PHYSICAL REVIEW LETTERS 127, 051602 (2021)

Moving Mirrors, Page Curves, and Bulk Entropies in AdS,

Ignacio A. Reyes
Max-Planck-Institut fiir Gravitationsphysik, Am Miihlenberg 1, 14476 Potsdam, Germany

® (Received 10 March 2021; accepted 23 June 2021; published 29 July 2021)

Understanding the entanglement of radiation in quantum field theory has been a long-standing
challenge, with implications ranging from black hole thermodynamics to quantum information. We
demonstrate how the case of the free fermion in 1 4 1 dimensions reveals the details of the density matrix
of the radiation produced by a moving mirror. Using the resolvent method rather than standard conformal
field theory techniques we derive the Rényi entropies, modular Hamiltonian, and flow of the radiation and
determine when mirrors generate unitary transformations.
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Introduction.—It is well known that the physics of
moving mirrors in quantum field theory is intimately
connected—and in some cases equivalent—to the thermo-
dynamics of black holes. This relation has proven very
fruitful, as the former does not require involved geometric
considerations but rather only some fundamental notions
about quantum fields.

Two main strategies have been traditionally used in this
subject. The first one consists of studying the global
properties of the asymptotic state and resembles more
closely Hawking’s original calculation [ 1-8]. More recently,
techniques coming from gauge-gravity duality, specifically
the Ryu-Takayanagi formula and its generalizations [9-11],
allow translation of the problem into gravitational physics in
a higher dimensional space [12—14]. This second approach
relies strongly on methods of conformal field theory. Yet
despite significant progress, some important questions
remain open.

Often the above approaches are restricted to studies of
entanglement entropy. However, a quantum state is not
determined only by its entanglement entropy. What one
would like to figure out is the structure of the density matrix
itself as the system evolves. This means that we seek to
understand the correlations between arbitrary subsystems
of the radiation, a property that is neither global nor fixed
by conformal symmetry. In this work we do precisely this
for a very simple system: the chiral fermion in 141
dimensions with a reflecting boundary. The advantage is
that here we have the luxury of using the method of the
resolvent [15].
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Finding the Rényi entropies is particularly important in
connection with the information paradox. Indeed, unitarity
requires that not only the von Neumann entropy but all
Rényi entropies follow a Page curve. We will see under
which conditions this is true for moving mirrors and
quantify the correlations between the early and late
radiations. A key ingredient will be the entanglement
between the two chiralities created by the mirror.

We begin by specifying the physical system and stating
the questions we wish to address.

Fermions and mirrors.—We consider the standard mass-
less Dirac action over a patch M of 1+ 1-dimensional
Minkowski spacetime. As usual, using light cone coordi-
nates x* = ¢ + x this reads

i
I=3 / dxdi(y 0, y_+wlo_w,). (1)
M

We are interested in the case when M has a boundary
OM along a worldline specified by a differentiable mono-
tonically increasing function

Xt =g(x7), )

and we will demand ¢ > 0 so that its trajectory is causal.
For definiteness, we choose the physical region to be that
on the right of the boundary, so that incoming (outgoing)
modes correspond to left (right) movers y, (y_).

For any equations of motion to follow from an action
principle, we must require that the action has an extremum.
On variation, the action gives oI = f v €.0.m. + B. The
first term involves the equations of motion so it vanishes
whenever 8jtl,1/qE = (0, while the second term is a total
derivative,

B=5 / dx~(yloy_ — g (x)yloy.) +He. (3)
oM
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and must be required to vanish. A natural condition that
achieves B = 0 is that M acts as a “mirror” by imposing
reflecting boundary conditions,

w-(x7) = eV g (7w (9(x7)). (4)

Incoming modes reaching the boundary (mirror) are
reflected as outgoing modes, the choice ¢ = +1 corre-
sponding to whether the wave flips orientation on
reflection.

