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This paper starts by deriving a factorization of the Loewner matrix pencil that appears
in the data-driven modeling approach known as the Loewner framework and explores its
consequences. The first is that the associated quadruple constructed from the data yields
a model without requiring further processing. The second consequence is related to how
sensitive the eigenvalues of the Loewner pencil are to perturbations. Based on an explicit
generalized eigenvalue decomposition of this pencil and by making use of perturbation
theory of matrix pencils, we explore two types of eigenvalue sensitivities. The first one is
defined with respect to unstructured perturbations of the Loewner pencil, while the second
one is defined for structured perturbations. We also discuss how the choice of data affects
the two sensitivities.
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1 Introduction

In many practical applications from science and engineering fields, it is common to model certain phys-
ical complex phenomena by means of dynamical systems. In some cases, the number of variables that
characterize such systems is very high and does not permit feasible online simulation, nor performing
fast controlling tasks. Hence, the need for approximating the original large-scale complex model with
a much smaller and simpler model that allows the total computational effort to significantly decrease.
Model order reduction (MOR) methods accomplish precisely this goal. Over the years, significant effort
has been allocated to refining, optimizing and also including data assimilation in MOR methods. We
refer the reader to the following books [1,6,9,25] for more details on various reduction methodologies.

The Loewner framework is a data-driven modeling and complexity reduction method that can be
used to learn models of dynamical systems from measurements of their transfer function. It was
originally introduced in [23] and it was steadily developed over the last decade. For linear systems,
extensions of the method were proposed to cope with singular or rectangular systems in [5], with
parametric systems in [17], and with preservation of the DAEs (differential algebraic equations) in
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[15]. Moreover, in recent years, several works have been made to extend the Loewner framework to
certain classes of nonlinear dynamical systems, such as bilinear systems in [4], switched systems [13],
and quadratic-bilinear systems in [3,14]. For a comprehensive view on the Loewner framework we refer
the reader to [5, 18].

One important feature of the Loewner framework consists in the fact that it does not need an exact
description of the original dynamical system to start with, which is typically described by ordinary or
partial differential equations (ODEs, PDEs). Instead of having full access to the coefficient matrices
that scale these equations, one requires only transfer function measurement values. These data can
be inferred from time-domain snapshots via spectral transforms (see [19, 24] for details) or directly
measured with electronic devices (see [5, 20] for details). Finally, by arranging the given data in a
specific way, one can construct with basically no computational effort a realization (dynamical system)
that explains the data. The Loewner pencil plays a central role in the system realization constructed
by the Loewner framework. More precisely, the two Loewner matrices that enter the pencil represent
the coefficient matrices that sc ale the internal variable vector and its derivative. Consequently, the
eigenvalues of the pencil are the poles of the surrogate Loewner model and are used to characterize
the dynamics of the system.

We first derive an explicit eigenvalue decomposition (EVD) of the Loewner pencil based on a general
factorization of the Loewner/shifted Loewner matrices. It was previously shown that the Hankel
matrix can be factorized in terms of matrices with special structure, e.g., Vandermonde matrices,
in [7, 12, 16]. Similarly, the Loewner matrix can also be factorized in terms of generalized Cauchy
matrices, as shown in [28]. We will show that the factors given by the generalized Cauchy matrices are
actually Krylov projection matrices for a particular system realization. Using the factorization of the
generalized Loewner matrix, the EVD of the Loewner pencil is hence available. Based on this EVD
and on eigenvalue perturbation theory for matrix pencils, some theoretical aspects of the Loewner
pencil perturbation are derived.

To study the sensitivity of eigenvalues in different situations, two kinds of Loewner pencil perturba-
tions are considered. The first one is unstructured perturbation and the perturbation quantities are
given by random matrices. The sensitivity ρ with respect to unstructured perturbation is introduced.
It is shown that ρ is connected to the condition numbers of the associated generalized Cauchy matri-
ces; ρ is hence an useful tool for sensitivity analysis of the Loewner pencil, e.g., in the computation
of pseudospectra [11, 27]. The second case analyzed in this work considers structured perturbation
that usually arises due to noisy data. Because of the special structure of the Loewner matrix, the
perturbation matrices of the Loewner pencil are also structured. Some previous works, such as the
ones in [10,21], have already studied the effects of noisy measurements in the Loewner model. In this
work, we provide a new analysis that takes into consideration the pole sensitivity of the Loewner model
with respect to perturbation of data. The sensitivity defined with respect to structured perturbation
is denoted with η. Both sensitivities are influenced by the choice of data.

The paper is organized as follows; Section 2 shows a general factorization of the Loewner pencil
and derives an explicit generalized eigenvalue decomposition of the pencil. Next, in Section 3 we
show a number of factorizations for the Loewner pencil, depending on different measurements or on
different system realizations. Section 4 defines sensitivities ρ and η with respect to the unstructured
and structured perturbations. Furthermore, the consequences resulting from these sensitivities are
discussed. Section 5 includes numerical examples and discussions to illustrate the consequences of the
sensitivities for the different test cases. Conclusions are given in Section 6.
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2 The Loewner matrix pencil and its properties

We consider the linear time-invariant dynamical system Σ described by the following equations:

Σ ∶ Eẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (2.1)

where C ∈ Rp×n, E, A ∈ Rn×n, B ∈ Rn×m, is a minimal realization of Σ. Additionally, x(t) ∈ Rn

is the vector of internal variables, u(t) ∈ Rm is the input and y(t) ∈ Rp×1 is the output. Let
the associated resolvent of pencil (A,E) be Φ(s) = (sE − A)−1, and the transfer function of Σ be
H(s) = C(sE −A)−1B = CΦ(s)B. Given the interpolation conditions

`
T
i H(µi) = v

T
i , i = 1,⋯, q, and wj = H(λj)rj , j = 1, . . . , k, (2.2)

we refer to the left data (M,L
T
,V) and the r ight data (Λ,R,W), where

M = diag (µ1,⋯, µq) ∈ Cq×q, L = [`1 ⋯ `q]T ∈ Cp×q, V = [v1 ⋯ vq]T ∈ Cm×q, (2.3)

Λ = diag (λ1,⋯, λk) ∈ Ck×k, R = [r1 ⋯ rk] ∈ Cm×k, W = [w1 ⋯ wk] ∈ Cp×k. (2.4)

It is assumed here that the interpolation points µi, λj are mutually distinct. The Loewner framework
in [23] offers a simple solution to the problem of constructing a data-based surrogate linear model
with the same structure as in (2.1), that satisfies the conditions in (2.2). The answer is given by the
Loewner quadruple:

(W,L,Ls,V) ∈ Cp×k × Cq×k × Cq×k × Cq×m, (2.5)

where the Loewner matrix L ∈ Cq×k and the shifted Loewner matrix Ls ∈ Cq×k are defined as:

(L)i,j =
v
T
i rj − `

T
i wj

µi − λj
, (Ls)i,j =

µiv
T
i rj − `

T
i wjλj

µi − λj
. (2.6)

The Loewner quadruple is often referred to as the raw model of the data.
Let KL and KR be the associated left/right tangential rational Krylov projection matrices:

KL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

`
T
1 CΦ(µ1)

⋮

`
T
q CΦ(µq)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Cq×n, KR = [ Φ(λ1)Br1 ⋯ Φ(λk)Brk ] ∈ Cn×k, (2.7)

assumed to satisfy the condition that KLKR has full rank. In what follows, we will make use of the
M oore-Penrose generalized-inverse

1
. It is to be noted that the Drazin inverse could also be used, as

shown in [2].

Lemma 2.1. The following factorizations hold:

W = CKR ∈ Cp×k, L = −KLEKR ∈ Cq×k, Ls = −KLAKR ∈ Cq×k, V = KLB ∈ Cq×m. (2.8)

Consequently:

1. This factorization is rank revealing and the rank of L is equal to the McMillan degree n of Σ.
The entries of the Loewner quadruple (W,L,Ls,V), depend exclusively on values of the transfer
function H. Furthermore the following holds:

H(s) =W (Ls − sL)+ V (2.9)

where (⋅)+ denotes the Moore-Penrose generalized inverse of (⋅).

1
Given a matrix M ∈ Ck×`, its Moore-Penrose generalized inverse denoted by M

+
∈ C`×k, is the unique matrix

satisfying the conditions (a) MM
+
M =M, (b) M

+
MM

+
=M

+
, (c) (MM

+)∗ =MM
+
, (d) (M+

M)∗ =M
+
M. For

further, details see [26]
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2. An explicit generalized EVD (eigenvalue decomposition) of the Loewner pencil (Ls,L) results.
Let (λ, q̂, p̂) be a triple composed of an eigenvalue, and the right/left eigenvectors of (A,E).
Then λ is also an eigenvalue of the pencil (Ls, L), with corresponding right/left eigenvectors:

q = K+
Rq̂ and p

T
= p̂

TK+
L. (2.10)

It should be stressed that the above results hold irrespective of whether Ls − sL is singular or rect-
angular. Therefore the Loewner quadruple is a model of the data and there is no need for an explicit
projection.

Proof. Based on the definition of matrices KL and KR provided in (2.7), it follows that the (i, j) entry
of matrix KLEKR can be written as (for all 1 ≤ i ≤ q, 1 ≤ j ≤ k):

(KLEKR)i,j = `
T
i CΦ(µi)EΦ(λj)Brj = `

T
i CΦ(µi)

Φ
−1(λj )−Φ

−1(µi)
λj−µi

Φ(λj)Brj

=
1

λj−µi
( `Ti CΦ(µi)BÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

vTi

rj − `
T
i CΦ(λj)BrjÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

wj

) = v
T
i rj−`

T
i wj

λj−µi
.

Note that in the derivations above, the following identity was used E =
Φ
−1(µi)−Φ

−1(λj)
µi−λj

. From (2.6) it

indeed follows that L = −KLEKR. Similarly, we prove the other identities. These computations can
also be found in [23].

To show (2.9), we notice that because KL is full column rank and KR is full row rank, the generalized
inverse of (Ls − sL) is:

[KL(A − sE)KR]+ = KTR (KRKTR)
−1 (A − sE)−1 (KTLKL)

−1
KTL .

