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The concept of geometrical frustration has led to rich insights into condensed matter physics, especially as
a mechansim to produce exotic low energy states of matter. Here we show that frustration provides a natu-
ral vehicle to generate models exhibiting anomalous thermalization of various types within high energy states.
We consider three classes of non-integrable frustrated spin models: (I) systems with local conserved quanti-
ties where the number of symmetry sectors grows exponentially with the system size but more slowly than the
Hilbert space dimension, (II) systems with exact eigenstates that are singlet coverings, and (III) flat band systems
hosting magnon crystals. We argue that several 1D and 2D models from class (I) exhibit disorder-free local-
ization in high energy states so that information propagation is dynamically inhibited on length scales greater
than a few lattice spacings. We further show that models of class (II) and (III) exhibit quantum many-body scars
— eigenstates of non-integrable Hamiltonians with finite energy density and anomalously low entanglement
entropy. Our results demonstrate that magnetic frustration supplies a means to systematically construct classes
of non-integrable models exhibiting anomalous thermalization in mid-spectrum states.

I. INTRODUCTION

There is strong evidence that most eigenstates of non-
integrable many-body Hamiltonians, if sufficiently far from
the spectral edges, are “thermal” in the sense that expectation
values of local observables on such eigenstates match well
to the predictions of statistical mechanics [1]. This observa-
tion is formalized in the Eigenstate Thermalization Hypothe-
sis (ETH) [146], and is tied to the success of random matrix
theory in describing some properties of the many-body spec-
trum, such as level repulsion. The complete breakdown of
thermalization occurs only in extreme instances. One widely
known example of anomalous thermalization is in integrable
quantum systems where there is no level repulsion between
eigenvalues and the long time averages of local observables
approach a distribution that is tethered to the presence of an
extensive number of conserved quantities [7]. Another well-
known example is the many-body localized (MBL) phase in
interacting disordered systems in which high energy states
have area law entanglement and in which an extensive number
of local integrals of the motion are emergent [8]]. In both the
MBL phase and in integrable systems, the majority of eigen-
states depart very much from random states compared to those
of generic non-integrable models.

In this paper, we discuss two other types of anomalous ther-
malization: disorder-free localization and many-body quan-
tum scars. Exploiting insights from the field of frustrated
quantum magnetism, we show how to design classes of many-
body systems that display physics of one of these types.

Disorder-free localization is a variant of many-body local-
ization in translationally invariant systems [9-26]]. In this phe-
nomenon, information propagation is inhibited by the emer-
gence of a localization length. In some cases the localization
originates from the single-particle eigenstates being localized,
e.g. due to a Stark field [23}124]] or due to a flat band [25} 26].
More intricate mechanisms have also been uncovered, for ex-
ample, Ref. 9] introduces a spin chain coupled to complex

fermions with an extensive number of conserved quantities
that maps to free fermions in a disorder potential generated
by the different configurations of the symmetry sectors so that
each sector is Anderson localized. (In discussing disorder-free
localization, we are interested in situations where typical ini-
tial states show signatures of localization, in contrast to the
freezing of particular initial states such as single-domain-wall
states [[27H29], which can result from spectral degeneracies.)

In the case of many-body quantum scars, an otherwise ap-
parently unexceptional spectrum of eigenstates is peppered
with highly athermal states. Such states were found to oc-
cur in the PXP chain, a kinetically constrained model of spins
one-half [30H33]]. The PXP model is well-realized experimen-
tally with Rydberg atoms [34]. These athermal eigenstates
are called many-body quantum scars after their non-ergodic
counterparts in single particle semi-classical chaos that trace
out periodic trajectories in phase space but are perturbatively
connected to chaotic states [35]. Many-body quantum scars
are characterized by their anomalously low entanglement and
through local observables that strongly depart from random
matrix predictions. The dynamics of states prepared with sig-
nificant overlap with scar eigenstates is also anomalous, in-
volving large amplitude oscillations in the entanglement en-
tropy and in local correlation functions [30 31} 36]. The rea-
son for this non-thermalizing dynamics is that, for such initial
states, the evolution can be thought of as taking place pre-
dominantly within the subspace spanned by the scar states. In
addition to the PXP chain [30, 31}, 36H46], a number of other
systems have been found to exhibit quantum many-body scar
states, including the AKLT chain [41} 47H50]], the 1D trans-
verse field Ising model with longitudinal field [51} 52], quan-
tum Hall systems in the thin torus limit [42}|53]], the fermionic
Hubbard model [54-57], the spin-1 XY model [49} 158 59],
periodically driven matter [[60-635]], topologically ordered sys-
tems including fracton models [41} 162, 166, 67], 2D Rydberg
lattices [68) [69], among other examples [16} 150} 58} [70-78]].

Geometrical frustration is well-known to lead to many in-



teresting and exotic phenomena, including flat bands, quan-
tum and classical spin liquids and fractionalization [79-
82]. In this paper, we describe how geometrical frustration
supplies a mechanism to construct models with anomalous
thermalization including both disorder-free localization and
many-body scar states. These spin models, as explained in
Section[[l] have antiferromagnetic couplings on lattices of tri-
angular units, which serve as the basic units underlying frus-
trated magnetism. We introduce three classes of models: (I)
non-integrable models with local conservation laws, (II) mod-
els with protected singlet coverings that can be tuned through
the spectrum, and (III) flat band models hosting localized
magnon states and magnon crystals.

Models from class (I) are intermediate between non-
integrable models that typically have O(1) conservation laws
and integrable models in which the number of conserved
quantities equals the number of local degrees of freedom so
that all states are specified by a quantum number associated
to the conserved quantities. Class (II) contains, among other
examples, the Shastry-Sutherland model [83H88]], which is a
foundational model of frustrated magnetism and is realized
to a good approximation in SrCu,(BO3),. Some other models
discussed in this paper are also realized in magnetic materials.

In Section we discuss the thermalization properties of
typical eigenstates in models from class (I), and demonstrate
disorder-free localization emerging in one of these models.
Then, in Section we give various examples of models in
1D and 2D exhibiting many-body scar states from class (II)
and in Section[V]an example of a model from class (III). The
mechanism that gives low-entanglement scar states for class
(IT) also gives the exact ground state of the Shastry-Sutherland
model for a range of parameter values. The scars presented
for these models can be tuned parametrically relative to the
many-body spectrum. All the quantum scars we present are
“true” scars in the sense that they are not distinguished by
symmetry compared to the surrounding eigenstates, i.e., they
are not the extreme eigenvalues (or isolated eigenvalues) in
separate symmetry sectors [89].

