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We study the dynamics of one and two dimensional disordered lattice bosons/fermions initialized to a Fock
state with a pattern of 1 and O particles on A and A sites. For non-interacting systems we establish a uni-
versal relation between the long time density imbalance between A and A site, 1(00), the localization length
&, and the geometry of the initial pattern. For alternating initial pattern of 1 and O particles in 1 dimension,
I(o0) = tanh[a/&], where a is the lattice spacing. For systems with mobility edge, we find analytic relations
between I(co), the effective localization length & and the fraction of localized states f;. The imbalance as a
function of disorder shows non-analytic behaviour when the mobility edge passes through a band edge. For
interacting bosonic systems, we show that dissipative processes lead to a decay of the memory of initial condi-
tions. However, the excitations created in the process act as a bath, whose noise correlators retain information
of the initial pattern. This sustains a finite imbalance at long times in strongly disordered interacting systems.

A generic quantum many body system, initialized to a typ-
ical state, forgets the memory of the initial state. In the long
time limit, local observables in the system can be described by
an ensemble of states with a probability measure determined
by its Hamiltonian. This basic tenet of equilibrium statisti-
cal mechanics has been challenged in recent years in strongly
disordered interacting quantum systems, a phenomenon called
many body localization(MBL) [1-6].

While theoretical studies of MBL have focussed on the
properties of many body eigenstates in the middle of the spec-
trum [3-6], it is impossible to experimentally access these
states individually. In experiments on MBL in cold atoms [7—
12], the system is initialized in a Fock state, which has 1 par-
ticle on a set of lattice sites (say A) and 0 particles on the rest
(say A). As the system evolves, the density imbalance be-
tween A and A sites, normalized by average density, is mea-
sured. The Hamiltonian of the system (averaged over disor-
der) does not distinguish between A and A sites; in a thermal
state the imbalance should be 0. A finite imbalance in the long
time limit implies that the system remembers the initial con-
dition and indicates absence of thermalization in the system.

In this paper, we use a new extension of Keldysh field the-
ory [13] to understand imbalance dynamics in systems with
random or incommensurate potentials. For localized non-
interacting systems, we derive a universal relation between the
long time density imbalance, the localization length and the
geometry of the initial density pattern. For the initial patterns
used in 1-d and 2-d experiments, we obtain analytic relations
between localization length and long time imbalance. Near a
localization-delocalization transition, the imbalance scales as
the inverse localization length. We test our theory using the
random potential Anderson model [14] in 1 and 2 dimensions
and the Aubry Andre model [15] in 1 dimension.

In systems with a mobility edge [16, 17], only the local-
ized states contribute to long time imbalance. The one parti-
cle Green’s functions, projected on these states, decay expo-
nentially with distance. This defines an “effective” localiza-
tion length. The imbalance, divided by the fraction of local-
ized states in the system, is given by the same analytic rela-

tions with this effective localization length. This leads to non-
analyticites in the imbalance as a function of disorder strength,
when the mobility edge passes through a band edge.

Finally, we consider imbalance dynamics in a Bose Hub-
bard model with an incommensurate potential. We use a
conserving approximation [18], keeping the lowest order pro-
cesses leading to dissipative and stochastic dynamics. Naively
one would expect the memory of the initial state to decay, as
the Green’s functions which propagate this memory decay in
time. However, as the quasiparticles decay, they create excita-
tions which act as a bath for the rest of the quasiparticles. The
noise fluctuations of this bath remembers the initial conditions
at strong disorder, and sustain the finite long time imbalance.

Imbalance dynamics in MBL systems has been treated the-
oretically using exact diagonalization(ED), DMRG [7, 19]
and in Hartree-Fock approximation [20]. However, ED
and DMRG does not provide insight about the mechanism
that sustains the imbalance in interacting systems, while
the Hartree Fock approximation ignores the dissipative and
stochastic processes included in this work.