The desired result follows by multiplying this expression on the left by CKR and on the right by KRB,
i.e.

W (Ls − sL)+ V = CKR [KL(A − sE)KR]+KRB

= CKRK
T
R (KRKTR)

−1 (A − sE)−1 (KTLKL)
−1

KTLKRB = C(A − sE)−1B = H(s).

To show (2.10) notice that if (λ, q̂, p̂) is a triple composed of the eigenvalue, and the right/left
eigenvectors of (A,E), q = K+

Rq̂, is the right eigenvector of the Loewner pencil (Ls,L), corresponding
to the eigenvalue λ:

Lsq = −KLAKRq = −KLAKRK
+
Rq̂ = −KLAq̂ = −λKLEq̂ = λ (−KLEKR)K+

Rq̂= λLq.

The proof for the left eigenvector p follows in a similar way.

Remark 2.1. • If in (2.7), q and k are less that n, it is readily shown that the transfer function of
the projected system (2.8), interpolates the transfer function of the original system at µi, i = 1,⋯, q,
and λj, j = 1,⋯, k (see e.g. chapter 11 in [1]). In the general case q, k ≥ n, expression (2.9) shows
that if more than necessary interpolation conditions hold, then the original system is recovered. From
a practical point of view, it follows that the emergence of the Loewner matrix in (2.8) ensures that
its rank (or numerical rank) provides an estimate of the complexity of the underlying system. Hence
by establishing a connection between interpolatory projections and the Loewner matrix as in (2.8), we
obtain the additional advantage that the rank of L (exact or numerical) provides the complexity of the
ensuing reduced models. In addition, the projected matrices A and E (i.e. the Loewner pencil) provide
information about the poles of the reduced system. This fact will be used in the next sections to examine
the sensitivity of models to the choice of data and to perturbation in the data.
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3 The generalized Sylvester equation and its impact on factorizing
the Loewner pencil

Given the minimal realization (C,E,A,B) ∈ Rp×n×Rn×n×Rn×n×Rn×m, we consider the interpolatory

projection matrices KL ∈ Ck×n and KR ∈ Cn×q, k, q ≥ n, such that each has full rank and their product

KLKR ∈ Ck×q is non-singular. This means that Θ = KL(KRKL)+KR is a projector, i.e., Θ
2
= Θ.

The projected quantities are given by (2.8). The projection matrices KL and KR satisfy the following
generalized Sylvester equations:

MKLE −ΨKLA = L
T
C

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
(C,E,A) ∶ observable triple (w.r.t system)

(LT,Ψ,M) ∶ controllable triple (w.r.t data)

EKRΛ −AKR ∆ = B R
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

(E,A,B) ∶ controllable triple (w.r.t system)

(R,Λ,∆) ∶ observable triple (w.r.t data)

(3.11)

3.1 Deriving factorizations for different data choices

Next we list the projection matrices for some special cases of the data measurements. For simplicity,
we treat only the SISO case but all the derivations can be extended to MIMO by incorporating the
left and right tangential directions as described in the previous section.

3.1.1 Matching at finite values

In this case, let Λ,M be diagonal matrices, with mutually distinct interpolation points and ∆ =

Iq,Ψ = Ik, where In ∈ Rn×n is the identity matrix of dimension n. Additionally, let L = ITq , R = ITk ,

where In = [1 1 ⋯ 1]T ∈ Rn is a nth dimensional column vector of ones.

Recall that the system resolvent is denoted by Φ(s) = (sE −A)−1. Then, this corresponds to the
case presented in the previous section (the classical scenario encountered in the Loewner framework).
It follows that the following formulas hold true

KL =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CΦ(µ1)
⋮

CΦ(µq)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, KR = [ Φ(λ1)B ⋯ Φ(λk)B ] .

Matching at equal left and right points equal to minus the poles

Next, analyze the case for which the left and right interpolation points are equal to each other, and
equal to the mirrored poles of the system (w.r.t to the imaginary axis). Denote with π1, . . . , πn the
poles of the underlying model, and let Π ∈ Cn×n be the diagonal matrix containing the poles on its
diagonal.

Let k = q = n and λi = µi = −πi, for all 1 ≤ i ≤ n. This represents a special case encountered in
optimal H2 approximation, as illustrated in [6]. Furthermore, choose Λ = M = −Π, ∆ = Iq,Ψ = Ik,

and R = L = ITn . Then write

KL =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CΦ(−π1)
⋮

CΦ(−πn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, KR = [Φ(−π1)B ⋯ Φ(−πn)B] ,

while the Loewner matrices L = −KLEKR and Ls = −KLAKR satisfy the following (degenerate)
Sylvester equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

LΠ −ΠL = −R
T
W +W

T
R,

LsΠ −ΠLs = R
T
WΠ −ΠW

T
R.
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It is to be noted that in this case, the (i, i) entries of the Loewner matrices are written in terms of the
transfer function derivatives, as given below

(L)i,i = −
d [H(s)]

ds

»»»»»»s=−πi
, (Ls)i,i = −

d [sH(s)]
ds

»»»»»»s=−πi
.

Matching at the same finite point

Let λ ∈ C be a complex scalar, and assume in this case that all interpolation points are equal to λ,
i.e., µi = λ and λj = λ. We presents the results for this through an illustrative simple example. More
concrete, choose k = q = 3, and hence we have that the left quantities are written as follows

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0
−1 λ 0

0 −1 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L

T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ KL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CΦ(λ)
CΦ(λ)EΦ(λ)

CΦ(λ)EΦ(λ)EΦ(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

while the right quantities are given below:

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ −1 0
0 λ −1
0 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R

T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒ KR = [ Φ(λ)B Φ(λ)EΦ(λ)B Φ(λ)EΦ(λ)EΦ(λ)B ] .

Thus, the Loewner matrices L = KLEKR and Ls = KLAKR, become:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1!
H

(1)(λ) 1

2!
H

(2)(λ) 1

3!
H

(3)(λ)
1

2!
H

(2)(λ) 1

3!
H

(3)(λ) 1

4!
H

(4)(λ)
1

3!
H

(3)(λ) 1

4!
H

(4)(λ) 1

5!
H

(5)(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ls = λL +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(0)(λ) 1

1!
H

(1)(λ) 1

2!
H

(2)(λ)
1

1!
H

(1)(λ) 1

2!
H

(2)(λ) 1

3!
H

(3)(λ)
1

2!
H

(2)(λ) 1

3!
H

(3)(λ) 1

4!
H

(4)(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows that the equations satisfied by the Loewner and the shifted Loewner matrices can be rewritten
as:

LJr − J
T
r L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[H(0)(λ) 1

1!
H

(1)(λ) 1

2!
H

(2)(λ)] −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H
(0)(λ)

1

1!
H

(1)(λ)
1

2!
H

(2)(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1 0 0],

(Ls − λL)Jr − J
T
r (Ls − λL) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

H
(0)(λ)

1

1!
H

(1)(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1 0 0] −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[0 H

(0)(λ) 1

1!
H

(1)(λ)] .

3.1.2 Matching at infinity

Let M = Iq, L = e
T
1,q, Ψ = J

T
q , and also Λ = Ik, R = e

T
1,k, ∆ = Jk. Here Jn ∈ Rn×n is a Jordan matrix

of dimension n with 0 eigenvalues and e1,n ∈ Rn is the first unit vector of length n (we sometime use
e1 for ease of notation). In this case, we also assume that E = In. The following derivations hold

KL − J
T
q KLA = e1C

KR −AKRJk = Be
T
1

} ⇒ KL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
⋮

CA
q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, KR = [B, AB, ⋯, A
k−1

B] ⇒ {
L = KLKR = Hq,k,

Ls = KLAKR = σHq,k.

Here, Hq,k ∈ Rq×k and σHq,k ∈ Rq×k are Hankel matrices that contain as entries the Markov param-

eters hi = CA
i−1

B, i ≥ 1 of the original system, i.e. (Hq,k)i,j = hi+j−1 and (σHq,k)i,j = hi+j for
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i.j ≥ 1.

KLKR − J
T
q KLAKR = e1CKR

KLKR −KLAKRJk = KRBe
T
1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hq,k − J
T
q σHq,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1, h2, ⋯, hk
0
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= e1 e

T
1 Hq,k,

Hq,k − σHq,kJk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 ⋯
h2 0 ⋯
⋮ ⋮ ⋱

hq 0 ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Hq,ke1 e

T
1 .

The equations for the Hankel and shifted Hankel matrices are given below:

Hq,kJk − J
T
q Hq,k = e1e

T
1 Hq,kJk − J

T
q Hq,ke1e

T
1 ,

σHq,kJk − J
T
q σHq,k = e1e

T
1 Hq,k −Hq,ke1e

T
1 .

3.2 Deriving factorizations for different system realizations

Next we will derive several factorizations of the Loewner quadruple based on different system re-
alizations and data. For clarity we will discuss three separate special cases: (a) SISO (single-input
single-output) systems with strictly proper rational (spr) transfer functions, (b) MIMO (multiple-input
multiple output) systems with spr transfer functions and finally (c) systems with polynomial transfer
functions. The general case of systems characterized by DAEs (differential algebraic equations), with
arbitrary rational transfer functions follows readily as a combination of these special cases.

3.2.1 The case of SISO systems with strictly proper transfer function

Let an underlying linear SISO (m = p = 1) system Σ of dimension n as defined in (2.1) be represented
by means of its partial fraction decomposition:

H(s) = n(s)
d(s) =

n

∑
i=1

γi
s − πi

, (3.12)

where γi ≠ 0 ∈ C, for all i. The poles and the residues of the system are denoted by {π1,⋯, πn},
and by {γ1,⋯, γn}, respectively. Let diagonal matrices be defined as Π = diag[π1,⋯, πn] ∈ Cn×n

and Γ = diag[γ1,⋯, γn] ∈ Cn×n, while γ = [γ1,⋯, γn]T ∈ Cn×1. Then, a realization for its transfer
function H(s), defined in (3.12), is given by:

A = ΠΓ, E = Γ, B = ΓIn, C = ITnΓ. (3.13)

where In is all-ones column vector of length n. It is to be noted that an equivalent realization to that
in (3.13) is given by: A = Π, E = In, B = In, C = ITnΓ.

