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Task state representations in vmPFCmediate
relevant and irrelevant value signals and
their behavioral influence

Nir Moneta 1,2,3 , Mona M. Garvert1,2,4, Hauke R. Heekeren3,5,6 &
Nicolas W. Schuck 1,2,6

The ventromedial prefrontal-cortex (vmPFC) is known to contain expected
value signals that inform our choices. But expected values even for the same
stimulus can differ by task. In this study, we asked how the brain flexibly
switches between such value representations in a task-dependent manner.
Thirty-five participants alternated between tasks inwhich either stimulus color
or motion predicted rewards. We show that multivariate vmPFC signals con-
tain a rich representation that includes the current task state or context
(motion/color), the associated expected value, and crucially, the irrelevant
value of the alternative context. We also find that irrelevant value repre-
sentations in vmPFC compete with relevant value signals, interact with task-
state representations and relate to behavioral signs of value competition. Our
results shed light on vmPFC’s role in decision making, bridging between its
role in mapping observations onto the task states of a mental map, and
computing expected values for multiple states.

Decisions are always made within the context of a given task. Even a
simple choice between two apples will depend on whether the task is
to find a snack, or to buy ingredients for a cake. In other words: the
same objects can yield different outcomes in different task contexts.
This could complicate the computations underlying retrieval of
learned values during a decision, since outcomeexpectations from the
wrong context might exert influence on the neural representation of
the available options.

Which reward a choice will yield in a given task context is at the
core of many decisions (e.g. ref. 1). Ventromedial prefrontal cortex
(vmPFC) represents this so-called expected value (EV) in a variety of
species2–7, and thereby is crucial in determining choices8. Several
investigations have also shed light on how the brain maps from com-
plex sensory input to expected values, and the associated cognitive
control processes. It is known, for instance, that the brain’s attentional
control network enhances the processing of features that are relevant

given the current task context or goal9,10, which in turn helps shape
which features influence expected value representations in vmPFC11–16.
Moreover, vmPFC seems to also represent expected value of different
features in a common currency17,18; and is involved in integrating
reward expectations from different features of the same object19–22. It
remains unclear, however, how context-irrelevant value expectations
of available features, i.e., rewards that would be obtained in a different
task-context, might affect vmPFC signals, and how such “undue”
influence relates to wrong choices.

This is particularly relevant because we often have to do more
than one task within the same environment, such as shopping in the
same supermarket for different purposes. Cognitive control processes
areknown to arbitrate between relevant and irrelevant information23,24,
and it has been suggested that they also gate the flow of information
within the value network22,25. But although cognitive control does gate
relevant information, it is also known that task-switching leads to less
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than perfect separation between task contexts/goals24 and results in
processing of task-irrelevant aspects23. Several studies found traces of
the distracting features in several cortical regions, including areas
responsible for task execution26–30. Similarly, not only task-relevant but
also task-irrelevant valuation has been shown to influence cognitive
control31,32 aswell as activity in vmPFC33 and posterior parietal cortex34.
We therefore hypothesized that during choice the vmPFC will repre-
sent different values that occur in different task contexts, i.e., values
appropriate in the current context, as well as other, context-
inappropriate and therefore choice-irrelevant values. Importantly,
unlike in standard cognitive control settings, we asked whether the
above-mentioned control during value-based choice involves
the arbitration between the expected values thatwould result from the
counterfactual choices one would have made in another context.

If that is the case, the neural representation of context might play
a major role in gating context-dependent values in vmPFC. Previous
work has shown that vmPFC is involved in representing such context-
signals35–38, which suggests that its role goes beyond representing
attention-filtered values. Note that knowing the current context alone
will not immediately resolve which value of two presented options
should be represented, similar to how knowing what you are shopping
for (cake or snack) will not answer which of the available apples you
should pick. We therefore hypothesized that vmPFCwould have a role
that goes beyond only encoding the task context, namely that it would
also be involved in the arbitration between context-dependent values,
meaning that a stronger activation of the relevant task-contextwill also
enhance the representation of task-relevant values. Such a multi-
faceted representation of multiple values and task contexts within the
same region would reconcile work that emphasizes the role of choice
value representations in vmPFC and orbitofrontal cortex (OFC)2–8 with
work which emphasizes the encoding of other aspects of the current
task39–43, in particular of so-called task states35–38, within the same
region (see also refs. 44,45). More specifically, we propose that con-
text/task state representations influence value computations in
vmPFC, such that a state representation triggers a comparison
between the values of options as they would be expected in the
represented state/context. In consequence, the value of the option
that would be best in the activated state will become represented, and
partial co-activation of different possible states could therefore lead to
value representations that can refer to different choices (the value of
the apple best for snacking and the value of the apple best for baking,
even if those are different apples). An alternative view in which state
representations do not impact value computations would assume that
activated values would always refer to the choice one is going tomake
in the present context (how valuable the apple chosen for snaking
would be for baking).

We investigated these questions using a multi-feature choice task
in which different features of the same stimulus predicted different
outcomes, and a task-context cue modulated which feature was rele-
vant. We show that participants compute both value expectations of
the relevant context as well as value expectations of an additional,
explicitly cued-to-ignore, irrelevant context. Behavioral analyses indi-
cated a choice conflict modulated by the possible expected values of
the relevant and irrelevant context. Multivariate fMRI signals in a
vmPFC value ROI were sensitive to (1) relevant values, (2) contextually
irrelevant values and (3) the identity of the current context. We also
found that increased representation of irrelevant values during choice
were accompanied by a decreased representation of the relevant
values, indicating a value competition in vmPFC. This competitionwas
modulatedby the task-context signal found in vmPFC. Lastly, we found
that neural indicators of context, values and the competition between
them were linked to increased choice conflict. We suggest that infor-
mation within the vmPFC is organized into a complex multi-faceted
representation in which multiple values of the same choice under
different task-contexts are co-represented and compete in guiding

behavior, while a context (or state) signal might act as a moderator of
this competition.

Results
Behavioral results
Thirty-five right-handed young adults (18 women, μage = 27.6,
σage = 3.35, see “Methods” for exclusions) were asked to judge either
the color (context 1) ormotion direction (context 2) ofmoving dots on
a screen (random dot motion kinematograms (e.g. ref. 46)). Four dif-
ferent colors and motion directions were used. Before entering the
MRI scanner, participants performed a stair-casing task in which par-
ticipants first received a cue that instructed them which feature (a
color or direction) will be the target of the current trial. Then partici-
pants had to select the matching stimulus from two random dot
motion stimuli (see Fig. S1c). In this task, motion-coherence and the
speed which dots changed from gray to a target color were adjusted
such that the different stimulus features could be discriminated
equally fast, both within and between contexts (i.e., Color/Motion,
Fig. S1c). As intended, this led to significantly reduced differences in
reaction times (RTs) between the eight stimulus features, within and
between contexts (paired t-test on RT variance before and after the
staircasing: t(34) = 7.29, p <0.001, Fig. 1a), also when tested for each
button separately (t(34) = Left: 6.52, Right: 7.70, ps < 0.001, Fig. S1d).

Only then, participants learned to associate each color and
motion feature with a fixed number of points (10, 30, 50 or 70 points),
whereby one motion direction and one color each led to the same
reward (counterbalanced across participants, Fig. 1b). To this end,
participants made choices between clouds that had only one feature-
type, while the other feature type was absent or ambiguous (clouds
were gray inmotion-only clouds andmoved randomly in color clouds).
To encourage mapping of all features on a unitary value scale, choices
in this part (and only here) also had to bemade between contexts (e.g.,
between a green and a horizontal-moving cloud). Participants
achieved near-ceiling accuracy in choosing the cloud with the highest
valued feature (μ =0.89, σ =0.06, t-test against chance: t(34) = 41.8,
p <0.001, Fig. 1c), also when tested separately for color, motion and
across context (μ = 0.88, 0.87, 0.83, σ =0.09, 0.1, 0.1, t-tests against
chance: t(34) = 23.9, 20.4, 19.9, ps < 0.001, respectively, Fig. S1e). Once
inside the MRI scanner, one additional training block ensured changes
in presentation mode did not induce feature-specific RT changes
(Anova on mean RT for each feature: F(7,202) = 1.06, p = 0.392). These
procedures made sure that participants began the main task with firm
knowledge of feature values; and that RT differences would not reflect
perceptual differences, but could be attributed to the associated
values. Additional information about the pre-scanning phase can be
found in “Methods” and in Fig. S1.

During the main task, participants had to select one of two dot-
motion clouds. In each trial, participants were first cued whether a
decision should be made based on color or motion features, and then
had to choose the cloud that would lead to the largest number of
points. Following their choice, participants received the points corre-
sponding to the value associated with the chosen cloud’s relevant
feature. To reduce complexity, the two features of the cued task-
context always had a value difference of 20, i.e., the choices on the
cued context were only between values of 10 vs. 30, 30 vs. 50 or 50 vs.
70. One third of the trials consisted of a choice between single-feature
clouds of the samecontext (henceforth: 1D trials, Fig. 1d, top). All other
trials were dual-feature trials, i.e., each cloud had a color and a motion
direction at the same time (henceforth: 2D trials, Fig. 1d bottom), but
only the context indicated by the cue mattered. Thus, while 2D trials
involved four features in total (twocloudswith two features each), only
the two color or twomotion featureswere relevant for determining the
outcome. The cued context stayed the same for four to seven trials.
Importantly, for each comparison of relevant features, we varied the
values of the irrelevant context, such that each relevant value was
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paired with all possible irrelevant values (Fig. 1e). While the irrelevant
context in a trial did not impact the outcome, it might nevertheless
influence behavior. Specifically, the hypothetical outcomes as they
would occur in the irrelevant context could favor the same side as the
relevant one, or not (Congruent vs. Incongruent trials, see Fig. 1e left),
and have larger or smaller values compared to the relevant features
(Fig. 1e right).

