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Iteration of the quadratic map produces sequences of polynomials whose degrees explode as the orbital
period grows more and more. The polynomial mixing all 335 period-12 orbits has degree 4020, while
for the 52,377 period-20 orbits the degree rises already to 1,047,540. Here, we show how to use
preperiodic points to systematically extract exact equations of motion, one by one, with no need for
iteration. Exact orbital equations provide valuable insight about the arithmetic structure and nesting
properties of towers of algebraic numbers which define orbital points and bifurcation cascades of the
map.
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1. Introduction

A recent paper in this Journall described an iterative approach to detect orbit within orbit
stratification in the so-called a = 2 partition generating limit2® of the quadratic or, equivalently,
logistic map

Tep1 = fag) = a —af, t=0,1,2,.... (1)

Orbit within orbit stratification means that periodic orbits are not always necessarily inde-
pendent of each other. As discussed in Refs™5 | apart from the intrinsic interest in detecting
interdependent orbits, stratification is potentially significant to, e.g., rearrange trajectories sums
in trace formulas underlying a semiclassical interpretation of atomic physics spectra.

The existence of stratification was originally detected by extracting orbits from polynomials
of very high degrees obtained by iterating Eq. ({l). However, map iteration generates sequences
of mammoth polynomials whose degrees explode as the orbital period grows more and more.
To bypass this difficulty it was conjectured that exploration of preperiodic points could provide
a viable alternative to iteration.

Here, the aim is to complement the work of Ref by introducing and explicitly implementing
an alternative algorithm based on preperiodic points. As it is known/® for a = 2 preperiodic
points are easy to obtain. They are roots of an infinite family of polynomials Q(z) generated by
a recursive relation, given below in Eq. ([@). Starting from preperiodic points one quickly lands
in periodic cycles. So far, preperiodic points were used® to extract specific orbital equations
embedded in polynomial clusters with degree exceeding one billion and, consequently, totally
out of reach by ordinary brute-force polynomial factorization. Here, in contrast, the aim is to
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investigate whether or not the roots of Q(x) are able to generate systematically, one by one,
all orbits of the map. We find that they are, as described in what follows.

2. Motivation to perform exact analytical work

For any given period k, equations of motion are defined by k-degree polynomials which have
either integer or algebraic numbers as coefficients. Thus, the algebraic nature of equations of
motion depends of the algebraic character of the polynomial coefficients representing the orbit.
By way of illustration, consider the following triplet of exact period-five orbits™

o51(x) =2 —x* — 423 + 322 + 32— 1, (2)
052(x) = 2° + $(1+V33)a* —2® — 3(3+ V33)2? — (6 + V33)z — 1, (3)

053(z) = 2° + 3(1 — V33)zt — 23 — 33— V33)z? — (6 — V/33)z — 1. (4)

Technically, o5 2(x) and o5 3(x) are conjugated over the quadratic number field Q(v/33). When
multiplied together, they produce an orbital cluster cs 1(x), namely

65,1(17) = 05,2(33) : 05.,3(33)7
=294+ 2% - 102% — 1027 + 3425 + 3425 — 432" — 4323 + 1222 + 1224+ 1. ()

Manifestly, this orbital aggregate has integer coefficients and, therefore, is arithmetically simpler
than the pair of orbits that it contains. While to multiply known conjugate orbits is an easy
task, the inverse problem, to disentangle conjugated orbits from a given cluster, is a quite hard
problem, particularly for aggregates of orbits with odd or high degrees. Iteration produces a
profusion of orbital aggregates that need to be disentangled.

Notice that since it is not possible to represent v/33 numerically without truncation, the
coefficients in 05 2(z) and 05 3(x) can only be represented numerically as approximations. This
means that numerical (inexact) work precludes recognizing orbital conjugations such as the
symmetric decompositions clearly visible between o5 2(z) and o5 3(x). Nevertheless, as shown
below, knowing that orbital conjugation exists one can suitably sift and multiply inexact orbits,
searching for expressions which turn out to have nearly integer coefficients. This is the key idea
to be explored in the remainder of the paper.