Section [VI] provides a summary and some context.

II. MODELS AND MECHANISM

We now introduce the mechanism that we exploit to write
down models exhibiting anomalous mid-spectrum states. This
mechanism is based on the simplest frustrated unit — three
spins coupled by antiferromagnetic Heisenberg exchange. We
will then discuss separately three separate classes of magnetic
systems combining such frustrated units.

Consider the Heisenberg model with antiferromagnetic
couplings on a triangle of spins one-half with one distin-
guished bond. The Hamiltonian is

HA:J51 'S2+.,/S1'S3+J’S2'S3 (21)

with J,J” > 0. We refer to the (S1,S,) bond as the distin-
guished bond, the J bond, or the dimer. For this geometrically
frustrated triangular unit, the total spin (S + S)* is a con-
served quantity. It follows that the singlet state on the distin-
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guished bond, |0) = \er(nl) —|{T)), is protected — eigenstates
will have well-defined total spin on the distinguished bond. In
a loose sense, this feature arises from destructive interference
on the two identical J’ bonds and so it is destroyed if those
bonds are made inequivalent.

To analyze further the spectrum of the triangular plaquette,
we introduce projectors Ps—o(S;,S;) and Pg-(S;, S ), the total
spin 0 and 1 projectors for pairs of spins (i and j). We also
introduce

Pyosa($1,5,50 = 5 (S +8,+8:) — 7.
the projector onto the total spin 3/2 sector of three spins. Then
the Hamiltonian can be rewritten as

3J
4

3,
Hp = EJ Ps_3/2(81,82,83) -

3 1
+(J=J) (_ZPS—O(SI’SZ) + ZPS—I(SI’SZ))- (2.2)

The projectors mutually commute. So, for typical couplings,
the spectrum splits up into total spin 3/2 and 1/2 sectors,
as well as singlet and triplet sectors on the distinguished (J)
bond. This means that there is a four-fold degenerate spin 3/2
level. These four states each has a triplet on the J bond. There
are also two doublets corresponding to total spin 1/2. The
J bond is a singlet in one of these degenerate pairs and is a
triplet in the other pair. At the fully frustrated point J = J’,
the last term in Eq. (2.2)) vanishes, so the two doublets merge
— there is a level crossing at J'/J = 1. The singlet is the
ground state for J'/J < 1.

While we focus in this work on spin-1/2 systems, the exis-
tence of a conserved total spin on the distinguished bond gen-
eralizes to any spin, S : the singlet state of two spins S on the J
bond is an exact eigenstate with energy —JS (S +1). Diagonal-
ization of the spin S Hamiltonian reveals that new protected
states (with J’-independent energy) can arise for S > 3/2.

The triangular plaquette with Heisenberg exchange and one
distinguished J bond provides the basic unit to create lattice
models with disorder-free localization and many-body scars.
We distinguish three different cases.

Class (I): In general, Pgs-3/, operators on adjacent triangu-
lar units do not commute with one another. However, there
are various ways to combine the triangles such that the total
spin conservation on J bonds is preserved. For example, this is
achieved by connecting triangular units back-to-back and then
connecting these four spin structures via the dangling spins.
Examples include the diamond chain in Fig. [T(b) and the or-
thogonal dimer chain in Fig.[T(d) [90H92]. These models have
spin conservation on the vertical bonds. So does the fully frus-
trated ladder in Figs.[T(a) and the bilayer in Fig.[T[e)). Ref.[03
argues that the latter model with XXZ couplings is realized
in a particular material to a good approximation. In this class
of lattices, the frustration mechanism is responsible for an ex-
tensive number of conservation laws that is, however, smaller
than the number of degrees of freedom. For example, in the
orthogonal dimer chain there is one conserved quantity per
unit cell of four spins. Such models are intermediate between



integrable models — in which the number of local conserved
quantities equals the number of degrees of freedom — and
generic non-integrable systems — which have O(1) conserved
quantities. We will address the question of whether typical
states in class (I) models thermalize.

It is also possible to generalize the frustration mechanism
that generates local conservation laws (class (I)) from dimers
to trimers, quadrumers and so on. For example, a Heisenberg
coupled triangle with all exchange couplings equal to J has a
singlet eigenstate when each spin is an integer. If we couple
this triangle to one other spin through J’ exchange, the singlet
remains an exact eigenstate and one can build chains of such
units such as the pyrochlore chain Fig. [T{c) which belongs to
class (I). To generalize this to more spatially extended singlets
[94], we simply require that the polygonal unit admits a sin-
glet state. Thus, if the polygon has an odd number of vertices
the individual spins have to be integer-valued; there is no such
constraint for even numbers of vertices.

Class (II): If we relax the constraint that the total spin on
each J bond be conserved, we can nevertheless devise lattices
that retain the J bond singlet covering as an exact eigenstate.
To see how this can be done we take the example of the saw-
tooth chain [95} 96], shown in Fig. g), with Hamiltonian

Hgr = Z (JSi1-Sin+J'Sit S +J'Siz - Siv11). (2.3)

We write this in terms of projectors as indicated in Eq. 2.2]
and note that a state that satisfies Pg-3/2(S;1,Si2,Si+1,1) = 0
and Pg-i(S;1,Si2) = 0 is an exact eigenstate with energy
—3J'Np/4, where N, is the number of triangles. These condi-
tions constrain each triangle to have total spin § = 1/2 while
the J bonds have S = 0. The product state with singlets on the
J bonds has these properties and is the unique state that does.
These are many-body quantum scars because dimer coverings
are highly atypical states (often with area law entanglement
entropy) that can be embedded within the many-body spec-
trum of a translationally invariant model with no local conser-
vation laws.

This reasoning is reminiscent of the embedding argument
of Shiraishi and Mori [[73]] that gives a systematic way to place
athermal states into the spectrum of a many-body Hamilto-
nian. We briefly review this result. We introduce a set of
local projection operators P, that need not commute. The
scar states are those that are annihilated by all the projectors
P,|¥) = 0. There is a class of Hamiltonians with such states
as eigenstates:

H:ZFﬁJMHF (2.4)

where [H’, P,] = 0 and A, is an arbitrary local operator. There
are many-body scars in the concrete sense described above
because

P H|Y) = P H'|¥) = H' P,|¥) = 0.