We investigated the impact of these factors on RTs in correct 2D
trials, where the extensive training ensured near-ceiling performance
throughout the main task (μ =0.91, σ = 0.05, t-test against chance:
t(34) = 48.48, p <0.0001, Fig. 2a). RTs were log transformed to
approximate normality and analyzed using mixed effects models with
nuisance regressors for choice side (left/right), time on task (trial
number), differences between attentional contexts (color/motion) and
number of trials since the last context switch (all nuisance regressors
had a significant effect on RTs, Type II Wald χ2 test, all ps < 0.03). We
used hierarchical model comparison to assess the effects of (1) the
objective value of the chosen option (or: EV), i.e., points associated
with the features on the cued context; (2) the maximum points that
could have been obtained if the irrelevant features were the relevant
ones (the expected value of the background, henceforth: EVback, Fig. 1e
right), and (3) whether the irrelevant features favored the same side as
the relevant ones or not (Congruency, Fig. 1e left). Any effect of the
latter two factors would indicate that outcome associations that were
irrelevant in the current context nevertheless influence behavior, and
therefore could be represented in vmPFC.

We found that participants reacted faster in trials that yielded
larger rewards and slower in incongruent compared to congruent trials
(likelihood-ratio test to asses improved model fit, EV: χ2ð1Þ = 1374:6,

p <0.001, Congruency: χ2ð1Þ =29:0, p <0.001, Fig. 2b, c). Moreover,
compared to 1D trials, participants were slower to respond to incon-
gruent trials and faster to respond to congruent trials (paired t-tests:
t(34) = −2.79, p = 0.013, t(34) = 2.5, p = 0.017 respectively, FDR-corrected,
see Fig. 2b, c). Crucially, we found that Congruency interactedwith the
expected value of the other context: larger EVback increased partici-
pants’ speed on congruent trials and had the opposite effect on
incongruent trials (LR-test: χ2ð1Þ = 18:19, p <0.001, Fig. 2d). These effects
show that even when participants chose accurately based on the
relevant context, the information of the irrelevant context was not
completely filtered. The expected value of a “counterfactual” choice
resulting from consideration of the irrelevant context mattered: the
outcome such a choice could have led to influenced reaction times. A
full model description including effect sizes and confidence intervals
can be found in SI Table S2.

Neither adding a main effect for EVback nor the interaction of
EV × EVback improved model fit (LR-tests: χ2ð1Þ = 1:21, p =0.27, χ2ð1Þ =0:01,
p =0.9 respectively), indicating that neither the presence of larger
irrelevant values alone, nor their similarity to the relevant values
influenced participants’ RTs. Additionally, the lower valued irrelevant
feature did not show comparable effects and did not interact with
Congruency (LR-test to baseline model: χ2ð1Þ =0:92, p = 0.336, with
interaction: χ2ð1Þ =2:76, p = 0.251). Replacing EVback with a parameter of
overall value of the irrelevant features did not improve the fit (which
could be understood as an overall distraction of the irrelevant context,
AIC of model with EVback × Congruency: −6626.649, AIC ofmodel with
Overall value × Congruency: −6619.878, Fig. S3). These results further
support that it is specifically the expected reward of the ignored
context that played a role in participants’ RT.
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Fig. 1 | Task and design. a Prior to value-learning, a participant-specific staircasing
procedure adjusted color and motion parameters such that variance of reaction
times across different color andmotion features (y-axis) was reduced (paired t-test,
p <0.001, n = 35). Box covers interquartile range (IQR), mid-line reflects mean,
whiskers the range of the data (until ±1.5*IQR), and solid points represent outliers
beyond whiskers. b After staircasing, specific rewards were assigned to each of the
four color and fourmotion directions, such that one feature from each context was
associated with the same reward/value. Feature-value mapping was counter-
balanced across participants. c Participants achieved near ceiling accuracy in
choosing the highest valued feature after training (μ =0.89, σ =0.06, n = 35). Box-
plot as in (a). d Single-feature (1D, top) and dual-feature (2D, bottom) trials both
started with a cue of the relevant context (“Color” or “Motion”, 0.6 s), followed by a
fixation (0.5–2.5 s, μ =0.6 s) and a choice between two clouds (1.6 s). In 1D trials,
each cloud only had one relevant feature (colored dots, but random motion, or
directed motion, but gray dots), while in 2D trials each cloud had a motion and a

color feature. Participants were explicitly asked to select the option yielding the
highest outcome in the cued context and ignore irrelevant features. Then followed
another fixation (1.5–9 s, μ = 3.4 s) and the value associated with the chosen cloud’s
feature of the cued context (outcome, 0.8 s). The next trial started after another
fixation (0.7–6 s, μ = 1.25 s). e Experimental manipulation of irrelevant values in 2D
trials. For each relevant feature pair (e.g., blue and orange), all possible context-
irrelevant feature-combinations were included in the task, except same feature on
both sides. Congruency (left): trials were termed congruent when irrelevant fea-
tures favored the same choice as the relevant features, otherwise incongruent.
EVback (right): trials were also characterized by the hypothetical expected value of
contextually-irrelevant features, i.e., the maximum value of both irrelevant fea-
tures. NB that both aspects did not have any impact on outcomes and were irre-
levant for the task at hand and that EV, EVback and Congruency were orthogonal by
design. Highlighted cell reflects example trial in (d), bottom. Source data are pro-
vided as a Source Data file.
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All major RT effects hold when running the models nested within
levels of EV, BlockContext or switch (Fig. S2).Moreover, the number of
trials since context switchdid not interactwith ourmain effect (LR-test
with added term for Congruency × EVback × switch: χ2ð1Þ =3:70,
p =0.157) and ourmain RT effects still hold when we excluded the first
two trials after the context switch (LR-tests: Congruency, χ2ð1Þ =8:12,
p =0.004, Congruency × EVback, χ2ð1Þ = 16:61, p < 0.001).We note that an
interaction of EV × Congruency indicated stronger Congruency effect
for higher EV (LR-test with added term: χ2ð1Þ =4:34, p =0.037, Fig. 2b),
but did not replicate in the replication sample (see below, χ2ð1Þ =0:23,
p =0.63). Details of other significant effects and alternative models
considering for instance within-cloud or between-context value dif-
ferences can be found in Figs. S3 and S4, respectively.

We replicated these findings in an additional sample of 21 parti-
cipants (15 women, μage = 27.1, σage = 4.91) that were tested outside of
the MRI scanner (LR-tests: Congruency, χ2ð1Þ =6:89, p = 0.009, EVback,
χ2ð1Þ =0:23, p =0.63, Congruency × EVback, χ2ð1Þ = 5:69, p =0.017, Fig. 2e).

We next modeled choice accuracy in 2D trials using the same
analysis approach and nuisance variables (see “Methods” and Fig. S5)
and found the same effects as the RT models: (1) Higher accuracy for
higher EV (LR-test: χ2ð1Þ = 14:61, p < 0.001) (2) decreased performance
on incongruent trials with (3) higher error rates occurring on trialswith
higher EVback (LR-tests: χ2ð1Þ =66:12, p < 0.001, χ2ð1Þ =6:99, p = 0.03,
respectively, Fig. S5).

In summary, these results indicated that participants did not
merely perform a value-based choice among features on the currently
relevant context. Rather, both reaction times and accuracy indicated
that participants also retrieved the values of irrelevant features and
computed the resulting counterfactual choice. We next turned to test
if the neural code of vmPFC would also incorporate such counter-
factual choices, and if so, how the representation of the relevant and
irrelevant contexts and their associated values might interact.

fMRI results
Outcome-relevant and outcome-irrelevant values co-exist within
the vmPFC. We derived a value-sensitive vmPFC ROI following com-
mon procedures in the literature (e.g. refs. 4,5) (see Fig. 3a and
“Methods”) and tested whether both relevant and irrelevant expected
values are reflected in multivariate vmPFC patterns using RSA. To
estimate value-related activity patterns within the vmPFC mask, we
fitted a general linear model (GLM) with one separate regressor for
each combination of EV and EVback, irrespective of the context (cross-
validated, 1D trials modeled separately). After multivariate noise nor-
malization and mean pattern subtraction (see ref. 47) we computed
the Mahalanobis distance between each combination of regressor.
This resulted in one 9 × 9 representational dissimilarity matrix (RDM,
Fig. 3 and “Methods”) per subject, which we analyzed using mixed
effects models (Gamma family with a inverse link48). We first asked
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Fig. 2 | Behavioral results. a Participants performed near-ceiling throughout the
main task,μ =0.905, σ =0.05 (n = 35). Box covers interquartile range (IQR),mid-line
reflects mean, whiskers the range of the data (until ±1.5*IQR), and solid points
represent outliers beyond whiskers. b Participants reacted faster to higher Expec-
ted Values (EV, x-axis) and slower to incongruent (purple) compared to congruent
(green) trials. RTs for 1D trials shown in gray. Error bars represent corrected within
subject SEMs102,103. c Comparison of log RTs by trial condition. Incongruent trials
were slower than 1D trials (paired t-test: p =0.013), and 1D trials slower than con-
gruent trials (paired t-test: p =0.017; paired t-test congruent vs. incongruent:
p <0.001). Error bars represent corrected within subject SEMs102,103. p values FDR-
corrected, n = 35. d The Congruency effect was modulated by EVback, i.e., the more
participants could expect to receive from the ignored context, the slower theywere
when the contexts disagreed and respectively faster when contexts agreed (x-axis,

shades of colors). Likelihood-ratio test (LRR) to asses improvedmodelfit:p <0.001,
n = 35. Gray horizontal line depicts the average RT for 1D trials across subjects and
EV. Errorbars as above.eHierarchical comparisonof 2D trial log-RTmodels showed
that inclusion of a Congruency main effect (p <0.001, see c), yet not EVback