Imbalance and Localization Length: We consider non-
interacting particles with

H=-7)Y ala; +> v(i)ala;, (1)

(i5) g

where aZT is the particle creation operator on lattice site 7, J is
the nearest neighbour hopping and v(3) is a local potential.

We will study dynamics of this system within the
Schwinger Keldysh field theory [21], which has two indepen-
dent one particle correlators: (a) the retarded Green’s func-
tion, Gg(i,t; j,t'), which is the amplitude of propagating a
particle to site ¢ at time ¢ provided the particle was at site j
at time ¢/, without creating additional excitations, and (b) the
Keldysh Green’s function G i (4, t; 4, t'), which represents the
actual amplitude of exchanging a particle between site ¢ at
time ¢ and site j at time t'. Gk (i,t;7,t) is related to densi-
ties and currents in the system; e.g. for bosons (fermions), the
local density n;(t) = (£1/2)[iGk (i, t;i,t) — 1].
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FIG. 1.

Initial density profiles for imbalance dynamics in (a) linear chain and (b) square lattice. The solid(hollow) dots are particles

(vacancies). (c) {|G% (4, )|?) for Aubry Andre model as a function of |i — j|. For V/J = 0.6, it saturates to a finite value; for V/J = 1.2, 1.8
it decays exponentially. (d)-(f): Long time imbalance (I (c0)) as function of V/.J obtained from Eq. 3 (solid dots) for (d) Aubry Andre model,
(e) 1-d Anderson model and (f) square lattice Anderson model. The solid lines are Eq. 5 (d,e) or Eq. 6 (f) with & obtained from fitting |G R|2
(see inset for & vs V/J). The dashed line in (d) uses & /a = log[V/J]. (g) {|G$|?) in the modified Aubry Andre model with mobility edge
as a function of distance (V/J = 1.2 and v = 0.4). The full Greens function (which saturates) and its projection onto the localized states
(which decay exponentially) are both shown. (h) (I(c0)) for the modified Aubry Andre model as a function of V/.J for v = 0.4, 0.6 obtained
from (i) Eq. 3 (solid dots) (ii) Eq. 7(solid lines). &; is obtained from fits of localized contributions in |G R\2. (i) The fraction of localized states
(f1), the long time imbalance (I)(multiplied by 2 to plot on same scale)and the derivative d(I)/dV as a function of V/J for the modified
Aubry Andre model (v = 0.3). The values of V/.J, where the mobility edge leaves or enters a band are marked by derivative discontinuities

in f; and (I). All data are averaged over 100 disorder configurations. 1-d data are for 1000 sites and 2-d data is for a 100 x 100 lattice.

The system is initialized to a Fock state, where n;(0) =
1/2(1 4+ o;), with o; = +1if i € A(A). We use an extension
of Keldysh field theory, which can explicitly keep track of
arbitrary initial conditions in quantum dynamics [13]. Here,
Grli t;j,t') = 3, 65 (i)pn(j)e Fn =) where E, and
¢ (1) are the energy levels and corresponding wavefunctions.
The Keldysh Green’s function G i carries the information of

the initial density matrix and is given by

{ K’Latvjat = Riat; 70 ]7t, 70 1i27’lk0 )
a / Grli, bk, 0) G (j, '
k

ni(t) =Y |Grli,t; k,0)[*nk(0). 2)
k

Note that the expression for local density is same for bosons
and fermions. Hence, all the statements about imbalance dy-
namics in non-interacting systems are independent of statis-
tics of particles. For a closed system with equal number of A
and A sites, the density imbalance, averaged over disorder, is
2 : 2
N Z Ui(lGR(Z7 t; kv 0)| >

keA,i

(I(t)) 3)

The Green’s functions can be calculated from the knowledge

of energy eigenfunction in each disorder configuration, yield-
ing a “numerical” estimate of imbalance. G (i, t; k,0) is the
solution to Anderson’s original problem [14]: it is the wave-
function at site ¢ and time ¢ of a particle initially localized
at k. Ast — oo, in the localized phase, (|G55 (i, k)|?) =
(3, |on(3) 9% (K)|?) ~ e~ 2Imi=rel/& . This decay defines the
localization length &;. The long time imbalance

(o)) = = 3 e 5
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This is the universal relation between the long time imbalance,
the localization length and the geometry of the initial pattern.
We will now consider some specific initial patterns that have
been used in the cold atom experiments on MBL [7, 10].

