉 = −AGabs(1, t),
see Eq. (B6)) we obtain Eq. (9) in the Main Text:

〈Smin(t)〉 = − A

2π

∫ 1

−1

1− e−2νt(cosh(A/2)−y)

(cosh(A/2)− y)
2

√
1− y2dy. �

(B16)
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Appendix C: Extrema statistics and
Marčenko-Pastur distribution

In this Section, we derive analytical expressions for the
extrema statistics of 1D biased random walks in terms of
the Marčenko-Pastur distribution (13) of random matrix
theory, copied here for convenience:

ρ(λ) ≡

 1

2πδ

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 if λ /∈ [λ−, λ+],

(C1)
where λ is a positive random variable, δ ≤ 1 a parame-

ter, and λ± =
(

1±
√
δ
)2

. Note that this distribution is

normalized with mean
∫ λ+

λ−
λρ(λ)dλ = 1.

1. Average value of the finite-time minimum of
entropy production

Performing the changes of variable k = 2ν(cosh(A/2)−
y), as well as τ = 1/k, in Eq. (B16) we obtain

〈Smin(t)〉 = − A

2π

∫ k∞

k0

1− e−kt

k

√
(k∞ − k)(k − k0)

dk

k

(C2)

= − A

2π

∫ τ∞

τ0

(
1− e−t/τ

)√ (τ∞ − τ)(τ − τ0)

τ∞τ0

dτ

τ

(C3)

where we have introduced the variables

k∞/0 ≡ (
√
k+ ±

√
k−)2 , (C4)

τ∞/0 ≡
1

k0/∞
. (C5)

Thus, the average entropy production minimum can
be expressed as exponential relaxation process with a
spectrum of relaxation times distributed according to
Marčenko-Pastur distributions (C1)

〈Smin(t)〉 = −Ak−
∫ k∞

k0

1− e−kt

k
ρ(k/k̄)

dk

k̄
(C6)

= 〈Smin〉
∫ τ∞

τ0

(1− e−t/τ )ρ(τ/τ̄)
dτ

τ̄
,(C7)

where

k̄ ≡ k+ , (C8)

τ̄ ≡ k+

(k+ − k−)2
=

√
τ0τ∞

1− e−A
, (C9)

and

δ =
k−
k+

= e−A . (C10)

Note that Eq. (C7) provides Eq. (12) of the Main Text.

2. Generating functions of the absorption
probability and the minimum

The generating function for the absorption probability
can also be expressed using Marčenko-Pastur distribu-
tions. Using the same method as described above for
Eq. (B14), we find

Gabs(z; t) = k−

∫ k∞

k0

1− e−kt

k + f(z)
ρ(k/k̄)dk/k̄ (C11)

=
1

eA − 1

∫ τ∞

τ0

1− e−t/τ

1 + f(z)τ
ρ(τ/τ̄)dτ/τ̄ , (C12)

where

f(z) ≡ k+(z − 1) + k−(z−1 − 1) . (C13)

Using Eqs. (C12) and (B3) we obtain the generating func-
tion of the distribution of minima given by Eq. (14) in
the Main Text

Gmin(z; t) = 1+
1− z
eA − 1

∫ τ∞

τ0

1− e−t/τ

1 + f(z)τ
ρ(τ/τ̄)dτ/τ̄ . �

(C14)

3. Laplace transforms

Taking the Laplace transform of Eq. (C11), we obtain

sĜabs(z; s) = k−

∫ k∞

k0

k

k + s

ρ(k/k̄)

k + f(z)

dk

k̄
. (C15)

Equations (C15) and (B6) imply that the Laplace trans-
form of the average minimum can be written as a
Stieltjes-like transform of the Marčenko-Pastur distribu-
tion for the variable k

s〈Ŝmin(s)〉 = −Ak−
∫ k∞

k0

ρ(k/k̄)

k + s

dk

k̄
, (C16)

and similar relations hold for moments of any order.
Notably, Eqs. (C15) and (C16) have a similar mathe-
matical structure as the Laplace transform of the first-
passage-time density of Markovian stochastic processes
found in [48], where instead P̂fpt(s;x) is expressed as a
weighted discrete sum of relaxation modes.