To the SISO system Σ, we associate a Loewner quadruple (raw model)

(W,L,Ls,V) ∈ C1×k
× Cq×k × Cq×k × Cq×1, (3.14)

constructed by means of the left interpolation points µi, i = 1,⋯, q, the right interpolation points λj ,
j = 1,⋯, k (λj , µi assumed pairwise distinct), and the left values vi = H(µi) and the right values

wj = H(λj), where q, k ≥ n. Additionally, by choosing R = ITq , L = ITk , it follows that

Wj = wj , (L)i,j =
vi −wj

µi − λj
, (Ls)i,j =

µivi −wjλj
µi − λj

, Vi = vi. (3.15)
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Given two sets of mutually distinct complex numbers αi, i = 1, . . . , κ, and βj , j = 1, . . . , ρ, we define
the associated C auchy matrix as:

Cα,β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α1−β1

⋯ 1
α1−βρ

⋮ ⋯ ⋮
1

ακ−β1
⋯ 1

ακ−βρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Cκ×ρ. (3.16)

Lemma 3.1. Given the Loewner quadruple (3.14), the following factorizations hold true:

W = ITn Γ CTλ,π ∈ C1×k
, L = −Cµ,πΓ CTλ,π, Ls = −Cµ,πΠΓCTλ,π ∈ Cq×k, V = Cµ,π ΓIn ∈ Cq×1. (3.17)

Proof. For 1 ≤ i ≤ q and 1 ≤ j ≤ k, we can write the (i, j) entry of the Loewner matrix L in (3.15), as
follows

L(i,j) =
vi −wj

µi − λj
=

H(µi) −H(λj)
µi − λj

=

(∑n
l=1

γl
µj−πl

−∑n
l=1

γl
λj−πl

)
µi − λj

=

n

∑
l=1

γl
1

µi − πl
1

πl − λj
.

Hence, it follows that the (i, j) entry of the Loewner matrix L coincides with the (i, j) entry of the

matrix computed by the product −Cµ,π Γ CTλ,π, for all i, j. Hence, the second equality in (3.17) holds.
Similarly, we can show the other three equalities.

Proposition 3.1. The Cauchy matrix in (3.16) satisfies the Sylvester equation DαCα,β − Cα,βDβ =

IκI
T
ρ , where Dα = diag[α1,⋯, ακ], Dβ = diag[β1,⋯, βρ]. Hence, the Cauchy matrices that are used

for the factorizations in (3.17) satisfy the Sylvester equations:

MCµ,π − Cµ,πΠ = IqI
T
n , CTλ,πΛ −ΠCTλ,π = InI

T
k . (3.18)

It is to be noted that the equations in (3.18) represent special cases of those in (3.11), for a particular
realization of the original system.

Lemma 3.2. The right and left eigenvectors of the Loewner matrix pencil given by (Ls,L) correspond-
ing to the eigenvalue πi are given, respectively, by

qi = (CTλ,π)+ei, and pi = (CTµ,π)+ei, (3.19)

where ei is the unit vector of length n whose i
th

entry is 1 (and all others are zeros).

Proof. The proof is similar to that used to prove part c). of Lemma 2.1. Since the factorization in (3.17)
holds, it is easy to show that (πi, ei, ei) for i = 1, . . . , n are the triple (eigenvalue, left eigenvector,
right eigenvector) of pencil (Π, I). Then, the identity stated in (3.19) can be obtained by simply

substituting KR with CTλ,π and KL with Cµ,π into the formulas given in (2.10).

If the left interpolation points are the same as the right interpolation points, then

qi = pi = (CTµ,π)+ei, (3.20)

which means the left eigenvector coincide to the right eigenvector.
Connection with the Hankel singular values. Again consider the realization of Σ as given in (3.13).

Moreover, consider that Σ is a stable system. Then, it follows that the controllability Gramian is
P = C−π,π∗ , while the observability Gramian is given by Q = −Γ

∗Cπ∗,−πΓ. We conclude that if
k = q = n and the interpolation points are chosen as µi = −π∗i and λj = −π∗j , and the resulting
Loewner matrix satisfies:

−L∗Γ = PQ.
Thus, the eigenvalues of the squares of the Hankel singular values σi, i = 1, . . . , n, of the system are
equal to the eigenvalues of the resulting Loewner matrix L scaled by the diagonal matrix Γ:

σ
2
i (Σ) = σ(L∗Γ)i, i = 1, . . . , n. (3.21)
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3.2.2 The case of MIMO systems with strictly proper transfer function

Let C = [c1⋯cn] ∈ Rp×n, B
T
= [b1⋯bn] ∈ Rm×n with ci ∈ Rp, bi ∈ Rm and also assume that

A = Π. Hence, the transfer function H(s) can be expressed in pole-residue form as follows

H(s) = C (sI −Π)−1 B =

n

∑
i=1

cib
T
i

s − πi
. (3.22)

Consider now the generalized Cauchy matrices CL ∈ Cq×n and CR ∈ Cn×k, defined as follows:

(CL)i,j =
`
T
i cj

µi − πj
, (CR)i,j =

b
T
i rj

λj − πi
, (3.23)

that can be obtained as solutions of Sylvester equations:

MCL − CLΠ = L
T
C, CRΛ −ΠCR = BR. (3.24)

As before, it is to be noted that the equations in (3.24) represent special cases of those in (3.11), for
a particular realization of the original system as given in (3.22).

Lemma 3.3. In the above setting, the relationships below hold true:

W = C CR ∈ Cp×k, L = −CLCR, Ls = −CLΠCR ∈ Cq×k, V = CLB ∈ Cq×m. (3.25)

Proof. For a pair of indexes 1 ≤ i ≤ q and 1 ≤ j ≤ k, we can write the (i, j) entry of the Loewner
matrix L in (2.6), as follows:

L(i,j) =
v
T
i rj − `

T
i wj

µi − λj
=
`
T
i H(µi)rj − `Ti H(λj)rj

µi − λj
=

(∑n

l=1

`
T
i clb

T
l rj

µj−πl
−∑n

l=1

`
T
i clb

T
l rj

λj−πl
)

µi − λj

=

n

∑
l=1

`
T
i clb

T
l rj

(λj − πl) − (µi − πl)
(λj − πl)(µi − πl)(µi − λj)

= −
n

∑
l=1

`
T
i cl

µi − πl

b
T
l rj

λj − πl
.

Hence, it follows that the (i, j) entry of the Loewner matrix L coincides with the (i, j) entry of the
matrix computed by the product −CLCR, for all i, j. Hence, the second equality in (3.25) holds. The
others can be proven similarly.

One can notice that if all rows of L
T

are the same, i.e. L
T
= Iq`

T
, then

CL = Cµ,π diag[`Tc1,⋯, `
T
cn]ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

∆C

, where Cµ,π is a q × n Cauchy matrix.

Furthermore, if all columns of R are the same, i.e. R = rITk , then

CR = diag[bT1 r,⋯,b
T
nr]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
∆B

CTλ,π, where CTλ,π is a n × k Cauchy matrix.

If both of these conditions hold, we have that

W = C∆BCTλ,π ∈ Cp×k, L = −Cµ,π∆C∆B CTλ,π,

Ls = −Cµ,π∆CΠ∆BCTλ,π ∈ Cq×k, V = Cµ,π∆CB ∈ Cq×m.

If m = p = 1 the above relationships reduce to (3.17).
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3.2.3 The case of SISO systems with polynomial transfer functions

In this section we assume that the transfer function is a polynomial, i.e., H(s) = ar−1sr−1+⋯+a1s+a0.
For simplicity, we treat only the scalar case. A minimal realization of H is given by H(s) = C(sE −
A)−1B, where:

E = Jr, A = Ir, B = er, C = [ar−1 ⋯ a1 a0] , (3.26)

Jr is a r×r Jordan block with zero eigenvalues and ones in the superdiagonal and er ∈ Rr is the r
th

unit
vector. To compute the Loewner pencil, we choose the left interpolation points as µi, i = 1,⋯, q, and
the right interpolation points as λj , j = 1,⋯, k. The Loewner pencil of size q × k is then represented
as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(L)i,j =
H(µi)−H(λj)

µi−λj
= ar−1(µr−2i + µr−3i λj +⋯+ µiλ

r−3
j + λr−2j ) +⋯+ a2(µi + λj) + a1,

(Ls)i,j =
µiH(µi)−λjH(λj)

µi−λj
= ar−1(µr−1i + µr−2i λj +⋯+ µiλ

r−2
j + λr−1j ) +⋯+ a1(µi + λj) + a0.

(3.27)
With x = [x1,⋯, xm], the associated V andermonde matrix is:

V`,m(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1

x1 x2 ⋯ xm

⋮ ⋮ ⋱ ⋮

x
`−1
1 x

`−1
2 ⋯ x

`−1
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C`×m. (3.28)

Then, based on (3.27), and on the above definition, it follows that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L = a1V
T
1,q(µ)V1,k(λ) + a2VT

2,q(µ)V2,k(λ) +⋯+ ar−1V
T
r−1,q(µ)Vr−1,k(λ),

Ls = a0V
T
1,q(µ)V1,k(λ) + a1VT

2,q(µ)V2,k(λ) +⋯+ ar−1V
T
r,q(µ)Vr,k(λ),

(3.29)

and also, since Wj = H(λj) and Vi = H(µi), we get that

W = [ a0 a1 ⋯ ar−1 ]Vr,k(µ) and V = V
T
r,q(λ) [ a0 a1 ⋯ ar−1 ]T . (3.30)

Lemma 3.4. Given the Loewner quadruple introduced in (3.29) and (3.30), the following factorizations
hold true:

W = ĈVr,k(λ) ∈ C1×k
, L = V

T
r,q(λ)ÊVr,k(µ), (3.31)

Ls = V
T
r,q(λ)ÂVr,k(µ) ∈ Cq×k, V = V

T
r,q(µ)B̂ ∈ Cq×1, (3.32)

where the following notation is used

Ê=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 ⋯ ar−2 ar−1 0
a2 a3 ⋯ ar−1 0 0
a3 a4 ⋯ 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

ar−1 0 ⋯ 0 0 0
0 0 ⋯ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Â=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 ⋯ ar−3 ar−2 ar−1
a1 a2 ⋯ ar−2 ar−1 0
a2 a3 ⋯ ar−1 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

ar−2 ar−1 ⋯ 0 0 0
ar−1 0 ⋯ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̂=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
⋮

ar−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ĉ

T
. (3.33)

Proof. The factorizations in (3.31) directly follow from the representations in (3.29) and in (3.30).