1-d chain with alternating pattern: We consider a linear
chain with an initial state which has alternating |1, 0, 1,0, ...)
pattern [7], as shown in Fig. 1(a). Assuming a large chain
where boundary effects can be neglected (see SM for details),
the sum in Eq. 4 gives

(I(c0)) = tanh (a) . (5)

&



From this “analytic” estimate, we see that as §;/a — oo,
(I(c0)) ~ & — 0;i.e. (i) the memory retention is related to
localization and (ii) close to a localization-delocalization tran-
sition, the scaling of the Lyapunov exponent [22] v = a/¢
governs the behaviour of the density imbalance.

We first consider the Aubry Andre model [15], with an in-
commensurate v(i) = V cos[2mai + 0], where a = (/5 +
1)/2 is the golden mean, and 6 is a uniformly distributed ran-
dom phase. This model, which is implemented in cold atom
experiments [7], has a localization-delocalization transition at
V/J = 1[15]. This can be clearly seen in Fig. 1(c), where
we plot (|G (i, j)|?) as a function of |i — j|. For V/.J = 0.6,
where the system is delocalized, (|G55|?) saturates to a finite
value at large distances, whereas it shows an exponential de-
cay for V/J > 1. In Fig. 1 (d), we plot the long time imbal-
ance as a function of V/.J obtained using the numerical esti-
mate from Eq. 3 (solid dots) . We also plot the analytic answer
from Eq. 5 with & obtained from (i) fitting (|G55|?) (solid
line)[see inset for & vs V/J] and (ii) a duality relation [23]
& = alog[V/J] (dashed line). The analytic answer matches
the numerical estimate for £;/a > 1. We also consider the
1-d Anderson model [14] where each v(7) is an independent
random variable, with P[v(i)] = ©[V?2/4 — v2(i)]1/V. This
system is localized for any V/J, with a localization length
&/a ~ (V/J)~2 [24] for weak disorder (see inset of Fig. 1
(e)). In Fig. 1 (e) we plot the long time imbalance obtained
from Eq. 3 (solid dots) and Eq. 5(solid line) and find good
quantitative match between these estimates.

Disordered Square Lattice: We consider the Anderson
model of uniformly distributed random potentials on a square
lattice [14]. This model is localized for all V/J, with
(G (PR ~ e 2V and & ~ a /Y7 [24]. We
consider the experimentally relevant [8, 10] initial density pat-
tern of alternating chains which have 1 and 0 particles on each
site, as shown in Fig 1(b). The long time imbalance

oo

(Ic0)) = >

Nz, Ty=—00
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While this sum cannot be done analytically, numerical evalu-
ation (see SM for details) shows (1(£;)) ~ (v/32/7%)(a/&)
for £ > a. In Fig 1(f), we plot the imbalance obtained from
Eq. 3 (solid dots) together with that obtained from Eq. 6 (solid
lines), with &; (see inset) obtained from exponential fit of the
(|{G¥1?). The two approaches match till V/J = 5, when
& ~ 100a and our 100 x 100 system is effectively delocal-
ized, The cold atom experiments, which are restricted to sim-
ilar sizes, may also see effective delocalization at this scale.