We will not consider standard boundary conformal field
theory (BCFT) [16] because arbitrary mirror trajectories in
general break all conformal symmetries. In other words, the
boundary conditions (4) are not ‘“conformal boundary
conditions”: although the stress tensor remains traceless
due to the equations of motion, its parallel-perpendicular
component—which measures the energy flowing away
at the boundary—does not vanish but is governed
by the anomaly. If the incoming state is the vacuum, this
gives

T i = 1 B

where Sg stands for the Schwarzian derivative. Thus energy
will be injected or extracted to or from the system by the
moving mitror, similar to what the gravitational field does
to the quantum fields outside the horizon. As initial data,
we must provide the quantum state on some Cauchy
surface. For simplicity we focus on mirrors that were
asymptotically static in the past, so that the incoming state
is well defined along past null infinity Z7; see Fig. 3.

In a free theory, the two-point function plays a major
role. Throughout the text we denote by

G(x.y) = (w  (x)w} () (6)

the incoming-incoming (left-left) correlation function, i.e.,
the initial data on Z%. Here x, y are spatial coordinates
along a Cauchy slice as described below. Although our
analysis is valid for a larger class of Gaussian states, we
focus on incoming equilibrium states. This simplifies the
discussion and emphasizes the role of the mirror rather than
the initial data. An incoming state prepared on 7 at inverse
temperature S is given by

1
G(x,y) = 2ifsinh [z(x —y)/p] .

Because both chiralities are involved, we must consider
the correlation matrix for the Dirac spinor ¥ = (y_,y_),

Gloro) = (B () = (07 7). ®

where G;; = (1//,1;/}) with i, j = 4. Two-dimensional
spinor matrices are denoted in boldface. While G, is
initial data, the boundary conditions (4) determine the
remaining entries of the correlator in terms of G:

Gyy = el (=1) 62141 (1)} (3) Glai (). ;)
©)

where we have defined ¢, (x) =x™, g_(x) = g(x7).

We now choose an incoming state specified by (7) and a
mirror trajectory specified by g(-). Together these deter-
mine a global state py on each Cauchy slice X; see Fig. 1.
We now choose a subregion V' C X consisting of N disjoint
intervals V =U, (a,, by) with £ =1,...,N and wish to
compute the reduced density matrix

pv = Try(ps) (10)

obtained by tracing out the complement of V along X. For
simplicity we restrict to Cauchy slices of constant time, the
generalization being straightforward [17].

Here is where having a free theory comes in handy [18].
For free fermions, it is sufficient that py reproduces the
correlator G(x,y) = try[py¥(x)¥'(y)] for x,y € V. Now
any state can be written as py = e~Xv, where K is called the
modular Hamiltonian. For Gaussian states this takes a
quadratic form,

K= / dxdy W' (K (x. y)¥(y) (11)
V2
with kernel [18]

zt=g(z") v
' N

t

-
Yy T_' z

g -
oM

FIG. 1. Evolution of an entangling region V for a given mirror
trajectory. The Rényi entropies of V depend on the mirror only
through the position and velocity at the null projections of the

region’s boundary, as exemplified in (18). Thus if these return to
their original values, the mirror produces unitary transformations.
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k = —log (G~ = 1). (12)

Here and below G(x, y) is taken as a linear operator acting
on smooth functions supported on V via convolution.

This translates the problem of finding the reduced
density matrix into that of computing functions of G on
V, but with both chiralities simultaneously. This sets the
stage for the application of the resolvent method, a
technical tool that is reviewed in the Supplemental
Material [19]. The basic idea is that to compute functions
of an operator one can use Cauchy’s integral formula,

szdz— (13)

where y encircles the spectrum of G. The operator
(A—G)7! is called the resolvent of G.

The simplest application of this method is to compute the
entropies, to which we now turn.

Entropies.—The entanglement Rényi entropies are
defined as

1 Tr(p"
1—n °(Trp)"
For the free fermion, it is easy to show that
log Tr(p") = Trlog [G" + (1 — G)"]. (15)

In the Supplemental Material [19] we show how to use the
resolvent to compute these expressions. After the dust
settles, the final result for the Rényi entropies is

n+1

s log = , (16)
24n = Qlg(x7)][oy,
where
N -
S
721 Glx, af [x, 9(b7)]
and we have introduced the region V5 =U, (a, + 8, b, —

§) with a very small § > 0 to regularize the UV divergen-
ces. Throughout the Letter all n dependence of Rényi
entropies appears as an overall factor.