4 Sensitivities of the Loewner pencil eigenvalues

In this section, we provide definitions for sensitivities of eigenvalues of the Loewner pencil. These
concepts of sensitivity arise from the perturbation of eigenvalues of the Loewner matrix pencil. In
the following, we introduce the eigenvalue perturbation theory for the matrix pencil. Afterwards, we
discuss the perturbation of the Loewner pencil and define two types of sensitivities, denoted with ρ
and η, corresponding to structured or unstructured perturbations.
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Lemma 4.1. For the matrix pencil (A,E) that is assumed to be diagonalizable, under the perturbation

of Ā = A+∆A and Ē = E+∆E, the first order approximation of the eigenvalue perturbation π
(1)

is

π
(1)

=
p
T (∆A − π∆E)q

pTEq
,

where the eigenvalue problem of the pencil (A,E) is: Aq = πEq, p
T
A = πp

T
E, and π is assumed to

be an eigenvalue with algebraic multiplicity equal to 1.

Proof. A perturbation of the system yields

(A +∆A)(q + q
(1) +⋯) = (π + π(1) +⋯)(E +∆E)(q + q

(1) +⋯),

(pT + p
(1)T +⋯)(A +∆A) = (π + π(1) +⋯)(pT + p

(1)T +⋯)(E +∆E).

By retaining only the first-order terms, it follows that: (A − πE)q(1)
= (π(1)

E + π∆E −∆A)q. We

wish to find an expression for π
(1)

, which measures the first-order sensitivity of π. Towards this goal
we multiply this equation on the left by the corresponding left eigenvector p:

p
T (A − πE)q(1)

= p
T (π(1)

E + π∆E −∆A)q ⇒ p
T
Aq

(1) − πp
T
Eq

(1)

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
=0

= π
(1)

p
T
Eq + πp

T
∆Eq − p

T
∆Aq

⇒ π
(1)

=
p
T

∆Aq − πp
T

∆Eq

p
T
Eq

=
p
T (∆A − π∆E)q

p
T
Eq

.

Now, consider the Loewner pencil (Ls,L) as a surrogate to the pencil (A,E). The perturbed
matrices are as follows, i.e., L̄ = L +∆L, L̄s = Ls +∆Ls . Then, by following the result in Lemma

4.1, we have that the first order approximation of the eigenvalue perturbation π
(1)

is

π
(1)

=
p
T (∆Ls − π∆L)q

pTLq
. (4.34)

Note that in (4.34), the left/right eigenvectors denoted with p, q, can be actually obtained as in (2.10),

or as in (3.19). It can hence be noticed that the first-order eigenvalue perturbation π
(1)

depends on the
perturbation matrices ∆L, ∆Ls corresponding to the Loewner matrices. In the upcoming subsections,
we will discuss two different cases.

4.1 Sensitivity of the Loewner pencil eigenvalues with unstructured
perturbations

In this subsection we consider the case of unstructured perturbation. The strength of the perturbation
can be quantified by the norm of the perturbation matrix. We will show that in this case, i.e.,
unstructured perturbation, the sensitivity depends on the numerical condition of the Loewner pencil.
Assume that the norm of perturbation matrices is bounded as follows:

∥∆L∥2 ≤ εω0, ∥∆Ls∥2 ≤ εω1. (4.35)

where ωi ≥ 0, i = 0, 1 are the weights. Straightforward calculations yield to the bound

∣π(1)∣ =
»»»»»»»»»»

p
T (∆Ls − π∆L)q

pTLq

»»»»»»»»»»
≤

∥p∥2 ∣∆Ls − π∆L∣ ∥q∥
∣pTEq∣

≤ ερ, (4.36)
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where the sensitivity ρ is given by

ρ = (ω0 + ∣π∣ω1)
∥p∥2∥q∥2

∣pTLq∣
. (4.37)

This formula is well known in the literature and can be found, e.g., in [22].
To elaborate on this expression we will make use of the system realization quoted in Lemma 3.1.

As already mentioned, the right and left eigenvectors of the Loewner matrix pencil given by (Ls,L)
corresponding to the eigenvalue πi are given, respectively, by

qi = (CTλ,π)+ei, and pi = (CTµ,π)+ei.

Consequently, it follows that p
T
i Lqi = −e

T
i (Cµ,π)+Cµ,πΓCTλ,π(CTλ,π)+ei = −γi. Next, we make a partic-

ular choice of weights given by ω0 = ∥L∥2 and ω1 = ∥Ls∥2 (this is typical for such problems). Hence,
by applying the general formula in (4.37), the sensitivity of the eigenvalue πi is given as follows:

ρi =
1

∣γi∣
∥pi∥2(∣πi∣∥L∥2 + ∥Ls∥2)∥qi∥2. (4.38)

By using the factorizations in (3.17), we get that L = −Cµ,πΓCTλ,π and Ls = −Cµ,πΠΓCTλ,π, and hence,
the formula in (4.38) is equivalently rewritten as

ρi =
1

∣γi∣
∥(CTµ,π)+ei∥2(∣πi∣∥Cµ,πΓCTλ,π∥2 + ∥Cµ,πΠΓCTλ,π∥2)∥(CTλ,π)+ei∥2. (4.39)

4.1.1 Deriving error bounds

By using the same previously mentioned factorizations of the Loewner matrices, it follows that the
following inequalities hold:

L = −Cµ,πΓCTλ,π ⇒ ∥L∥2 ≤ ∥Cµ,π∥2∥Γ∥2∥CTλ,π∥2,

Ls = −Cµ,πΠΓCTλ,π ⇒ ∥Ls∥2 ≤ ∥Cµ,π∥2∥ΠΓ∥2∥CTλ,π∥2.
(4.40)

By plugging in the inequalities from (4.40) into the extended formula (4.39), we get that

ρi ≤
1

∣γi∣
∥pi∥2∥Cµ,π∥2(∣πi∣∥Γ∥2 + ∥ΠΓ∥2)∥CTλ,π∥2∥qi∥2 (4.41)

≤
∣πi∣∥Γ∥2 + ∥ΠΓ∥2

∣γi∣
∥pi∥2∥Cµ,π∥2∥CTλ,π∥2∥qi∥2

⇒ ρi ≤
∣πi∣∥Γ∥2 + ∥ΠΓ∥2

∣γi∣
∥(CTµ,π)+ei∥2∥Cµ,π∥2∥CTλ,π∥2∥(CTλ,π)+ei∥2. (4.42)

Using the fact that ∥Xei∥2 ≤ ∥X∥2, the bound in (4.41) is rewritten as follows:

ρi ≤
∣πi∣∥Γ∥2 + ∥ΠΓ∥2

∥γi∣
∥(CTµ,π)+∥2∥Cµ,π∥2∥CTλ,π∥2∥(CTλ,π)+∥2

⇒ ρi ≤
∣πi∣∥Γ∥2 + ∥ΠΓ∥2

∣γi∣
κ(Cµ,π)κ(CTλ,π),

where κ(X) denotes the condition matrix of matrix X. Next, by using the identities

∥Γ∥2 = max
j

(∣γj∣), ∥ΠΓ∥2 = max
j

(∣πjγj∣),
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and by substituting these equalities into the inequality above, the upper bound can be further rewritten
as:

ρi ≤ ζi κ(Cµ,π)κ(Cλ,π), (4.43)

where ζi =
1

∣γi∣
(∣πi∣max

j
(∣γj∣) +max

j
(∣πjγj∣)) , for all 1 ≤ i ≤ n.

In what follows we will derive bounds for the the vector of unstructured sensitivities ρ ∈ Rn, defined

as ρ = [ρ1 ρ2 ⋯ ρn]T . Similarly, let ζ ∈ Rn. Then, from (4.43), it readily follows that

∥ρ∥2 ≤ ∥ζ∥2 κ(Cµ,π)κ(Cλ,π). (4.44)

Next, by making use of the inequality xy ≤ 1
2
(x2 + y2), one can rewrite (4.41) as

ρi ≤
1

2
ζi(∥(CTµ,π)+ei∥2

2∥Cµ,π∥2
2 + ∥CTλ,π∥2

2∥(CTλ,π)+ei∥2
2) (4.45)

Denote with ζ
(max)

= max
i

(ζi). By summing up the inequalities in (4.45), one can write that

q

∑
i=1

ρi ≤
1

2
ζ
(max)(∥Cµ,π∥2

2

q

∑
i=1

∥(CTµ,π)+ei∥2
2 + ∥CTλ,π∥2

2

q

∑
i=1

∥(CTλ,π)+ei∥2
2), (4.46)

and by using that ∑q
i=1 ∥Xei∥2

2 = ∥X∥2
F, it follows that

∥ρ∥1 ≤
1

2
ζ
(max)(∥Cµ,π∥2

2∥(CTµ,π)+∥2
F + ∥CTλ,π∥2

2∥(CTλ,π)+∥2
F). (4.47)

4.1.2 Connections with pseudospectra

Pseudospectra represent important tools for the numerical analysis of uncertain linear systems, eigen-
value perturbations or stability study.

Definition 4.1. Given a matrix A ∈ Cn×n and a positive real constant ε > 0, the ε-pseudospectrum
of A is:

σε(A) = {z ∈ C∣is an eigenvalue of A + Γ for some Γ ∈ Cn×n with ∥Γ∥ < ε}. (4.48)

Note that, for all ε > 0, σε(A) is a bounded, open subset of the complex plane that contains the
eigenvalues of A.