The example of the sawtooth chain (Fig.[T|g)) is a special case
of this kind of mechanism where the Hamiltonian is merely a

sum of projectors with the remarkable feature that the condi-
tions P,|¥) = 0 are solved by a dimer covering.

It is evident from the foregoing that the dimer covering
eigenstate appears in certain lattices composed of triangular
units. There is a large class of such lattices. Apart from the
sawtooth lattice, we show that the Shastry-Sutherland lattice
(Fig.[I[f)) and the maple leaf lattice (Fig.[7](left)) exhibit sim-
ilar physics.

In addition to J-J’ Heisenberg models we consider the
counterpart XXZ models by including the perturbation

+755,8%,,). @5

i+1,1

Hy= ) (JSE,85,+ 858

This perturbation commutes with the projection operators and
is therefore equivalent to switching on H’ in Eq. The
physics we have presented above is thus preserved. When
using an XXZ anisotropy, the total spin is no longer a con-
served quantum number. Hence for nonzero A, the spectrum
is not separated into sectors corresponding to different values
of the total spin. This is convenient, e.g., when calculating
level statistics.

Class (IIT): A third class of interesting frustrated models
deriving from the Hy model on a triangular plaquette is the
famous class of models with a flat band of one-magnon states
leading to localized multi-magnon states. For a recent re-
view see Ref. [82]]. An example with localized magnons is
the Heisenberg J-J’-J”” model on a sawtooth chain (Fig. [T}1))
that differs from the case discussed above with J bonds on
the left or right jagged edges of the chain [97, 98]. Sup-
pose J = J” = 2 and J’ = 1 starting from the product state
| T ... 7). Now apply operator X7 = (S, =257 + 5, to
state | T;—1T:Ti+1) Where i is a site at the base of one of the
“valleys" on the sawtooth chain. This is a single localized
magnon state. It turns out that this model has a pair of exact
many-body eigenstates formed by applying X to every even,
or odd, valley along the chain. This lives within the sector
with half of the saturation magnetization. This model has the
undesirable feature that the exact localized magnon state is
highly fine-tuned — a small change of the J’/J coupling de-
stroys the magnon localization whereas in classes (I) and (II)
the protected states are robust to changes in the ratio J'/J.
Moreover, the localized magnon states live in the ground state
of a given symmetry sector. However, there are models where
the magnon crystal states are robust to changes in the cou-
plings with three examples given in Fig.[I} the square kagome
lattice, a variant of the sawtooth model just described, and the
bowtie chain. Later in this paper (Section [V)), we study the
square kagome example in some detail showing that multiple
scar states arise in this model that can be tuned through the
spectrum and separated in energy.

III. THERMALIZATION DYNAMICS IN FRUSTRATED
MODELS WITH LOCAL CONSERVATION LAWS

In this section, we consider models from class (I) focussing
on two examples: the orthogonal dimer chain (Fig. [T[d)) and
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FIG. 1. Collection of lattices exhibiting athermal states in short-ranged interacting Heisenberg models with J couplings marked in thick blue
and J’ on the remaining bonds. Class (I): models on lattices (a)-(e) have an extensive number of local integrals of the motion. (a) Fully-
frustrated ladder, (b) diamond chain, (c) pyrochlore chain, (d) orthogonal dimer chain, (e) fully-frustrated bilayer. Class (II) with protected
singlet states: (f) Shastry-Sutherland lattice, (g) sawtooth chain with J bond on teeth. Class (III) with localized magnon states: (h) square
kagome lattice (i) sawtooth chain with J” bonds on the spine (dotted), J bonds on every second valley which support the localized magnons
(thick blue line) and J”=2J" on odd valleys (black solid line) and (j) the bowtie chain.

the fully frustrated ladder (Fig. [T(a)). We show that the dis-
tribution of the entanglement of mid-spectrum eigenstates has
a large variance in contrast to usual non-integrable models.
Also, both models violate the usual ETH scaling of eigenstate
matrix element distributions. These results show that mid-
spectrum states of the models are highly unusual although
both are non-integrable. We go further and argue that, in fact,
these models exhibit a variant of many-body localization al-
beit in the absence of quenched disorder. We explain that
the local conserved quantities fragment the eigenstates in real
space leading to a localization length of the order of a few lat-
tice spacings and demonstrate that the dynamics of the fully
frustrated ladder is consistent with the picture of disorder-free
localization. At the end of the section, we provide concrete ex-
amples of two-dimensional translationally invariant spin mod-
els that, through a mapping to a percolation picture, can be
argued to exhibit similar phenomena.

As a concrete example of a model from class (I), we con-
sider the orthogonal dimer chain [90-92] shown in Fig. |Ikd).
In common with other models in this class, this model has
total spin conserved on each bond with J exchange. The
chain has four sites per unit cell and hence, for spin one-half,
24C = 16C states where C is the number of unit cells. The
number of symmetry sectors also grows exponentially in the
system size but with a smaller exponent: as 2. This model is
distinct from integrable models in which the number of sym-

metry sectors equals the number of states. For example, in
free fermion models each state belongs to a unique quasi-
particle number sector while, for the Heisenberg chain, each
state has a unique set of Bethe quantum numbers. The or-
thogonal dimer chain model is also distinct from typical non-
integrable models in which the number of conservation law is
constant and of order one. A second example of this type
of model is the fully frustrated ladder (Fig. Eka)) [[99H101]]
which has two sublattices per unit cell and hence 4€ states
and 2¢ symmetry sectors. In all such examples, the size of
the subspace within a typical sector grows exponentially with
the system size. An obvious question is the extent to which
the thermalization properties of this class of models emulates
that of well-known integrable and non-integrable models. To
start addressing this question, we consider the entanglement
of the eigenstates, measured using the von Neumann entropy
Sy~ = —Tr pa logpa, where pp is the reduced density matrix
for subsystem A. The entanglement entropy for a cut through
J’ bonds on a 16 site fully frustrated ladder with blocks of 8
spins on each subsystem is shown in Fig. Z(a). Of the 12870
states, there is a single one with zero entanglement on this
cut. However, the more striking observation is that there is a
very large number of low entanglement states similar to anal-
ogous results for integrable models [102H105]] and the entan-
glement generally falls significantly below that expected for
completely random states (Fig. [Z[c)). The entanglement for
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FIG. 2. Entanglement of eigenstates within total S* = 0 sector, for
two members of class (I). (a) Fully frustrated ladder, J = 1, J' = 2,
A=0.5, N = 16; an 8, 8 site bipartition. (b) Orthogonal dimer chain,
J=J =1,N = 16; a 9,7 bipartition. The average entanglement
of a random state with same Hilbert space size and same biparti-
tions is shown in each case as a horizontal line. Both plots show an
anomalously broad distribution due to a large number of a conserved
quantities. (c,d) are for the fully frustrated ladder. (c) Ratio of the
average entanglement in the middle of the spectrum to the maximal
entanglement as a function of the subsystem size N4. Blue lines:
envelope of maximal entanglement. (d) Scaling of the width o of
the distribution of off-diagonal matrix elements of a local operator,
consistent with a power law o ~ N™* and @ =~ 3.7.