As mentioned, the big challenge is to derive exact expressions for orbits when the orbital
period k grows without bound. A complication hampering such derivation is that current com-
puter algebra systems are essentially adapted to deal with procedures developed for integers,
not for generic algebraic numbers of arbitrary degrees, a considerably harder problem. This
motivates pursuing the alternative procedure discussed here, which profits from preperiodic
points of the Q,(x) family.

3. Generation of the Q¢(z) polynomials

The Q¢(x) polynomials are obtained as irreducible factors of an auxiliary family of polynomials,
Ty(z), which are generated recursively. Starting from two initial seed functions, Ty(x) and Ty (x),
subsequent Ty(z) are obtained from the recurrence?

Ty(z) = 2Tp—1(x) — Tor—2(x), 0=2,3,4,.... (6)

For our present purpose, we fix To(z) = 2 and Ty (z) = «. Instead of the recurrence, a direct
way to obtain Ty(z) is from Pincherle’s relation™

4 4
Ty(z) = (33_7 ;_4> +<L ;_4> . 0=0,1,2,.... (7)
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Table 1. Characteristics of the orbits produced by the roots of the first 120 polynomials Q(x). The
label ¢ refers to Qg(z) while 9y gives the degree of the Qg(xz) which has the shortest preperiodic
transient. Here, [ is the length of the preperiodic transient leading to the orbit, and k is the orbital

period.
i 4 Oy l k i l ol L | k i l Oy l k
1 2 2 3 1 41 | 120 64 5| 4 81 258 | 168 3 7
2 3 2 2 1 42 | 136 | 128 | 5 | 4 82 254 | 252 3 7
3 4 4 4 1 43 | 240 | 128 | 6 | 4 83 344 | 336 5 7
4 6 4 3 1 44 | 272 | 256 | 6 | 4 84 51 32 2 8
5 8 8 5 1 45 11 10 2|5 85 85 64 2 8
6 12 8 4 1 46 22 20 315 86 102 64 3 8
7 16 16 6 1 47 33 20 2|5 87 170 | 128 3 8
8 24 16 5 1 48 31 30 2|5 88 255 | 128 2 8
9 32 32 7 1 49 44 40 415 89 257 | 256 2 8
10 48 32 6 1 50 66 40 315 90 340 | 256 4 8
11 64 64 8 1 51 62 60 315 91 408 | 256 5 8
12 96 64 7 1 52 88 80 51| 5 92 19 18 2 9
13 | 128 | 128 9 1 53 | 132 80 415 93 27 18 2 9
14 | 192 | 128 8 1 54 | 124 | 120 | 4 | 5 94 38 36 3 9
15 | 256 | 256 | 10 | 1 55 | 176 | 160 | 6 | 5 95 54 36 3 9
16 5 4 2 2 56 | 264 | 160 | 5 | 5 96 57 36 2 9
17 10 8 3 2 57 | 248 | 240 | 5 | 5 97 73 72 2 9
18 20 16 4 2 58 | 352 | 320 | 7 | 5 98 76 72 4 9
19 40 32 5 2 59 13 12 216 99 108 72 4 9
20 80 64 6 2 60 21 12 216 100 | 114 72 3 9
21 | 160 | 128 7 2 61 26 24 3|6 101 | 171 | 108 2 9
22 | 320 | 256 8 2 62 42 24 316 102 | 146 | 144 3 9
23 7 6 2 3 63 63 36 216 103 | 152 | 144 5 9
24 9 6 2 3 64 52 48 416 104 | 216 | 144 5 9
25 14 12 3 3 65 65 48 216 105 | 228 | 144 4 9
26 18 12 3 3 66 84 48 416 106 | 342 | 216 3 9
27 28 24 4 3 67 | 126 72 3|6 107 | 304 | 288 6 9
28 36 24 4 3 68 | 104 96 5|6 108 | 432 | 288 6 9
29 56 48 5 3 69 | 130 96 3|6 109 | 437 | 396 | 86 9
30 72 48 5 3 70 | 168 96 5|6 110 25 20 2 10
31 | 112 96 6 3 71 | 252 | 144 | 4| 6 111 41 40 2 10
32 | 144 96 6 3 72 | 208 | 192 | 6 | 6 112 50 40 3 10
33 | 224 | 192 7 3 73 1260 | 192 | 4| 6 113 93 60 2 10
34 | 288 | 192 7 3 74 | 336 | 192 | 6 | 6 114 82 80 3 10
35 15 8 2 4 75 | 416 | 384 | 7 | 6 115 | 100 80 4 10
36 17 16 2 4 76 43 42 2|7 116 | 164 | 160 4 10
37 30 16 3 4 7 86 84 3|7 117 | 200 | 160 5 10
38 34 32 3 4 78 | 129 84 2|7 118 | 205 | 160 2 10
39 60 32 4 4 79 | 127 | 126 | 2 | 7 119 | 341 | 300 2 10
40 68 64 4 4 80 | 172 | 168 | 4 | 7 120 | 328 | 320 5 10