The concept of pseudospectrum has been extended over the years to cope with more general eigen-
value problems and dynamical systems. More precisely, we are interested in extensions of (4.48) to
matrix pencils (A,E). In [11], one definition for the pseudospectrum of matrix pencil is mentioned.
In order to allow matrix perturbations of both A and E to be scaled independently, this definition
below includes two additional parameters, denoted with ν and δ.

Definition 4.2. Let ν, δ > 0. For matrix pencil (A,E) ∈ Cn×n and ∀ε ≥ 0, the ε-(ν, δ)-pseudospectrum

σ
(ν,δ)
ε (A,E) of the matrix pencil πE −A is the set

σ
(ν,δ)
ε (A,E) ={π ∈ C is an eigenvalue of the pencil π (E + ε∆E) − (A + ε∆A)

for some ∆E,∆A ∈ Cn×n with ∥∆E∥ = ν,∥∆A∥ = δ}.
(4.49)

As also illustrated in [11], the pseudospectra provides a useful tool to explore the sensitivity of
eigenvalues of matrix pencils. It is easy to see that the special points of the pseudospectra for ε = 0 are
precisely the eigenvalues of the matrix pencil (A,E). Moreover, the slope of the pseudospectra around
an eigenvalue π can be used as a scale for eigenvalue sensitivity. If the slope is large, it means that the
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eigenvalue perturbation δπ is small for large perturbations applied to the pencil. Similarly, when the
slope is small, it means that the eigenvalue perturbation δπ is large with a small perturbation of the
matrix pencil. The sensitivity value ρi introduced in (4.38) is connected to the pseudospectra in the
sense that both can be used to measure eigenvalue perturbations when the matrix pencil is perturbed
and quantified by its norm.

For ε2 > ε1 > 0, it follows that the slope of the pseudospectra near the eigenvalue π can be defined
as

ξ = lim
ε1,ε2→0

»»»»»»»»»»

π
(1)
2 − π

(1)
1

ε2 − ε1

»»»»»»»»»»
, (4.50)

where πi is the eigenvalue of matrix pencil (E + εi∆E,A + εi∆A), for i = 1, 2 that is closest to π.
Using the first order approximation of the eigenvalue perturbation, we obtain that

π
(1)
i =

»»»»»»»»»
p
T (εi∆A − πεi∆E)q

pTEq

»»»»»»»»»
= εi

»»»»»»»»»
p
T (∆A − π∆E)q

pTEq

»»»»»»»»»
≤ εiρ, ∀i = 1, 2. (4.51)

Then, from (4.50) and (4.51), it automatically follows that ξ ≤ ρ. Hence, the sensitivity ρ provides an
upper bound for the slope of the pseudospectra in the neighborhood of eigenvalue π.

It is also mentioned in [11] that analyzing structured pseudospectra could provide additional insight,
i.e. the perturbed matrices have the same structure as the unperturbed (they are also Loewner
matrices). Additionally, it could also be helpful to explore the eigenvalue sensitivity of Loewner
pencils in the case of noisy data. The efficient computation for pseudospectra is still a matter of
ongoing research. A recent result is provided in [11], e.g., in Section 4, where the authors propose
methods to accelerate this computation for (large) structured Loewner pencils and hence reduce the

cost from O(n3) to O(n2) operations. In the next section, we explore the eigenvalue sensitivity of the
Loewner pencil with respect to a structured perturbation.

4.2 Sensitivity of the eigenvalues with structured perturbations

In this section, we will study structured perturbations, i.e., the perturbation matrices have a particular
structure. When the data are perturbed, e.g., the measurements are corrupted by additive noise,
the perturbation matrices are indeed Loewner matrices. Recently, the robustness of the Loewner
framework with respect to noise in the transfer-function values was studied in [10]. There, a statistical
analysis was provided for bounding the deviation between the transfer function of noisy Loewner
models and that of Loewner models without noise (see, e.g., Theorem 1 in Section 4). The eigenvalue
sensitivity analysis with respect to noise in the data is significant for assessing the robustness of the
Loewner models. In what follows, we will treat only the case of SISO systems (the MIMO case follows
equivalently by adapting the factorization formulas as was shown in Section 3.2.2).

4.2.1 Distinct left and right interpolation points (µ ≠ λ)

Introduce the perturbed transfer function defined as H̄(s) = H(s)(1 + εs), and consider the left and
right measurements corresponding to this transfer function under the influence of perturbation, i.e.,

H̄(εµi) = H(εµi)(1 + εµi) = vi(1 + εµi), and, H̄(ελj) = H(ελj)(1 + ελj) = wj(1 + ελj), (4.52)

for 1 ≤ i ≤ q and 1 ≤ j ≤ k. Define the diagonal matrices V ∈ Cq×q and W ∈ Ck×k as

V = diag(v1,v2,⋯,vq), W = diag(w1,w2,⋯,wk).

Then, the following relations hold

L = VCµ,λ − Cµ,λW, Ls = MVCµ,λ − Cµ,λWΛ. (4.53)
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Similarly, the perturbation matrices can be written as

∆L = diag(εµ1
, εµ2

,⋯, εµq)VCµ,λ − Cµ,λWdiag(ελ1
, ελ2

,⋯, ελk),

∆Ls = diag(εµ1
, εµ2

,⋯, εµq)MVCµ,λ − Cµ,λWΛdiag(ελ1
, ελ2

,⋯, ελk).
(4.54)

From (4.54), it follows that the perturbation pencil is expressed as

s∆L −∆Ls = diag(εµ1
, εµ2

,⋯, εµq)(sI −M)VCµ,λ − Cµ,λW(sI −Λ)diag(ελ1
, ελ2

,⋯, ελk). (4.55)

By substituting (4.55) into (4.34), it follows that the first order approximation of the eigenvalue
perturbation corresponding to the pole πi, for 1 ≤ i ≤ n, is given by

π
(1)
i =

p
T
i (∆Ls − πi∆L)qi

pTi Lqi
=

1
γi

p
T
i (πi∆L −∆Ls)qi

=
1
γi
ε
T
µdiag(pi)(πiI −M)VCµ,λqi −

1
γi

p
T
i Cµ,λW(πiI −Λ)diag(qi)ελ

= [εTµ ε
T
λ ]

1
γi

[diag(pi)(πiI −M)VCµ,λqi diag(qi)(πiI −Λ)WCλ,µpi]

= ε
T (Sei) = εTSi,

, (4.56)

where εµ = [εµ1
,⋯, εµq]

T
∈ Cq, ελ = [ελ1

,⋯, ελk]
T
∈ Ck, ε = [εµ

ελ
] ∈ Cq+k, and S = [SµSλ] ∈ C(q+k)×n

.

Additionally, the ith column of matrix S is denoted with Si, while the ith columns of matrices Sµ ∈
Cq×n and Sλ ∈ Ck×n, for all 1 ≤ i ≤ n, are given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sµi = Sµei =
1
γi

diag(pi)(πiI −M)VCµ,λqi ∈ Cq,

Sλi = Sλei = 1
γi

diag(qi)(πiI −Λ)WCλ,µpi ∈ Ck
, and Si = [SµiSλi

] ∈ C(q+k)
. (4.57)

As shown in (4.56), the eigenvalue perturbation is a linear combination of the left and right mea-
surement noise. By considering noise in the left measurements, the effect on perturbing the poles
can be hence quantified by the entries of matrix Sµ ∈ Cq×n. Additionally, by choosing noisy right

measurements, the perturbation of the poles is hence quantified by the entries of matrix Sλ ∈ Ck×n.
Next, a simplified case is considered in order to better understand the structure of matrix S. We

consider the case for which we quantify how perturbing the jth left measurement is affecting the ith
pole πi. Using that e

T
j diag(pi) = p

T
i eje

T
j , it follows that the (j, i) entry of matrix Sµ is explicitly

given by the following formula

(Sµ)j,i = e
T
j Sµei = e

T
j

1
γi

diag(pi)(πiI −M)VCµ,λqi = 1
γi

p
T
i [ejeTj (πiI −M)VCµ,λ] qi

=
1
γi

e
T
i (Cµ,π)+ [ejeTj (πiI −M)VCµ,λ] (CTλ,π)+ei

=
(πi−µj)vj

γi
(eTi (Cµ,π)+ej) (eTj (Cµ,λ)(CTλ,π)+ei) .

(4.58)

Similarly, assume now that the j
th

right measurement is perturbed and we would like to measure the
influence on the ith pole. We have that the (j, i) entry of matrix Sλ is explicitly given as

(Sλ)j,i = e
T
j Sλei =

(πi−λj)wj

γi
(eTi (Cλ,π)+ej) (eTj (Cλ,µ)(CTµ,π)+ei) . (4.59)

In what follows, consider a special case for which the number of poles equals to the number of left
and right interpolation points, i.e., k = q = n. The inverse of a square Cauchy matrix Cx,y ∈ Cn×n is
explicitly expressed as

(C−1x,y)i,j =
∏n

k=1 (xj − yk)∏n
k=1 (xk − yi)

(xj − yi)∏k≠j (xj − xk)∏k≠i (yk − yi)
. (4.60)

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2021-03-18



Q. Zhang, I. V. Gosea, A. C. Antoulas: Loewner matrix pencil factorization and sensitivity 16

By substituting the result (4.60) in the formula (4.58), we obtain that the (j, i) entry of matrix Sµ
can be explicitly written in terms of the poles and the left and right interpolation points, as follows

(Sµ)j,i =
(πi − µj)vj

γi
(eT` (Cµ,π)+ei) (eTi (Cµ,λ)(CTλ,π)+e`)

= −
vj
γi

∏n
k=1 (µj − πk) (πi − µk) (πi − λk)
∏k≠j (µj − µk)∏k≠i (πi − πk)

2
(

n

∑
m=1

∏k≠i (πk − λm)
(µj − λm)∏k≠m (λk − λm)

) .
(4.61)

Similar derivations can be obtained for the (j, i) entry of the matrix Sλ. We will illustrate the results
presented in formula (4.61) by means of a couple of simplified scenarios.