Here it is illustrative to look at a specific example.
Consider the vacuum as an incoming state and a single
interval (a,b) at time ¢ but leaving the mirror trajectory
arbitrary. The entropies (16) yield

b —g(b7)

1 b—apr—oa) ) —gqg(b™
st = nr log 2az+_y2b'; g(a/ )— g/( _) . (18)
120 & ) b (@)

This result is remarkably simple. It depends on the mirror
position g and velocity ¢ only at a™, b, i.e., where the null
projections of OV intersect the mirror trajectory; see Fig. 1.

This gives rise to a unitarity criterion in the following
way. Consider a fixed interval (a, b) together with a mirror
trajectory g(¢). If the position and velocity of the mirror at
the null projections of OV are identical at #; and f,, then all
entropies (18) at #; are equal to those at #,, and the mirror
generates states related by a unitary transformation

Upylg(t)]U" = pylg(t)]. (19)
The behavior of the mirror anywhere else is irrelevant. This
case is depicted in Fig. 1. Here it is crucial to observe that,
even if all the Rényi entropies coincide, the states
pvlg(t12)] can be very different. Indeed, Gaussian states
are determined by their correlation functions, and two
different mirrors with identical g(a™), g(b™), ¢ (a™), ¢ (b™)
produce the same entropies but different correlators.

A useful tool to quantify unitarity questions is the mutual
information, as we show next.

Mutual information: Mutual information (MI) is defined
as  I(V{|Vy) = SW(V) + 8D(Vy) =SV, uV,). It
measures the inherent correlations between V; and V,
and is a better quantifier of correlations than entropy
because it is UV finite. From (16) we find that the
mutual information in the presence of a moving mirror
decomposes as

1
glog o. (20)

I=1 plane +
The first term is the usual mutual information of two
independent chiralities on the plane (no boundary), while
the second term is the new contribution due to the mirror.
To illustrate them, let us consider the simple case of the
vacuum as incoming state. Then, we have as usual
Loiane = ¢log{[(ar — ay)(by = by)]/[(b2 — a1)(az — by)]}-
The novel term due to the mirror is given by

It is noteworthy that although the individual entropies (18)
depend on the mirror velocity ¢, mutual information is
independent of it. The velocity dependence arises via the
UV divergences, which mutual information is devoid of by
construction.
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For example, for the static mirror, (21) is given by

#(a,+by) sinh z(ar+b,)

b b
sinh ”(“‘;“2) sinh ”(b‘/;rbZ) . (22)

sinh

WRHP =

In the examples below, mutual information will prove
useful to quantify the violation of unitarity produced by
different mirrors. Having understood the entropies, we now
move on to another important aspect dealing with the action
of the density matrix itself.

Modular  Hamiltonian and  flow.—The modular
Hamiltonian (11) defines the modular flow, an automor-
phism of the algebra of observables supported on the causal
region associated to V. For any operator O, it is defined by
evolving with the modular Hamiltonian

6.(0) = e7KQOeK, (23)

with 7 the “modular time.” The simplest flow to study is
that of the fundamental field itself. Using the tools in [20],
we find that

o (i) = / dyZ, (e ) (v) (24)

with the modular kernel £ = (G~! — 1)~. And once more
the resolvent allows to compute this; the result is

X, = 2xisinh(z7)6(Z[q;(x)] = Z[q;(x)] = 7)Gy;(x. y).

(25)

To understand the locality properties of the flow, we
must examine the number and nature of the solutions to

Zlg;(x)] = Z[g;(y)] =7 = 0. (26)

For our purposes only one property of the function Z(-)
is relevant: Z(g;) for i = £ increases/decreases monoton-
ically from +oo to F oo in each interval of V. Therefore,
there exists a unique solution to (26) in each interval as
follows. For equal chiralities, i = j, we call the solutions
v¢(x), where £ labels the interval. These are similar to those
already encountered in [15,20-22], and include the local
solution y = x. For opposite chiralities i = —j, we have a
novel set of solutions that we call y_, to indicate that they
are associated with a change in chirality.