the orthogonal dimer chain is similar and shown in Fig. [2{b).
We now investigate whether the eigenstate thermalization
hypothesis is obeyed by the eigenstates of models within class
(. A natural expectation would be that thermalization takes
place as for non-integrable models within each exponentially
large symmetry sector. To add weight to this hypothesis, let
us consider the fully frustrated ladder within the sector with
all dimer bonds in the total S = 1 sector. In this sector,
the dimer bonds maps to composite spins one and the cou-
pling between them is simply a Heisenberg coupling because
(Siq1 + Si2) - (Sis1a1 + Sit12) is just the set of J' couplings
between rungs of the fully frustrated ladder. Thus, the “all
triplets” sector is effectively a Heisenberg-coupled spin one
chain (spin one Haldane chain), which is not integrable and
hence is expected to obey ETH. Thus we have one example of
an exponentially large sector that obeys ETH, in a model with
an exponentially large number of symmetry sectors. We can
imagine preparing a state in a random state within the sector
with all rungs having § = 1 and with some energy density
— we should find that observables at long times can be de-
scribed by a statistical ensemble average of eigenstates within
this sector at some fixed temperature set by the initial energy

density.

The sector with § = 1 on all rungs has exponentially small
weight in the whole Hilbert space. We must consider all other
sectors if we are to understand the gross thermalization prop-
erties of the model. The composite spin picture described
above sheds light on all the remaining sectors. Each sector has
well-defined S = 0 or § = 1 on each rung of the ladder. We
know that consecutive S = 1 rungs map to Haldane chains.
The presence of S = 0 rungs has the effect of completely de-
coupling neighboring Haldane chain fragments. It follows that
a state prepared in a given sector cannot completely thermal-
ize because entanglement cannot spread beyond S = O rungs.
In other words, there is dynamical localization in each sector.

Since we are interested in the thermalization of typical
states it is necessary to address how the amplitude in such
a state is distributed among the configurations with different
chain lengths. The distribution of chain lengths must be cal-
culated by weighting the configurations by the dimension of
their Hilbert space. This distribution P({) is equivalent to that
of the distribution of success run lengths, ¢, in Bernoulli tri-
als with a weighted coin producing heads with probability
p = 3/4 and tails with probability ¢ = 1/4. The distribu-
tion of / consecutive S = 1 rungs is evidently p’ = exp(—af)
with a = 0.28 so short fragments are overwhelmingly impor-
tant among the set of all symmetry sectors. Indeed, the mean
S =1 chain length is about 4. We conclude that typical states
— those that can be decomposed into a linear combination of
symmetry sectors of roughly equal weight — must be local-
ized apart from the exponentially small tail that lives in the
sector with all rungs S = 1. This is an example of so-called
disorder-free localization as the model is translationally in-
variant. Similarly to the case of MBL high energy states in
the spectrum are dynamically localized. However, unlike the
MBL phase, the fully frustrated ladder is fine-tuned and the
anomalous thermalization properties we have described can-
not survive sufficiently large generic perturbations. This lo-
calization mechanism bears some resemblance to the Hilbert
space fragmentation picture of several recent works [16H18]
albeit in a rather different setting.

We now turn to the question of whether signs of this physics
can be observed numerically. We focus now on the fully frus-
trated ladder, because it has only 2 sites per unit cell and so
we are able to study a wider range of system sizes than in the
other models described above. We first address whether eigen-
states of the model obey ETH, meaning that we consider some
local operator O and compute its eigenstate matrix elements.
If ETH is satisfied, as is generally the case in non-integrable
models, then 106} [107]

(EAIOIEg) = 64pfS (E) + e S P2 FO(E, w)Rag (3.1)

where S ~ log D is the entropy and D is the Hilbert space di-
mension, |E4) is an energy eigenstate with eigen-energy Ej,
E = (Es+Ep)/2,and w = Ez—E,4. The fg/z) are smooth func-
tions, and Ry is a (pseudo) random variable with zero mean
and unit variance. A crucial aspect of ETH is the scaling of
the width of the distribution of either diagonal or off-diagonal
matrix elements: the width falls off as e 5®/2 ~ D712 je.,
exponentially with system size. This scaling is based on the



similarity between typical many-body eigenstates and ran-
dom states [108H110]. This behavior contrasts sharply with
integrable systems, which do not obey ETH scaling — the
width of diagonal matrix element distributions generally have
power law decay with system size [109] [111H114], and the
off-diagonal matrix element generally has a non-gaussian dis-
tribution [[105, 110, [114]. In the latter studies, one follows the
spirit of corresponding investigations of non-integrable mod-
els by splitting the spectrum into global symmetry sectors in-
stead of the local sectors characteristic of integrable systems.
In this way, one finds large qualitative departures from stan-
dard ETH scaling. The question we address here is whether
the same is true also for an instance of a class (I) model.

The local operator we consider is %(S;’S]T +8757) where
i and j are taken to be sites on neighboring rungs 011Z the lad-
der. The exchange is taken to be J = 1, J' = 2 and we break
translational invariance by setting the exchange on bonds be-
tween two rungs to have J = J’. We have computed the dis-
tribution of off-diagonal matrix elements for different system
sizes. The distribution is highly peaked at zero with long tails.
The width of the distribution narrows for larger system sizes
consistent with power law scaling (Fig.[2(d)) in contrast to the
exponential scaling expected for typical non-integrable mod-
els. The violation of ETH scaling by the fully frustrated ladder
is consistent with the expectation of localization within mid-
spectrum eigenstates.