(p =0.27), improved model fit. However, including an additional
Congruency × EVback interaction improvedmodel fit evenmore (p <0.001, seed).p
values from LR tests as above, stars indicate p <0.05, n = 35. f We replicated the
behavioral results in an independent sample of 21 participants outside the MRI
scanner. Including Congruency (p =0.009) but not EVback (p =0.63), improved
model fit. Including an additional Congruency× EVback interaction explained the
data best (p =0.017). p values/stars as in (e). Source data are provided as a Source
Data file.
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whether EV was reflected in the RDMs, as expected given that we used
a functionally defined value ROI. Indeed, adding a main effect for EV
dissimilarity (0 when two regressors share the same EV, 1 otherwise)
improved model fit compared to a null model (LR-test: χ2ð1Þ = 10:89,
p <0.001, Fig. 3b). Next, we asked if the activity patterns from trials
with the same EVback were more similar than patterns reflecting dif-
ferent EVback. Strikingly, adding a main effect of EVback dissimilarity (0

when sharing EVback and 1 otherwise) further improved model fit (LR-
test with added term: χ2ð1Þ = 247:67, p <0.001, Fig. 3c).

We then reasoned that the neural codes of expected values should
also reflect value-differences in a gradual manner. We therefore asked
whether pattern similarity was not only increased if two trials had the
same value (e.g., comparing “30” to “30”, Fig. 3d purple cells), but also
higher when the values in two trials had a difference of 20 (e.g., “30” to
“50”, Fig. 3d turquoise) compared to a value difference of 40 (e.g., “30”
to “70”, Fig. 3d yellow). Indeed we found that adding main effects for
the value difference of EV as well as EVback improved model fit (VDEV :
LR-test compared to a null model: χ2ð1Þ = 12:34, p < 0.001, VDEVback

: LR-
test with added term: χ2ð1Þ =256:98, p <0.001, Fig. 3c, d). Note that the
full model with both value difference effects resulted in a better
(lower) AIC score than the model with both main effects of the EVs
(AIC = 165,231 and AIC= 165,241, respectively, Fig. S6) indicating that
the value similarity effect is not merely driven by the diagonal. Full
models including effect sizes and confidence intervals can be found in
SI Tables S5 and S6.

Hence, neural patterns in vmPFC were affected by contextually-
relevant as well as irrelevant value expectations. Notably, the values of
irrelevant features were computed despite being counterfactual (not
related to the choice), and co-existedwith well known expected values
signals in vmPFC.

vmPFC value and context signals co-exist and are positively rela-
ted. We next turned to investigate how the neural value representa-
tions of EV, EVback and context interacted with each other on a trial-
wise level. We therefore trained a multivariate multinomial logistic
regression classifier on the fMRI images acquired ~5 s after stimulus
onset in same vmPFC ROI used above. An expected value classifier was
trained on behaviorally accurate 1D trials, where no irrelevant values
were present (henceforth: Value classifier, Fig. 4a, left; leave-one-run-
out training; see “Methods”). For each testing example, the classifier
assigned the probability of each class given the data (classes are the
expected outcomes, i.e., “30”, “50” and “70”, and probabilities sum up
to 1, Fig. 4a, right). Crucially, it had no information about the task
context of each given trial (training sets were up-sampled to balance
w.r.t. color/motion contexts, see “Methods”). We first validated that
the classifier was sensitive to values, as expected given the nature of
theROI. Indeed, the class with themaximumprobability corresponded
to the objective outcome significantly more often than chance, both

Fig. 3 | RSA analyses show that vmPFC encodes both relevant as well as irre-
levant expected values given the current task context. a vmPFC region used in
all analyses (green voxels), defined functionally as the positive effect of a univariate
value regressor thresholded at pFDR<0.0005 (one sided t-test, see “Methods”).
Note that no information regarding the contextually irrelevant values was used to
construct the ROI. Axial slice (left) at x = −6; Sagittal slice (right) at z = −6. b Left:
Model RDM, each cell represents one combination of EV and EVback, see axes.
Colors reflect whether a combination of trials had the same EV (purple) or not
(yellow). Right: Dissimilarity of vmPFC activation patterns for trials with the
same vs. different EV. Dissimilarity was lower in trials that share the same expected
value (EV, p <0.001,n = 35). cModel RDM(left) testingwhether irrelevant expected
value (EVback) affected similarity in vmPFC.We found less dissimilarity for trailswith
the same EVback (p <0.001, n = 35, right). d Left: Model RDM that tested whether
patterns similarity was influenced by the size of EV differences (0: purple, 20:
turquoise, 40: yellow). Right: Average dissimilarity associated with the varying
levels of value difference, indicating that larger EV differences between trials were
related to higher pattern dissimilarity (p <0.001, n = 35). e The same effect was
foundwith respect to EVbackwherepatterns that share the sameEVback (irrespective
to EV) also showed a decrease in dissimilarity (p <0.001, n = 35). Data shown in bar
plots are demeaned by trial-frequency in the design to match the mixed effect
models (see “Methods” and Fig. S6). Error bars in (b)–(e) represent corrected
within-subject SEMs102,103. p values in (b)–(e) reflect likelihood-ratio test of
improved model fit, see main text. Source data are provided as a Source Data file.
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when tested onheld out 1D and 2D trials aswell as when tested only on
2D trials (μall = 0.35, σall = 0.029, t(34) = 2.89, p = 0.003, μ2D = 0.35,
σ2D = 0.033, t(34) = 2.20, p =0.017, respectively, Fig. 4b). Similar to the
RSA analysis, we reasoned that the similarity between the values
assigned to the classes will be reflected in gradual probability differ-
ences . Specifically, we expected not only that the probability asso-
ciated with the correct class be highest (e.g., “70”), but also that the
probability associated with the closest class (e.g., “50”) would be
higher than the probability with the least similar class (e.g., “30”,
Fig. 4c). Indeed we found that similar values elicited similar prob-
abilities (LR-test of linear relation between value difference and class
probability: χ2ð1Þ = 12:74, p < 0.001, full analysis can be found in Fig. S7).
Additional control analyses indicated that our value classification
results were not the result of a bias caused by overlap of perceptual
features between training and test (Fig. S8).

A major feature of our task was that which value expectation was
relevant depended on the task context. We therefore hypothesized
that vmPFC would also encode the task context, although this is not
directly value-related (the average values of both contexts were iden-
tical).We thus trained a second classifier on the samedata from the EV-
sensitive ROI on the same accurate 1D trials, but this time to identify if
the trial was “Color” or “Motion” (Fig. 4d, left). The classifier had no
information as to what was the EV of each given trial, and training sets
were up-sampled to balance the EVs within each set (see “Methods”).
The classifier performed above chance for decoding the correct con-
text, again both when tested on held out trials from all conditions as
well as when tested only on 2D trials (t-test against chance: t(34) = 3.93,

p <0.001, t(34) = 3.2, p =0.001, respectively, Fig. 4e). Moreover, the
context was still decodable when keeping the perceptual input iden-
tical between the two classes (i.e., testing on 2D trials with fixed value
difference of the irrelevant values of 20, since the value difference of
the relevant context was always 20, t(34) = 2.73, p =0.0005).

We first hypothesized that if vmPFC is involved in signaling both
context and values, then the strength of context signal might relate to
the strength of the contextually relevant value. A correspondingmixed
effects analysis indeed found that the probability the context classifier
assigned to the correct class (henceforth: Pcontext) had a positive effect
on the decodability of EV (henceforth: Pev, LR-test compared to null
model: χ2ð1Þ =9:12, p = 0.002, Fig. 4f). In other words, the better we
could decode the context, the higher was the probability assigned to
the correct EV class.

In summary, we found that the Context is represented within the
same region as the EV, and that the strength of its representation is
directly linked to the representation of EV. The link between Context
and relevant EV signals suggest that the Context signal might play a
role in governing which values dominate vmPFC.