Introducing the kernel (25) into (24) yields the explicit
form of the modular flow:

Z(qi()) = Z(q;(y)) + 7

\ lo( al
z

a \ by a \ by Y

FIG. 2. Tllustration of the modular evolution governed by (24),
for two disjoint intervals and a static mirror and incoming
vacuum. We plot (26) for equal and opposite chiralities (this is
not a spacetime diagram). The modular flow of w;(x) yields, at
each interval, contributions of both chiralities y,; located at the
points y,.(x) that are solutions to (26) (colored circles).
Evolution in modular time 7 shifts the curves vertically, and
the roots evolve accordingly. The root at y, is the local (geo-
metric) solution, with y, - x as 7 —» 0. Here ¢, =1, b; =2,
a, = 3, bz =5.3.

boundary

i x yf [yf(x)]
o.|wi(x)] = 2z sinh(z7) <
[ ( )] |8 Z yql )|y:)7/’(x)

1 l['x V- f(x)]l//— [y f( )])
|8 Z( )ayq z(y)lv =y_s(x) .

(27)

Modular flow takes the field of chirality i at point x and
evolves it to two points on each interval: a contribution of
the same chirality located at y,(x) and another with
opposite chirality located at y_,(x); see Fig. 2.

After these formal developments, we turn our attention to
some specific examples of mirror trajectories that are of
particular physical interest.

Examples of mirrors.—A static mirror: As our simplest
example, consider a single interval on the right half plane
(RHP), i.e., a static boundary at x = 0. This does give rise
to a conformal boundary condition where (5) vanishes. For
the vacuum as incoming state, the Rényi entropies (16) give

) n—+1 b—a\? 4r
- log (222} 4+ log— 2
Srup 2n {og( 5 + 0g(r+ 2]’ (28)

where r = b/a. These agree with those reported in [23]
recently. The first term is simply twice the universal
entropy of a single chirality, while the second one is due
to the mirror. If the incoming state is thermal, the entropies

are instead
m n+1 p . w(b—a)\? 47
Skrp = 1 Z sinh——~ log — .
RHP = 75, ‘:Og <n65”1 ; ey
(29)

where 7 = tanh[(2za)/p]/ tanh[(2zb)/f]. Notice that the
second term in both (28) and (29) is always negative so the
mirror lowers the entropy of the system.
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Moving now to the modular flow, the case of two
intervals V = (a;,b;) U (ay, b,) is depicted in Fig. 2.
As we saw above, Eq. (26) determines which points are
coupled along the flow. In this case (26) is a quartic
equation yielding four real solutions y.;,. For more
intervals, the situation is completely analogous, involving
two points per interval.

From vacuum to thermal and back: Next, we focus on
an accelerating trajectory that shares the characteristic
feature of Hawking radiation, namely that the outgoing
state measured at Z is thermal. In our moving mirror
setup, there is a unique mirror profile that takes an
incoming vacuum and renders the outgoing modes in a
thermal state. This is

g(x7) = gtanh (% x‘) vacuum — thermal.  (30)
Because this trajectory becomes null also in the remote past
producing singularities, its early stage must be replaced by
a timelike one as we have mentioned above; see Fig. 3. As
is well known [2], this class of trajectories is closely related
to the exterior region of a black hole formed by collapse,
with the associated problem of information loss.

Interestingly, the converse effect is also possible:
given an incoming thermal state, any trajectory that
asymptotes to the inverse function, namely g(x7) =
(p/m)arctanh|[(z/f)x~], takes a thermal state and reflects
it as the vacuum.

Mirror with uniform acceleration: Our final example is
a mirror moving with constant proper acceleration. The
mirror stands static at x = —R until = 0 when it begins to
accelerate at a constant rate away from the physical region,
following the Rindler trajectory > — x> = —R? correspond-
ing to

gm(x™) = —R*/x". (31)

Although qualitatively this profile is similar to g,, it
exhibits an important difference. The Rényi entropies for
t> b — R read

G "t 1 {log <b - a> 2 +2R2 —(a+b)*R*+2(ab)?