We now present features of the exact quantum dynamics for
a periodic chain of N = 20, or ten rungs, prepared in differ-
ent initial states. The results are shown in Fig. [3] The dif-
ferent columns correspond to different initial states. The four
panels in the top row show the return probability or fidelity,
F@) = |(zﬁ(0)|w(t))|2, where (%) is the state of the system at
time 7. In order to study the spreading of correlations, we
also present the absolute value of the connected correlation
function (S5(1S3,, (D) = KST(NST,, () = (STONST, ()
(bottom row). The subscript here is the rung index: this quan-
tity measures correlations between a site of the rung labelled
1 and a site on the rung 1 + k. In each case, the site on the
same leg of the rung is used. We use J = 1 (so that time is
measured in units of J~') and J’ = 1.1. For these parameters,
the all-singlet state is not the ground state.

As discussed above, when all the rungs are in the local S =
1 sector, there is a mapping to the Haldane chain which is non-
integrable and should behave like a generic random matrix
model in the middle of the spectrum. Column (a) of Fig.[3]
shows results for the initial state with all rungs in the total
S = 0 triplet state [To) = (1/V2)(| T1) + | L1)). In this
case, the fidelity drops rapidly from F(0) = 1 with time on
a timescale set by the exchange and fluctuates close to zero
as expected for a thermalizing system that should retain little
memory of its initial state. The correlator in the bottom row
shows rapid spreading of correlations on a well-defined light
cone centered on site 1 and emanating in both directions on
the periodic chain so that both paths of the light cone meet at
site k = 5 on a timescale of the order of the exchange. Some
oscillations are visible in the correlation function at later times
which are presumably a finite size effect. Similar behavior is
observed for a second initial state in the sector with all rungs

having S = 1. In panel (b) we take the state with alternating
rungs in the S = 1 and §° = —1 states, denoted as |T+) = | TT)
and |T_) = | |]). Once again, the fidelity falls rapidly and
correlations spread on a light cone — in this case to a largely
featureless time-independent state at longer times. We have
confirmed that the amplitude of the fidelity fluctuations decays
with increasing system size for cases presented in (a) and (b)
(as can also be seen by comparing with the fidelity in column
(c) as explained below).

Column (c) is for the initial state ToToToToS ToToToToS
where S denotes a rung in the singlet state. According to our
proposed scenario, the presence of the two rungs in singlet
states effectively splits the chain into a pair of fragments each
composed of four triplet rungs that themselves have nontrivial
dynamics. The blocking of the spread of information by the
singlet rungs is clearly shown in the lower panel — correla-
tions with rung 1 are nonvanishing only with rungs atk = 1, 2
and 3. The fidelity drop and large amplitude fluctuations are
as expected for a chain of an effective length of four rungs.

As a final example, we consider a state that lives in a linear
combination of different singlet and triplet sectors, as one ex-
pects for a generic state. Specifically we take the initial state
to be a product state, with each rung in the state | T/). In
other words, the initial state has S° = 0 on each rung with
equal weight in the singlet and triplet sectors so that many-
body eigenstate has contributions in all possible singlet and
triplet sectors. Our expectation based on the foregoing is that
the small weight in the sector with all rungs in triplet states
will be subject to thermalizing dynamics (as in cases (a) and
(b)). The rest of the state will undergo some degree of dy-
namical localization because of the presence of amplitude in
mixed triplet-singlet sectors. The results are shown in column
(d). Evidently the system does not straightforwardly thermal-
ize. Instead, the fidelity shows clear periodic recurrences up to
about 0.7 suggesting a lack of complete thermalization. The
correlation function does exhibit a feature similar to the light
cone of columns (a) and (b). However, in this case, the fea-
ture is much less pronounced, the longer time correlations are
much weaker than in those other cases. The expectation is that
generic states for larger systems will have exponentially small
weight in the all-triplet sector. As this is the only truly ther-
malizing part of the wavefunction, correlations will tend to be
trapped within small regions. The numerical results thus con-
firm our proposed picture, up to usual finite-size limitations.

We now address the question of whether there are two-
dimensional analogues of the physics described above.
Fig. [I[f) is a two-dimensional lattice that has J’ bonds with
the connectivity of the fully frustrated ladder. The construc-
tion, exemplified here by the square lattice, can be generalized
to a bilayer of any lattice in two-dimensions. In such cases,
there is local total spin conservation on each J bond connect-
ing the two layers. As we did for the chain, we now con-
sider the different sectors on each J bond. Within each sector
there is generally a set of conserved singlet and triplet clus-
ters on the lattice. If we imagine preparing a quantum state
within a given sector, one would find information propagation
within each connected triplet cluster and that further propaga-
tion would be blocked by singlet J bonds at the boundaries of
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each cluster. The question of whether dynamical localization
takes place maps to a percolation problem. Taking the whole
Hilbert space of states, the probability that a J bond is “occu-
pied" by a triplet is 3/4 while singlet J bonds are effectively
absent. If the site percolation threshold p* is less than 3/4,
typical clusters percolate and information can propagate to in-
finity and the system will thermalize. If instead p* > 3/4, dy-
namically connected clusters have a characteristic length scale
that is an effective localization length.

Having argued that the problem of frustration-induced lo-
calization in 2D is reduced to a search for lattices with p* >
3/4, we first note that this condition is not satisfied by most
lattices. For example, the square lattice bilayer of Fig. [T[f)
has p* = 0.5927 [115]. However, there are lattices with
low connectivity and large loops that do satisfy the condi-
tion. Examples include the so-called star lattice [116, [117]
with p* = 0.807904 [95] (Fig. Eka)) and the martini lattice
[118] with p* = 0.764826 [119] (Fig. #(b)). The dynamics
of typical states on such lattices is strictly speaking athermal
though the associated length scale may be large and for prac-
tical purposes local observables may be close to their thermal
values. The unit cell of the fully frustrated bilayer martini lat-
tice has 8 sites while the fully frustrated bilayer star lattice
unit cell has 24. So, it would be challenging to numerically
access the physics we have argued to exist in these models.