For ¢ = 1, Ty(z) = Q1(x) = =. For £ > 1, the polynomials T;(z) are always given by
products of cyclotomic-like irreducible factors Qg(z), except for £ = 2", n = 1,2,3,... when
Ty(z) = Qe(x). Every new Ty(x) generated by Eq. (B) contributes a new irreducible factor
Q¢(x), new in the sense of not appearing for any index ¢ smaller than ¢. Thus, the first few
are T1(z) = Q1(x) = x, Ta(x) = Q2(z) = 22 — 2, and

T3(x) = Q1(2)Qs(x), Ti(z) = Qa(z), T5(x) =Q1(2)Qs5(x), Ts(z) = Qa2(z)Qs(),
where
Qs(x) =2% =3, Qu(x) =2 —42? +2, Qs(x) =a2* —52° +5, Qg(x) =a* —42® + 1.

The first twenty Ty(z) and Q(z) are listed in Table 1 of an open access paper® The key
observation is that the irreducible Q¢(x) are the building blocks of the reducible auxiliary Ty(x).
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Using the roots of Qy(z) as starting conditions to iterate the quadratic map, Eq. (), one finds
that after a preperiodic start, i.e. a certain number of non-repeating iterates, the iteration lands
on a cycle of k distinct points that repeats forever.

4. The selective extraction of periodic orbits

Using Eq. (@) we generated the first 400 polynomials Ty(z) and Q(x). Irreducible Ty(x) imply
Q¢(z) = Ty(z). Otherwise, Q(x) is the factor of highest degree in Ty(x). Therefore, while the
degree of Ty(z) grows steadily with ¢, the degree of Q,(x) fluctuates, i.e. emerges not in a
regular order. After generating the 400 Q¢(z) polynomials, we investigated in which periodic
orbit their roots land. Clearly, there are several roots to choose as initial conditions of the
iterative process. Thus, in addition to roots leading to genuine period-k orbits one may also
find roots leading to orbits of smaller periods, divisors of k.

Table[dillustrates data for 120 of the 400 polynomials, ordered according the period k. This
table reveals interesting systematic patterns and trends which will be considered in more detail
now.