12n 5 r*
(32)

This result displays an interesting feature. Notice the first
term is identical to the vacuum Rényi entropy of two
independent chiralities, as if the mirror was not present. In
the asymptotic future, the second term vanishes. Thus the
original entanglement between the two chiralities, created
by the static mirror, is “erased” exactly by the accelerating
mirror, leaving two unentangled chiralities. This is also
seen directly by looking back at the correlation matrix
itself, for in the limit t — oo

G.z -0 for gy, (33)

so that the correlations between left and right movers
vanish. Because opposite chiralities are not entangled with
each other any more on V, they become more entangled
with the complement, which has the effect of increasing the
entropy. This is a hallmark of nonunitarity: the entropy in
the distant future is larger than its counterpart in the
remote past.

Page curves from mutual information:()How can we
capture the correlations between the early and late radia-
tion? Consider again two fixed disjoint regions V = V| U
V, as depicted in Fig. 3. We will compare two mirror
trajectories that remain static until # = 0, when they begin
to move. The first is g,, already introduced, which scatters
the vacuum into a thermal outgoing state. The second, gy,
follows g, for some time but then deviates from it in order to
smoothly return to the static path. The precise functional
form of gy is irrelevant.

In principle one could simply track the entropies of these
regions of space as they evolve in time as done above.
However, this approach is not completely satisfactory. First,
Rényi entropies are not well defined in the UV. Moreover, if
we wish to keep track of all the radiation that has escaped to
infinity, we must consider an unbounded spatial subregion,
which introduces yet another divergence.

unitary

non-unitary

FIG. 3. Two different mirror trajectories with entangling region
V =V, U V,. Although the incoming and outgoing states pj; /ou
are very different, unitarity means that their Rényi entropies on
arbitrary V match. Illustrated are g, and g;; from the main text: the
former starts to accelerate, becoming asymptotically null, de-
scribing a nonunitary process. The latter follows the former for
some time before returning to its original trajectory and respects
unitarity.
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—— g1, hon-unitary g11, unitary

1(V1[Vz)

10 20 30
FIG. 4. Evolution of mutual information (20) between the
regions V; and V,, for the two mirror trajectories depicted in
Fig. 3, measuring the amount of correlations between the early
and late radiation. MI returns to its original value for trajectory g,
whereas it does not for g;. The loss of correlations Al given in
(34) serves to quantify unitarity violation. Here a; =0, b; =1,
a, =3, b, = 10° with # =7 in (30).

These problems are remedied by considering mutual
information instead. MI is always finite: it is by construc-
tion free from UV divergences, and in addition we can
safely take the limit b, — oo that stretches all the way to
spatial infinity. Furthermore, MI has the natural physical
interpretation that we seek: it measures the correlations
between the early radiation (collected in V,) and the late
radiation (contained in V).

In Fig. 4 we plot the evolution of the MI between the
early and late radiation as a function of time. Clearly for
the trajectory g,, there is a loss of correlations between the
late and early radiation compared to trajectory gy, which
is unitary. The asymptotic difference in MI, Al =
lim,_, o, lim, o I, (V1|V2) =1, (V|V,)], can be used to
quantify the violation of unitarity as a function of the
temperature of the outgoing radiation and reads

A — llog (a2 — al)(az + b])z(eKz’mZ)/ﬂ] — e[(2”b1>/ﬁ]> .
3 (az — bl)(al + a2)2<e[(2”a2)/ﬁ] — e[(Z”‘Il)/ﬁ])

(34)

It increases monotonically until
temperature.

Conclusion.—In this Letter we have investigated the
entanglement in the radiation produced by a moving mirror
using analytic techniques. The main physical effect of
introducing a reflecting boundary is that of entangling the
two chiralities. This shows up as extra terms in the Rényi
entropies and in the modular flow as additional bilocal
couplings due to chirality exchange. We found that for a
static mirror, the entanglement among the chiralities always
decreases the entropies. It would be very interesting to

saturating at high

understand this in the context of monogamy of entangle-
ment in quantum field theory [24].
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