Competition of vmPFC EV and EVback signals is moderated by a
context representation. One main hypothesis was that contextually-
irrelevant values might influence neural codes of expected value in
vmPFC, and therefore should interact with EV probabilities decoded
from vmPFC in a trial-wise manner. Similar to our analyses above, we
used mixed effects models to test whether the Value classifier’s
probability of the correct class (PEV) was influenced by EVback and/or
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classifier was trained on behaviorally accurate 1D trials to predict the true EV from
vmPFC patterns (“Value classifier”, left). We analyzed classifier correctness and
predicted probability distribution (right). shown in (b) and (c). b The Value classi-
fier assigned the highest probability to the correct class (objective EV) significantly
more often than chance for all trials (p =0.003, n = 35), also when tested on gen-
eralizing to 2D trials alone (p =0.017, n = 35). c The probabilities the classifier
assigned to each class (y-axis, colors indicate the different classes, see legend) split
by the objective EV of the trials (x-axis). As can be seen, the highest probability was
assigned to the class corresponding to the objective EV of the trial (i.e., when the
color label matched the X axis label). n = 35, for individual data points see Fig. S7.
d A second logistic classifier was trained on the same data to distinguish between

task contexts (color vs. motion), irrespective of the EV (“Context” classifier). e The
Context classifier assigned the highest probability to the correct class (objective
Context) significantly more often than chance for all trials (p <0.001, n = 35), also
when tested on generalizing to 2D trials alone (p =0.001, n = 35). f Increased evi-
dence for the objective EV (PEV, y-axis) was associated with stronger context signal
in the same ROI (x-axis, where probabilities z-scored and logit-transformed, LR-test
compared to nullmodel: p =0.002,N = 35). Plotted aremodel predictions and gray
lines represent individual participants (mean of the top/bottom20%of trials). Error
bands represent the 89% confidence interval. p values in (b) and (e) reflect one
sided t-test against chance. Error bars in (b), (c) and (e) represent corrected within-
subject SEMs102,103. Source data are provided as a Source Data file.
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Congruency of a given 2D trial. This analysis revealed that EVback had a
negative effect on PEV (LR-test compared to null model χ2ð1Þ = 5:96,
p =0.015, Fig. 5b), meaning that larger irrelevant expected value led to
weaker representation of the relevant one (measured by lower prob-
ability of the objective EV, PEV). Importantly, this effect cannot be
attributed to attentional effects caused by perceptual input, since
replacing EVback with a regressor indicating the presence of its

corresponding perceptual feature in the training class, as highest or
lowest value, did not provide a bettermodel fit (AICs: −1229.2, −1223.3,
respectively, see Fig. S8 for details). Adding the minimum value of the
irrelevant context of the trial also did not improve the fit, indicating
that it is specifically the highest of the two irrelevant features driving
this effect (LR-test with added term: χ2ð1Þ =0:63, p =0.43). We found no
evidence for a EVback × Pcontext interaction (LR-test with added term:
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tom). The maxima of relevant and irrelevant outcomes are termed EV and EVback,
respectively. b Higher EVback was related to decreased decodability of EV (PEV) in
behaviorally accurate trials, likelihood-ratio (LR) test: p =0.015, n = 35. Color see
legend. Error bars represent corrected within-subject SEM. For supporting RSA
evidence see Fig. S6d102,103. cModeling theprobabilities assigned to the true EV class
(PEV) showed an effect of EVback (p =0.015) but not Congruency (p =0.852).
Including EVback and context decodability (Pcontext) yielded the best fit (p =0.001).p
values reflect LR tests. d Illustration that Value classifier class probabilities in (a)
example could reflect the true EV (PEV), the EVback (PEVback

) or neither EV or EVback

(POther). e The correlation between PEV and PEVback
(yellow) was significantly more

negative than the correlation between PEV and POther (blue, paired t-test, p =0.017,
n = 35). Box covers interquartile range (IQR), mid-line reflects median, whiskers the
range of the data (until ±1.5*IQR), and solid points represent outliers beyond
whiskers. f Comparing models of PEV confirmed that adding PEVback

improved fit
more than adding POther (AIC: −574 vs. −473), LR test with each individual effect:

p <0.001. n = 35. g The neural representations of relevant EV (PEV, y-axis) and the
irrelevant EV (P2DEVback

, x-axis, z-scored and multinomial-logit-transformed) were
marginally negatively associated (LR-test: p =0.063, n = 35). Error bands represent
89% confidence interval and gray lines individual participants' top/bottom 20%.
h Increased evidence for a Context representation (Pcontext) correlatedwith less EV/
EVback competition (i.e., weaker effect of P2DEVback

on PEV when Pcontext was stronger,
LR-test with interaction term: p =0.022). Lines reflect model predictions, error
bands represent 89%CI and vertical lines showgroupmeans of the top/bottom20%
of data (averaged first within participant, for individual lines, see Fig. S10). NB that
Pcontext was split into three levels for visualization; in our model it was continuous.
i Comparingmodels of PEV (nested within EVback levels) revealed that adding either
P2DEVback

or Pcontext improved model fit (g and h, p =0.063 and p =0.022), as well as
their interaction Pcontext × P2DEVback

(LR-test with interaction compared to only Pcontext:
p =0.022, and only P2DEVback

: p =0.029, n = 35). Note that PEVback
(a–f) indicates the

Value classifier' class probabilities of the EVback class, whereas P2DEVback
(g–i) indicates

the EVback classifier’s EVback class probabilities (the former was trained on 1D, the
latter on 2D trials). Stars in (c), (e), (f), (i) represent threshold of p <0.05. Source
data are provided as a Source Data file.
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χ2ð1Þ =0:012, p = 0.91). Our RSA analysis also provided further support
for this effect, where we found that EVback also had a negative effect on
the EV similarity, i.e., higher dissimilarity for higher EVback (Type II
Wald χ2 test: χ2ð1Þ =36:6, p <0.001, see Fig. S6). Similarly, high EVback

also disrupted the similarities between of the probabilities of the value
classifier (LR-test: χ2ð1Þ =6:16,p = 0.013, see Fig. S7). A number of control
analyses also indicated the validity of finding: interestingly, and unlike
in the behavioral models, we found that neither Congruency nor its
interaction with EV or EVback influenced PEV (χ2ð1Þ =0:035, p = 0.852,
χ2ð1Þ =0:48, p = 0.787, χ2ð1Þ =0:99, p =0.317, respectively, Fig. 5c), and a
match of value expectations of both contexts (i.e., EV = EVback) led no
change of PEV (χ2ð1Þ =0:45, p = 0.502, see “Methods”). We also found no
effect of time since switch on the decodability of EV (Type II Wald χ2

test: χ2ð1Þ =0:85, p =0.36, Fig S9, but see discussion on limitations).
Alternative models of PEV, e.g., including within-option or between-
context value differences, or alternatives for EVback (Fig. S9).

The decrease in value decodability due to high irrelevant value
expectations could reflect a general disturbance of the value retrieval
process caused by the distraction of competing values. Alternatively,
the encoding of EVback could directly compete with the representation
of EV—reflecting that the relevant and irrelevant value expectations
might be represented using similar neural codes (note that the clas-
sifier was trained in the absence of task-irrelevant values, i.e., the

objective EV of 1D trials). In order to test this idea, we looked at the
Value classifier probabilities in trials where EV ≠ EVback. This allowed us
to interpret the class probabilities of our Value classifier as either sig-
nifying EV (PEV), EVback (PEVback

) or a value that was expected in neither
case (Pother, Fig. 5d). We then examined the correlation between each
pair of classes. To prevent any disadvantage of the “other” class, we
included only trials in which the “other” value’s associated feature
appeared on the screen (relevant or irrelevant). Note that the three
class probabilities for each trial sum up to 1 and hence are strongly
biased to correlate negatively. Yet, PEV and PEVback

had a significantly
more negative correlation than PEV and Pother (ρ = −0.56, σ =0.22,
ρ = −0.40, σ =0.25 respectively, paired t-test: t(34) = −2.77, p =0.017,
Fig. 5e). This shows that when the probability assigned to the EV
decreased, it was accompanied by a stronger increase in the prob-
ability assigned to EVback, akin to a competition between both types of
expectations. Formally, we show that adding PEVback

to the model pre-
dicting PEV results in a smaller AIC than when adding Pother (−574 vs.
−473, respectively, Fig. 5f), likelihood-ratio-test for amodel with PEVback

:
χ2ð1Þ = 144:34, p <0.001, and with Pother: χ2ð1Þ =43:83, p <0.001).

The previous analysis only informs us about the overall correla-
tion of probabilities across the entire experiment. To investigate the
trial-wise dynamics of the neural representation within vmPFC, we
trained an additional classifier to detect the EVback on behaviorally
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p =0.034, n = 35. Error bars represent corrected within subject SEMs102,103.
b Decrease in behavioral accuracy (y-axis) in incongruent trials was marginally
associated with lower context decodability (Context classifier, x-axis, p =0.051).
This effect was modulated by EVback representation, i.e., stronger in trials with
higher PEVback

in vmPFC (shades of gold, p =0.012, discretisation only for visuali-
zation). p values represent LR-test with added terms and error bands represent the
89% CI. c Value classifier decodability of EV (blue, left) and EVback (gold, right) were
both positively related to behavioral accuracy in congruent trials (ps: 0.058 and
0.009, respectively, y axis). Lines are fitted slopes. Gray dots are group means of
top and bottom 20% of data (within participant, for individual lines, see Fig. S11). p

values represent LR-test with added terms and error bands represent the 89%
confidence interval. d Participants with weaker associations between Context and
EV representations (y-axis, Fig. 5f), had a stronger Congruency RT effect (x-axis,
larger values indicate stronger RT difference between incongruent and congruent
trials, i.e., distance between purple and green lines in Fig. 2b). e More negative
correlations between EV andEVback representations (y-axis, Fig. 4b)were associated
with stronger Congruency RT effects (x-axis, see d). f Participants with a stronger
(negative) link between PEV and EVback (y-axis, see Fig. 5e) also had a stronger EVback

modulation on the Congruency RT effect (x-axis, see distance between purple and
green lines in Fig. 2d). g Participants with a more negative link between PEV and
P2DEVback

