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d Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany 
e Erasmus Research Services, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands 
f Institute for Globally Distributed Open Research and Education (IGDORE), Sweden   

A R T I C L E  I N F O   

Keywords: 
EEG 
ERP 
Open science 
Preregistration 

A B S T R A C T   

A combination of confirmation bias, hindsight bias, and pressure to publish may prompt the (unconscious) 
exploration of various methodological options and reporting only the ones that lead to a (statistically) significant 
outcome. This undisclosed analytic flexibility is particularly relevant in EEG research, where a myriad of pre-
processing and analysis pipelines can be used to extract information from complex multidimensional data. One 
solution to limit confirmation and hindsight bias by disclosing analytic choices is preregistration: researchers write 
a time-stamped, publicly accessible research plan with hypotheses, data collection plan, and the intended pre-
processing and statistical analyses before the start of a research project. In this manuscript, we present an 
overview of the problems associated with undisclosed analytic flexibility, discuss why and how EEG researchers 
would benefit from adopting preregistration, provide guidelines and examples on how to preregister data pre-
processing and analysis steps in typical ERP studies, and conclude by discussing possibilities and limitations of 
this open science practice.   

1. Introduction 

Over the last decade, findings from a number of research disciplines 
have been under careful scrutiny. Prominent examples of research 
supporting incredible conclusions (Bem, 2011), failures to replicate 
popular and highly cited published findings (Board of Governors of the 
Federal Reserve System et al., 2015; Camerer et al., 2016; Errington 
et al., 2014; Open Science Collaboration, 2015), sloppy scientific prac-
tices (van der Zee et al., 2017), and breaches of ethical conduct (Levelt 
et al., 2012) increased the suspicion that published results might be 
inflated or incorrect (Goldacre et al., 2019; Hannink et al., 2013; Ioan-
nidis, 2008, 2005; Jones et al., 2017; Simmons et al., 2011; Trinquart 
et al., 2018), resulting in considerable waste of resources (Chalmers 
et al., 2014) and, at times, life-threatening consequences (Anand et al., 
2014; Topol, 2004; Vedula et al., 2012). These events motivated main-
stream discussions on incentive structures (Edwards and Roy, 2017; 
Nosek et al., 2012), statistical literacy (Cumming, 2014; Kruschke and 
Liddell, 2017; Wasserstein and Lazar, 2016), and theoretical and 
methodological rigor (Devezer et al., 2020; Eronen and Bringmann, 

2021; Oberauer and Lewandowsky, 2019; Szollosi and Donkin, 2021). 
At the heart of all these proposed reforms lies a call for increased 
transparency in scientific reporting (Nosek and Bar-Anan, 2012; Sim-
mons et al., 2012; Simonsohn, 2013; Wilson et al., 2017). Transparency 
at all research stages effectively mitigates confirmation bias – searching, 
interpreting, and remembering information that supports prior beliefs 
while ignoring evidence against them (Nickerson, 1998) – and hindsight 
bias – the tendency to overestimate the extent to which past events were 
able to predict a present outcome (Roese and Vohs, 2012). 

These cognitive biases find fertile ground in complex and multifac-
eted intellectual endeavors like empirical sciences. Data collected in an 
experimental or observational study are rarely interpreted in their raw 
form. Instead, researchers typically apply a series of transformations to 
deal with outliers and missing data (Enders, 2010; Hawkins, 1980), 
combine or discretize variables into composite indices, change the unit 
of measurement, and so on. In other words, “data are to a certain extent 
actively constructed” (Steegen et al., 2016, p. 702). Moreover, there are 
countless statistical techniques that can be chosen to analyze the pre-
processed data, including classical null hypothesis tests (Field et al., 
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2012; Judd et al., 2017a) and their robust counterparts (Wilcox, 2016), 
Bayesian parameter estimation (Kruschke, 2014; McElreath, 2018), and 
more. This myriad of choices that researchers have to make during the 
research process is referred to as analytic flexibility.2 Often, the rationale 
behind the selection of data preprocessing and analysis pipelines – e.g., 
the selection of cut-off values when identifying outliers or the choice of a 
particular statistical technique3 – is not properly described. This is not 
necessarily due to blind following of “statistical rituals” (Gigerenzer, 
2004), because there may very well be multiple reasonable processing 
steps that can be applied to the same dataset (Steegen et al., 2016). Thus, 
analytic flexibility per se does not necessarily lead to unverifiable or 
incorrect knowledge (see also Devezer et al., 2020). Instead, problems 
arise when methodological choices on preprocessing pipelines and sta-
tistical analysis are not transparently reported. Below we describe how 
undisclosed analytic flexibility may influence the interpretation of results 
in human electrophysiology research. 

1.1. Undisclosed analytic flexibility in human electrophysiology research 

Magneto- and electroencephalographic (M/EEG) signals are complex 
and multidimensional: space, time, and frequency – assessed via indices 
such as activity magnitude, connectivity, and network properties (Kida 
et al., 2016) – interact with experimental designs of various complexity, 
often resulting in a large number of independent and dependent vari-
ables. The raw signal recorded by electrodes (and magnetometers) must 
undergo a series of preprocessing steps that magnify cerebral activity 
against environmental noise (Cohen, 2014; Hansen et al., 2010; Luck, 
2014). Offline modifications of the continuous EEG signal include: (i) re- 
referencing to the activity of specific electrodes or the average activity of 
all electrodes on the scalp; (ii) interpolation of noisy channels; (iii) high-, 
low-, or band-pass filtering; (iv) correcting or rejecting physiological 
artifacts (e.g., blinks, muscular activity); (v) removal of baseline activity; 
and (vi) segmentation into epochs around the event(s) of interest (Luck, 
2014). Needless to say, there is considerable flexibility at each of these 
steps: (i) popular reference methods include vertex, linked mastoids or 
ears, average reference, and Reference Electrode Standardization 
Technique (for reviews, see Dong et al., 2019; Liu et al., 2015), and their 
choice is not always obvious with respect to the experimental design or 
dependent variables of interest; (ii) channel interpolation – e.g., nearest 
neighbor (Shepard, 1968), thin-plate spline (Harder and Desmarais, 
1972), spherical spline (Perrin et al., 1989), 3-D spline (Law et al., 1993) 
– is also a potential source of stochastic error (Fletcher et al., 1996), and 
its choice is often left to the software used for preprocessing; (iii) there 
are many different filter types available and considerable flexibility in 
setting the exact parameters for the filter, e.g., the cut-off frequency, 
transition width, etc.; moreover, common filtering techniques can 
severely distort the signal (e.g., Kappenman and Luck, 2010), which 
even led some to propose their exclusion from preprocessing pipelines in 

specific experimental designs (VanRullen, 2011; but see Rousselet, 
2012; Widmann and Schröger, 2012); (iv) there is a large number of 
artifact detection, correction, and rejection techniques (for a review, see 
Jiang et al., 2019), each with its own expected user input (e.g., from 
tweaking a few parameters in a fully automated algorithm to visual 
inspection of epochs for manual removal); (v) for baseline correction, 
the selected time window can vary in length and location (i.e., more 
proximal or distal from the event of interest); also, traditional baseline 
correction can bias scalp topographies (Urbach and Kutas, 2006), which 
may lead researchers to favor other techniques, for example including 
the baseline interval as a predictor in a GLM-based statistical approach 
(Alday, 2019). Finally, the order in which some of the above mentioned 
steps are performed may distort the resulting waveforms, e.g., filtering 
epoched instead of continuous EEG data may create edge artifacts, 
particularly when using inappropriate filter types or cut-off values 
(Luck, 2014, pp. 247–248; see also Widmann et al., 2015). 

Recent papers directly demonstrated that analytic flexibility may 
influence the results and interpretation of electrophysiological data. 
Robbins et al. (2020) applied four preprocessing pipelines (Bigdely- 
Shamlo et al., 2020a; Chang et al., 2020; Winkler et al., 2011) to a large 
and heterogeneous EEG dataset containing 7.8 million event-related 
epochs (Bigdely-Shamlo et al., 2020a). There were differences in the 
spectral characteristics of the processed signals, attributable to the 
different artifact correction procedures across preprocessing pipelines. 
In addition, small parameter deviations in otherwise very similar artifact 
correction algorithms were shown to distort the signal, especially in low 
frequency bands. Calculation of event-related epochs was also affected 
by specific steps in the selected preprocessing pipeline: for example, 
outlier detection algorithms may be incorporated in some pipelines (e. 
g., Bigdely-Shamlo et al., 2020b) but not in others. 