Example 4.1. Choose n = q = k = 1 and H(s) = γ1
s−π1

. Hence, one can then write

(Sµ)1,1 =
v1

γ1

(π1 − λ1)
(µ1 − λ1)

(µ1 − π1)2 . (4.62)

Next, choose n = q = k = 2 and H(s) = γ1
s−π1

+ γ2
s−π2

. Hence, the following hold for 1 ≤ i ≤ 2

(Sµ)1,i =
vi
γi

(πi − λ1) (πi − λ2) (πi − µ2)
(µ1 − λ1) (µ1 − λ2) (µ1 − µ2)

(µ1 − π2)2 (µ1 − π1)2

(π1 − π2)2
, (4.63)

(Sµ)2,i =
vi
γi

(πi − λ1) (πi − λ2) (πi − µ1)
(µ2 − λ1) (µ2 − λ2) (µ2 − µ1)

(µ2 − π2)2 (µ2 − π1)2

(π1 − π2)2
. (4.64)

Similar formulas can be derived for (Sλ)j,i, but will be omitted here.

Definition 4.3. Let η(j,i) be the structured sensitivity defined for eigenvalue πi with respect to per-

turbing the j
th

left or right measurement. The value η(j,i) is explicitly given by

η(j,i) = ∣ (S)j,i ∣ = {∣ (Sµ)j,i ∣, if 1 ≤ j ≤ q,

∣ (Sλ)j,i ∣, if q + 1 ≤ j ≤ q + k,
(4.65)

Let N ∈ R(q+k)×n
be the matrix containing all structured sensitivity values in (4.65). Furthermore, we

split matrix N = [Nµ

Nλ
] into two sub-matrices, Nµ ∈ Rq×n and Nλ ∈ Rk×n, corresponding to the left

and right measurements, so that Nµ = ∣Sµ∣, and Nλ = ∣Sλ∣.
Remark 4.1. It is to be noted that the structured sensitivity formula given in (4.65) is proportional
to the left and right measurements. Alternatively, we could also introduce the absolute structured

sensitivity defined for eigenvalue πi with respect to perturbing the j
th

left or right measurement. This
is denoted by η(j,i), and is explicitly given by

η(j,i) = {η(j,i)/vj , if 1 ≤ j ≤ q,

η(j,i)/wj , if q + 1 ≤ j ≤ q + k.
(4.66)

The variance of the eigenvalue perturbation π
(1)
i is given by

Var(π(1)
i ) = E [(Si)T εεH (Si)∗] = (Si)T E [εεH] (Si)∗ .

Assuming that the noise is Gaussian (which is typical the case in many practical situations), it

follows that E [εεH] = σ2
εI, and hence, we can write the variance and the standard deviation of π

(1)
i

as
Var(π(1)

i ) = σ2
ε ∥Ni∥2

2 , σ(π(1)
i ) = σε ∥Ni∥2 . (4.67)

Hence, conclude that ∥Ni∥2 determines the standard deviation of eigenvalue perturbation π
(1)
i .
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Definition 4.4. The eigenvalue sensitivity ηi is defined for the eigenvalue πi with respect to a struc-
tured perturbation, as the norm of column vector Ni. Hence, introduce the vector η ∈ Rn such that its
ith entry is

ηi = ∥Ni∥2 =

√
η2(1,i) + η

2
(2,i) + . . . + η

2
(q+k,i). (4.68)

Example 4.2. Consider the system characterized by the following realization:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0

0 −1 1 0 0

0 −1 −1 0 0

0 0 0 − 1
2

√
3
2

0 0 0 −
√
3
2

− 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C = [ 1 0 1 0 2
√
3

3
] . (4.69)

The poles, residues and the transfer function of this system are as follows

{π = [ −1 −1 − i −1 + i − 1

2
−

√
3

2
i − 1

2
+

√
3

2
i ] ,

γ = [ 1 − 1

2
i 1

2
i −

√
3

3
i

√
3

3
i ] , ⇒ H(s) = s

4 + s3 − 2 s − 1

(s + 1) (s2 + 2 s + 2) (s2 + s + 1) ,

where π is the vector of poles and γ the vector of residues. Choose the right/left interpolation points
as:

λ = [ 2
9

4
9

6
9

8
9

10
9

] , µ = −λT .
Then, put together the various Cauchy matrices: Cµ,π, Cµ,λ, and Cπ,λ. Hence, compute the matrix

Nµ ∈ R5×5
of sensitivity associated to the left measurements as well as matrix Nλ ∈ R5×5

of sensitivity
associated to the right measurements, as follows

Nµ
102

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0068 4.1910 4.1910 0.7128 0.7128
0.0016 0.7972 0.7972 0.1283 0.1283
0.0012 0.3757 0.3757 0.0548 0.0548
0.0011 0.1224 0.1224 0.0158 0.0158
0.0003 0.0375 0.0375 0.0043 0.0043

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
Nλ
103

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0041 3.2017 3.2017 0.5474 0.5474
0.0093 7.6490 7.6490 1.2804 1.2804
0.0086 7.3720 7.3720 1.2041 1.2041
0.0031 2.7251 2.7251 0.4345 0.4345
0.0001 0.1169 0.1169 0.0182 0.0182

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By examining the entries of Nµ, it follows that the pair of poles −1± i are the most sensitive, especially
when perturbing the first left measurement value. This can be observed in the (1, 2) and (1, 3) entries
of matrix Nµ.

Similarly, from the entries of Nλ, we conclude that the pair of poles −1 ± i are the most sensitive.
The largest entry is obtained when perturbing the second right measurement value. Again, this can be
observed in the (2, 2) and (2, 3) entries of matrix Nλ. Additionally, compute the vector η ∈ R5

as in
(4.68):

η = 10
4 [0.0014 1.1434 1.1434 0.1893 0.1893]T . (4.70)

From the above result, we indeed draw the conclusion that the pair of poles −1 ± i, is by far the most
sensitive, also in an `2 way (since η2 and η3 are the largest entries).

Finally, it is to be noted that the sensitivities computed for matrix A corresponding to the canonical
realization in (4.69) are all ones. In this case, the pencil (A,E) simplifies to matrix A, since E is
the identity matrix. Hence, the choice of interpolation points can greatly influences the sensitivity
computations.

4.2.2 Same left and right interpolation points (µ = λ)

For the case µ = λ, the diagonal entries of the Loewner matrix are actually derivatives of transfer
function H(s). Considering that the measurements are perturbed, we assume that H̄(s) = H(s)(1+εs),
and, additionally that H̄

′(s) = H
′(s)(1 + ε′s). Here, H

′(s) denotes the derivative of H(s) w.r.t s, i.e.,
H
′(s) = d

ds
H(s). The Loewner and shifted Loewner matrices can be written as follows

L = VCµ,µ − Cµ,µV + V ′, Ls = MVCµ,µ − Cµ,µVM +MV ′ + V, (4.71)
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where V ′ = diag(v′1,v′2,⋯,v
′
q) with v

′
i = H

′(µi). Additionally, note that Cµ,µ(i, i) = 0 for all i =
1, . . . , q. The perturbation matrices ∆L and ∆Ls can be written as

∆L = diag(εµ1
,⋯, εµq)VCµ,µ − Cµ,µVdiag(εµ1

,⋯, εµq) + V ′diag(ε′µ1
,⋯, ε

′
µq),

∆Ls = diag(εµ1
,⋯, εµq)MVCµ,µ − Cµ,µVMdiag(εµ1

,⋯, εµq) + V ′Mdiag(ε′µ1
,⋯, ε

′
µq)

+ diag(εµ1
,⋯, εµq)V.

(4.72)

Since µ = λ, the left/right eigenvectors of the Loewner pencil are the same, i.e., p = q. From (4.72),
it follows that

s∆L −∆Ls = diag(εµ1
,⋯, εµq)(sI −M)VCµ,µ − Cµ,µV(sI −M)diag(εµ1

,⋯, εµq)
+V ′(sI −M)diag(ε′µ1

,⋯, ε
′
µq) − diag(εµ1

,⋯, εµq)V.
By substituting the above expression into (4.34), it follows that the first order approximation of the
eigenvalue perturbation corresponding to πi is given by

π
(1)
i =

p
T
i (∆Ls − πi∆L)qi

pTi Lqi
=

1
γi

p
T
i (πi∆L −∆Ls)qi

=
1
γi

[εTµdiag(pi)(πiI −M)VCµ,µqi − p
T
i Cµ,µV(πiI −M)diag(qi)εµ − εTµdiag(pi)Vqi]

+ [pTi V ′(πiI −M)diag(qi)ε′µ]

= [εTµ ε
′T
µ ] 1

γi
[2diag(qi)(πiI −M)VCµ,µqi − diag(qi)Vqi diag(qi)(πiI −M)V ′qi]

= ε
T (T ei) = εTTi,

(4.73)

where εµ = [εµ1
,⋯, εµq]

T
, ε

′
µ = [ε′µ1

,⋯, ε
′
µq]

T
, ε = [εµ

ε
′
µ
] ∈ C2q and T = [TµT ′

µ
] ∈ C2q×n

. Additionally,

the ith column of matrix T is denoted with Ti, while the ith columns of matrices Tµ ∈ Cq×n and

T ′
µ ∈ Cq×n, for all 1 ≤ i ≤ n, are given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Tµi = Tµei =
1
γi

2diag(qi)(πiI −M)VCµ,µqi −
1
γi

diag(qi)Vqi,

T ′
µi
= T ′

µei =
1
γi

diag(qi)(πiI −M)V ′qi,
and Ti = [

Tµi
T ′
µi

] ∈ C2q
. (4.74)

As shown above, the eigenvalue perturbation is a linear combination of noise on measurements of the
transfer function and of the transfer function derivative. By considering noise in the measurements
of the transfer function, the effect on perturbing the poles can be hence quantified by the entries of
matrix Tµ ∈ Cq×n. Additionally, by choosing perturbed derivative measurements, the perturbation of

the poles is then quantified by the entries of matrix T ′
µ ∈ Cq×n.