(y-axis, more negative indicate stronger decrease, see Fig. 5g), had a stronger
modulation of EVback on Congruency RT effect (x-axis, see f). d–g present Pearson
correlations, p values represent Spearman’s p statistic to estimate a rank-based
measure of association104,105 and error bands represent 95% confidence interval.
Source data are provided as a Source Data file.
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accurate 2D trials. Although this classifier suffers from some caveats
(see “Methods”, Fig. S6a–c and below for details), we reasoned that
trialwise probability fluctuations are unbiased, and proceeded to ask if
the probability the EVback classifier assigned to the correct class (P2DEVback

)
might relate to encoding of the relevant value as indicated by theValue
classifier (i.e., PEV). Importantly, both classifiers were trained on inde-
pendent data (EVback classifier on 2D, and Value classifier on 1D trials),
but in both cases on behaviorally accurate trials, i.e., trials where par-
ticipants choose according to EV, as indicated by the relevant context.
This model showed that an increase in neural representation of EVback,
when measured independently (P2DEVback

), reduced EV decodability on a
trial-wise basis (lowered AIC score from −1223.6 to −1225.0, but note
that in the LR-test χ2ð1Þ = 3:45, p =0.063, Fig. 5d). Most remarkably, the
effect of Context, Pcontext, interactedwith the effect of P2DEVback

, such that
when the context signal was stronger, the negative effect of irrelevant
value signals on relevant value signals was weaker (i.e., Pcontext affected
the association between P2DEVback

and PEV, LR-test: χ2ð1Þ = 5:22, p = 0.022,
Fig. 5e). In other words, the stronger the relationship between Context
and EV representations, the less vmPFCs irrelevant value signal com-
peted with its value representations, akin to a shielding effect. The
same analysis also confirmed our previous finding that the strength of
context encoding affected value encoding (effect of Pcontext, LR-test:
χ2ð1Þ =9:99, p = 0.002). Note that the above analysiswas complicated by
the frequency differences between different EVback classes, which we
controlled by running the model of PEV with random effects nested
within levels of EVback for each subject, i.e., any effect found is not
influenced by the (biased) mean difference between the probabilities
assigned to each of those levels (intuitively, this is similar to running
each correlation separately within each level of EVback). Full models
including effect sizes and confidence intervals can be found in
Tables S3 and S4.

In summary, we showed the neural representation of EV was
reduced in trials with higher expected value of the irrelevant context,
and weakened EV representations were accompanied by an increase in
neural representations of such irrelevant value expectation, in the
same vmPFC region. The effect occurred irrespective of action-conflict
between the relevant and irrelevant values (unlike participants’ beha-
vior). Most strikingly, the negative influence of EVback representation
on EV decodability was mediated by a neural context signal, i.e., when
the link between Context and EV increased, the effect of EVback

representations diminished. As will be discussed later in detail, we
consider this to be evidence for parallel processing of two task aspects
in this region, EV and EVback.

Neural representation of EV, EVback and Context guide choice
behavior. Finally, we investigated how vmPFC’s representations of EV,
EVback and context influence participants’ behavior. We first investi-
gated this influence on choice accuracy. Note that the two contexts
only indicate different choices in incongruent trials, where a wrong
choice could be a result of a strong influence of the irrelevant context.
Motivated by our behavioral analyses that indicated an influenceof the
irrelevant context on accuracy, we asked whether PEVback

was different
on behaviorally wrong or incongruent trials. We found an interaction
of accuracy ×Congruency (Type II Wald χ2 test: χ2ð1Þ =4:51, p = 0.034,
Fig. 6a) that indicated increases in PEVback

in accurate congruent trials
and decreases in wrong incongruent trials. Hence, on trials in which
participants erroneously chose the option with higher-valued irrele-
vant features, PEVback

was increased. Focusing only on behaviorally
accurate trials, we found no effect of EV orCongruency on PEVback

(Type
II Wald χ2 tests: χ2ð1Þ =0:07, p =0.794, χ2ð1Þ =0:00, p =0.987, respec-
tively). This effect is preserved whenmodeling only wrong trials (Type
II Wald χ2 test of Congruency: χ2ð1Þ =4:36, p =0.037).

Motivated by the different predictions for congruent and incon-
gruent trials, we next turned to model these trial-types separately.
When focusing on incongruent trials we found that a weaker

representation of the relevant context was marginally associated with
an increased error rate (negative effect of Pcontext) on accuracy, indi-
cating an increased representation of the wrong context, LR-test:
χ2ð1Þ =3:66, p =0.055, Fig. 6b). Moreover, we found that the joint
increases of the wrong context and its associated irrelevant expected
value representation (EVback) strengthened this effect, i.e., adding a
Pcontext × PEVback

term to the model of error rates improved model fit
(LR-test: χ2ð1Þ =6:33, p = 0.012, Fig. 6b; NB that we found nomain effects
of EV or EVback LR-tests: χ2ð1Þ =0:28, p = 0.599, χ2ð1Þ =0:0, p = 0.957,
respectively). We next turned to congruent trials, where a wrong
choice should not be associated with activation of the wrong context
since both contexts indicate the same choice. Indeed, there was no
influence of Pcontext on accuracy in Congruent trials (LR-test: χ2ð1Þ =0:0,
p =0.922). However, strong representation of either relevant or irre-
levant EV should lead to a correct choice. Indeed, we found that both
an increase in PEVback

and (marginally) in PEV had a positive relation to
behavioral accuracy (χ2ð1Þ =3:5, p =0.061, χ2ð1Þ =6:48, p =0.011, respec-
tively, Fig. 6c).

Finally, we investigated reaction times of behaviorally accurate
trials. In line with the results presented above, we found that partici-
pants who had a weaker influence of Context activity on their EV
representation, also had a stronger RT Congruency effect (r = −0.39,
p =0.022, Fig. 6d). Next, we hypothesized that increased conflict
between EV and EVback representations of should influenceRT. Indeed,
all neural signatures of EV/EVback conflict correlated with the
Congruency-related RT effect: the more negative a participant’s cor-
relation between PEV and PEVback

was, the stronger her RT Congruency
effect (r = −0.45, p =0.008, Fig. 6e); a more negative association
between EVback and PEV was linked to a stronger EVback modulation of
the RT Congruency effect (r = 0.43, p =0.01, Fig. 6f); finally, the same
was true when considering the strength of the effect of the neural
representation of EVback (P2DEVback

) on the neural EV signal in relation to
the above behavioralmarker (r = 35,p =0.004, Fig. 6g). In otherwords,
the negative influence of irrelevant EV and its neural representation on
relevant EV signal, related to the interactive effect of
EVback × Congruency on RTs (i.e., slower RT for incongruent and faster
for congruent trials).

In sum, choice accuracy was negatively related to the repre-
sentation of irrelevant contexts and its associated value only in
incongruent trials (i.e., when it mattered), while in congruent trials
neural representations of EV and EVback contributed to accuracy. RT
analyses showed that markers of (1) weaker representational link
between context and EV and (2) stronger conflict between EVback and
EV were both associated with a stronger influence of the counter-
factual choice on their RT. Brought together these findings show that
the representations of EV, EVback and Context in vmPFC do not only
interact with each other, but guide choice behavior as reflected in
accuracy as well as RT in behaviorally accurate trials.

No univariate evidence for effects of irrelevant values on expected
value signals in vmPFC. The above analyses indicated that multiple
value expectations are represented in parallel within vmPFC. Lastly, we
asked whether whole-brain univariate analyses could also uncover
evidence for processing of multiple value representations. Detailed
description of the univariate analysis can be found in Fig. S12. Unlike
the multivariate analysis, this revealed no positive modulation of
Congruency, EVback or their interaction was observed in any frontal
region. A negative effect of was found EVback in the Superior Temporal
Gyrus, p < 0.001, Fig. S12c). We also found no region for the univariate
effect of Congruency × EV2D interaction (even at p < 0.005). However,
we found a negative univariate effect of Congruency × EVback in the
primary motor cortex at a liberal threshold, which indicated that the
difference between Incongruent and Congruent trials increased with
higher EVback, akin to a response conflict (p <0.005, Fig. S12d). These
findings contrast with the idea that competing values would have been
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integrated into a single EV representation in vmPFC, because this
accountwouldhavepredicted ahigher signal forCongruent compared
to incongruent trials.

Discussion
We investigated how contextually-irrelevant value expectations influ-
ence behavior and neural activation patterns in vmPFC. Participants
reacted slower when the irrelevant context favored a different choice
and faster when it favored the same. This Congruency effect increased
with increasing reward associated with the hypothetical choice in the
irrelevant context (EVback). fMRI analyses of vmPFC voxels sensitive to
the objective, i.e., relevant, expected value (EV) showed that (1) vmPFC
contains a multifaceted representation of each trials expected value,
irrelevant expected value and context; and that (2) higher irrelevant
expected values, or a stronger neural representation of them, impaired
the expected value signal, akin to a representational conflict between
the two values. This conflict was moderated by the strength of the
context signal, such that a stronger context signal was associated with
a stronger expected value signal, and a diminished negative effect of
the expected value of the irrelevant context. The different facets of
vmPFC’s representations were linked participants’ behavior in a man-
ner generally consistent with the idea that the representations of the
alternative/irrelevant context and its associated value were present
within vmPFC and guided behavior. The strength of these repre-
sentations within vmPFC was related to slower and less accurate
choices when the different contexts implied different actions, and
faster and more accurate choices when they agreed on the action to
be made.