Another example pertains to the error-related negativity (ERN). This 
ERP component of negative polarity peaks ~80–150 milliseconds after 
an erroneous motor response in speeded tasks, is largest at midline 
frontal and central electrode sites, and originates from the anterior 
cingulate cortex (Falkenstein et al., 1991; Gehring et al., 1993). A recent 
paper (Sandre et al., 2020) highlighted cross-study variability in the 
selection of reference location, baseline correction, and electrode site 
from which signal amplitudes were measured. The authors systemati-
cally compared 72 preprocessing pipelines to examine their effects on 
the resulting ERN amplitude. Results showed that different preprocess-
ing choices had a remarkable influence on the within- and between- 
subject effects typically assessed in ERN research – i.e., post-error 
slowing and gender differences –, with mastoid reference, distal base-
line correction periods (i.e., further away from the time-locked 
response), single electrode site, and peak-to-peak amplitude measures 
leading to larger estimated differences between conditions (see also 
Klawohn et al., 2020; Šoškić et al., 2020). 

Thus, EEG researchers routinely deal with a large number of “forking 
paths”, which are seldom constrained for theoretical reasons: they have 
at their disposal a considerably long list of data transformation steps 
(each with its own challenges and complexities) which can lead to a 
different interpretation of the results. Quoting Sandre et al. (2020): “[...] 
different ways of processing the same data can lead researchers to different 
conclusions, demonstrating yet again that transparency of all processing 
decisions is a necessity.” (p. 35). We concur: transparently reporting all 
analytic choices would increase study reproducibility and, more 
generally, the trustworthiness of the electrophysiological literature. 

As mentioned before, researchers (just like other human beings) tend 
to shape their analytic choices with the (largely implicit) aim to confirm 
their prior beliefs, and post-hoc justification of said choices is rational-
ized under the “illusion of objectivity” (Kunda, 1990; Pyszczynski and 
Greenberg, 1987). EEG researchers are not immune to the pitfalls of 
confirmation bias and hindsight bias: for example, they may be thinking 
that all preprocessing and analysis choices were determined a priori 
while they may have been at least partly based on seeing the data. 
Sandre et al. (2020) suggest that “a single processing stream should be 

2 Readers may be familiar with other terms, such as researcher degrees of 
freedom (Simmons et al., 2011) or garden of forking paths (Gelman and Loken, 
2013), which refer to all choices that researchers make throughout their 
workflow, including hardware and software selected for data collection and 
analysis, the type and number of stimuli presented to participants, and much 
more. These choices can have tangible consequences on study results and 
interpretation. For instance, the same analysis pipeline on the same dataset can 
lead to quantifiably different results when run with different software (Bowring 
et al., 2019; see also Eklund et al., 2016). Typically, larger and more homo-
geneous samples of both participants and stimuli increase statistical power 
(Judd et al., 2017b), and ignoring these sources of variability in the applied 
statistical model has a direct impact on the generalizability of the results from a 
particular dataset to other (hypothetically similar) scenarios (Yarkoni, 2020). 
Throughout this paper, we limit our discussion to analytic flexibility during the 
preprocessing and analysis phases of the research cycle. 

3 Although more robust methods are often justified in comparison to tradi-
tional methods. 
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finalized before any analyses are undertaken” (p. 35). In other words, 
confirmation bias and hindsight bias cannot take place if analytic 
choices are not only determined before the data are collected but also 
transparently reported. This practice is called preregistration. 

2. Preregistration 

Preregistrations are time-stamped, (eventually) publicly accessible 
documents with hypotheses, data collection plan, and/or intended 
preprocessing and statistical analyses, written before the start of a 
research project.4 In other words, researchers commit to one among 
many ways in which the study can be conducted and analyzed. This 
document is uploaded on a trusted online repository – e.g., Open Science 
Framework (OSF; https://osf.io/), ClinicalTrials.gov (https://clinicaltr 
ials.gov/), American Economic Association’s registry for randomized 
controlled trial (AEA RCT Registry; https://www.socialscienceregistry. 
org/) –, which assigns it a date and time. The protocol is made public 
immediately or after an embargo period. Date and time of submission 
ensure that the research plan was devised before starting the study. 

The popularity of preregistration has skyrocketed in recent years: for 
example, the number of publicly available preregistrations uploaded on 
the OSF went from 38 in 2012 to 36,675 in 2019 (Bakker et al., 2020). 
Many journals now explicitly encourage this practice by awarding 
“preregistration badges” (https://osf.io/tvyxz/; see Kidwell et al., 
2016), including Psychological Science and Cortex (for a full list, see 
https://tinyurl.com/COS-badges). 

2.1. Advantages of preregistration 

The advantages of preregistering research plans are manyfold. First 
and foremost, preregistration can be seen as an additional tool to 
effectively achieve as much transparency as possible (see also Navarro, 
2020), ultimately increasing verifiability at all stages of the research 
cycle (Resnik, 2005; Lupia and Elman, 2014; see also Merton, 1942). 
Researchers are expected to abide by ethical principles that are func-
tional to the epistemic goals of science: advancing human knowledge by 
describing nature, developing theories and hypotheses that allow the 
generation of reliable predictions, and eliminating errors and biases 
(Resnik, 2005). Openness is one of these foundational principles: “Sci-
entists should share data, results, methods, ideas, techniques, and tools. They 
should allow other scientists to review their work and be open to criticism and 
new ideas.” (Resnik, 2005, p. 52). Other open science practices – e.g., 
sharing study protocols, materials, raw data, and analysis code – directly 
follow from this principle. Preregistration additionally offers the possi-
bility to document the rationale behind theoretical and methodological 
choices, useful not only in quantitative but also qualitative disciplines 
(Haven and Van Grootel, 2019). In addition, deviations from the original 
design (e.g., discrepancies between planned and actual sample size, 
unforeseen moderators, flexible exclusion criteria) can be more easily 
identified, effectively counteracting selective outcome reporting 
(Goldacre et al., 2019; John et al., 2012; Simmons et al., 2011). 
Furthermore, the presence of public, traceable evidence of the original 
plan exposes (and possibly mitigates) confirmation bias and hindsight 
bias. 

Preregistration allows researchers to specify the rationale and hy-
potheses of the study while also maintaining flexibility with respect to 
additional analyses conducted after seeing the data, provided that they 
are included in a different section of the final manuscript. This precludes 

presenting any hypotheses generated after observing the data as if they 
were a priori, or “hypothesizing after the results are known” (HARKing; 
Kerr, 1998).5 This practice is particularly difficult to identify in pub-
lished papers because readers can only access what the authors reported 
after collecting, analyzing, and interpreting the data, without knowing 
whether the hypotheses described in the introduction were originally 
unanticipated (or even considered implausible) until reassessed in light 
of the collected empirical evidence. This problem is magnified by the 
fact that, at least in some research fields, theoretical frameworks and 
hypotheses are often underspecified, which decreases their explanatory 
power and predictive utility (Meehl, 1967; Muthukrishna and Henrich, 
2019; Szollosi and Donkin, 2021; van Rooij and Baggio, 2021). 

It has also been argued (Nosek et al., 2019, 2018) that preregistration 
can contribute to mitigating publication bias in the academic literature 
(Nissen et al., 2016; Rosenthal, 1979; Scargle, 2000), since research 
plans are discoverable regardless of whether the final report is ulti-
mately published in peer-reviewed journals. Yet, in our opinion, publi-
cation bias can only be effectively mitigated when results are published 
regardless of study outcome, that is, via Registered Reports (see Section 
4.1) or journals that publish studies based on scientific rigor rather than 
their outcome (see Section 4.2). Nonetheless, discoverability of research 
plans is a useful step in making the entire research process discoverable. 
Importantly, preregistration is not only helpful when hypotheses are 
tested or p-values are reported (McPhetres, 2020), but also for explor-
atory6 and qualitative research (Dirnagl, 2020; Haven and Van Grootel, 
2019) and when using other statistical procedures (e.g., specify and 
justify in advance what priors will be used in a planned Bayesian anal-
ysis; see Depaoli and van de Schoot, 2017). 

Correlational evidence accumulated over the past 20 years in several 
disciplines suggests that preregistration may facilitate the publication of 
non-significant findings, thus providing a more accurate representation 
of available knowledge. For instance, Kaplan and Irvin (2015) reviewed 
a sample of randomized clinical trials funded by the National Heart, 
Lung, and Blood Institute evaluating drugs or dietary supplements for 
the treatment or prevention of cardiovascular disease. Of the 55 selected 
studies, 30 were published before and 25 after the year 2000, when 
study registration on ClinicalTrials.gov became compulsory in the U.S. 
following the Food and Drug Administration Modernization Act in 1997. 
Results showed that 57% of the studies published before 2000 showed a 
significant benefit of the intervention, as opposed to only 8% of trials 
published after 2000.7 Similar results were reported in a (preregistered) 
meta-analysis of meta-analyses of orthodontics and dentofacial ortho-
pedics studies: registered trials reported less favorable intervention ef-
fects compared to unregistered trials (Papageorgiou et al., 2018). 
Preregistration can also help identify whether funding sources are 
correlated with study outcome, potentially uncovering questionable 
practices due to (undisclosed) conflicts of interest. For instance, a review 
of studies of safety and efficacy trials for a wide array of drugs (Bour-
geois et al., 2010) revealed that trials funded by industry were less likely 
to be published within 2 years from study completion and most likely to 
report a positive outcome (85%, as opposed to 50% for government- 
funded trials). 