As before, a simplified is considered to gain better insight into the structure of matrix T . We analyze
a specific case, i.e., by perturbing the jth measurement, we seek to quantify the influence on the ith
pole. Using that e

T
j diag(qi) = q

T
i eje

T
j , it follows that the (j, i) entry of matrix Tµ is explicitly given

by the following formula

(Tµ)j,i = e
T
j Tµi = e

T
j

1
γi

diag(qi) [2(πiI −M)VCµ,µ − V]qi =
1
γi

q
T
i eje

T
j [2(πiI −M)VCµ,µ − V] qi

=
1
γi

e
T
i (Cµ,π)+eje

T
j [2(πiI −M)VCµ,µ − V] (CTµ,π)+ei

=
2 (πi − µj)vj

γi
(eTi (Cµ,π)+ej) (eTj (Cµ,µ)(CTµ,π)+ei) −

vj
γi

(eTi (Cµ,π)+ej) (eTj (CTµ,π)+ei) .
(4.75)
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Similarly, assume now that the j
th

derivative measurement is perturbed. We have that the (j, i) entry
of matrix T ′

µ is explicitly given as

(T ′
µ)j,i =

(πi−µj)v′j
γi

(eTi (Cµ,π)+ej)
2
. (4.76)

Definition 4.5. We define η(j,i) as the structured sensitivity for the eigenvalue πi with respect to the

perturbing the j
th

measurement, or on j
th

derivative measurement, as follows

η(j,i) = ∣ (T )j,i ∣ = {
∣ (Tµ)j,i ∣, if 1 ≤ j ≤ q,

∣ (T ′
µ)j,i ∣, if q + 1 ≤ j ≤ 2q.

(4.77)

All other definitions and formulas introduced in Section 4.2.1 follow equivalently, for values η(j,i) as

in Definition 4.5. For example, let Nµ ∈ Rq×n and N ′
µ ∈ Rq×n, corresponding to the measurements

and to the derivatives, respectively, so that Nµ = ∣Tµ∣, and N ′
µ = ∣T ′

µ∣.

Example 4.3. Consider the same test case as in Example 4.2. The vectors of poles and of residues
are given by:

{
π = [ −1 −1 − i −1 + i − 1

2
−

√
3
2

i − 1
2
+

√
3
2

i ] ,
γ = [ 1 − 1

2
i 1

2
i −

√
3
3

i
√
3
3

i ] .

Choose identical right/left interpolation points as follows:

λ = [ 2
9

4
9

6
9

8
9

10
9

] = µT .

Then, compute the Cauchy matrices: Cµ,π, Cµ,µ, and Cπ,µ and the matrix Nµ ∈ R5×5
of sensitivity

associated to the measurements, as well as matrix N ′
µ ∈ R5×5

of sensitivity associated to the derivatives,
as follows

Nµ
108

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0434 0.0897 0.0897 0.0079 0.0079
0.7100 1.5651 1.5651 0.1340 0.1340
0.9711 2.2717 2.2717 0.1872 0.1872
0.3703 0.8327 0.8327 0.0709 0.0709
0.0354 0.0838 0.0838 0.0068 0.0068

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
N ′
µ

108
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0030 0.0062 0.0062 0.0005 0.0005
0.1251 0.2708 0.2708 0.0234 0.0234
0.6091 1.3748 1.3748 0.1158 0.1158
0.5235 1.2179 1.2179 0.1001 0.1001
0.0581 0.1381 0.1381 0.0111 0.0111

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By examining the entries of Nµ, it follows that the pair of poles −1± i are the most sensitive, especially
when perturbing the first left measurement value. This can be observed in the (3, 2) and (3, 3) entries
of matrix Nµ. Similar conclusion can be drawn when analyzing the entries of matrix N ′

µ (that contains
the sensitivities with respect to perturbing the derivative measurements vi’). Finally, compute the

vector η ∈ R5
as in (4.68):

η = 10
8 [1.5005 3.4329 3.4329 0.2868 0.2868]T . (4.78)

We again conclude that the pair of poles −1± i, is the most sensitive (since η2 and η3 are the largest

entries). Additionally, note that the highest values computed in this example are in O(10
8), while the

ones in Example 4.2 were considerably smaller, i.e., in O(10
2) or O(10

3).

4.3 On the choice of the interpolation points and its influence on the
sensitivities

As shown in the previous sections, the sensitivities ρ and η depend on the eigenvectors p, q, on the
interpolation points µ, λ, and on the poles π. Moreover, since eigenvectors p, q depend on µ, λ, π
and also on the residues γ, we conclude that sensitivities ρ and η are determined by µ, λ, π and γ.
The poles π and residues γ of a given linear system are fixed (system invariants). Hence, the choice
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of interpolation points will determine sensitivities ρ and η. Consequently, this will be reflected the
robustness of the Loewner model.

In the Loewner framework the problem of data selection can be split into two sub-problems. The
first one stems from the choice of interpolation points, while the second one stems from separating
these points into left and right (disjoint) partitions. This is still a complex problem to deal with that
is not fully understood. Some progress was made in [18], where different types of distributions and
separating techniques for the interpolation points were tried.

The sensitivity ρ is directly related to the condition numbers of matrices Cµ,π and Cλ,π. Hence,
in the case of unstructured perturbation, we can study the problem of choosing interpolation points
by exploring the condition number of such generalized Cauchy matrices. The work [8] provides a
bound for the condition number of the generalized Cauchy matrices for which the denominator part
is real. More details are provided in Section 5.2.1. However, in many applications, the eigenvalues
and interpolation points could be indeed complex numbers. For the sensitivity η, the problem is more
complex because η does not depend on the condition number of generalized Cauchy matrices. We
illustrate the dependence in η by means of numerical examples in Section 5.

In what follows we discuss a simplified case. It is assumed that the poles and the interpolation
points are well separated into two clusters. The dimension of the Loewner pencil is the same as the
order of the original system (denoted with n). The Cauchy matrices Cµ,π and Cλ,π are hence square
matrices. We also assume that the poles and interpolation points are well separated into two clusters
with distance d. More precisely, the following relations hold

∣µi − πk∣ = O(d), and ∣λj − πk∣ = O(d). (4.79)

for i, j, k ∈ {1, 2, . . . , n}. In the sequel we investigate how the distance d affects the sensitivities ρ and
η.

Lemma 4.2. Given the unstructured perturbation sensitivity ρ in (4.38), the structured perturbation
sensitivity η in (4.65), and the assumptions made in (4.79), the following result hold:

ρ(d) = O(d4n−4), and η(d) = O(d4n−2). (4.80)

Proof. Given the condition (4.79) then the transfer function and the Loewner matrices follow

H(µ) = O(d−1), H(λ) = O(d−1), ∥L∥ = O(d−2), ∥Ls∥ = O(d−2). (4.81)

Given the inverse of Cauchy matrix in equation (4.60), it directly follows that the two relations hold

∥p∥ = ∥C−Tµ,πe∥ = O(d2n−1), ∥q∥ = ∥C−Tλ,πe∥ = O(d2n−1), (4.82)

Using the results stated in (4.81), and in (4.82), and the definition of ρ in (4.38), one can write that

ρ(d) = O(d2n−1)(O(d−2) +O(d−2))O(d2n−1) = O(d4n−4).

Similarly, by using the results in equation (4.81), and the formula for Si, write that

η(d) = O(d−1)O(dn)O(dn)O(dn)O(dn−1) = O(d4n−2).

As shown in Lemma 4.2, when n is large, the sensitivities ρ and η will increase fast when the distance
d is enlarged. So, it is better to choose interpolation points that are not far away from the poles of
the system. However, this does not necessarily imply that it is desired to take all measurements close
to the poles. For example, if some of the interpolation points are very close to the poles, the values of
the measured data could be indeed very large and hence yield an ill-conditioned Loewner pencil.
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5 Numerical examples

In this section, we provide a numerical study that includes two examples from [11].

5.1 Example 1

In this section we analyze the first example provided in [11]. Consider a linear system with realization

A = [−1.1 1
1 −1.1

] , B = [0
1
] , C = [0 1] .

The poles are given by π1 = −2.1 and π2 = −0.1. Four settings corresponding to the choice of
interpolation points are shown in Tab. 1. Note that the right points are chosen on the real axis in all
settings, while the left points are chosen on the imaginary axis for the first three settings. Lastly, for
setting 4, all interpolation points are real.

Setting λ1 λ2 µ1 µ2

1 0.00 1.00 0.00+1.00i 0.00-1.00i
2 0.25 0.75 0.00+2.00i 0.00-2.00i
3 0.40 0.60 0.00+4.00i 0.00-4.00i
4 8.00 9.00 10.00 11.00

Table 1: The four settings for choosing interpolation points.

The condition number of Cauchy matrices, the sensitivities ρi and their bound are shown in Tab. 2.
It is easy to see that the sensitivity ρi (corresponding to eigenvalue πi for i = 1, 2) is strongly related to
the condition numbers of the Loewner and generalized Cauchy matrices. An increase in the condition
numbers is reflected also in the sensitivity values (see, e.g., for setting 4). This behavior is in accordance
to the results provided in Section 4.

Setting cond(Cµ,π) cond(Cλ,π) ρ1 (π1 = −2.1) ρ2 (π2 = −0.1) bound(ρ1) bound(ρ2)
1 2.860e+00 3.619e+01 2.202e+02 5.609e-01 4.348e+02 2.278e+02
2 2.740e+00 1.958e+01 1.049e+02 2.191e+00 2.253e+02 1.180e+02
3 4.321e+00 3.741e+01 2.710e+02 1.111e+01 6.789e+02 3.556e+02
4 2.717e+02 1.869e+02 9.091e+04 2.077e+04 2.133e+05 1.117e+05

Table 2: Condition numbers and sensitivities ρi.

The pseudospectra computed for each of the four settings are shown in Fig. 1. The results match
the expectations for sensitivity ρ. More precisely, in Setting 4, the slope of the pseudospectrum around
the eigenvalues is much smaller than the slope for the other settings. The sensitivity ρ in Setting 4
is also much larger than for other settings. In all the depicted pseudospectra, it is found that the
eigenvalue at −2.1 is more sensitive than the eigenvalue at −0.1. This is also shown for sensitivity ρ,
i.e., it follows that ρ1 ≫ ρ2.