One notable aspect of our experiment was that feature relevance
was cuedoneach trial, and rewardswere never influencedby irrelevant
features. Nevertheless, participants’ behavior was influenced by the
expected outcome of the counterfactual choice. This supports the
notion that cognitive control based arbitration between relevant and
irrelevant features is incomplete25,28,29. Our neural analyses showed
how internal value expectation(s) within vmPFC were shaped by such
incomplete suppression: not the ignored context per se influenced
vmPFC signals, but rather the computed expected value of the coun-
terfactual choice that would have been made in that context. This was
evidenced by the fact that the expected value of the background
captured fluctuations in value representations. A control analysis
showed that this cannot be explained by the presence of its corre-
sponding perceptual-feature on the screen. Hence, our results cannot
be explained by value-independent attention capture caused by the
“distracting” irrelevant context (Fig. S8), and go beyond previous
research on cognitive control, such as the Stroop Task23.

We also asked whether relevant and irrelevant expected values
integrate into a single EV, but found neither univariate normultivariate
evidence for this possibility. Specifically, we found no univariate EVback

or congruency effects, and no increase in EV decodability when EV
equalled EVback. This suggests some differences in the underlying
representations of relevant and irrelevant expected values. At the same
time, our analysis showed that the value classifier was sensitive to the
expected value of the irrelevant context in 2D trials, even though itwas
trained on 1D trials during which irrelevant values were not present.
This suggests that within vmPFC “conventional” expected values and
counterfactual values are encoded using partially, but not completely,
similar patterns. Moreover, our results suggest that the EV of each
context were activated simultaneously and competed with each other,
a competition governed by the context signal. While neural evidence
for EV competition did link behavioral evidence of choice conflict, we
found no influence of action-congruency on vmPFC signal itself. This
suggests that the conflicts between incongruent motor commands
might be resolved elsewhere. Univariate analyses revealed that pri-
mary motor cortex was sensitive to Congruency, and hence might be
the site of conflict resolution, in line with studies that suggest

distracting information can be found in task execution cortex in
humans and monkeys28,29. The idea that the conflict between multiple
values encoded in vmPFC is resolved inmotor cortex and is also in line
withour interpretation that vmPFCdoes not integrate both tasks into a
single EV representation that drives choice.

Participants repeatedly had to switch between contexts in our
task, a process that is well known to engage cognitive control
mechanisms22–25,32. We evaluated to what extent this task switching
affected our results and found that behavioral effects hold when
excluding the first 2 trials after a context switch, and that the distance
from the last switch did not interact with the influence of the irrelevant
values (Fig. S2). Likewise, we found no influence of task switching on
multivariate EV effects in vmPFC. Note, however, that due to our
design we could not create balanced training sets (with respect to
number of trials since context switch) which would be required for a
more thorough investigationof the effectof trials since switchonvalue
signals. We therefore conclude that while context switching is part of
the investigated phenomenon, its presence alone cannot explain our
findings.

Another important implication of our study concerns the nature
of neural representations in vmPFC/mOFC, and in particular the rela-
tionship between state35,37,38,49 and value2–7 codes in this area. In order
to compare both aspects, we used a categorical classifier for value as
well as states, rather than examining continuous value representations.
Nevertheless, we believe that the value similarity analysis (both in the
RSA, Fig. 3d, e and classifier probabilities, Fig. S7) additionally shows
evidence for such continuous value representations. We specifically
chose to focus on the vmPFC region that is commonly investigated in
value-based decision research. We therefore defined our ROI in a
univariate manner as commonly done in the literature (e.g. refs. 4,5)
and studied themultivariate state and value signal within this ROI (e.g.
refs. 35,37).We found that in addition to (expected) value information,
vmPFC/mOFC also represented the context or task-state, which iden-
tified relevant information and thereby disambiguated the partially
observable sensory state (e.g. refs. 35,37,49). Note that in our case the
task context was agnostic to value (which was balanced across con-
texts) and specific features, but rather consisted of a superset of the
more specific motion direction/color features. Any area sensitive to
these more specific states would therefore also show decoding of
context as defined here. Another methodological aspect was that we
decoded based on timeshifted TR images, rather than deconvolved
activity patterns50 as is common practice in fMRI decoding
papers18,51–53. Decoding level and approach may have implications for
the representations that can be uncovered in future research. Overall,
our findings are in line with work that has found that EV could be one
additional aspect of OFC activity44, which is multiplexed with other
task-related information. Crucially, the idea that state representations
integrate different kinds of task-relevant information40,54 could explain
why this region was found to be crucial for integrating valued features
when all features of an object are relevant for choice19,40, although
some work suggests that it might also reflect integration of features
not carrying any value41.

To conclude, the main contribution of our study is that we elu-
cidated the relation between task-context and value representations
within vmPFC. By introducing multiple possible values of the same
option in different contexts, we were able to reveal a complex
representation of task structure in vmPFC, with both task-contexts
and their associated expected values activated in parallel. The
decodability of both contexts and EVs independently from vmPFC,
and their relation to choice behavior, hints at integrated computa-
tion of these in this region. We believe that this bridges between
findings of EV representation in this region to the functional role of
this region as representing task-states, whereby relevant and coun-
terfactual values can be considered as part of a more encompassing
state representation.
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Methods
The study complies with all relevant ethical regulations and was
approved by the ethics board of the Free University Berlin (Ref.
Number: 218/2018).

Participants
Forty right-handed young adults took part in the experiment (18
women, μage = 27.6, σage = 3.35) in exchange for monetary reimburse-
ment. Participants were recruited using the participant database of
Max-Planck-Institute for Human Development. Beyond common MRI-
safety related exclusion criteria (e.g., piercings, pregnancy, large or
circular tattoos etc.), we also did not admit participants to the study if
they reported any history of neurological disorders, tendency for back
pain, color perception deficiencies or if they had a head circumference
larger than 58 cm (due to the limited size of the 32-channel head-coil).
Gender of participants was self-reported (note that the study was
conducted in the German language where there is no clear distinction
between sex and gender). We had no reason to suspect any gender
differences in the task and therefore didnot include this information in
the analyses. After data acquisition, we excluded five participants from
the analysis; one for severe signal drop in the OFC, i.e., more than 15%
less voxels in functional data compared to the OFC mask extracted
from freesurfer parcellation of the T1 image55,56. One participant was
excluded due to excessive motion during fMRI scanning (more than
2mm in any axial direction) and three participants for low perfor-
mance (<75% accuracy in one context in the main task). In the beha-
vioral-replication, 23 young adults took part (15 women, μage = 27.1,
σage = 4.91) and two were excluded for the same accuracy threshold.
Due to technical reasons, 3 trials (4 in the replication sample) were
excluded since answers were recorded before stimulus was presented
and 2 trials (non in the replication) in which RT was faster than 3 SD
from the mean (likely premature response). The monetary reimbur-
sement consisted of a base payment of 10 Euro per hour (8.5 for
replication sample) plus a performance dependent bonus of 5 Euro on
average.

Experimental procedures
Design. Participants performed a random dot-motion paradigm in
two phases, separated by a short break (minimum 15min). In the first
phase, psychophysical properties of four colors and four motion
directions were first titrated using a staircasing task. Then, partici-
pants learned the rewards associated with each of these eight fea-
tures during a outcome learning task. The second phase took place in
the MRI scanner and consisted mainly of the main task, in which
participants were asked to make decisions between two random dot
kinematograms, each of which had one color and/or one direction
from the same set. Note there were two additional mini-blocks of 1D
trials only, at the end of first- and at the start of the second phase
(during anatomical scan, see below). The replication sample com-
pleted the same procedure with the same break length, but without
MRI scanning. That is, both phases were completed in a behavioral
testing room. Details of each task and the stimuli are described
below. Behavioral data were recorded during all experiment phases.
MRI data were recorded during phase 2. We additionally collected
eye-tracking data (EyeLink 1000; SR Research Ltd.; Ottawa, Canada)
both during the staircasing and the main decision making task to
ensure continued fixation (data not presented). The overall experi-
ment lasted between 3.5 and 4 h (including the break between the
phases). Additional information about the pre-scanning phase can be
found in Fig. S1.

Room, luminance and apparatus. Behavioral sessions were con-
ducted in a dimly lit roomwithout natural light sources, such that light
fluctuations could not influence the perception of the features. A small
lamp was stationed in the corner of the room, positioned so it would

not cast shadows on the screen. The lamp had a light bulb with 100%
color rendering index, i.e., avoiding any influence on color perception.
Participants sat on aheight adjustable chair at a distanceof 60 cmfrom
a 52 cm horizontally wide, Dell monitor (resolution: 1920 × 1200,
refresh rate 1/60 frames per second). Distance from the monitor was
fixed using a chin-rest with a head-bar. Stimuli were presented using
psychtoolbox version 3.0.1157–59 in MATLAB R2017b60. In the MRI-
scanner room lights were switched off and light sources in the oper-
ating room were covered in order to prevent interference with color
perception or shadows cast on the screen. Participants lay inside the
scanner at distance of 91 cm from a 27 cm horizontally wide screen on
which the task was presented a D-ILA JVC projector (D-ILa Projektor
SXGA, resolution: 1024 × 768, refresh rate: 1/60 frames per second).
Stimuli were presented using psychtoolbox version 3.0.1157–59 in
MATLAB R2017b60 on a Dell precision T3500 computer running win-
dows XP version 2002.

Stimuli. Each cloud of dots was presented on the screen in a circular
array with 7° visual angle in diameter. In all trials involving two clouds,
the clouds appeared with 4° visual angle distance between them,
including a fixation circle (2° diameter) in the middle, resulting in a
total of 18° field of view (following total apparatus size from ref. 46).
Each cloud consisted of 48 square dots of 3 × 3 pixels. We used four
specific motion and four specific color features.