4.1. Preperiodic generation of period four orbits and aggregates

As it is known, there are three possible period-four orbits for the quadratic map, namely

os1(x) =t + 2% —42? — 4z +1, ()
o42(x) =2 — 3(1 - V1T)z® — 3+ V1T)z? — (2 +V1T)z — 1,

~ g +1.561553 2° — 3.561553 2% — 6.123106 2 — 1, (9)
os3(x) = 2t — L1+ V17)2® — (3 = V17)a® — (2 - V1T)z — 1,

~ 2% — 2.561553 2% + 0.561553 % + 2.123106 = — 1. (10)

Here, we have also indicated approximate “projections” onto the real axis for two orbits. This
was done to emphasize that, since no exact representation onto the real axis is possible for /17,
independently of the number of digits used, such projections will be necessarily just approxi-
mations of the exact equations of motions, obliterating completely the conjugation symmetry
between o42(x) and o4 3(z). Nevertheless, knowing that o4 2(z) and o4 3(x) are conjugated
naturally lead us to multiply them together to obtain an approximate equation for a cluster
and, after rounding off coefficients, the corresponding exact expression. Explicitly, using the
approximated orbits, we find:

c1,1(x) = 04,2(7) - 043(2),
~ 28 — 27 — 7.000001 2% + 6.000004 z° + 152* — 10.00001 2> — 102% + 4z + 1,
=2® — 2" — 72% + 62° + 152" — 102 — 102% + 42 + 1, A=1T7". (11)

The discriminant A corroborates that Eq. (II) decomposes over Q(v/17), as it should. The
algebraic character of the coefficients of the three period-four orbits forms two groups, according
to the algebraic nature, integer or quadratic, of the roots of

Si(o) = (0 +1)(0* — 0 — 4), (12)

where o is the sum of the orbital points. When the root ¢ = —1 is substituted into the period-
four carrier ¢4 (), defined by Eq. (1) in Ref. I namely

Ya(x) =a' — o2’ + J(0® + 0 —8)a® — L(0® +30° — 200 + 2)x
+2(0—3)(c® +90° — 20 — 16), (13)
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one obtains o041 (z). Substituting (1 — +/17)/2 and (1 + v/17)/2 into Eq. [[3), roots of the
quadratic factor in Eq. (I2), we get 042(z) and o43(x), the pair of orbits conjugated over
Q(V17). For details, see Refs ™5

Table 2. The selective factorization of period-four orbits. See text.

Polynomial | Q15 & Q17 Q30 | Q34 Qso | Qes Q120 | Qize Q240 & Q272
Degree 8 16 16 32 32 64 64 128 128 256
Orbits 04,1 | 042 041 | 042 041 | 042 041 04,2 04,1 04,2

04,3 04,3 04,3 04,3 04,3

Table 3. The six period-five orbits in existence for the quadratic
map, characterized by one orbital point, and by the sum o5, of
its points. The remaining points follow by iterating x¢+1 = 2 —:cf.

Orbit x1 T5.0

05,1 -1.6825070656623623377 1

05,2 -1.9638573945254134021 -3.3722813232690143300
05,3 -1.1601138191423963584 2.3722813232690143300
05,4 -1.9590598825049889879 -3.0838723594356076658
05,5 -1.6415268824145526527 0.7868018150723329561
05,6 -1.0579280206539249147 3.2970705443632747098

Table 4. The selective factorization of period-five orbits.

Qi1 Q2 | Q33 Q3 Qu | Qes Q2 (Qss | Qiza  Qi2a  Qire | Q264 (Qa4s
10 20 20 30 40 40 60 80 80 120 160 160 240

051 051 | 052 054 O51 | 052 054 051 05,2 05,4 05,1 05,2 05,4
053 055 053 055 05,3 05,5 05,3 05,5
05,6 05,6 05,6 05,6

Thus, we see that even modest numerical knowledge of the orbital coefficients can disclose
the exact expression of the cluster equation. This procedure is a significant asset when searching
for exact expressions for clusters aggregating orbits of high periods: it allows one to profit from
approximate numerical information to correctly extract exact equations.