4 Preregistration at a later point in time is also possible, as long as authors 
transparently report at which stage of the study they crafted the protocol and 
declare that they are not yet aware of any results. Another possibility is to 
preregister analysis plans of data that have already been collected but not 
accessed, i.e. secondary data analysis (Mertens and Krypotos, 2019; Van den 
Akker et al., 2019). 

5 It should be noted that the results of statistical tests can still be valid (i.e., 
expected false positives close to nominal α) assuming proper statistical condi-
tioning, e.g., by building the conditional reference distribution of the test sta-
tistic via data permutation (for details, see Devezer et al., 2020, Box 2).  

6 A preregistration can serve as a ‘log’ for exploratory research, to make the 
many choices during the research process transparent: “Methodological and 
analytic flexibility is maintained but disclosed.” (Dirnagl, 2020, p. 4).  

7 The clinical studies considered in Kaplan and Irvin (2015) were specifically 
chosen to be large, well-funded projects, likely to get published even if results 
were not statistically significant. Thus, their work does not directly show that 
preregistered studies are easier to get published. Yet, it does suggest that, if 
studies are preregistered, non-significant findings are more likely to be reported 
as such, instead of being p-hacked to chase publication. 
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Recently, Adda et al. (2020) analyzed the distribution of p-values of 
primary outcomes for phase II and phase III drug trials registered on 
ClinicalTrials.gov between 2010 and 2019 and found no indication of 
selective outcome reporting, suggesting that such registries may suc-
cessfully disincentivize the (conscious or unconscious) use of suboptimal 
reporting practices and, consequently, improve the credibility of pub-
lished research. 

2.2. Benefits for individual researchers 

Besides being advantageous for whole research fields, anecdotal 
experience and preliminary evidence suggest that preregistration can be 
beneficial for individual researchers as well (Allen and Mehler, 2019; 
McKiernan et al., 2016; Toth et al., 2020; Wagenmakers and Dutilh, 
2016). Generally speaking, drafting a thorough preregistration – pref-
erably with the help of useful templates and checklists (see Section 3.1) – 
can improve the experimental design not only because authors are 
stimulated to think more carefully about the research plan, but also 
because feedback from peers can be solicited8 early and incorporated 
when most valuable, that is, when there is still time to make changes. 
Early-career researchers (ECRs) may benefit even more from learning 
this skill, since they are often directly involved with the ideation and 
development of the research project, data preprocessing and analysis, 
and writing of the final report. Preregistering a study as an ECR can also 
give a stronger sense of ownership over ideas that were originally 
conceptualized by their supervisors, for example by having a clearer 
overview on the different steps of the workflow, making informed de-
cisions about the rationale, experimental design, and planned analyses 
early on in the project. 

Given an increasing interest in transparency, we expect ECRs to be 
working in an environment that values – and might even require – a 
certain level of commitment to open science practices, of which pre-
registration is an example. As mentioned earlier, a growing number of 
journals encourage preregistration, e.g., by means of badges. In 
academia,9 funding agencies appreciate the importance of study pre-
registration in medical and non-medical disciplines: for example, the 
recent COVID-19 Programme by the Dutch funder ZonMw includes 
specific open science guidelines10 for prospective applicants, among 
which mandatory preregistration of animal studies and “strongly rec-
ommended” preregistration for all other studies. In addition, preregis-
tration may lead editors and reviewers to more easily trust authors when 
reporting certain methodological choices, such as sequential testing and 
one-sided tests (Lakens, 2017, Study 1). Last but not least, researchers 
who preregister their studies may be perceived as more trustworthy, 
because they are willing to open all products of their workflow to their 
peers for scrutiny. However, a recent registered report investigating 
whether preregistration increases peers’ trust in the final publication 
revealed inconclusive evidence either in favor or against this hypothesis 
(Field et al., 2020), leaving this question open for future examinations. 

The advantages of preregistration in neuroimaging and electro-
physiology have not yet systematically been evaluated. Nonetheless, the 
data accumulated in other disciplines provide a number of insights, 
practical examples, and learned lessons that can guide a widespread and 
informed implementation of this practice in our research field. When 
done properly, preregistration works as intended. 

3. Recommendations for preregistration of ERP research 

In this section, we provide guidelines on how to transparently 
document the planned analytic choices in a preregistration of a proto-
typical ERP study. We focus on ERPs because of their widespread use in 
cognitive and clinical research (Hajcak et al., 2019; Helfrich and Knight, 
2019), although most of these recommendations can still be useful when 
using other signal processing techniques (e.g., ERP and time-frequency 
analyses have many preprocessing steps in common). Furthermore, we 
only include sections that would decrease researchers’ flexibility during 
signal preprocessing and statistical analysis. As discussed earlier, these 
steps are complex and multifaceted, with many reasonable choices that 
can lead to qualitatively different interpretations of the data; therefore, 
transparently documenting them would have a significant impact on the 
verifiability of the results. However, other aspects of a study should also 
be carefully planned and included in the preregistration protocol, e.g., 
the rationale behind the chosen sample size (including a power analysis; 
for recent guidelines, see Baker et al., 2020; Boudewyn et al., 2018), 
inclusion and exclusion criteria, and stimulus details and characteristics 
(e.g., to ensure that items sampled from all planned conditions are re-
ported in the published manuscript). 

We encourage researchers to craft a document that is specific, precise, 
and exhaustive (Veldkamp, 2017, chap. 6; Wicherts et al., 2016). A 
preregistration is specific when it includes a detailed description of all 
phases of the research workflow, from the initial design of the study to 
the information reported in the final manuscript; precise when the 
research plan is interpretable in only one way (e.g., there is no ambi-
guity regarding the intended preprocessing pipeline); and exhaustive 
when the research plan states that only the mentioned analyses will be 
considered as diagnostic to confirm or falsify predictions, thereby clar-
ifying that other analyses have been conducted after seeing the data (see 
also McPhetres, 2020, on adding underspecified secondary analyses). 

In our experience, it is very useful to run a pilot study before drafting 
the preregistration document. Advantages include: (i) gauge the feasi-
bility of recruitment, randomization, and assessment procedures, espe-
cially when testing clinical populations and/or evaluating a novel 
treatment (e.g., Leon et al., 2011); (ii) ensure that task instructions are 
clear for participants; (iii) confirm that the target ERP component(s) are 
elicited; (iv) test preprocessing and analysis pipelines for possible bugs, 
errors, and/or computational feasibility. We emphasize that small scale 
pilot studies should not be used to estimate effect sizes to inform a priori 
power analysis (for details, see Albers and Lakens, 2018; Kraemer et al., 
2006). 

3.1. Preregistration templates 

In principle, any time-stamped, accessible protocol with a clear study 
plan can serve as a preregistration. However, ready-made templates can 
greatly facilitate the inclusion of preregistration in researchers’ work-
flows by providing a list of bullet points (Bakker et al., 2020; Wicherts 
et al., 2016). In addition, hosting preregistrations on online platforms 
that are popular among the research community (rather than, for 
example, personal websites) can improve accessibility. One of the most 
popular platforms is the OSF, which offers several preregistration tem-
plates11 differing on topic, length, and specificity. While less extensive 
templates (e.g., AsPredicted: https://aspredicted.org/) are typically 
used by newcomers for their first preregistration, we would rather 
recommend the standard OSF Prereg template, whose increased level of 
detail facilitates the creation of specific, precise, and exhaustive pre-
registrations that more effectively decrease the risk of undisclosed an-
alytic flexibility. A template specifically for preregistration of EEG 
studies was started during a hackathon at the annual meeting of the 
Society for the Improvement of Psychological Science (SIPS) in 2019 

8 For example on platforms like OSF (in the comment section) or Peer 
Community In (https://peercommunityin.org/2020/01/15/submit-your-prere 
gistration-to-peer-community-in-for-peer-review/).  

9 Solid project management skills are also extremely valuable outside of 
academia, where careful planning can help prioritize goals in a fast-paced 
environment (see Powell, 2018).  
10 https://tinyurl.com/ZonMw-COVID19-OS. 11 https://osf.io/zab38/wiki/home/. 
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(Algermissen et al., 2019) and is currently being developed online by an 
active community of volunteers. Readers are welcome to contribute to 
(and use) the current draft at https://tinyurl.com/eegprereg. 