Appendix D: Random-matrix estimates
of extreme-value statistics

In this section we discuss the connection between the
relaxation spectrum of first-passage and extrema statis-
tics in the 1D biased random walk with random-matrix
theory. We now describe how one can estimate finite-time
statistics of the minimum entropy production from the



14

spectrum of suitable random matrices. For this purpose,
we use a celebrated result by Marčenko and Pastur [59].
Consider a real m×m Wishart matrix defined as

W =
1

n
RRT , (D1)

where R (its transpose RT ) is a m × n random matrix,
with n ≥ m. The random matrix R is filled with in-
dependent identically distributed (i.i.d.) random vari-
ables drawn from a normal distribution of zero mean
and unit variance, i.e. Rij ∼ N (0, 1), for all i, j ≤ m.
The resulting positive definite random matrix follows the
Wishart distribution of degree of freedom n and density
cn,mdetw(n−m−1)/2eTrw n/2 (where cn,m is a normaliza-
tion factor). Following Marčenko and Pastur, the eigen-
values λ of the Wishart random matrix W are asymptoti-
cally distributed according to the distribution (C1) in the
limit n,m → ∞ with finite rectangularity m/n = δ < 1.
It has been shown that this asymptotic result also holds
when all Rij are i.i.d. random variables drawn from any
distribution of zero mean and unit variance [62].

We now put in practice Marčenko and Pastur’s re-
sult, namely we find random matrices whose spectral
density matches with that of the relaxation spectrum of
the average minimum of entropy production. This can
be achieved e.g. by using a Wishart random matrix of
rectangularity δ = m/n identified as k−/k+ = e−A in
terms of the bias A of the walker, i.e. we draw a real
m × n Wishart random matrix W with m,n � 1 and
m/n ' e−A (for instance n = deAme). Then we evalu-
ate the m eigenvalues λi of the matrix W and we give
them a dimension using Eqs. (C8-C9) and performing the
changes of variables k = λk̄ in Eq. (C6) and τ = λτ̄ in
Eq. (C7) respectively. We thus obtain the following two

estimators, 〈S̃min(t)〉k and 〈S̃min(t)〉τ , for the average en-
tropy production minimum:

〈S̃min(t)〉k ≡ −Ae−A
1

m

m∑
i=1

1− e−λik̄t

λi
, (D2)

〈S̃min(t)〉τ ≡ 〈Smin〉
1

m

m∑
i=1

(
1− e−t/λiτ̄

)
, (D3)

where k̄ = k+ and τ̄ = k+/(k+ − k−)2 as identified pre-
viously. These estimators converge respectively to the
exact result in the limit of a large matrix size. Using
Eq. (C11-C12), the same procedure can be applied to es-
timate the generating function and any order moment of
the distribution of entropy production extrema.

To test the convergence of these estimators, we define
their relative error εk(t) and ετ (t) as the relative differ-
ence

εk,τ (t) ≡ 〈S̃min(t)〉k,τ − 〈Smin(t)〉
〈Smin(t)〉

, (D4)

which is a random real quantity for both k and τ es-
timates. Their limiting values are related and can be

calculated analytically:

εmin ≡ lim
t→0

εk(t) = lim
t→∞

ετ (t) = 0 (D5)

εmax ≡ lim
t→∞

εk(t) = lim
t→0

ετ (t)

= (1− e−A)

(
1

m

m∑
i=1

1

λi

)
− 1 , (D6)

which vanishes in the limit of a large random matrix
because 〈1/λ〉ρ = 1/(1 − e−A), with 〈...〉ρ denoting
an average over the Marčenko-Pastur distribution (C1).
From the limits (D5), we conclude that the estima-
tor (D2) is advantageous to study the short-time behavior
whereas (D3) is most suited for large-time asymptotics.
Our numerical results show that |εk(t)| ≤ |εmax| and also
|ετ (t)| ≤ |εmax| for all tested parameter values and for all
times t. Therefore we will use εmax given by Eq. (D6) as
a conservative bound for the relative error of the random-
matrix estimates at any time t.

The estimates introduced above rely on the fact that
one can achieve a rectangularity δ = m/n ' e−A with
large enough random matrices. Because e−A is in general
a real number, it is desirable to develop random-matrix
estimators that achieve the Marčenko-Pastur distribu-
tion accurately for any value of A. Following [60], the
β-Laguerre matrices are an alternative ensemble whose
spectral density tends asymptotically to the distribution
MP(e−A) in the large size limit. A β-Laguerre m × m
random matrix L is defined as

L =
1

n
RRT , (D7)

where n = mβ/δ. Here, R is a m × m random matrix
with all entries equal to zero except the m×(m−1) diago-
nal and sub-diagonal elements. The non-zero entries Rij
are drawn following χ(dij) distributions of dij degrees of
freedom:

R =


R1,1

R2,1 R2,2

R3,2 R3,3

. . .
. . .