Table 2] shows the Q¢(z) polynomials that generate period-four orbits for ¢ < 400. The
topmost line identifies the polynomials while the second line refers to their degrees. Under them
are indicated the orbits 04 ; where the zeros of Q¢(z) land. As illustrated by the highlighting, it
is not difficult to recognize that there are two nested sequences of period-four generating Q(x)
polynomials, namely

Q15X2n(l’) and Q17X2n($), 7’L=0,1,2,3,....

Table 2] reveals the following remarkable facts:
i) All three period-four orbits in existence are generated by the zeros of Q;(x), in a cyclic
manner;

ii) While orbits generated by Q15x2» () consistently land on 04,1 (), the orbit with integer
coefficients, orbits generated by Q17x2n» () land either on o4 2(x) or 04 3(x), orbits which
have quadratic numbers as coefficients. This means that orbits belonging to the same
number field are segregated automatically, filtered, by the zeros of Q(z);
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iii) For a given period k, the coefficient of z*~! in the orbital equation is —c. This fact
provides easy access to the equation defining the sum of the orbital points® which, in
the present example, turns out to given by Eq. (I2)).

As discussed in the continuation, these three features are found to be generic characteristics
of other Q(x) polynomials and periods.

Table 5. Selective factorization of orbits of periods six, seven, and eight.

Qi3 Q21 Q2 Qa2 Qe  Qs2  Qes Qsa Qi Qios Q130  Qiss Q252

12 12 24 24 36 48 48 48 72 96 96 96 144
06,1 = 06,2 06,1 06,2 06,3 06,1 06,6 06,2 06,3 06,1 06,6 06,2 06,3
06,4 06,7 06,4 06,7 06,4
06,5 06,8 06,5 06,8 06,5

06,9 06,9

Qa3 Qss Q120 Qi2r Q72 Qs Q254 Q344
42 84 84 126 168 168 252 336

o7,1 o7,1 07,4 07,10 07,1 07,4 07,10 07,1
07,2 07,2 07,5 07,11 07,2 07,5 07,11 07,2
07,3 07,3 07,6 07,12 07,3 07,6 07,12 07,3

or7,7 07,13 or7,7 07,13

07,8 07,14 07,8 07,14

07,9 07,15 07,9 07,15

07,16 07,16

07,17 o717

07,18 07,18

Q51 Qss  Qio2  Qiro  Qas5 Qas7 Q340
32 64 64 128 128 256 256

08,1 08,3 08,1 08,3 08,7 08,15 08,3
082 084 082 08,4 08,8 08,16 08,4
08,5 08,5 08,9 0817 08,5
08,6 08,6 08,10 08,18 08,6

08,14 08,30

4.2. Preperiodic generation of period five orbits

For period-five, preperiodic points orderly generate the six orbits recorded in Table [B] where
they are characterized by one orbital point as well as by the sum o5 ¢ of its five points. The first
few Q¢(x) having roots which land on period-five orbits are recorded in Table @l Similarly to
Table 2] the topmost line shows the relevant Q(x), with their degrees on the second line. For
period-five, the highlighting shows the existence of three distinct nested sequences, namely:

Q1ix2n (), Qs3x2n (), Qs1x2n (T), n=0,1,2,3,....

Once again, the Q¢(z) generate systematically all existing orbits in a cyclic way, and segregate
them automatically according to the algebraic nature of the orbital coefficients. As before, from
the numerically obtained orbits we get the exact expression defining o5, for the six orbital
points, namely

Ss(0) = (0 —1)(6* + 0 — 8)(0® — 0% — 100 + 8). (14)

The three factors composing Ss(c) correspond to the three groups of orbits discriminated in
Table @
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From numerically approximate orbits we obtain exact expressions for the pair of period-five
clusters:

csa(z) =20 + 2% —102% — 1027 + 3425 + 3425 —432% — 4323 + 1222 + 122+ 1, (15)

cso(r) =2t — 1 — 1421 + 1322 + 782 — 66 20 — 22027 + 165 2% 4 33027
—2102°% — 2522° + 126 2* + 842° — 28 2% — 8z + 1. (16)

These aggregates factor into quintics over Q(v/33) and Q( v/ —62 + 95\/—_3), respectively,
thereby providing exact explicit expressions for the remaining five period-five orbits. Note that
a complex number field is needed to extract the three real orbits entangled in c5 2(x).