Mobility Edges and Imbalance: We now turn our attention
to the modified Aubry Andre model [16, 17] in 1d, where
v(i) = Vcos[2rai + 0]/(1 — v cos[2mai + 0]), with —1 <
v < 1. v = 0 corresponds to the Aubry Andre model dis-
cussed before. At low V/J the model has delocalized states,
for intermediate values of V/.J it supports a mobility edge at
E. = 2(J — V) /v [16], which is an energy threshold sepa-
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FIG. 2. (a) I(t) for Bosons in an Aubry Andre Hubbard model with
V/J = 25and U/J = 0.0, 0.3, 0.5, 0.7. For finite U, the im-
balance decays exponentially to a finite value. (b) The long time
imbalance (I(c0)) as function of V//J for different values of U/J.
(c) The exponential decay in time for Gr due to dissipative process.
(d) The contribution to imbalance due to (i) the direct decay of ini-
tial correlations I and (ii) stochastic fluctuation due to effective bath
I>. The long time imbalance is dominated by I2.(e) The space-time
local part of ¥ ¢, averaged over A and A sites. The bath clearly dis-
tinguishes between A and A sites at long times. All data in (a)-(d)

are for N = 20 sites and averaged over 50 configurations. (e) is
obtained from N = 10 site system averaged over 200 samples.

rating localized and delocalized states. At large V/.J all states
are localized in the system. In Fig. 1 (g), we plot (|G%|?)
of the system as a function of distance for V/J = 1.2 and
v = 0.4, where there is a mobility edge. The long distance
behaviour of (|G55|?) is dominated by delocalized states and
saturates to a constant. In the same figure, we also plot the
contribution to {|G%|?) from states above the mobility edge,
which clearly shows an exponential decay. This decay can
be used to extract an “effective” localization length &, for the
system. The imbalance in this case is given by

(I(c0)) = fi tanh (;) , )

l



where f; is the fraction of localized states. In Fig. 1 (h), we
plot (I(o0)) as a function of V/J for v = 0.4,0.6. The solid
dots (Eq. 3) and the solid lines (Eq. 7) track each other. The
imbalance goes to 0 when all states are delocalized at low
V/J. Atlarge V/J, the curve approaches the v = 0 answer.
There is a clear non-analytic feature of the imbalance as
a function of V//J, which coincides with the V//.J where the
mobility edge coincides with the band edge. A closer scrutiny
shows that the system has multiple bands and there is a sharp
change in derivative every time the mobility edge coincides
with a band edge. This can be seen in Fig. 1 (i), where we plot
f1, (I(00)) and d(I(c0))/dV vs V/.J in the same plot for v =
0.3. To understand this non-analyticity, consider the rightmost
feature, at Vo ~ 1.4J. For V. > 1}, the mobility edge is
below the lowest band; all states are localized and contribute
to I. As we approach Vj, the singular part of the imbalance is
governed by the scaling of the energy dependent localization
length, &(E) ~ (E — E.)77, leading to I, ~ (V — Vp)~.

J

On the other hand, for V' < Vj, there is an additional effect
as the fraction of localized states also decrease. If the Van
Hove singularity in the density of states at the band edge Ep,
p(E) ~ (E — Ej)~%, the fraction of localized states changes
as Afy ~ |V —=Vp|'=%, and hence I, ~ |V —V,|PH1 =0 ~ |V —
Vo|?8. Here we have used the well known formula § = 1 —
d [25]. This leads to the cusp like behaviour of d(I(c0))/dV
in Fig. 1 (i) when the mobility edge and band edge coincide.

Imbalance Dynamics in Interacting Systems: Finally we fo-
cus our attention on the Bose Hubbard model with Aubry An-
dre potential in 1-d, where we add to the Hamiltonian of Eq. 1
the local Hubbard repulsion U ), n;(n; — 1). The interac-
tion effects on the Greens functions are incorporated through
retarded and Keldysh self-energies, ¥ and X g, where the
imaginary part of X is related to the dissipation in the sys-
tem and X is the noise correlator due to the effective bath
formed by the medium [26]. The interacting Green’s func-
tions are obtained from [13, 21]

t t1
Gr(it;j,t") = Gro(i, t; 4, 1) +/ dtl/ dtaGro(i,t; k, t1) SRk, 0151, t2)GR(L, t2, 4, 1) (8
t/ t/