 ∼

χ(d1,1)

χ(d2,1) χ(d2,2)

χ(d3,2) χ(d3,3)
. . .

. . .

 .
(D8)

The random variable Zij =

√∑dij
k=1X

2
k , where the

Xk ∼ N (0, 1) are independent and identically distributed
(i.i.d.), follows the χ(dij) distribution. Equivalently, one
can obtain a random variable that follows the χ(dij) dis-
tribution by taking the square root of a random vari-
able drawn from a chi-square distribution χ2(dij). The
degrees of freedom dij of the χ distributions in the β-
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Figure 9. Numerical results for the random-matrix estimates 〈S̃min(t)〉 obtained using m×m random matrices drawn from the
β-Laguerre ensemble. Left: Average value of the maximum relative difference εmax given by Eq. (D6) as a function of the matrix
size m obtained from 106/m random matrices, for three different β−Laguerre matrix ensembles (see legend). The error bars are
given by the standard deviation of εmax across the random-matrix populations. Middle and Right: Normalized histograms for
the eigenvalues of a single random matrix drawn from the β-Laguerre ensemble (β = 1, 2, see legend) with matrix sizes m = 26

(middle panel) and m = 212 (right panel), compared to the Marčenko-Pastur distribution (C1) with parameter δ = e−A (black
line) and affinity A = 1.

Laguerre random matrix are:

d =


n

β(m− 1) n− β
β(m− 2) n− 2β

β(m− 3) n− 3β
. . .

. . .

 .
(D9)

We recall that in this case n = mβ/δ is not the dimen-
sion of the matrix R, which is a m ×m square matrix,
but a positive real number. Therefore, the rectangular-
ity parameter does not need to be approximated in this
method.

Figure 9 shows numerical results of the random-matrix
estimators of the average entropy-production minimum
for the 1D biased random walk with bias A = 1. We
draw m × m random matrices from the β = 1, 2, 1000
Laguerre ensembles. Note that β = 1, 2, 4 Laguerre en-
sembles are equivalent to Wishart random matrices with
Rij given respectively by real, complex and quaternionic
normal random variables, and use the appropriate conju-
gate transpose of R [63]. We plot the maximum relative
error εmax (D6) as a function of the size of the random
matrix m (Figure 9a). The Wishart (1-Laguerre) en-
semble provides a biased overestimate of the real value
with maximum relative error 2.3% for small random ma-
trices of sizes larger than 64 × 64. We observe that the
2-Laguerre ensemble provides an estimator that is practi-
cally unbiased, even using small matrices (except in the
limit A � 1). Furthermore, β-Laguerre matrices with
large values of β (e.g. β = 1000) yield small disper-
sion in the relative difference but a bias (underestima-
tion) for small matrix sizes. The mean and the stan-
dard deviation of εmax obtained from a large population

of computer-generated random matrices are observed to
converge to zero with the matrix size m as ∼ 1/m. This
fast convergence (compared to the usual 1/

√
m) is a con-

sequence of the correlation between the m eigenvalues of
the β-Laguerre random matrices. The convergence of the
estimators is revealed in the difference between the spec-
tral density of the random matrices and the Marčenko-
Pastur distribution for m = 26 (Fig. 9b) and m = 212

(Fig. 9c). Remarkably, even though for m = 26 the
eigenvalue distribution is a rough approximation to the
Marčenko-Pastur distribution, the relative error of the
estimator is smaller than ±2.3% for a single 1-Laguerre
and ±1.5% for a single 2-Laguerre random matrix.

Eventually, we notice that all the expressions that in-
volve a sum over the eigenvalues can be recast into ran-
dom matrix traces. For instance, the two minimum en-
tropy estimators and their associated maximum relative
error read:

〈S̃min(t)〉k = −Ak−
∫ t

0

1
m Tr e−Mk̄t′dt′ , (D10)

〈S̃min(t)〉τ = 〈Smin〉
(

1− 1
m Tr e−M

−1t/τ̄
)

,(D11)

εmax = (1− e−A) 1
m TrM−1 − 1 , (D12)

where M is either a Wishart random matrix or the La-
guerre random matrix of size m×m, scaled by its degree
of freedom n = eAm (see Eqs. (D1,D7)).