Below we provide some examples on how to preregister typical 
preprocessing and analysis steps in an ERP study. We do not intend to 
recommend one preprocessing step or statistical method over another, 
but rather give examples on how commonly used preprocessing and 
analysis steps can be transparently reported. Please note that a good 
preregistration should also be explicit about the order of preprocessing 
steps. Again, the examples below are for illustrative purposes: their 
order is not meant to be prescriptive, and should be adjusted based on 
the pipeline that is appropriate for the specific study.12 

It can also be advantageous to include analysis scripts in the pre-
registration (see, for instance, Nunez et al., 2017). In any case, the 
preregistration should be specific about the software and (standardized) 
pipelines that will be used to carry out the preprocessing steps. If re-
searchers plan to use the default settings of a given software, they should 
also include its version number (these settings might change with 
different versions) and clearly state in the preregistration that default 
parameters will be used. 

3.2. Preprocessing 

3.2.1. Re-referencing 
A preregistration should specify which electrodes will be chosen for 

the offline re-referencing. Common offline reference channels include 
the linked mastoids, ears, vertex, or an average reference. An example 
could be: “The continuous data is [...] re-referenced to the average of the left 
and right mastoid.” (preregistration: Nieuwland et al., 2018a; publica-
tion: Fleur et al., 2020). 

3.2.2. Filtering 
Preregistering the parameter values of the filters that will be applied 

to the recorded EEG data should be detailed enough to theoretically 
allow readers to completely reproduce each filter (see Widmann et al., 
2015). This includes specifying not only the filter cut-off frequency, but 
also the type (e.g., butterworth, finite impulse response, infinite impulse 
response), transition width, passband edge, the order for the transition 
bandwidth, at what point during the preprocessing pipeline the filter 
was applied (e.g., to continuous or segmented data), and – in case of 
multiple filters – the order in which the filters are applied. For example: 
“The continuous EEG data will be filtered with separate Hamming windowed 
sinc finite impulse response (FIR) filters (Widmann, 2006): (1) high-pass: 
passband edge 0.5 Hz, filter order 1,690, transition bandwidth 0.5 Hz, 
cutoff frequency (− 6 dB) 0.25 Hz; (2) low-pass: passband edge 30 Hz, filter 
order 114, transition bandwidth 7.4 Hz, cutoff frequency (− 6 dB) 33.71 
Hz.” (preregistration: Schettino et al., 2017; publication: Schindler et al., 
2018). 

3.2.3. Trial segmentation and time-locking 
For trial segmentation, it is especially important to specify when the 

continuous EEG data are segmented, because this has implications for 
other preprocessing steps.13 When preregistering trial segmentation, it is 
also important to specify what the trial will be time-locked to – e.g., 
stimulus onset, participant’s motor response – and how long the pre- and 

post-stimulus period will be. For example: “For the ERPs, we [..] epoch the 
data from -500 to 1500 ms relative to [critical word] onset.” (preregistra-
tion: Coopmans and Nieuwland, 2018, publication: Coopmans and 
Nieuwland, 2020). 

3.2.4. Interpolation 
With interpolation, the EEG signal recorded from noisy channels is 

replaced with estimated activity from neighboring electrodes. In the 
preregistration protocol, one should prespecify the criteria used to 
identify noisy channels as well as the algorithm that will be used for the 
interpolation. For example: “Bad channels with a voltage > 2 SD of the EEG 
voltage will be interpolated with a spline interpolation [...]. The interpolation 
algorithm [...] is implemented in the EEGLAB toolbox.” (preregistration: 
Duma et al., 2018, publication: Duma et al., 2019). 

3.2.5. Artifact rejection and correction 
Approaches to artifact rejection can be roughly divided into three 

categories: (1) automatic; (2) manual; and (3) semi-automatic, that is, a 
combination of automatic and manual approaches. Many different al-
gorithms for automatic artifact rejection are available and implemented 
in different software and toolboxes. For example, the FASTER algorithm 
(Nolan et al., 2010) calculates various statistical parameters of the signal 
and defines data as artifactual when exceeding a pre-specified z-score (e. 
g., ±3). This approach can be additionally integrated by identifying the 
frequency bands in which one would expect artifacts to occur, e.g., 110 
to 140 Hz for muscle artifacts (see Delorme et al., 2007). From a 
computational perspective, fully automatic approaches are more 
reproducible, although their sensitivity and specificity can vary. Semi- 
automatic and manual approaches are more subjective and dependent 
on the researcher’s skills, but they may be necessary when working with 
special populations (e.g., infants14) whose signal shows less typical ar-
tifacts, difficult for automatic approaches to detect. Therefore, to in-
crease transparency and reproducibility, the final report should include 
the list of epochs marked for rejection (or correction; see below). In 
addition, source code could be referenced in-text and be made publicly 
available for inspection upon publication, to provide additional infor-
mation (e.g., on some parameter values) while decluttering the Methods 
section. An example of a planned automatic artifact rejection procedure 
pertaining specifically to ocular artifact rejection could read: “All trials 
will be checked for eye and muscle activity related artifacts. To detect eye 
movements and blinks, the EOG signals will be combined to derive bipolar 
vertical and horizontal channels that will be passed through a set of artifact 
detection steps. Any trials containing amplitude change larger than 80 μV in 
the vertical bipolar EOG channel and 120 μV in any other channel within a 
moving window of 200 ms will be removed to avoid any contamination of 
data by eye blinks or muscle movements. Additionally, any trials with po-
tential eye-movement activity, i.e., amplitude changes larger than 25 μV in 
the horizontal bipolar EOG channel detected by a step function, will also be 
rejected. Participants with rejection rates larger than 30% of the total trials in 
any of the experimental conditions will be excluded from further analyses.” 
(preregistration: Bocincova and Johnson, 2017, publication: Bocincova 
and Johnson, 2019). 

In addition to artifact rejection procedures, there are a variety of 
techniques available to correct artifacts in order to reduce data loss. 
Methods for artifact correction include independent component analysis 
(ICA), regression-based methods, and wavelet-transforms (see Jiang 
et al., 2019). Each of these methods require different parameter values 
to be preregistered. For example, for ICA, at least the following infor-
mation should be added (see, for instance, Keil et al., 2014): the method 
used to compute the ICA – e.g., fastICA (Hyvärinen, 1999) or infomax 
ICA (Bell and Sejnowski, 1997) –, the electrodes included, the number of 

12 Other examples of preregistration can be retrieved from a public Zotero 
Group library maintained by the Center for Open Science (https://tinyurl.com/ 
OSF-Zotero-group) as well as a spreadsheet started during the aforementioned 
hackathon at SIPS2019 (https://tinyurl.com/SIPS2019-prereg-list).  
13 As already mentioned, high-pass filters may produce edge artifacts when 

applied to non-continuous signal; thus, segmentation is typically performed 
after these filters are applied. Other methods are also effective, e.g., extending 
epochs with zeroes (zero-padding) so that edge artifacts do not affect the actual 
signal. 

14 Recently, though, automatic artifact rejection pipelines for infant EEG data 
have been developed, e.g., MADE (Debnath et al., 2020) and HAPPE (Gabard- 
Durnam et al., 2018). 
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computed components, the method by which artifactual components 
will be identified – e.g., using templates (Campos Viola et al., 2009) or 
manually –, and which type of artifactual components will be removed 
(e.g., only ocular components, ocular and heart beat components, etc.). 
For example, a preregistration for artifact correction using ICA could 
read: “Data are then subjected to independent component analysis using 
single-order blind identification [...]. This is achieved by transforming the 
weight matrix for components into z-scores across all electrodes, and iden-
tifying those that have a z-score greater than 4.0. This is an arbitrary large 
value which has been determined in previous studies to identify signals due to 
blinks or to other artefact. Components whose activity is heavily focused on a 
single electrode are then subtracted from the signal.” (preregistration: 
Hobson and Bishop, 2014, publication: Hobson and Bishop, 2016). 

3.2.6. Baseline correction 
A preregistration should also clarify whether or not the data will be 

baseline-corrected by setting the scalp distribution to zero during a 
preset period before the onset of the event of interest. Important infor-
mation include the time window that is used as the baseline, and at 
which point in the analysis pipeline the baseline correction will be 
applied. For example: “Epochs extending from − 200 ms to +1000 ms time- 
locked to word onset will be created, and baseline correction will be applied 
using the pre-stimulus interval.” (preregistration: Schettino et al., 2017; 
publication: Schindler et al., 2018). 