IV. EXAMPLES OF MANY-BODY QUANTUM SCARS:
CLASS (II)

A. Sawtooth Chain

Our first example of a model with a many-body scar is the
sawtooth chain [95] [96]], which we have introduced in detail
in Section [, We demonstrated that the singlet dimer covering
on the J bonds is an exact eigenstate of fixed energy that can
be tuned so that it is arbitrarily located in the spectrum relative
to the ground state, e.g., its neighbouring states can be made
to have high effective temperature. Fig.[5{a) shows the distri-
bution of consecutive level spacings normalized to the mean
of the distribution, P(s). The approximate prediction for this
quantity for random matrices of the gaussian orthogonal en-
semble (GOE) is

big T o,
P(s) = 2sexp( 4s )
The figure shows that this prediction is compatible with the
N = 16 total S* = 0 sector for the XXZ model J =3, J =1
and 4 = —0.5. The spectra were computed using periodic
boundary conditions and were separated into momentum sec-
tors. Using XXZ couplings (1 # 0) ensures that the total
spin is not a good quantum number, so that there are no to-
tal spin symmetry sectors needing to be separated. The result



(a) Star Lattice

(b) Martini Lattice

FIG. 4. Panels showing view in projection of lattices argued to be-
long to class of Heisenberg models with disorder-free localization.
The full model is a bilayer of each of the above lattices with “fully
frustrated" couplings between the two layers meaning that J couples
the layers site-for-site and J’ couples nearest neighbors within each
layer and between layers. The “fully frustrated" square lattice bilayer
is shown in Fig. [T] for reference.

of Fig.[5fa) is expected in this model which has no local con-
served quantities, in contrast to integrable models which show
Poissonian level spacing statistics.

The entanglement entropy between two half-systems (8
connected sites each) for the XXZ model as a function of en-
ergy is shown in Fig. [5{b). The couplings used are such that
the eigenstate with singlet coverings lies in the middle of the
spectrum. We have highlighted this scar state in the Figure by
circling the data point. The scar state has zero entanglement
because the entanglement partitioning border cuts through J’
bonds. Other than the single scar state, the entanglement is
typical of non-integrable systems with no conserved quanti-
ties: the points form an “arch” with the entanglements in the
middle of the spectrum being close to that of a random state
of the same size, and with low (area law) entanglement at the
spectral edges.

We have examined the effect of perturbations away from the
sawtooth XXZ model on a periodic N = 16 chain. Fig.[5|c)
shows the scar entanglement for two types of perturbation:
one where the two J’ bonds become J’ + n and J' —  and
the other where a new Heisenberg exchange with coupling
J), is included between corner vertices on neighboring trian-
gles. The effect of the latter type of coupling is more dramatic

0.8 ad

0.6

0.2

(0]

|
ol
o
o

= 0.100

S,
[
Weight of State A
Sy
2
=)

0.001

0.0
0.000 0.002 0.004 0.006 0.008 0.010

(© W
1.0
2.0 N/ XA AN
08 z \V4
515
206 o
3 £ 1.0
T 04 Lo
/ 3
0o 205
0.0 w 00
0 0 10 20 30 40
(e) (f) Time

FIG. 5. Aspects of the sawtooth chain. (a) Level spacing statistics
for N =20,J =3,J" =1, 4 = —-0.5, compared with predictions
for GOE (red) and Poisson (green). (b) Entanglement entropies in
all eigenstates, for J = 1, J' = 1.5, 4 = 0.5, and N = 16. Scar
state is highlighted with a circle. The horizontal line at 4.949 is the
random state entanglement for the (8, 8) bipartition. (c) Effect of per-
turbations on the entanglement of the scar state: J = 1.5, J* = 1.0,
A =0.5and J, (squares), i (triangles). Dynamical signatures of scar
states for an N = 12 chain: (d-f) J’/J = 0.05 (blue), J'/J = 0.5
(black), J'/J = 1.5 (red), J'/J = 4.5 (green). (d) Square of overlaps
between the initial state (“state A”) and different eigenstates, plotted
against eigen-energies. (e) The fidelity and (f) the block entangle-
ment as functions of time.

with the entanglement rising to about 40% of the random-state
value for J,/J = 0.07.

The PXP model has several scar states [30] and it is possi-
ble to observe their presence through dynamical observables
by preparing an initial state with significant overlap with the
scar states. One finds that the dynamics exhibits Rabi oscil-
lations reflecting unitary evolution within the scar subspace
even though this subspace is distributed in energy across the
many-body spectrum. In contrast, the sawtooth chain with pe-
riodic boundary conditions has a single scar state. Even so,
we ask whether this state might have observable dynamical
features. To this end, we prepare a state |¥y) in the dimer
state except for a single bond that is excited into a product



state [01) with weight in the singlet and triplet sectors. This is
referred to “state A” in Fig.[5] The overlap of this state with
all eigenstates is shown in Fig. [5] (d) for different couplings
J'/J (in the Heisenberg model 4 = 0). For small coupling,
J'/J = 0.05, close to the decoupled dimer limit, the overlap is
concentrated in the dimer state and its low-lying excited states.
As the coupling increases, the overlap distribution broadens
across the whole spectrum with the most dramatic broadening
taking place at the threshold (J'/J). = 0.5 where the exact
singlet covering ceases to be the ground state. Turning now
to the dynamics, we find that the fidelity [(Wo|P()) exhibits
strong oscillations for J'/J = 0.05, close to the decoupled
dimer limit (Fig. [5(e)) that persist out to times at least of or-
der one thousand times the period of oscillation. This degree
of coherence is to be expected as the initial state is predom-
inantly a mixture of the ground state and low-lying excited
states. As the coupling increases beyond the critical coupling
(J'/J). the oscillations are progressively damped reaching a
plateau in times of order 1 when J’/J > 1. The fidelity in the
plateau is the (non-vanishing) weight of the scar state admixed
into the initial state. This result is therefore the analogue of the
coherent oscillations seen in the PXP model but in the limit
where the number of scar states goes to one. These results are
mirrored by the time dependence of the entanglement which
remains small for long times for J'/J = 0.05 and J'/J = 0.5
because the dimer covering has low energies and the overlap
distribution is narrow in energy (Fig. [5 (f)). For larger cou-
plings, the entanglement quickly reaches a plateau close to the
random-state value as most of the weight of the initial state ap-
proaches a random state. In summary, we have selected a sim-
ple and natural initial state |'¥(0)) = a|Singlet covering) + . ..
that has significant weight ||> with the scar state. The dy-
namics of this state is consistent with the thermalization of
the state apart from the residual part coming from the scar
|Singlet covering).