t
Gr(it;j,t") = —i GR(i,t;k,O)[l+2nk(0)}GE(J}t';k,0)+/ dty

Here Grg is the non-interacting retarded Green’s function,
and we have neglected connected many particle correlations
in the initial state. We work with a conserving approxima-
tion [18], where we keep all skeleton diagrams upto second
order in U to calculate the self-energies (see SM for details).
Our approximation keeps the minimal non-trivial diagrams
which lead to dissipative and stochastic dynamics in the sys-
tem. The resulting imbalance, plotted in Fig. 2(a) for V =
2.5J and different values of U/J, shows an exponential de-
cay in time, which can be fitted to (I(t)) = (I(00)) + re Mt
The long time imbalance (I(cc)), obtained from this fit, is
plotted for different V/.J in Fig 2(b). The system can sustain
a finite imbalance, although interaction reduces its value. We
note that our calculation is likely to overestimate the effects
of interaction, since we do not take into account screening of
the bare interaction strength.

In the interacting system, as a particle propagates, it creates
additional excitations in the system by scattering. Since G
is the amplitude of propagation without creating additional
excitations, {|Gg(t,0)|?) decays exponentially with time, as
shown in Fig 2(c). In Eq. 8 for Gk, the first term is a mod-
ification of the non-interacting answer, with the initial profile
propagated by the interacting G g. It is obvious that this term
decays to O at long times. However, the excitations created
in the medium act as a bath for the particle, and the stochastic
fluctuations of this bath is represented by the second term. The
contributions of these terms to the density imbalance, I; and
I, are plotted with time in Fig 2(d). As expected, I; decays

t/
dtaGR(i,t;k, t1) Xk (k, 131, t2) GR (5,15 1, t2).
0 0

(

to zero at long times and /5 dominates the finite imbalance.
The memory of the initial conditions now resides in the noise
correlators of the bath, which distinguishes between A and A
sites (see SM for details), and sustains the finite imbalance. To
see this, in Fig 2(e), we plot the space-time local part of the
disorder averaged Keldysh self-energy ¥k (4, t; 4, t) (which is
the effective variance of the local noise fluctuations), averaged
over A and A sites. Y clearly distinguishes between A and
A sites in the long time limit, which is key to a finite imbal-
ance in the system at long times.

We have used a recent extension of Keldysh field theory to
provide insight into how memory of initial states are retained
in dynamics of disordered systems. Considering experimental
protocols in ultracold atoms, we have derived exact relation
between long time imbalance and localization length in non-
interacting systems. In interacting systems, our calculations
show that long time imbalance is sustained at strong disorder
by the noise correlations which remember the initial density
pattern.
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Finite size correction in long time imbalance for 1 — d chain with alternating pattern

1 =—L central site I =

i=0

FIG. 1. Linear chain consisting of odd number of sites, 2L + 1 with alternating density pattern. The central site is chosen to belong to filled
sub-lattice A.

In this appendix, we will work out the analytical formula for the long time imbalance, (/(o0)) in case of a finite size linear
chain initialized in the state with alternating density pattern shown in Fig.1. We will show that the finite size correction to the
analytical formula for the longtime imbalance, (I(o0)) = tanh(a/¢;) is exponentially small in the system size. To show this,
we consider a linear chain having 2L + 1 number of sites. We choose L to be an odd number and the origin, situated at the
central site of the chain,belong to the filled sub-lattice A. We note that the final conclusion about exponentially small finite size
correction to (I(oc0)) does not depend on this particular choice of the geometry. Using equation 4 of the main text, we write the
longtime imbalance of the finite chain as,

_oli=jla _oli-jla
> > et - Y > e

i=0,42,...,£(L—1) j=0,%2, .., +(L—1) i=0,42,...,4(L—1) j=+1,%3,...,£L

1
I = —
(I(o0)) = 7
=12 g e 2E E e 2 | -1
r=1,3,...,L

r=0,2,...,(L—1)

2 _2(L+1) a
= tanh <a) - € a N
& l+e &

where a is the lattice spacing. In this equation, the second term gives the finite size correction to the longtime imbalance, (I(c0)).
In the large system size limit, L a/& >> 1, the correction term exponentially decays to zero and we recover Eq.5 of the main
text.