3.3. Statistical analysis 

Analytic flexibility does not only occur at the level of preprocessing. 
Rich M/EEG data sets can be analyzed in multiple different ways – e.g., 
event-related potentials (ERPs; Luck, 2014), EEG microstates (Michel 
and Koenig, 2018), time-frequency (Cohen, 2014), functional connec-
tivity (Bastos and Schoffelen, 2016), steady-state evoked potentials 
(Regan, 1977), source localization (Michel and He, 2019) –, with 
different objectives, dependent variables, and levels of analytic sophis-
tication. Moreover, researchers have multiple valid options for statisti-
cal tests, such as ANOVAs and t-tests (Luck, 2014, chap. 10), cluster- 
based permutation tests (Maris and Oostenveld, 2007), Bayes factors 
(Keysers et al., 2020), linear mixed effects models (Frömer et al., 2018), 
threshold-free cluster enhancement (Mensen and Khatami, 2013), and 
more.15 An example of ERP experiment may involve measurements from 
64 electrodes and a sampling rate of 256 Hz, with a trial length of 1,000 
ms after stimulus onset (e.g., Schindler et al., 2018). After averaging 
over trials, this would result in 16,384 data points for each participant 
and condition. For statistical analysis, this leads to a large number of 
potential comparisons, often referred to as the multiple comparison 
problem (MCP). Standard statistical correction procedures operating at 
the level of single electrode-time pairs would yield hyper-conservative 
results (increased Type II error); on the other hand, failing to correct 
for multiple comparisons can easily lead to spurious statistically sig-
nificant results (increased Type I error). Therefore, statistical plans of 
ERP studies should always include a strategy on how to deal with the 
MCP. Several solutions are available (Luck, 2014, chap. 10; Luck and 
Gaspelin, 2017), including: (i) a priori definition of electrode sites and 
time windows based on previous studies; (ii) collapsed localizers, i.e., 
averaging all trials of all conditions of all participants to identify elec-
trode clusters and time windows, thereby avoiding condition-specific 
biases; and (iii) mass univariate statistics, i.e., computing statistical 
tests at each electrode and time point and applying appropriate multiple 
comparisons correction techniques (Fields and Kuperberg, 2020; Groppe 

et al., 2011). 
In the following sections, we provide examples on how to preregister 

three common ERP analyses: (1) Analysis of Variance (ANOVA); (2) 
cluster-based permutation tests; and (3) Bayes factors. We hope these 
examples will be useful for readers planning to preregister similar sta-
tistical analyses and give an idea of the preferred level of detail for other 
analysis methods not listed here. 

3.3.1. ANOVA 
ANOVAs are a popular statistical technique to analyze ERP data: it is 

not uncommon to read published studies including several within- and 
between-subject factors for various spatial and temporal ROIs. However, 
a growing number of factors comes at a cost, namely an increase in false 
positive rate: up to 50% chance to find at least one false positive effect 
with 4 factors, and up to 100% chance with 8 factors (Luck and Gaspelin, 
2017). Therefore, ERP researchers should carefully plan appropriate 
corrections for multiple testing not only for the follow-up tests to an 
ANOVA, but also as a function of the number of factors included in the 
ANOVA itself. Alternatively, researchers can limit the number of factors 
included in the ANOVA if they have a specific hypothesis about the 
spatial and temporal region of interest or only run planned (paired) 
contrasts on the relevant comparisons. Preregistration can help make 
these decisions beforehand, without being biased by seeing the data. 

In the following example, researchers interested in the N400 ERP 
component (Kutas and Hillyard, 1980; Kutas and Federmeier, 2011; see 
also the work by Nieuwland and colleagues for a series of preregistered 
N400 studies, e.g., Nieuwland et al., 2018b; Coopmans and Nieuwland, 
2020) identify the time window and region of interest a priori, and aim 
to test two hypotheses: (1) larger N400 component for semantically 
incongruent compared to semantically congruent sentences (i.e., an 
incongruency effect); and (2) larger incongruency effect for native 
speakers compared to non-native speakers. In the Analysis section, the 
preregistration could read: “We will analyze the amplitude16 of the N400 
by means of a mixed ANOVA with 2 factors: congruency (semantically 
congruent sentences vs. semantic violations; within-subject) and language 
experience (native speaker vs. non-native speaker; between-subject).” As 
outlined above, researchers should also consider correcting for multiple 
comparisons as a function of the number of factors in the ANOVA. In this 
example, three p-values are computed: one for the main effect of con-
gruency, one for the main effect of language experience, and one for 
their interaction. Researchers could preregister the correction in the 
following way: “The significance level for the main effect and interaction 
terms will be Bonferroni-corrected for the number of tests computed in the 
ANOVA: 0.05/3 = 0.0167.” Of course, the alpha level of the test should 
also be explicit (α = 0.05 in this example). If researchers also plan 
follow-up comparisons, they could add: “In case the interaction between 
congruency and language experience is statistically significant, we will 
compute two paired t-tests comparing congruent vs incongruent sentences, 
separately for native speakers and non-native speakers. For these two planned 
comparisons, we will set α = 0.025 (Bonferroni-corrected for two planned 
tests with an uncorrected alpha of 0.05).” 

3.3.2. Cluster-based permutation tests 
Cluster-based permutation tests (CBPT; Maris and Oostenveld, 2007) 

are another popular statistical approach to analyze EEG data. In the 
following example, researchers have a hypothesis about a difference in 
ERP responses between two conditions, but not about specific electrodes 
and time points. The preregistration should include whether the test is 

15 Other factors, including context-dependent psychometric properties of 
brain measures (e.g., Clayson and Miller, 2017) and suboptimal reporting of 
methodological details in published papers (e.g., Clayson et al., 2019; Larson 
and Carbine, 2017), further complicate the picture and warrant caution on the 
reliability of the psychophysiological literature (Baldwin, 2017). 

16 It is also important to clearly specify the time window and electrode cluster 
from which the ERP component is scored. This information should be included 
in the section Measured variables of the preregistration protocol, e.g.: We will 
analyze the mean amplitude value in a time window from 300 to 500 ms after 
stimulus onset, averaged across a cluster of centro-parietal electrodes (C3, Cz, C4, 
CP5, CP6, P3, Pz, P4, P7, and P8). 
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one-tailed or two-tailed, within-subject, between-subject, or mixed, as 
well as the alpha level. In addition, there are several parameters that are 
more specific to the CBPT, such as the alpha at the cluster-level, the 
method for computing cluster statistics, the minimum number of elec-
trodes that can form a cluster, how neighboring relations between 
electrodes will be computed, and the number of randomizations. For 
example, a preregistration using a CBPT could read: “To test within- 
subject differences between congruent and incongruent sentences, we will 
compute a two-tailed cluster-based permutation test using ‘ft_statfun_indep-
samplesT’ in Fieldtrip (Oostenveld et al., 2011) with α = 0.025 for each tail 
(i.e., the overall alpha is 0.05). The alpha at the cluster-level will be set at 
0.05. Cluster statistics will be computed with a ‘maxsum’ approach and 
clusters will require a minimum of two neighboring electrodes. Neighboring 
electrodes will be defined via the ‘triangulation’ method implemented in 
Fieldtrip. Like on the test-level, the clusters will be tested with a two-tailed 
statistic. One thousand randomizations will be computed via Montecarlo 
method to estimate the p-value under the permutation distribution.” 

3.3.3. Bayes factors 
Problems inherent in accepting the null hypothesis with classical 

frequentist procedures (e.g., Wagenmakers, 2007) and common mis-
interpretations of p-values (Colquhoun, 2017; Wasserstein and Lazar, 
2016) are leading an increasing number of researchers to explore 
Bayesian approaches (Etz and Vandekerckhove, 2018; Kruschke and 
Liddell, 2017). Bayesian inference allows to incorporate prior knowl-
edge into statistical tests, quantify evidence in favor of the null hy-
pothesis – thus discriminating between “absence of evidence” and 
“evidence of absence” (e.g., Keysers et al., 2020) –, and monitor the 
evidence as the data accumulate (Rouder, 2014; but see de Heide and 
Grünwald, 2020). In particular, Bayes factors – “the extent to which the 
data sway our relative belief from one hypothesis to the other” (Etz and 
Vandekerckhove, 2018, p. 10) – have gained considerable popularity, 
also thanks to the development of user-friendly software that facilitate 
their calculation (e.g., JASP; https://jasp-stats.org/). 

Researchers planning to analyze their data using Bayes factors 
should clarify the software and procedure used for the estimation, a 
description of the prior specification (i.e., the type of distribution and its 
parameter values), and an assessment of the robustness of the results 
under different prior specifications (see also van Doorn et al., 2020). A 
preregistered description of planned comparisons using Bayes factors 
could read as follows: “We will analyze the amplitude values of the N1 ERP 
component using Bayes Factors (BFs; Kass and Raftery, 1995). Two-tailed 
Bayesian t-tests (Rouder et al., 2009) will be calculated to estimate the 
degree of evidence in favor of a model assuming differences between condi-
tions relative to a model assuming no differences. The null hypothesis will be 
specified as a point-null prior (Dirac distribution, standardized effect size δ =
0), whereas the alternative hypothesis will be defined as a Jeffrey-Zellner- 
Siow (JZS) prior, a folded Cauchy distribution centered around δ = 0 with 
scaling factors of r = 1, r = 0.707, and r = 0.5, to verify the robustness of the 
results as a function of changes in the prior (Schönbrodt et al., 2017). 
Participants will be included as random factors, and their variance consid-
ered nuisance. The threshold to identify the winning model is set at BF ≥ 10 or 
BF ≤ 0.1, typically considered “strong” evidence in favor of the model in the 
numerator or denominator, respectively (Kass and Raftery, 1995). BFs will 
be estimated via the R package BayesFactor v0.9.12-2 (Morey et al., 2015) 
using Markov Chain Monte Carlo sampling (10,000 iterations).” (prereg-
istration: Schettino et al., 2017; publication: Schindler et al., 2018). 