Open boundary: A look at the chain with open boundary
conditions is illuminating. As before, we consider a sawtooth
chain with N sites with entanglement computed on a biparti-
tion that cuts J’ bonds, but now the chain has open boundaries
and the bipartition divides the chain into two equal (identi-
cal) blocks. We know that one dimerized state exists in the
spectrum of the periodic chain with zero entanglement on cuts
through J’ bonds. On the open chain, many zero entanglement
states are present in the spectrum — their number depending
on the location of the cut along the chain. These states can
be rationalized as follows. In order for the state to have zero
entanglement, the state must be separable at the location of
the single cut on the open chain, say dividing the chain into
n sites on the left and N — n on the right. Closer investi-
gation reveals that the right-hand-side of the chain in these
states has a simple dimer covering imposed by the dangling J
bond at the right-hand edge. The left-hand-side is in an eigen-
state of the n-site open chain. It follows (i) that the number
of zero entanglement states on the open chain equals the to-
tal number of states on the open n site chain and (ii) that the
energy of each zero entanglement states on the open chain is

Scar _ pOBC Dimer Scar  ;
EoNS, = E° + ERTY where EN, s the energy of the zero

entanglement state on the (n, N — n) bipartition, EQBC is the

FIG. 6. Entanglement of the N = 12 sawtooth chain with open
boundary conditions and entanglement cut in the middle of the chain
(black points). The couplings are J = 1.0 and J’ = 1.2. The zero
entanglement states for this cut have energies equal to those of the
full spectrum on chain of length N = 6 (red circles) up to a constant
shift.

energy of an eigenstate on the n site open chain and E]Dvig‘fr
is the energy of the singlet covering on the N — n open chain
which is a constant. This point is illustrated in Fig. [6| which
shows the entanglement on a subsystem of six sites from an
open chain of length N = 12. The energies of the zero entan-
glement states on this cut are in one-to-one correspondence to
the full spectrum on the N = 6 open chain (also shown).

B. Maple Leaf Lattice

The maple leaf lattice is a five-coordinated two dimen-
sional edge-shared triangular lattice obtained by periodically
depleting 1/7th of the sites from the regular triangular lat-
tice (Fig. [/[a,left)) [120H122]]. The lattice has six sublattices
and three symmetry-distinct nearest neighbor Heisenberg cou-
plings. For our purposes, we set two of these couplings to be
equal. Thus we have a J-J’ Heisenberg model (Fig. [7(a,left)).
This model is known to have the singlet covering on the J
bonds as an exact eigenstate, which is the ground state for
J'/J <0.69 [123].

The level spacing statistics computed from the eigen-
energies in the middle of the spectrum for an 18 site lat-
tice are compatible with random matrix predictions and the
non-integrability of the model (Fig. [/(b,left)). For the level
spacing results, we have broken SU(2) symmetry by using an
anisotropic coupling, i.e., using the XXZ model, in order to
avoid having multiple sectors corresponding to different total
spin values.

If Fig.[7[c,left) we present the entanglement for the Heisen-
berg model (4 = 0) in the total S¢ = 0 sector. For the Heisen-
berg model, the total spin is a good quantum number. This re-
sults in separate “arches” corresponding to different total spin
sectors. Fig. [7[c,left) features the protected singlet state at
intermediate energies in the spectrum. This scar state is high-
lighted in the figure. The partition (separating the two blocks
between which the entanglement is calculated) cuts one sin-
glet bond, so the scar state entanglement is log 2. This is well
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FIG. 7. Left column: Maple leaf lattice with 18 sites. Right column:
Shastry-Sutherland lattice with either 20 sites (b) or 16 sites (a,c).
(a) J (J') bonds are dashed (full). One of the entanglement biparti-
tions is distinguished by blue shaded sites. The trapezoids demarcate
the finite-size systems used for numerical diagonalization, with peri-
odic boundary conditions. (b) Level spacing distributions, compared
with Poissonian (green) and GOE (red) predictions. Left: maple leaf
XXZ,J =3,J =1, =-0.5. Statistics from the middle 1/6th of
the spectrum in the total S = 0 sector. Right: Shastry-Sutherland,
N =20,J =3,J" =1, 4= 0. Right inset shows distribution of ra-
tios of level spacings. (c) Entanglement entropy of each eigenstate,
against eigen-energies. Scar states are highlighted. The random state
entanglement is indicated as a horizontal line in both panels. Left:
maple leaf lattice, J/ = 0.2, J” = 1. A4 = 0. Right: Shastry-Sutherland
lattice, N=16,J=1,J =1.25,2=0.

below the random-matrix value, which is close to 5.

C. Shastry-Sutherland Model

The Shastry-Sutherland model [83188]] is a J-J” model de-
fined on the four sublattice 2D lattice shown in Fig.[T[f). This
model is realized to a good approximation in SrCu,(BOs3),
with J’/J ~ 0.6 84186 [88]], and its ground state and thermo-
dynamic properties have been of intense interest in the field of
frustrated magnetism.
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When J’ = 0, the lattice decouples into isolated pairs of
J-coupled spins, and the ground state has singlets on each J
bond. The argument outlined in Section [lI] tells us that the
singlet covering remains an exact eigenstate for any value of
J’ and extensive numerical studies have shown that this state
is the ground state for J'/J < 0.7 [124]. For larger values
of J'/J, this eigenstate is no longer the ground state and is
instead a scar state.

The level spacing distribution for a 20 site lattice is shown
in Fig. [7(b,right). The spectrum has been split into symmetry
sectors and the level spacing computed for each separately for
the middle one-sixth of the spectrum and then combined into
the full distribution. The distribution is well described by that
of the GOE result consistent with the fact that the model is
non-integrable. The inset to Fig. [7(b) shows the distribution
of r values defined by [125][126]

r, = Min(s,, $p+1)

Max(s,,, sn+1)
where s, = E,;1 — E, and the eigenvalues E, are ordered.
Again the distribution is compatible with the GOE result with
mean (ry = 0.537.