Once again, apart from o5 1(z), the real projections of the five remaining orbits are neces-
sarily approximated. However, when multiplying together the distinct orbits arising from the
roots of a fixed Q(x) polynomial we obtain a cluster whose coefficients turn out to be very
close to integers. Rounding them off yields the final exact expression with integer coeflicients.
Even using modest numerical approximations of the orbital points one can obtain exact clus-
ter equations as may be validated by comparing its roots with numerical values generated by
iteration of the equations of motionI We have encountered no case where the above procedure
failed to produce exact expressions for orbital clusters.

4.3. Preperiodic generation of periods six, seven, and eight

Altogether, there are nine orbits of period six, listed in Table 1 of Ref™ The orbits form four
groups, corresponding to the four factors composing Sg¢(o), which defines the sum of their
orbital points:

Se(0) = (o0 +1)(0 — 1)(0® — 21 0 + 28)(0* + 0* — 2402 — 40 + 16). (17)

Thus, there are two isolated orbits, denoted by 06 1(z) and 0g,2(x), which have integer coeffi-
cients, a group of three orbits with cubic coefficients, o 3(x), 0s.4(x), and o0g 5(z), and a group
of four orbits with quartic coeflicients, og (), 06,7(2), 06.s(x), and ogo(z).

The Q(z) polynomials generating all period-six orbits are collected in the upper portion
of Table B The center portion of the table collects the Qy(x) polynomials that generate all
period-seven orbits. The three factors which compose S;(c), as well as the procedure to obtain
them, valid for any arbitrary period k, are given explicitly in Ref™ Finally, the lower portion
of Table [l presents Q,(x) polynomials for all period-eight orbits. Expressions for Sg(o), Sg(o),
and Syo(0) are given in the Appendix. The individual factors composing the several Si (o) fix
the algebraic character of the coefficients for every individual period-k orbit.

5. Conclusions and outlook

This paper complements the iterative approach recently discussed in this Journal™ Here, the
ailm was to obtain an alternative method to extract systematically exact expressions for orbital
equations of arbitrary periods of the quadratic map in the partition generating limit. The
alternative method consists of using preperiodic points comfortably generated by an infinite
family of monogenic? polynomials Qg (x) to selectively extract equations of motion, one by one,
with no need for iterating polynomials. The procedure is simple to implement and effective.
Both methods, polynomial iteration or preperiodic points, are essentially limited by the
capability of the hardware and software used to handle ever growing polynomials with huge
numerical coefficients. While this limitation impacts the maximum period accessible to algebraic
manipulations, continued advances in computer systems will certainly continue to expand the
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range available to investigate algebraic dynamicsl? exactly, allowing one to advance into new
research realms by applying any of the two methodologies now available.

The quadratic map in Eq. ([Il) offers a number of enticing problems worth pursuing. For
a = 0, the orbits reproduce several of the familiar cyclotomic polynomials. For a = 2, the
infinite set of periodic orbits embedded in the fully developed chaos consists of a cyclotomic-
like set of objects that share many properties with the standard cyclotomic polynomiads.EI
The dynamics for other values of a, when real and complex orbits coexist, is totally open to
investigation. Integer and rational values of a are first good candidates to learn how number
towers unfold arithmetically. In particular a = 1, say, offers the possibility of learning about
the interplay of coexisting orbits defined by towers of real and complex algebraic quantities, a
new and totally unexplored world.

Table 6. The thirty period-eight orbits, characterized by one orbital point and
the sum og ; of the eight orbital points. Complete orbits may be generated by

iterating 441 = 2 — 2. The values of og,; are roots of Eq. (A).