4. General considerations 

In Section 2 we clarified how preregistration can mitigate some of the 
issues related to undisclosed analytic flexibility. In Section 3 we provided 
guidelines and examples on how to preregister common preprocessing 
and statistical analysis steps in ERP studies. In Section 4 we discuss 
several considerations that EEG researchers may want to take into ac-
count when critically evaluating whether to preregister their studies. 

4.1. Preregistration vs. Rregistered Reports 

Throughout this manuscript we have described unreviewed pre-
registrations (see van’t Veer and Giner-Sorolla, 2016), that is, the pro-
tocols uploaded on public repositories are not formally peer-reviewed. A 
preregistered study can still be rejected by scientific journals for a 
number of reasons – for example, lack of interest in “negative” (non- 
significant) findings (Fanelli, 2010), unprofessional peer-review 
(Gerwing et al., 2020), or submission in the “wrong” day of the week 
(Boja et al., 2018) –, thus limiting its discoverability (although the 
experimental protocol may still be publicly accessible). Conversely, 
reviewed preregistrations – commonly referred to as Registered Reports 
(Chambers and Tzavella, 2020) – are alternative article formats in which 
the study proposal is peer-reviewed and conditionally accepted for 
publication (in-principle acceptance, or IPA), provided that the original 
plan is followed and deviations are properly documented. Publication is 
thus independent from study outcome. Preliminary research has shown 
that this format seems to effectively mitigate publication bias and reduce 
the prevalence of selective outcome reporting (Scheel et al., 2020; see 
also Wiseman et al., 2019).17 Therefore, we consider Registered Reports 
the state-of-the-art article format for confirmatory research and 
recommend them over preregistrations. At the time of writing, more 
than 250 journals18 from various scholarly disciplines offer Registered 
Reports alongside traditional submissions, including Psychophysiology 
(Keil et al., 2020) and the International Journal of Psychophysiology 
(Larson, 2016). Please note that, while the current manuscript focuses 
on preregistrations, our recommendations also hold for Registered 
Reports. 

Despite these desirable properties, researchers should take into ac-
count the relatively strict submission criteria (e.g., expected statistical 
power of 90% or higher19) as well as the time necessary to review the 
study plan (typically 2–4 months; Chambers, 2020), during which the 
project cannot start. For these reasons, preregistration can be seen as an 
easier, entry-level practice that is advantageous in itself and helps re-
searchers familiarize with the steps required for a future (recommended) 
Registered Report submission. 

4.2. Potential disadvantages of preregistration 

Crafting a comprehensive preregistration protocol requires time. A 
recent survey (Toth et al., 2020) revealed that respondents with previ-
ous experience in preregistration invested, on average, around 4 hours 
to create the initial draft. Our experience suggests that this could be 
considered a lower bound: the multidimensional nature of EEG data, 
coupled with the high level of specificity recommended to effectively 
avoid selective reporting, requires documenting a large number of pre-
processing and analysis steps (see Section 3), planned sample size (with a 
priori power analysis), sampling strategy, inclusion and exclusion 
criteria, and more. As Allen and Mehler (2019) point out, planning an-
alyses based on existing data is likely easier, because a preregistration 
involves anticipating possible outcomes, for example in a decision tree, 
that depend on seeing the data (e.g., whether the assumptions of the 
planned statistical model are fulfilled). These authors further suggest 

17 Due to heterogeneous journal policies, IPA protocols may not always be 
publicly available or easily verifiable (Hardwicke and Ioannidis, 2018), which 
sometimes makes it difficult for readers to compare registered plans and pub-
lished papers. Recent developments have tackled the lack of transparency and 
standardized protocol registration by updating recommended editorial policy 
templates (Chambers and Mellor, 2018), but we advise to read the target 
journal’s specific guidelines before submission.  
18 The updated list of journals offering Registered Reports can be found at 

https://cos.io/rr/.  
19 As an example, see Registered Reports Submission Guidelines at Cortex 

(https://tinyurl.com/RR-Cortex). 
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that implementing open science practices (including preregistration) 
during a project increases its duration (“In our experience, these additional 
requirements can easily double the duration of a project.”; p. 4), which 
might be especially difficult for ECRs on short-term contracts. However, 
to the best of our knowledge, this is based only on anecdotal evidence 
and preregistration could also, at least for some projects, save some 
time.20 We also note that most of the information included in a 
comprehensive preregistration is also required in the final manuscript, 
not only to facilitate communication between the authors and other 
relevant parties (editors, reviewers, and readers) but also to ensure that 
the methods leading to the conclusions advertised in the paper are 
reproducible. Publication guidelines for M/EEG studies (Gross et al., 
2013; Keil et al., 2014; Pernet et al., 2018) emphasize the need to 
describe equipment, study materials, preprocessing steps, dependent 
variables, and analysis pipelines, and also provide a checklist that au-
thors can consult while writing the manuscript (Keil et al., 2014, section 
Appendix). Here we propose to anticipate this time investment, with the 
advantage that carefully thinking about these methodological details 
before data collection may lead to improvements in the study design 
when still useful. 

Some researchers might also be worried that the time invested in 
writing the preregistration would be wasted if results do not pan out as 
expected and, consequently, the final manuscript would be more diffi-
cult to publish. Indeed, current incentive structures (be it hiring prac-
tices, journals, or funders) usually value quality over quantity (Allen and 
Mehler, 2019) and exert pressure to publish novel, groundbreaking, 
positive results (Fanelli, 2012, 2010; Ioannidis et al., 2014; Jennings and 
Van Horn, 2012; Nissen et al., 2016; Scargle, 2000). Nonetheless, many 
academic journals accept manuscripts with non-significant findings if 
the methodology is robust, with the aim to mitigate the pervasive 
problem of publication bias.21 Similarly, hiring practices are starting to 
reward open science practices (Schönbrodt et al., 2020). We are highly 
sympathetic to Allen and Mehler’s (2019) call to align incentive struc-
tures more with open and transparent research practices that value 
quality over quantity (see also Flier, 2017). 

Unforeseen circumstances – e.g., problems recruiting the planned 
number of participants due to a pandemic – may require reasonable 
deviations from the original preregistered plan. This is acceptable as 
long as it is transparently documented in the published paper. Regret-
tably, recent evidence shows that undisclosed protocol deviations are 
common. An analysis of preregistered studies in the journal Psychological 
Science (Claesen et al., 2019) showed that none of them had perfectly 
anticipated every step of the research project: differences between 
preregistration protocols and final manuscripts were observed, for 
instance, in sample size, exclusion criteria, and statistical models, with 
only one study transparently reporting all discrepancies. Partial or lack 
of disclosure of deviations from pre-study plans is a well-known problem 
not only in social sciences (e.g., Franco et al., 2016) but also in clinical 
trials (Goldacre et al., 2019), for which registration is compulsory or 
strongly encouraged in many countries (see the World Health Organiza-
tion Registry Network; https://www.who.int/ictrp/network/en/). We 
emphatically recommend to clearly report any deviations from the 
preregistered plan, preferably in a separate section in the main manu-
script or in Supplementary Materials. A useful checklist can be found on 
the OSF (https://osf.io/yrvcg/). 