Retarded Green’s functions and localization length for Anderson model on a linear chain

In the main text, we have shown that the longtime imbalance retained by the system is related to the retarded Green’s function
as, (I(t)) = & > keai 0illGR(i t K, 0)|?). Here |GRr(i,t;j,t')|? represents the probability of finding a particle at a site i at
time t, given that the particle was at site j at some previous time ¢’. It has been shown in Ref. 1 that Gg(3,¢; j,t’) does not
depend on the initial condition of the system and hence it is insensitive to the initial density imbalance imprinted on the system
between A and A sub-lattices. The system recovers translation invariance when one looks at disorder averaged correlation
functions, hence the disorder averaged (|Gr(i,t;k,t")|>) becomes function of only |r; — r;|. In the Anderson [2] model of
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FIG. 2. (a) Exponential decay of long time disorder averaged Green’s function, (|G (4, 4)|*) with |i — j| for the 1-d Anderson model for
V/J = 4,6,8 (b) The localization length, extracted from the exponential fit , as a function of V//J. Data is for N = 1000 lattice, averaged
over 100 disorder realizations.

random disorder potential on a linear chain, it is well established that all the eigenstates becomes localized in space in presence
of infinitesimal disorder strength, V. In this case, {|GR(i,t; k,0)|?) in the longtime limit also shows an exponential decay,
(|G (i, k)2 = (3, |on (i) @k (k)|?) ~ e~2Imi=mel/& with localization length &;. In Fig.2, we have plotted (|G (i, k)|?) as a
function of |¢ — k| in a semi-log plot for three different disorder strength V/J = 4, 6, 8. Localization length, &;, shown in Fig.2
as a function of V/, is extracted from the slope of the exponential decay of (|G¥|?) with distance. These &; for different V are
used to calculate the analytical longtime imbalance, (I(c0)) = tanh(a/&;), shown by solid line in the Fig.1 of the main text.

Green’s functions and localization length for square lattice Anderson model
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FIG. 3. (a) Numerical evaluation of the analytic formula for long time imbalance in the 2d localized phase, as a function of the inverse
localization length. The two plots are evaluating the formula in a lattice of size N = 100 x 100 and N = 1000 x 1000. Note the linear
behaviour in both curves. The upturn in the N = 100 curve is due to finite size effects. (b) Exponential decay of long time disorder averaged
Green’s function, (|G (4, 7)|?) with |i — j| for the 2-d Anderson model for V/J = 5,10, 15 (b) The localization length, extracted from the
exponential fit , as a function of V/J. Data is for 100 x 100 lattice averaged over 100 realizations. Note that at V//J = 5, the extracted
localization length £ ~ 100 and the system is effectively delocalized.

In the main text we had obtained the long time imbalance in a square lattice for a system starting with initial configuration
shown in Fig 1(b). In terms of the localization length we obtained

(Ioo)) = Y 3 (e GV o)

In Fig. 3(a), we plot the numerical evaluation of this sum as a function of a/¢;. The limits of the sum has been set to [—L, L],
and we show plots for L = 100 and L = 1000. The graphs follow a straight line, showing that the imbalance scales with the



inverse localization length. Numerically we find the slope to be /32/72. For L = 100, we see a sharp upturn at a/&; ~ 0.1,
where finite size effects start to play a role. For L = 1000, the curve continues with the same slope. Thus (a) finite size effects
are easy to detect in this sum and (ii) the slope calculations from such finite size sums are reliable as long as we stay away from
the upturn in the curve.