To prevent any bias resulting from the correspondence between
response side and dot motion, each of the four motion features was
constructed of two angular directions rotated by 180°, such that
motion features reflected an axis of motion, rather than a direction.
Specifically, we used the four combinations: 0°–180° (left–right),
45°–225° (bottom right to upper left), 90°–270° (up-down) and
135°–315° (bottom left–upper right). We used a Brownian motion
algorithm (e.g. ref. 46), meaning in each frame a different set of given
amount of coherent dots was chosen to move coherently in the
designateddirections in afixed speed,while the remainingdotsmoved
in a randomdirection (Fig. S1). Dots speedwas set to 5°per second (i.e.,
2/3 of the aperture diameter per second, following46). Dots lifetimewas
not limited. When a dot reached the end of the aperture space, it was
sent “back to start”, i.e., back to the other end of the aperture. Cru-
cially, the number of coherent dots (henceforth: motion-coherence)
was adjusted for each participant throughout the staircasing proce-
dure, starting at 0.7 to ensure high accuracy (see ref. 46). An additional
type of motion-direction was “random-motion” and was used in 1D
color clouds. In these clouds, dots were split to four groups of 12, each
assigned with one of the four motion features and their adjusted-
coherence level, resulting in abalanced subject-specific representation
of random motion.

In order to keep the luminance fixed, all colors presented in the
experiment were taken from the YCbCr color space with a fixed
luminance of Y =0.5. YCbCr is believed to represent humanperception
in a relatively accurate manner (cf. 61). In order to generate an adjus-
table parameter for the purpose of staircasing, we simulated a squared
slice of the space for Y = 0.5 (Fig. S1) in which the representation of the
dots color moved using a Brownian motion algorithm as well. Speci-
fically, all dots started close to the (gray) middle of the color space, in
each frame a different set of 30% of dots was chosen to move coher-
ently toward the target color in a certain speed whereas all the rest
were assignedwith a randomdirection. Perceptually, this resulted in all
the dots being gray at the start of the trial and slowly taking on the
designated color. Starting point for each color was chosen based on
pilot studies andwas set to a distance of 0.03–0.05 units in color space
from themiddle. Initial speed in color space (henceforth: color-speed)
was set so the dots arrive to their target (23.75% the distance to the
corner from the center) by the end of the stimulus presentation (1.6 s).
i.e., distance to target divided by the number of frames per trial
duration. Color-speed was adjusted throughout the staircasing
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procedure. An additional type of color was “no color” for motion 1D
trials for which we used the gray middle of the color space.

Staircasing task. In order to ensure RTs mainly depended on asso-
ciated values and not on other stimulus properties (e.g., salience), we
created a staircasing procedure that was conducted prior to value
learning. In this procedure, motion-coherence and color-speed were
adjusted for each participant in order to minimize between-feature
detection time differences. As can be seen in Fig. S1, in this perceptual
detection task participants were cued (0.5 s) with either a small arrow
(length 2°) or a small colored circle (0.5° diameter) to indicate which
motion-direction or color they should choose in the upcoming deci-
sion. After a short gray (middle of YCbCr)fixation circle (1.5 s, diameter
0.5°), participants made a decision between the two clouds (1.6 s).
Clouds in this part could be either both single-feature or both dual-
features. In dual feature trials, each stimulus had one color and one
motion feature, but the cue indicated either a specific motion or a
specific color. After a choice, participants received feedback (0.4 s)
whether theywere (1) correct and faster than 1 s, (b) correct and slower
or (c) wrong. After a short fixation (0.4 s), another trial started. All
timings were fixed in this part. Participants were instructed to always
look at the fixation circle in the middle of the screen throughout this
and all subsequent tasks. To motivate participants and continued
perceptual improvements during the later (reward related) task-
stages, participants were told that if they were correct and faster than
1 s in at least 80% of the trials, they will receive an additional monetary
bonus of 2 Euros.

The staircasing started after a short training (choosing correct in 8
out of 12 consecutive trials mixed of both contexts) and consisted of
two parts: two adjustment blocks an two measurement blocks. All
adjustments of color-speed and motion-coherence followed this for-
mula:

θt + 1
i =θt

i +αθ
t
i
RTt

i � RT0

RT0
ð1Þ

where θt + 1i represents the new coherence/speed for motion or color
feature i during the upcoming time interval/block t + 1, θti is the level at
the time of adjustment, RT

t
i is the mean RT for the specific feature i

during time interval t, RT0 is the “anchor” RT toward which the
adjustment is made and α represents a step size of the adjustment,
which changed over time as described below.

The basic building block of adjustment blocks consisted of 24
cued-feature choices for each context (4 × 3 × 2 = 24, i.e., 4 colors, each
discriminated against 3 other colors, on 2 sides of screen). The same
feature was not cuedmore than twice in a row. Due to time constrains,
we could not include all possible feature-pairing combinations
between the cued and uncued features. We therefore pseudo-
randomly choose from all possible background combinations for
each feature choice (unlike later stages, this procedure was validated
on and therefore included also trials with identical background fea-
tures). In the first adjustment block, participants completed 72 trials,
i.e., 36 color-cued and 36 motion-cued, interleaved in chunks of 4–6
trials in a non-predictive manner. This included, for each context, a
mixture of one building block of 2D trials and half a block of 1D trials,
balanced to include 3 trials for each cued-feature. 1D or 2D trials did
not repeat more than three times in a row. At the end of the first
adjustment block, themeanRTof the last 48 (accurate) trialswas taken
as the anchor (RT0) and each individual feature was adjusted using the
above formula with α = 1. The second adjustment block startedwith 24
motion-cued only trials which were used to compute a new anchor.
Then, throughout a series of 144 trials (72 motion-cued followed by 72
color-cued trials, all 2D), every three correct answers for the same
feature resulted in an adjustment step for that specific feature (Eq. (1))
using the average RT of these trials (RT

t
i ) and the motion anchor RT0

for both contexts. This resulted in a maximum of six adjustment steps
per feature, where alpha decreased from 0.6 to 0.1 in steps of 0.1 to
prevent over-adjustment.

Next, participants completed two measurement blocks identical
in structure to the main task (see below) with two exceptions: first,
although this was prior to learning the values, they were perceptually
cued to chose the feature that later would be assignedwith the highest
value. Second, to keep the relevance of the feature that later would
take the lowest value (i.e., would rarely be chosen), we added 36
additional trials cued to choose that feature (18 motion and 18 color
trials per block).

Outcome learning task. After the staircasing and prior to the main
task, participants learned to associate each featurewith adeterministic
outcome. Outcomes associated with the four features on each con-
texts were 10, 30, 50 and 70 credit-points. The value mapping to
perceptual featureswas assigned randomly betweenparticipants, such
that all possible color- and all possiblemotion-combinationswere used
at least once (4! = 24 combinations per context). We excluded motion
value-mapping that correspond to clockwise or counter-clockwise
ordering. The outcome learning task consisted only of single-feature
clouds, i.e., clouds without coherent motion or dots “without” color
(gray). Therefore each cloud in this part only represented a single
feature. To encourage mapping of the values for each context on
similar scales, the two clouds could be either of the same context (e.g.,
color and color) or from different contexts (e.g., color and motion).
Such context-mixed trials did not repeat in other parts of the
experiment.

The first block of the outcome learning task had 80 forced choice
trials (5 repetitions of 16 trials: 4 values × 2 Context × 2 sides of screen),
in which only one cloud was presented, but participants still had to
choose it to observe its associated reward. These were followed by
mixed blocks of 72 trials which included 16 forced choice interleaved
with 48 free choice trials between two 1D clouds (6 value-choices: 10
vs. 30/50/70, 30 vs. 50/70, 50 vs. 70 × 4 context combinations × 2 sides
of screen for highest value). To balance the frequencies with which
feature-outcomepairs would be chosen, we added eight forced choice
trials in which choosing the lowest value was required. Trials were
pseudo-randomized so no value would repeat more than three times
on the same side and same side would not be chosen more the three
consecutive times.Mixed blocks repeated until participants reached at
least 85% accuracy of choosing the higher-valued cloud in a block, with
aminimumof two and amaximumof four blocks. Since all cloudswere
1D and choice couldbe between contexts, these trials startedwithout a
cue, directly with the presentation of two 1D clouds (1.6 s). Participants
thenmade a choice, and after shortfixation (0.2 s)were presentedwith
the value of both chosen and unchosen clouds (0.4 s, with value of
choicemarked with a square around it, see Fig. S1). After another short
fixation (0.4 s) the next trial started. Participants did not collect reward
points in this stage, but were told that better learning of the associa-
tions will result in more points, and therefore more money later.
Specifically, in the MRI experiment participants were instructed that
credit points during the main task will be converted into a monetary
bonus such that every 600 points they will receive 1 Euro at the end.
The behavioral replication cohort received 1 Euro for every 850 points.