4.3. Preregistration is not a silver bullet 

As argued in Section 2.1, preregistration can strengthen the eviden-
tial value of studies by increasing transparency, disclosing selective 
outcome reporting, and increasing the number of publications with non- 
significant findings. However, adopted in isolation, preregistration is not 
sufficient to increase scientific rigor; for example, it may not necessarily 
prompt researchers to carefully examine whether their chosen statistical 
models are appropriate for the experimental question (Guest and Martin, 
2021; Szollosi et al., 2020), improve statistical inferences (Devezer et al., 
2020; Navarro, 2020), strengthen the link between theories and their 
mathematical representations (Szollosi and Donkin, 2019), or develop 
more precise, consistent, and “hard-to-vary” theories altogether (Szol-
losi and Donkin, 2021; van Rooij and Baggio, 2021). In other words, 
preregistration in itself does not necessarily improve the quality of the 
research, and it might even be harmful if it grants statistically invalid or 
theoretically weak research an unwarranted higher status (“a superficial 
veneer of rigor”; Devezer et al., 2020, p. 19) compared to non- 
preregistered, but otherwise solid and transparently documented, 
research. In fact, when other conditions are fulfilled – e.g., a strong 
theoretical framework that warrants precise predictions; a clear justifi-
cation of analytical choices; open data, materials, and code; and/or 
convergent results via multiverse analysis –, preregistration does not 
necessarily lead to more robust and trustworthy conclusions (Rubin, 
2020). Unfortunately, these conditions are rarely fulfilled in electro-
physiology and psychophysiology, even when investigating popular 
topics with a long research tradition. As an example, a recent review on 
the electrophysiological correlates of early word prediction (Nieuwland, 
2019) analyzed available evidence for the sensory hypothesis as opposed 
to the recognition hypothesis. This analysis revealed that current pub-
lished evidence is often obtained via novel tasks with unclear specificity 
and sensitivity, in samples which might not be sufficient for a precise 
estimation of small or medium effect sizes, using statistical analyses that 
do not allow to accurately partition between different sources of vari-
ance, and whose data cleaning and analysis procedures are unavailable 
for scrutiny. As argued in the current paper, preregistration may help 
researchers think about all of these steps in the planning stage of their 
projects, with clear advantages in avoiding confirmation and hindsight 
bias. We thus believe that preregistration serves the important goal of 
increasing transparency (Navarro, 2020) by offering a window into the 
research workflow, an often messy and non-linear process that is far 
from the flawless stories recounted in academic papers. Accepting these 
imperfections may promote a work culture that normalizes errors, ac-
knowledges the depth of domain-specific knowledge, and fosters intra- 
and interdisciplinary collaborations (see also Nosek et al., 2012). 
Moreover, preregistration offers the opportunity to evaluate whether the 
chosen tests support or falsify theoretical predictions, i.e., their severity 
(Lakens, 2019). 

Finally, just like other research practices, preregistration can in 
principle be used unethically (Yamada, 2018). For example, one could 
preregister a large number of similar experiments and keep them under 
embargo. Whenever one of the studies turns out to be “successful” (i.e., 
statistically significant), the resulting paper would only refer to the 
corresponding preregistration and all the other “unsuccessful” ones 
could be withdrawn. However, metadata and a justification for each 
withdrawal would still be publicly available and therefore raise suspi-
cion. Another unethical practice has been termed “preregistering after 
the results are known” (PARKing; Yamada, 2018), i.e., drafting and 
publishing the preregistration of a study that has already been 
completed and whose results conveniently fit within the narrative of the 
“preregistered” document. Complementary open science practices, e.g., 
data and code sharing, can effectively mitigate this risk. Journal editors 
and reviewers are invited to carefully compare the preregistered docu-
ment with the manuscript during submission and evaluation, as well as 
request raw data and analysis code by default (Morey et al., 2016). 
Having said that, we prefer to think of fellow researchers in more 

20 https://antonio-schettino.com/post/2019-07-23-prereg-challenge/.  
21 See, for instance, two recent Nature (2020, 2017) editorials, the PLOS ONE 

article collection Missing Pieces (2015), the editorial by Munafò and Neill (2016) 
in the Journal of Psychopharmacology, as well as the submission guidelines of 
Meta-Psychology (https://open.lnu.se/index.php/metapsychology/about) and 
Royal Society Open Science (https://royalsocietypublishing.org/rsos/for-autho 
rs). 
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optimistic terms, motivated by higher goals than simply publishing as 
much as possible (although we might, admittedly, be hopelessly naive; 
Chapman et al., 2019; DeDeo, 2020). We also point out that premedi-
tated approaches to exploit the vulnerabilities of a system can hardly be 
reconciled with claims that mistakes were made in good faith due to 
ignorance or procedural complexity: researchers engaging in such be-
haviors (if proven) would consciously commit fraud, and responsible 
institutions should be contacted and deliver appropriate sanctions. 

5. Conclusion 

The adoption of a new procedure can be met with resistance, 
particularly if the benefits are unclear, the amount of work is perceived 
as too onerous, and training and guidance are lacking. In this paper, we 
argue that preregistering EEG projects can effectively facilitate the 
transparent reporting of data preprocessing and analysis choices, 
thereby improving study replicability and the verifiability of published 
knowledge. The time spent writing a preregistration is saved at later 
stages, because the information included in a comprehensive protocol is 
required at the time of publication. Ready-made templates can serve as 
useful guidelines and facilitate the implementation of this practice in the 
research workflow. Combined with other open science practices – e.g., 
sharing study protocols, materials, raw data, and analysis code –, pre-
registration increases transparency in the research process and trust-
worthiness of the scholarly products not only for academic peers, but 
also other stakeholders in society (Jamieson et al., 2019). 
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Ioannidis, J.P.A., Munafò, M.R., Fusar-Poli, P., Nosek, B.A., David, S.P., 2014. 
Publication and other reporting biases in cognitive sciences: detection, prevalence, 
and prevention. Trends Cogn. Sci. 18, 235–241. https://doi.org/10.1016/j. 
tics.2014.02.010. 

Jamieson, K.H., McNutt, M., Kiermer, V., Sever, R., 2019. Signaling the trustworthiness 
of science. Proc. Natl. Acad. Sci. 116, 19231–19236 (doi:10/gf85w6).  

Jennings, R.G., Van Horn, J.D., 2012. Publication bias in neuroimaging research: 
implications for meta-analyses. Neuroinformatics 10, 67–80. https://doi.org/ 
10.1007/s12021-011-9125-y. 

Jiang, X., Bian, G.-B., Tian, Z., 2019. Removal of artifacts from EEG signals: a review. 
Sensors 19, 987. https://doi.org/10.3390/s19050987. 

John, L.K., Loewenstein, G., Prelec, D., 2012. Measuring the prevalence of questionable 
research practices with incentives for truth telling. Psychol. Sci. 23, 524–532. 
https://doi.org/10.1177/0956797611430953. 

Jones, P.M., Chow, J.T.Y., Arango, M.F., Fridfinnson, J.A., Gai, N., Lam, K., Turkstra, T. 
P., 2017. Comparison of registered and reported outcomes in randomized clinical 
trials published in anesthesiology journals. Anesth. Analg. 125, 1292–1300. https:// 
doi.org/10.1213/ANE.0000000000002272. 

Judd, C.M., McClelland, G.H., Ryan, C.S., 2017a. Data Analysis: A Model Comparison 
Approach to Regression, ANOVA, and Beyond, 3 edition. Routledge, New York.  

Judd, C.M., Westfall, J., Kenny, D.A., 2017b. Experiments with more than one random 
factor: designs, analytic models, and statistical power. Annu. Rev. Psychol. 68, 
601–625. https://doi.org/10.1146/annurev-psych-122414-033702. 

Kaplan, R.M., Irvin, V.L., 2015. Likelihood of null effects of large NHLBI clinical trials has 
increased over time. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0132382. 

Kappenman, E.S., Luck, S.J., 2010. The effects of electrode impedance on data quality 
and statistical significance in ERP recordings. Psychophysiology 47, 888–904. 
https://doi.org/10.1111/j.1469-8986.2010.01009.x. 

M. Paul et al.                                                                                                                                                                                                                                    

https://doi.org/10.1111/psyp.13437
https://doi.org/10.1111/psyp.13437
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0165
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0165
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0170
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0170
https://osf.io/bpt5s
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0180
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0180
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0180
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1177/0956797613504966
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0190
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0190
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0190
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0195
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0200
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0200
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0200
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0205
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0205
https://doi.org/10.1101/2020.04.26.048306
https://doi.org/10.1101/2020.04.26.048306
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0215
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0215
https://doi.org/10.3389/fnins.2019.01068
https://doi.org/10.3389/fnins.2019.01068
https://osf.io/uf59a
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0235
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0235
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0240
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0240
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0240
https://doi.org/10.1073/pnas.1602413113
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0250
https://doi.org/10.1177/1745691620970586
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0260
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0260
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0260
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0265
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0265
https://doi.org/10.1016/0013-4694(91)90062-9
https://doi.org/10.1016/0013-4694(91)90062-9
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0275
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0275
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0280
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0280
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0285
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0285
https://doi.org/10.1098/rsos.181351
https://doi.org/10.1098/rsos.181351
https://doi.org/10.1111/psyp.13468
https://doi.org/10.1016/0013-4694(96)95135-4
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0305
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0305
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0305
https://doi.org/10.1038/549133a
https://doi.org/10.1038/549133a
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0315
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0315
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0315
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0320
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0320
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0320
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0325
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0325
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0325
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0325
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0330
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0330
https://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
https://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
https://doi.org/10.1186/s41073-020-00096-x
https://doi.org/10.1016/j.socec.2004.09.033
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0350
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0350
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0350
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0350
https://doi.org/10.1111/j.1469-8986.2011.01273.x
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1177/1745691620970585
https://doi.org/10.1146/annurev-clinpsy-050718-095457
https://doi.org/10.1146/annurev-clinpsy-050718-095457
https://doi.org/10.1097/SLA.0b013e3182864fa3
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0380
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0380
https://doi.org/10.2514/3.44330
https://doi.org/10.1038/s41562-018-0444-y
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0395
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0395
https://doi.org/10.1007/978-94-015-3994-4
https://doi.org/10.3758/s13423-020-01803-x
https://doi.org/10.1016/B978-0-444-64032-1.00036-9
https://doi.org/10.1016/B978-0-444-64032-1.00036-9
https://osf.io/yajkz/
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0420
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0420
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0425
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0425
https://doi.org/10.1038/d41586-020-00530-6
https://doi.org/10.1038/d41586-020-00530-6
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1097/EDE.0b013e31818131e7
https://doi.org/10.1016/j.tics.2014.02.010
https://doi.org/10.1016/j.tics.2014.02.010
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0450
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0450
https://doi.org/10.1007/s12021-011-9125-y
https://doi.org/10.1007/s12021-011-9125-y
https://doi.org/10.3390/s19050987
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1213/ANE.0000000000002272
https://doi.org/10.1213/ANE.0000000000002272
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0475
http://refhub.elsevier.com/S0167-8760(21)00074-X/rf0475
https://doi.org/10.1146/annurev-psych-122414-033702
https://doi.org/10.1371/journal.pone.0132382
https://doi.org/10.1111/j.1469-8986.2010.01009.x