Fig.[/(c.right) shows the entanglement computed for the 16
spin lattice shown in Fig. [[a,right) on a connected partition
encompassing 8 spins and in the total S* = 0 sector. The
entanglement in each eigenstate is plotted against the eigen-
energies. Other than a single scar state, the entanglements are
arranged in several arches, corresponding to different sectors
of total spin, as in the maple leaf case. The boundary between
partitions is such that it avoids cutting singlet bonds, so that
the entanglement of the scar state is zero. For an arbitrary cut,
the entanglement of the scar state would scale as the area of
the boundary, in contrast to volume law for neighboring states
in the middle of the spectrum. The isolated zero entanglement
state has fixed (J’-independent) energy and its location rela-
tive to the middle of the spectrum can be tuned so that it lies
among the mid-spectrum states in the lower (upper) half of the
spectrum for antiferromagnetic (ferromagnetic) couplings.

V. MANY-BODY QUANTUM SCARS FROM THE SQUARE
KAGOME: CLASS (III)

In Section [lI| we listed three example of models from class
(IID). In one dimension we mentioned the sawtooth chain with
distinguished bonds on alternate valleys, and the bowtie chain.
We now discuss an example of a class (III) model in two di-
mensions.

The square kagome lattice [127H131] is a two-dimensional
lattice of corner-sharing triangles with a six-site primitive cell.
Like the kagome lattice, it has coordination number four but,
whereas the kagome lattice has an underlying triangular Bra-
vais lattice and triangular and hexagonal polygonal units, the
square kagome has a square Bravais cell and triangular and
square units. The latter are crucial to the existence of scar
states in the J-J° XXZ model on this lattice where J is on the
square edges and J’ on all other bonds [127, [132]]. Evidently
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FIG. 8. (Left) Finite square kagome lattice of 30 sites used for the
exact diagonalization study. The entanglement bipartition is indi-
cated by the shading of the lattice sites. The exchange coupling J,
on the square plaquettes is shown for each square, while J* = 1.8,
A = 0.5 throughout. (Right) Entanglement entropy within the total
S% = 225 sector on the 30 site system showing three scar states with
zero entanglement entropy.

this has the same kind of frustrated triangular unit that we have
seen throughout this paper.

It is known that this model has a two-thirds magnetization
plateau that can be reached from the fully polarized high-field
limit through the condensation of a flat band of magnons.
These localized magnon states live on the square plaquettes
and exact eigenstates for such states starting from the fully
magnetized state |11...1) are obtained as },,,(—)"S[11...1)
where m is taken anti-clockwise around a square plaquette.
The ground state in the 2/3rd magnetization sector is obtained
by tiling every square plaquette with such localized magnons.

In order to construct quantum many-body scar states we
may simply place localized magnons on a subset of the square
plaquettes. For example, if we tile all but one of the plaque-
ttes with localized magnons we shall have a many-body scar
state with degeneracy equal to the number of unit cells. In
order to obtain multiple scar states as in the PXP model we
may enlarge the unit cell by taking the J exchange to be dif-
ferent on different square plaquettes. As a concrete example,
we consider the 30 site system shown in Fig. [§ with the crys-
tallographic unit cell enlarged by choosing the exchange on
square plaquettes tobe J; = Js = 1.0, J, = 1.1, J3 = 1.2 and
Js = 1.3 as shown. For this system size the saturation mag-
netization is S¢ = 30s with s = 1/2. We carry out diagonal-
ization in the sector with all but one of the square plaquettes
in a localized magnon state — the S* = 22s sector. If the J,
were equal there would be a five-fold degeneracy of the local-
ized magnon states corresponding to the five ways of choosing
the position of the fully polarized plaquette. By enlarging the
unit cell in the way indicated this degeneracy is broken down
to 1 + 1+ 1 + 2 and the two-fold degenerate states can mix
leading to a finite entanglement. The remaining three states
are manifestly scar states appearing at distinct energies with
zero entanglement. For our choice of J' = 1.8, these appear
roughly in the middle of the spectrum (Fig. [§|right panel), thus
forming scars.

11
VI. SUMMARY AND CONCLUSIONS

Geometrical frustration has long been one of the central
ideas in condensed matter physics with important connections
to various low energy exotic classical and quantum states of
matter. Here, we have described how geometrical frustration
can also lead to unusual high energy states. We have divided
the presentation into three classes of phenomena each giving a
large class of models exhibiting anomalous thermalization in
at least some mid-spectrum states. In the first class, geometri-
cal frustration leads to an extensive number of local conserva-
tion laws that is, however, smaller than the number of degrees
of freedom. This class therefore consists of non-integrable
models with highly structured Hilbert spaces. We have shown
that standard ETH scaling is violated for one example from
this class — the fully frustrated ladder — which, instead, most
closely resembles the behavior seen in integrable models. A
more detailed examination of the fully frustrated ladder re-
veals that it is an example of disorder-free localization — in
which correlations and entanglement spreading are dynami-
cally inhibited on the scale of a few lattice spacings. This ex-
ample generalizes straightforwardly to any one-dimensional
model with frustrated units, carrying locally conserved spin
protecting localized singlets, separated from one another by
any set of arbitrarily coupled spins. We have also argued that
aspects of this physics carry over to certain 2D models includ-
ing the fully frustrated bilayer models on star and martini lat-
tices. We leave a detailed numerical analysis of these 2D mod-
els as a problem for the future. The second class of models we
have considered has many-body quantum scar states that are
product states of singlets and examples include the sawtooth
chain, the famous Shastry-Sutherland model and the maple
leaf lattice. Each of these examples has a single many-body
scar state and we have studied the dynamical signatures of
such states. We have shown through several examples that this
physics is insensitive to the choice of J’/J and the anisotropic
coupling. We have also shown that such models naturally fall
within the framework of Shiraishi and Mori that uses local
projectors to construct Hamiltonians with scar states. The fi-
nal class is composed of flat band models exhibiting localized
magnon states. As for classes (I) and (I), there are many such
models and all rely on magnetic frustration as the mechanism
for the existence of athermal states. We gave three examples
of such models and investigated one of these in detail showing
that it can be engineering so that arbitrarily many scar states
with distinct energies appear in the middle of the spectrum.
One interesting open question regarding class (III) models is
whether there is a framework analogous to Shiraishi-Mori that
can generalize the physics to other models.
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