Orbit T 08§

08,1 -1.984841019343871516522912 -2.561552812808830274910705
08,2 -1.632393824712443381743705 1.561552812808830274910705
08,3 -1.994538346771576098442202 -4.914223945039180928208247
08,4 -1.951023935960873278145019 -2.056133705669804629074231
08,5 -1.573489876066966494406107 2.352671132230350653297542
08,6 -1.738177892611056635019841 3.617686518478634903984936
08,7 -1.999392903955743234132651 -9.192789454613742069133553
08,8 -1.970324466935013007529986 -3.456817575142370539782937
08,9 -1.898269888071802444878746 0.2899559343985875455768889
08,10 -1.926986288411966237038570 0.5911182259052169094701404
08,11 -1.687334295667532671943878 1.104146442912019886485395
08,12 -1.784801166495895642936504 1.766177771271217083497342
08,13 -1.224840406098499982124136 4.323105719133964018738106
08,14 -0.9785858338678472056275101 5.575102936135107165148616
08,15 -1.999402315686187320311568 -9.229152884143427069047449
08,16 -1.994622984321411050382163 -4.890484957292577579687509
08,17 -1.970783422280053272462841 -3.270791497771093661943518
08,18 -1.985075746010103467347859 -2.686687205494066985177061
08,19 -1.867014790104666658874452 -2.631302749249868342542760
08,20 -1.951780177216468660609469 -2.375150786131144323343685
08,21 -1.899833775307932554727627 0.1093594181979987080920541
08,22 -1.928111435796830339423029 0.7797117117494440466968254
08,23 -1.637914468949626157934556 0.8210383845347267439370462
08,24 -1.692053315444146323149561 1.834669950453959306149210
08,25 -1.788077312909154517799568 1.949372205257687870932170
08,26 -1.579860384419790809298828 2.955978611262725340347639
08,27 -1.742147511485913313291649 3.175217183647612247623081
08,28 -1.236026775830388280510551 3.430438713308632045309287
08,29 -.9068916550266425682669635 4.627714403788193594030641
08,30 -.9929341328818267363874723 6.400069497881198058624029
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Appendix A. Expressions of S;(o) for periods k = 8,9 and 10

Table [0 defines the thirty period-eight orbits os;(z) listed in Table Bl The individual factors
which fix the coefficients, and therefore the algebraic nature for all period-eight orbits, are roots
08,5 of:

Ss(0) = (0 + 0 —4) (0" + ¢® — 230% — 0 4 86) x
(0® — 0" —T50° +2610° + 474 0" — 2764 0° + 3560 0> — 1696 7 + 256) x
(¢' =o' —1200"" 42920 + 4390 0% — 13894 0" — 66604 0 + 257972 0
+422785 0% — 2255633 07 — 434628 0° 4 9169776 0° — 6074688 o
—12553200 0® + 18123520 0 — 7237376 o + 591872). (A1)

Manifestly, there are four classes of orbital complexity, corresponding to the factors of degrees
2.4,8,16. See Ref™ for details.

By constructing tables analogous to Table [0l we get expressions for Si (o) which define the
sum of orbital points for periods £ = 9 and 10, as well as the algebraic nature for all the orbits
of these periods. From the 1+ 142+ 4+ 6 4+ 18 4+ 24 = 56 period-nine orbits we find:

Se(0) =0(0c—1) (0> + 0 —14) (0" — 0 — 270" + 410 + 2) x

(6% — 570" + 76 0® + 684 0% — 18240 + 1216) x (¢'® — 1710 + 3420'° + 9234 0
—25992 o3 — 216030 o'2 4 707940 o't 4 2274813 010 — 8209976 0¥ — 9918855 ¢°
+37877526 0 + 24342192 6% — 74783088 0° — 43931952 o* + 53908320 o
+40777344 0% + 29767680 — 622592) x (0** + 0** — 2176°% + 175 02! + 17702 0*°
—34450 0% — 713778 0*® 4 1978990 017 + 15416541 ¢ — 54321171 ¢*°
—174437381 0™ + 785332035 02 + 859244108 02 — 5882602892 ¢! — 234490112 o*°
+20915101712 0 — 7544198464 ¢® — 35643986496 o + 15193333504 ¢°
+28736640000 0° — 9095376896 0% — 11068506112 0 + 1392246784 o2
+16819159040 + 134217728). (A.2)