International Journal of Psychophysiology 164 (2021) 52–63

62

Kass, R.E., Raftery, A.E., 1995. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (doi:10/ 
gdnbw3).  
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Kidwell, M.C., Lazarević, L.B., Baranski, E., Hardwicke, T.E., Piechowski, S., 
Falkenberg, L.-S., Kennett, C., Slowik, A., Sonnleitner, C., Hess-Holden, C., 
Errington, T.M., Fiedler, S., Nosek, B.A., 2016. Badges to acknowledge open 
practices: a simple, low-cost, effective method for increasing transparency. PLoS 
Biol. 14, e1002456 https://doi.org/10.1371/journal.pbio.1002456. 

Klawohn, J., Meyer, A., Weinberg, A., Hajcak, G., 2020. Methodological choices in event- 
related potential (ERP) research and their impact on internal consistency reliability 
and individual differences: an examination of the error-related negativity (ERN) and 
anxiety. J. Abnorm. Psychol. 129, 29–37. https://doi.org/10.1037/abn0000458. 

Kraemer, H.C., Mintz, J., Noda, A., Tinklenberg, J., Yesavage, J.A., 2006. Caution 
regarding the use of pilot studies to guide power calculations for study proposals. 
Arch. Gen. Psychiatry 63, 484 (doi:10/bqq4s2).  

Kruschke, J.K., 2014. Doing Bayesian Data Analysis: A Tutorial With R, JAGS, and Stan, 
2nd edition. Academic Press, Boston.  

Kruschke, J.K., Liddell, T.M., 2017. The Bayesian new statistics: hypothesis testing, 
estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. 
Bull. Rev. 25, 178–206. https://doi.org/10.3758/s13423-016-1221-4. 

Kunda, Z., 1990. The case for motivated reasoning. Psychol. Bull. 108, 480–498. https:// 
doi.org/10.1037/0033-2909.108.3.480. 

Kutas, M., Federmeier, K.D., 2011. Thirty years and counting: finding meaning in the 
N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 62, 
621–647 (doi:10/c4tfhz).  

Kutas, M., Hillyard, S.A., 1980. Reading senseless sentences: brain potentials reflect 
semantic incongruity. Science 207, 203–205 (doi:10/ffh9zj).  

Lakens, D., 2017, March 14. Will knowledge about more efficient study designs increase 
the willingness to pre-register? https://doi.org/10.31222/osf.io/svzyc. 

Lakens, D., 2019. The value of preregistration for psychological science: a conceptual 
analysis. Jpn. Psychol. Rev. 62, 221–230. 

Larson, M.J., 2016. Commitment to cutting-edge research with rigor and replication in 
psychophysiological science by Michael J. Larson. Int. J. Psychophysiol. 102, ix–x. 
https://doi.org/10.1016/S0167-8760(16)30038-1. 

Larson, M.J., Carbine, K.A., 2017. Sample size calculations in human electrophysiology 
(EEG and ERP) studies: a systematic review and recommendations for increased 
rigor. Int. J. Psychophysiol., Rigor Replication: Towards Improved Best Pract. 
Psychophysiol. Res. 111, 33–41. https://doi.org/10.1016/j.ijpsycho.2016.06.015. 

Law, S.K., Nunez, P.L., Wijesinghe, R.S., 1993. High-resolution EEG using spline 
generated surface Laplacians on spherical and ellipsoidal surfaces. IEEE Trans. 
Biomed. Eng. 40, 145–153. https://doi.org/10.1109/10.212068. 

Leon, A.C., Davis, L.L., Kraemer, H.C., 2011. The role and interpretation of pilot studies 
in clinical research. J. Psychiatr. Res. 45, 626–629 (doi:10/cmhgtj).  

Levelt, W.J.M., Drenth, P., Noort, E. (Eds.), 2012. Flawed Science: The Fraudulent 
Research Practices of Social Psychologist Diederik Stapel. Commissioned by the 
Tilburg University, University of Amsterdam and the University of Groningen, 
Tilburg.  

Liu, Q., Balsters, J.H., Baechinger, M., van der Groen, O., Wenderoth, N., Mantini, D., 
2015. Estimating a neutral reference for electroencephalographic recordings: the 
importance of using a high-density montage and a realistic head model. J. Neural 
Eng. 12, 056012 https://doi.org/10.1088/1741-2560/12/5/056012. 

Luck, S.J., 2014. An Introduction to the Event-Related Potential Technique, 2nd edition. 
Bradford Books, Cambridge, Massachusetts.  

Luck, S.J., Gaspelin, N., 2017. How to get statistically significant effects in any ERP 
experiment (and why you shouldn’t). Psychophysiology 54, 146–157. https://doi. 
org/10.1111/psyp.12639. 

Lupia, A., Elman, C., 2014. Openness in political science: data access and research 
transparency: introduction. PS Polit. Sci. Polit. 47, 19–42 (doi:10/b42w).  

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data. 
J. Neurosci. Methods 164, 177–190 (doi:10/dt923p).  

McElreath, R., 2018. Statistical Rethinking: A Bayesian Course with Examples in R and 
Stan. Chapman and Hall/CRC. https://doi.org/10.1201/9781315372495. 

McKiernan, E.C., Bourne, P.E., Brown, C.T., Buck, S., Kenall, A., Lin, J., McDougall, D., 
Nosek, B.A., Ram, K., Soderberg, C.K., Spies, J.R., Thaney, K., Updegrove, A., 
Woo, K.H., Yarkoni, T., 2016. How open science helps researchers succeed. eLife 5, 
e16800. https://doi.org/10.7554/eLife.16800. 

McPhetres, J., 2020. What Should a Preregistration Contain? (Preprint). PsyArXiv. 
https://doi.org/10.31234/osf.io/cj5mh. 

Meehl, P.E., 1967. Theory-testing in psychology and physics: a methodological paradox. 
Philos. Sci. 34, 103–115 (doi:10/d7nnf3).  

Mensen, A., Khatami, R., 2013. Advanced EEG analysis using threshold-free cluster- 
enhancement and non-parametric statistics. NeuroImage 67, 111–118 (doi:10/ 
ghffpj).  

Mertens, G., Krypotos, A.-M., 2019. Preregistration of analyses of preexisting data. 
Psychol. Belg. 59, 338–352. https://doi.org/10.5334/pb.493. 

Merton, R.K., 1942. A note on science and democracy. J. Leg. Polit. Sociol 1, 115–126. 
Michel, C.M., He, B., 2019. EEG source localization. Handb. Clin. Neurol. 160, 85–101. 

https://doi.org/10.1016/B978-0-444-64032-1.00006-0. 
Michel, C.M., Koenig, T., 2018. EEG microstates as a tool for studying the temporal 

dynamics of whole-brain neuronal networks: a review. NeuroImage 180, 577–593. 
https://doi.org/10.1016/j.neuroimage.2017.11.062. 

Morey, R., Rouder, J., Love, J., Marwick, B., 2015. BayesFactor: computation of bayes 
factors for common designs. Zenodo. https://doi.org/10.5281/ZENODO.31202. 

Morey, R.D., Chambers, C.D., Etchells, P.J., Harris, C.R., Hoekstra, R., Lakens, D., 
Lewandowsky, S., Morey, C.C., Newman, D.P., Schönbrodt, F.D., Vanpaemel, W., 
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