Next, we modify the choice of left and right interpolation points. These will be chosen as shown
in Tab. 3. More precisely, all points will be on the real axis with increasing value for each setting
k ∈ {1, 2, 3}. Moreover, the differences λ2 − λ1 and µ2 − µ1 are kept the same for all three settings
(equal to 2). In Tab. 3, we illustrate the relationship between sensitivities ρ, η and d, i.e., the distance
from the eigenvalue cluster to the interpolation points cluster. By following the results in (4.80), we

can indeed show that η = O(d6) and ρ = O(d4). The results presented in Tab. 3 indeed match the
theoretical prediction.

5.2 Example 2

In this section we analyze the second example provided in [11]. Consider a linear system with realization
given by matrices

A = diag(−1,−2,⋯,−10), B = [1, 1,⋯, 1]T , C = [1, 1,⋯, 1] .
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Figure 1: Pseudospectra of the Loewner pencils.

λ1 λ2 µ1 µ2 ρ1 (p1=-0.1) ρ2 (p2=-2.1) η1 (p1=-0.1) η2 (p2=-2.1)
0.00 2.00 1.00 3.00 2.881e+00 1.295e+03 2.848e+00 2.758e+02
10.00 12.00 11.00 13.00 1.124e+04 4.551e+04 1.144e+06 1.855e+06
100.00 102.00 101.00 103.00 6.415e+07 1.797e+08 4.220e+11 4.475e+11

Table 3: Sensitivities for different choices of interpolation points.

The poles of the system are {−1,−2, . . . ,−10} corresponding to residues {1, 1, . . . , 1}. As given in
Tab. 4, we choose two settings for the interpolations points. Note that both settings share the same in-
terpolation points, chosen on the negative real axis inside the interval (−11, 0). The difference between
them is given by ordering and by separating into the left/right partitions. Note that the left/right
interpolation points corresponding to Setting 1 are interlaced, while the left/right interpolation points
in Setting 2 are completely separated (half-half).

Additionally, the sensitivities ρ and η corresponding to each of the two separation settings, are also
listed in Tab. 4. An interesting numerical result can be observed: sensitivity ρ in Setting 2 is much
larger than that in Setting 1 which implies the model in Setting 2 is more ill-conditioned than the
model in Setting 1. However, we also note that the sensitivity η in Setting 2 is comparable to that
of Setting 1. This means that the Loewner model in Setting 1 is as robust as that in Setting 2, with
respect to perturbing the data.

λ µ π ρ η
-10.25 -9.75 -10.000 2.205e+01 2.098e-01
-9.25 -8.75 -9.000 1.947e+01 1.836e-01
-8.25 -7.75 -8.000 1.812e+01 1.711e-01
-7.25 -6.75 -7.000 1.697e+01 1.647e-01
-6.25 -5.75 -6.000 1.590e+01 1.619e-01
-5.25 -4.75 -5.000 1.487e+01 1.619e-01
-4.25 -3.75 -4.000 1.387e+01 1.647e-01
-3.25 -2.75 -3.000 1.292e+01 1.711e-01
-2.25 -1.75 -2.000 1.208e+01 1.836e-01
-1.25 -0.75 -1.000 1.185e+01 2.098e-01

λ µ π ρ η
-5.25 -10.25 -10.000 5.857e+06 2.098e-01
-4.75 -9.75 -9.000 9.429e+06 1.836e-01
-4.25 -9.25 -8.000 6.653e+06 1.711e-01
-3.75 -8.75 -7.000 2.704e+06 1.647e-01
-3.25 -8.25 -6.000 1.578e+06 1.619e-01
-2.75 -7.75 -5.000 1.447e+06 1.619e-01
-2.25 -7.25 -4.000 2.082e+06 1.647e-01
-1.75 -6.75 -3.000 4.285e+06 1.711e-01
-1.25 -6.25 -2.000 5.042e+06 1.836e-01
-0.75 -5.75 -1.000 2.571e+06 2.098e-01

Table 4: Poles and sensitivities of Loewner models of Setting 1 and 2.

Next, we generate 1000 Loewner models for measurements corrupted by Gaussian noise with σ = 0.3.
For each trial, we display in Fig. 2 the poles for both noisy and noiseless case in each of the two settings.
The results depicted there show that the Loewner models constructed from noisy data by Setting 1 have
a similar distribution of eigenvalues compared with the models in Setting 2. This numerical example
illustrates that it is indeed meaningful to define the sensitivity with respect to both unstructured and
structured perturbations.
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Figure 2: The distribution of poles of Loewner system models constructed from noisy data.

As shown in Tab. 5, the condition numbers for the Cauchy matrices defined for Setting 2 are consider-
ably larger than those of the matrices defined for Setting 1 (approximately 5 to 6 orders of magnitude).
Next, compute the `2-norm of the sensitivities ρ. This quantity takes into account the unstructured
sensitivities with respect to all the poles πi. Additionally, compute the upper bound on ∣ρ∣2 provided
in (4.44). Note that this bound is much tighter for Setting 1.

Setting κ(Cµ,π) κ(λ,π) ∥ρ∥2 bound(∥ρ∥2)
1 1.217e+00 1.217e+00 5.100e+01 7.385e+01
2 1.771e+06 1.771e+06 1.530e+07 1.563e+14

Table 5: Condition numbers of different matrices and the coefficient ∥ρ∥2.

The pseudospectra in Fig. 3 also shows that the eigenvalues in Setting 2 are more sensitive to noise
than those in Setting 1. This example illustrates how separating the interpolation points (into left and
right subsets) can greatly affect the condition numbers of the Loewner pencil and generalized Cauchy
matrices. It is to be concluded that interlaced data separation seems to be more advantageous than
splitting the interpolation data in half, in order to avoid ill-conditioning of the Loewner model.

Figure 3: Pseudospectra of the Loewner pencils.

In Fig. 4, we display a heat map of sensitivity values η(i,j) for the two settings described before.
Hence the entries of matrices Nµ and Nλ are displayed. This shows that the sensitivity values are large
whenever the measurements are closer to the poles. This means that measurements that are close to
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Figure 4: Structured sensitivity η(i,j) for the first two settings; interpolation points are on the x-axis,
while the poles are on the y-axis.

poles will greatly affect the perturbation with respect to those particular poles.

5.2.1 Bounds on the singular values of Cauchy and Loewner matrices

In [8], a bound on the decay of the singular values for matrices with displacement structure is provided.
Such matrices satisfy Sylvester equations. Indeed, the Cauchy and Loewner matrices are two types of
matrices with displacement structure. For the Cauchy matrix Cx,y ∈ Cm×n (m ≥ n) where the entries
of x are located in the interval [a, b] and the entries of y are located in the interval [c, d], the following
bound holds (provided that the two intervals are disjoint)

σj+k (Cx,y) ≤ 4 [exp( π
2

4µ (1/√γ)
)]

−2k

σj (Cx,y) , 1 ≤ j + k ≤ n (5.83)

where γ = ∣ (c − a) (d − b) / ((c − b) (d − a)) ∣ is the absolute value of the cross-ratio of a, b, c, d and µ
is the Grotzsch ring function. Thus, an upper bound for the decay of singular values is obtained which
is independent from the numerators of Cauchy matrix entries. In our work, numerators of entries are
residues of the poles of the system. Tab. 6 shows the experimental result of the bound on example 5.1.
Fig. 5 shows the experimental results of the bound on example 5.2.

µ1 µ2 λ1 λ2 κ(CL) bound(κ(CL)) κ(CR) bound(κ(CR))
1.0 3.0 0.0 2.0 1.439e+01 7.443e+00 4.541e+01 1.732e+00
11.0 13.0 10.0 12.0 1.737e+02 1.696e+02 1.485e+02 1.444e+02
101.0 103.0 100.0 102.0 1.063e+04 1.063e+04 1.043e+04 1.042e+04

Table 6: Condition numbers and sensitivity ρ

A similar bound holds for Loewner matrices. Let Lx,y ∈ Cm×n be a Loewner matrix, where m ≥ n,
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the following bound for the decay of singular values was given in [8]:

σj+2k (Lx,y) ≤ 4 [exp( π
2

4µ (1/√γ)
)]

−2k

σj (Lx,y) , 1 ≤ j + 2k ≤ n. (5.84)

The figure below provide results of the experiment on the bound of example 5.2.

Figure 5: Singular value decay of Cauchy and Loewner matrices with the corresponding bounds for
example 5.2. The red asterisks represent poles of the system, blue crosses represent left
interpolation points µ, and orange plus signs represent right interpolation points λ (for two
different settings provided in Section 5.2).

6 Conclusion

In this paper, we have presented a factorization of the Loewner pencil which yields an explicit gen-
eralized eigenvalue decomposition of the pencil. Based on this decomposition and on results from
perturbation theory of eigenvalues corresponding to a matrix pencil, the sensitivities of eigenvalues
of the Loewner pencil are defined and analyzed. This is done with respect to both unstructured and
structured types of perturbations.

It was found that the sensitivity of eigenvalues with unstructured perturbation is related to the
condition numbers of the generalized Cauchy matrices that appear in the factorization of the Loewner
pencil. This can indeed represent a useful tool for eigenvalue sensitivity analysis, together with the
pseudospectrum.

The sensitivity of eigenvalues with structured perturbations is an important tool to be used in the
case of noisy data. The relationship between the perturbation of eigenvalues and the perturbation in
the data is explored. One issue dealt with in this work was to analyze the robustness of the Loewner
model with respect to perturbed data. Using eigenvalue sensitivity analysis, we showed how the choice
of interpolation points affects the Loewner model.

In this work, we have explored some meaningful developments of the eigenvalue sensitivity analysis
for the Loewner pencil. Nevertheless, there are still some open problems to be dealt with. For example,
one needs to further investigate the problem of choosing the interpolation points. Additionally, the
study of sensitivity for eigenvalues with multiplicity could also represent a topic of further research.
Finally, the sensitivity computation procedure needs to be expanded for the case of redundant data.
Consequently, the sensitivity analysis can also be used for reduced-order models constructed within
the Loewner framework.
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