The Anderson model on a square lattice is localized for arbitrary small disorder strength. However, since the localization
length grows logarithmically at weak disorder, finite size systems will be effectively delocalized over a range of V/J. In
Fig. 3(b), we plot the disorder averaged retarded Green’s function for the Anderson model in 2d in the long time limit, using the
formula, |G (i,5)|%> = 3, [¢n(i)dn(5)|%, where the sum is over eigenstates of the single particle Hamiltonian and ¢,, (i) is the
corresponding wavefunction. We plot it for V' = 4, 6, 8, all of which show exponential decay. The localization length calculated
from this decay is plotted in Fig. 3(c) as a function of V/.J. We note that for V//J = 5, { ~ 100a. Since we are working
with a 100 x 100 lattice, the estimates here are unreliable. Reliable estimates can be obtained in this case for V/J > 10, which
corresponds to a & = 10a, where sharp upturns are seen in Fig. 3(a).

Interacting Disordered systems
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FIG. 4. The Feynman interaction vertices and the symbolic propagators for a system of interacting bosons with a local Hubbard repulsion U.

In this section we provide the details of the imbalance dynamics for interacting bosons in 1d. We work with the Hamiltonian

Z —Jalaiﬂ + v(i)aiai +Uni(n; — 1) 3)

3

where aj is the boson creation operator on site %,n; is the number operator on site . Here J is the hopping, U > 0 is the Hubbard
repulsion and v(i) = V cos(27wai + ) is the Aubry Andre potential with o = (/5 — 1)/2 and # a random phase with uniform
distribution. The effect of interactions is incorporated through the retarded and Keldysh self energies, ¥ and X g-. The physical
meaning of the self energies become apparent from the classical saddle point equation of motion for the boson fields

(10, — v(D))é(t) + Jhrin (t) — / A it 4, 8)0; () = mi(t) 4)

where the random noise 7 has correlators (n;(¢)n;(t')) = i¥k(i,t; j,t'). The real and imaginary part of £ correspond to the
modification of the Hamiltonian and dissipation in the system.

We note that we have ignored the effects of initial connected correlations in writing a self energy. We work with number
conserving approximations by constructing skeleton expansions for the self energies. The self energies are then functions of the
interacting Green’s functions, i.e. one has to solve the integral equations Eq. 9 of the main text selfconsistently, with > = X(G).

We keep all skeleton diagrams upto second order in U in our calculation. See Fig. 5 for the details of the diagrams. The self
energies are then given by

ER(i7 t; j7 t/) = 261]5(t - t/)(ZU)GK(Zv t; ia t) - 2U2[2GK(Za t7j7 t/)GK(]7 tla i? t)GR(Z7 ta j7 t/) +
GK(Zy t7j7 t/)GA(j7 t/7 iv t)GK(Za t7ja t/) + GR(i7 ta j7 t/)GA(ja t/a 7:’ t)GR(Za t)ja t/)]
EK(Z7 t7j7 t/) = _2U2[2GK(Z7 t7ja t/)GA(j> t/7 i? t)GR(Zv taj? t/) +
G (Gt i, )Gt 4, ) GRist, 4, 1) + G (3,6, ) G i (i, 1, 5, 1) Gre (65, , 1)) ®)
We note that the approximation is non-perturbative in U, since the Green’s functions used in the diagrams are the full interacting
Gs. The first order diagram leads to the self-consistent Hartree approximation. At this order, ¥ = 0 and Xy is real. Thus
there is no dissipation or noise in the dynamics of the system, the dynamics is controlled by time dependent dephasing. The

second order sunrise diagrams lead to both dissipation and noise, so that there is a possibility of thermalization in the system.
We numerically solve this large number of integral equations, maintaining an error of < 0.5% in the number conservation.
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FIG. 5. The Feynman diagrams used to evaluate self energies in the Bose Hubbard model with the Aubry Andre potential. The Green’s
functions are all interacting Green’s functions, so that a conserving approximation is obtained. The self energies contain skeleton diagrams
upto second order in U.
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