Apart from a pair of orbits with integer coefficients, there are five classes of orbital complexity,
corresponding to the remaining factors in Sg(co), and which define orbital coefficients of algebraic
degrees 2,4,6, 18, and 24.

Analogously, from the 1+2+3+48+154+30+40 = 99 period-ten orbits we get the expressions
that fix coefficients and the algebraic character for all orbits:

S10(0) = 0(6® — 0 —10) (¢ + 0> — 100 — 8) (¢® + 0" — 790° + 11 0° + 1766 0" — 1980 ¢
—6120 0% + 64000 + 2560) x (o' + o' — 138 0% + 800! + 6278 0" — 13450 0"
—98056 0 + 360148 6° + 54921 0" — 1300271 0® + 477210 0° + 1783924 o*
—627480 0° — 972256 0 + 1544960 + 141824) x (0*° — 0* — 308 ¢ + 988 ¢*7
+35612 025 — 165388 02° — 2057832 04 4 12178568 023 + 64943174 022
—488429574 0! — 1123435104 02° + 11745093392 6*° + 9331519964 o'¢
—180278015100 017 + 3569846216 ¢*¢ + 1838668414168 0'° — 869341730175 o4
—12716885593921 02 4 9033287197044 012 + 59693364821364 o'!
—48003427786304 ¢'° — 186012055610544 o° 4+ 147967410696768 o
+364183488569536 ¢ — 259735306624768 o — 399991760098304 o°
+232462373875712 0% + 194622659919872 0> — 82496776568832 o>
—296690384896000 + 10950019121152) x (0*° — 410 0 + 820 07 + 69905 o*
—249444 035 — 6473900 o** + 32183360 o> + 354950530 032 — 2315420880 ¢!
—11590177004 ¢3° + 102791354200 02 + 201751419530 0*® — 2950337399160 027
—577704999440 02 + 56031016855856 2° — 53560368567875 0> — 711891460448400 o3
+1295736491580950 022 + 6043257616401300 02! — 15792646015357819 ¢2°
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—33550951726098500 o' + 119952431016405420 o + 113943905945026160 o7
—599301088769483360 016 — 185763739671009920 o' + 1988903009578851200 o*4
—104975203722073600 o' — 4318548194918598400 2 + 1018330875056000000 o**
+5904641008147348480 01 — 1616363148079616000 0 — 4743519951800729600 ¢®
+842331694258585600 07 + 1957033680587980800 6% + 15775574654976000 o
—276814761033728000 o* — 19653221731532800 0 + 11527531161190400 o2
+7924214661120000 — 112699941847040). (A.3)

The above expression shows that there is one period-ten orbit with integer coefficients, and
six classes of orbital complexity, each class characterized by coefficients defined by algebraic
numbers of degrees 2,3, 8,15, 30, and 40.

Next, there are 186 orbits of period k = 11,335 of k = 12,630 of k£ = 13,1161 of &k = 14, 2182
of k = 15, ete involving polynomial clusters of degrees 2046, 4020, 8190, 16254, and 32730,
respectively. The algebraic properties of the orbits with & > 10 remain to be investigated. As
shown in Refs B | together with 1 (z), the polynomials Sy, (o) form “doublets” defining orbital
carriers, which o-encode simultaneously all existing period-k orbits and, therefore, contain
maximum possible information regarding the complete set of period-k orbits, for any arbitrary
period k.
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