Appendix E: Explicit expression for the average
entropy production minimum

We now employ exact expressions for the moments of
the Marčenko-Pastur distribution ρ to derive an analyt-
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ical expression for the average minimum of the 1D bi-
ased random walk. The n−th moment (n ≥ 1) of the
Marčenko-Pastur distribution ρ(λ), can be expressed as

a sum involving binomial coefficients:

〈λn〉ρ =

n−1∑
r=0

(
n

r

)(
n− 1

r

)
δr

r + 1
. (E1)

where 〈...〉ρ denotes an average over the Marčenko-Pastur
distribution (C1). Then, it is convenient to expand the
exponential in Eq. (C6), and express the integrals in
terms of the moments (E1). By manipulating the indices,
we obtain two infinite series:

〈Smin(t)〉 = Ae−A
∞∑
n=1

(−k+t)
n

n!

〈
λn−1

〉
ρ

(E2)

= Ae−A

(
−k+t+ (k+t)

2
∞∑
r=0

∞∑
s=0

(−k+t)
r+s

(r + s+ 2)!

(
r + s+ 1

r

)(
r + s

r

)
e−Ar

r + 1

)
. (E3)

This form can be identified as the Kampé de Fériet
function F [85], a two-variable generalization of hyper-

geometric functions. It is defined for integer vectors
a,b,b′, c,d,d′, of lengths p, q, q, r, s and s respectively,
as follows:

p+qFr+s

[
a , b , b′

c , d , d′

∣∣∣∣x , y] ≡ ∞∑
m=0

∞∑
n=0

p∏
α=1

(aα)m+n

q∏
β=1

(bβ)m(b′β)n

r∏
γ=1

(cγ)m+n

s∏
δ=1

(dδ)m(d′δ)n

xmyn

m!n!
, (E4)

where (m)n =
∏n−1
k=0(m− k) = (m+n−1)!

(m−1)! denotes the ris-

ing factorial. The translations of the binomial coefficient

into rising factorials yields the following expression of the
mean minimum entropy:

〈Smin(t)〉
A

= −k−t+ 2+0F1+1

[
[2 1] , ∅ , ∅

3 , 2 , 2

∣∣∣∣− k−t , −k+t

]
k−k+t

2

2
. (E5)

Appendix F: Sports data

We provide additional details of the data used in Sec.
VI about sports, selected from European competitions
during the season 2018-2019. For soccer, we use data
from the UEFA Champions League in the group stage.
We estimate the goal marking rate k+ (goal conceding
rate k−) of the group leaders by summing the total num-
ber of goals scored (conceded) by all the group stage lead-
ers divided by the cumulated duration of all the matches

played in the group stage. There are 8 groups in Men’s
and 10 groups in Women’s Champions League with 4
teams each. Each Men’s team plays 6 matches, each
Women’s team plays 3 matches, each match lasts 90 min-
utes. Therefore, we select 48 matches of 8 teams out of
32 for Men’s soccer and 30 matches of 10 teams out of
40 for Women’s soccer.

For handball, we select the 2 best teams of each group
(40 matches of 4 teams out of 12) in the main round
of the Women’s EHF Champions League, 2 best teams



17

of each group (56 matches of 8 teams out of 28) in the
group stage of the Men’s EHF Champions League, each
match lasts 60 minutes. For basketball, we select the
2 best teams of each group (56 matches of 4 teams out
of 16) of the regular season of the Women’s FIBA Eu-

roLeague (the equivalent of the Champions League which
does not exists for Women’s basketball), and the best
team or equally-ranked of each group (70 matches of 5
teams out of 32) of the regular season of the Men’s FIBA
Champions League, each match lasts 40 minutes.
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theory in finance,” Wiley StatsRef: Statistics Reference
Online (2014).

[37] Serguei Y Novak, Extreme value methods with applica-
tions to finance (CRC Press, 2011).

[38] C-K Peng, Sergej V Buldyrev, Ary L Goldberger,
Shlomo Havlin, Francesco Sciortino, Michael Simons,
and HE Stanley, “Long-range correlations in nucleotide
sequences,” Nature 356, 168 (1992).

[39] Alain Arneodo, Emmanuel Bacry, PV Graves, and Jean-
François Muzy, “Characterizing long-range correlations
in dna sequences from wavelet analysis,” Phys. Rev. Lett.
74, 3293 (1995).

[40] John Bechhoefer and Brandon Marshall, “How xeno-
pus laevis replicates dna reliably even though its origins
of replication are located and initiated stochastically,”
Phys. Rev. Lett. 98, 098105 (2007).
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