Main task preparation. In preparation of the main task, participants
performed one block of 1D trials at the end of phase 1 and then at the
start of theMRI session during the anatomical scan. These blocks were
included to validate that changing presentation mediums between
phases (computer screen vs. projector) did not introduce a perceptual
bias to any features and as a final correction for post value-learning RT
differences between contexts. Each block consisted of 30 color and 30
motion 1D trials interleaved in chunks of 4–7 trials in a non-predictive
manner. The value difference between the clouds was fixed to 20
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points (10 repetitions of 3 value comparisons × 2 contexts). Trials were
pseudo-randomized so no target value was repeated more than once
within context (i.e., not more than twice all in all) and was not pre-
sentedon the same side of screenmore than3 consecutive trialswithin
context and 4 in total. In each trial, they were first presented with a
contextual cue (0.6 s) for the trial, followedby shortfixation (0.5 s) and
the presentation of two single-feature clouds of the cued context
(1.6 s) and had to choose the highest valued cloud. After a short fixa-
tion (0.4 s), participants were presented with the chosen cloud’s out-
come (0.4 s). The timing of the trials was fixed and shorter than in the
remaining main task because no functional MRI data was acquired
during these blocks. Participants were instructed that from the first
preparation block they started to collect the rewards. Data from these
1D block were used to inspect and adjust for potential differences
between the MRI and the behavior setup. First, participants reacted
generally slower in the scanner (t(239) = −9.415, p <0.001, paired t-test
per subject per feature). Importantly, however, we confirmed that this
slowing was uniform across features, i.e., no evidence was found for a
specific feature havingmore RT increase than the rest (ANOVA test on
the difference between the phases, F(7,232) = 1.007, p =0.427). Sec-
ond, because pilot data indicated increased RT differences between
contexts after the outcome learning task we took the mean RT dif-
ference between color and motion trials in the second mini-block in
units of frames (RT difference divided by the refresh rate), and moved
the starting point of each color relative to their target color, the
number of frames × its speed. Crucially, the direction of the move
(closer/further to target) was the same for all colors, thus ensuring not
to induce within-context RT differences.

Main task. Finally, participants began with themain experiment inside
the scanner. Participants were asked to choose the higher-valued of
two simultaneously presented random dot kinematograms, based on
the previously learned feature-outcome associations. As described in
the main text, each trial started with a cue that indicated the current
task context (color or motion). In addition, both clouds could either
have two features (each a color and a motion, 2D trials) or one feature
only from the cued context (e.g., colored, but randomlymoving dots).

The main task consisted of four blocks in which 1D and 2D trial
were intermixed. Each block contained 36 1D trials (3 EV× 2 Con-
texts × 6 repetitions) and 72 2D trials (3 EV × 2 Contexts × 12 feature-
combinations, see Fig. 1c). Since this task took part in the MRI, the
duration of the fixation circles were drawn from a truncated expo-
nential distribution with a mean of μ =0.6 s (range 0.5–2.5 s) for the
interval between cue and stimulus, a mean of μ = 3.4 s (1.5–9 s) for the
interval between stimulus and outcome and a mean of μ = 1.25 s
(0.7–6 s) for the interval betweenoutcomeand the cueof thenext trial.
The cue, stimulus and outcome were presented for 0.6, 1.6 and 0.8 s,
respectively. Timing was optimized using VIF-calculations of trial-wise
regression models (see “Classification procedure” section below).

The order of trials within blocks was controlled as follows: the
cued context stayed the same for 4–7 trials (in a non-predictive man-
ner), to prevent context confusion caused by frequent switching. No
more than 3 repetitions of 1D or 2D trials within each context could
occur, and nomore than 5 repetition overall. The target did not appear
on the same side of the screen on more than 4 consecutive trials.
Congruent or incongruent trials did not repeat more than 3 times in a
row. In order to avoid repetition suppression, i.e., a decrease in the
fMRI signal due to a repetition of information (e.g. refs. 62,63), no
target feature was repeated two trials in a row, meaning the EV could
repeat maximum once (i.e., one color and one motion). As an addi-
tional control over repetition, we generated 1000 designs according
the above-mentioned rules and choose the designs in which the target
value was repeated in no more than 10% of trials across trial types, as
well as when considering congruent, incongruent or 1D trials
separately.

In all mixed effect models, When describing main effects of
models, the χ2 represents Type II Wald χ2 tests, whereas when
describing model comparison, the χ2 represents the log-likelihood
ratio test.Model comparison throughout the paperwas doneusing the
“anova” function. The reason we used χ2 test is that classification
probabilities as well as RSA dissimilarities are not normally distributed
(these follow beta and gamma distributions respectively, note that the
glmmTMB toolbox also uses χ2 as its default for these distributions).
Regressors were scaled prior to fitting the models for all analyses.

Throughout the behavioral and fMRI analyses we report exact p
values unless they fall below 0.001, in which case we report p < 0.001.

Behavioral analysis
RT data was analyzed in R (R version 3.6.364, RStudio version 1.3.95965)
using linear mixed effect models (lmer in lme4 1.1-21: ref. 66). The
behavioral model that we found to fit the behavioral RT data best was:

logRTt
k =β0 + γ0k +β1EV +β2Congruencyt +β3CongruencytEVbackt

+β4CongruencytEVt + ν1t + ν2sidet + ν3switcht + ν4contextt
ð2Þ

where logRTt
k is the log reaction time of subject k in trial t, β0 and γ0k

represent global and subject-specific intercepts, ν-coefficients reflect
nuisance regressors (side of target object, trials since last context
switchand the current context),β1 toβ4 captured thefixed effectof EV,
Congruency, Congruency × EVback and Congruency × EV, respectively.
The additional models reported in the SI included intercept terms
specific for each factor level, nested within subject (for EV, Block and
Context, see Fig. S2). An exploratory analysis investigating all possible
two-way interactions with all nuisance regressors can be found
in Fig. S4.

Investigations of alternative parametrizations of the values can be
found in Fig. S3.

Accuracy data were analyzed in R (R version 3.6.364, RStudio ver-
sion 1.3.95965) using generalized linear mixed effect models (glmer in
lme4 1.1-21: ref. 66) employing a binomial distribution family with a
“logit” link function. Regressors were scaled prior to fitting themodels
for all analyses. No-answer trials of were excluded from this analysis.
The model found to fit the behavioral accuracy data best was almost
equivalent to the RT model, except for the fourth term involving
Congruency × switch:

ACCt
k =β0 + γ0k +β1EV +β2Congruencyt +β3CongruencytEVbackt

+β4Congruencytswitcht + ν1t + ν2sidet + ν3switcht + ν4contextt
ð3Þ

where ACCt
k is the accuracy (1 for correct and 0 for incorrect) of sub-

ject k in trial t and all the rest of the regressors are equivalent to Eq. (2).
An exploratory analysis investigating all possible two-way interactions
with all nuisance regressors can be found in Fig. S5. We note that the
interaction Congruency × switch indicates that participants weremore
accurate the further they were from a context switch point. Out of the
nuisance variables, only “switch” influenced accuracy, Type II Wald χ2

test in baseline model: χ2ð1Þ = 10:22, p =0.001.

fMRI data
fMRI data acquisition. MRI data was acquired using a 32-channel head
coil on a research-dedicated 3-Tesla Siemens Magnetom TrioTim MRI
scanner (Siemens, Erlangen, Germany) located at the Max Planck
Institute for Human Development in Berlin, Germany. High-resolution
T1-weighted (T1w) anatomical Magnetization Prepared Rapid Gradient
Echo (MPRAGE) sequences were obtained from each participant to
allow registration and brain surface reconstruction (sequence specifi-
cation: 256 slices; TR = 1900ms;TE = 2.52ms; FA = 9degrees; inversion
time (TI) = 900ms; matrix size = 192 × 256; FOV = 192 × 256mm; voxel
size = 1 × 1 × 1mm). This was followed with two short acquisitions with
six volumes each that were collected using the same sequence
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parameters as for the functional scans but with varying phase encod-
ing polarities, resulting in pairs of images with distortions going in
opposite directions between the two acquisitions (also known as the
blip-up/blip-down technique). From these pairs the displacements
were estimated and used to correct for geometric distortions due to
susceptibility-induced field inhomogeneities as implemented in the
fMRIPrep preprocessing pipeline. In addition, a whole-brain spoiled
gradient recalled (GR) fieldmapwith dual echo-time images (sequence
specification: 36 slices; A-P phase encoding direction; TR= 400ms;
TE1 = 4.92ms; TE2 = 7.38ms; FA = 60 degrees; matrix size = 64 × 64;
619 FOV = 192 × 192mm; voxel size = 3 × 3 × 3.75mm)wasobtained as a
potential alternative to themethod described above. However, this GR
field map was not used in the preprocessing pipeline. Lastly, four
functional runs using amulti-band sequence (sequence specification:
64 slices in interleaved ascending order; anterior-to-posterior (A-P)
phase encoding direction; TR = 1250ms; echo time (TE) = 26ms;
voxel size = 2 × 2 × 2mm; matrix = 96 × 96; field of view (FOV) = 192
× 192mm; flip angle (FA) = 71 degrees; distance factor = 0, MB
acceleration factor = 4). A tilt angle of −30 degrees fromAC-PC (tilted
backwards, or: front side of FOV upwards) was used in order to
maximize signal from the orbitofrontal cortex (OFC, see ref. 67). For
each functional run, the task began after the acquisition of the first
four volumes (i.e., after 5.00 s) to avoid partial saturation effects and
allow for scanner equilibrium. Each run was about 15min in length,
including a 20 s break in the middle of the block (while the scanner is
running) to allow participants a short break. We measured respira-
tion and pulse during each scanning session using pulse oximetry
and a pneumatic respiration belt part of the Siemens Physiological
Measurement Unit. Full details of the sequences used, as provided by
theMRI scanner, are shared in the same repository with the code (see
“MRI_Sequences.pdf”).

BIDS conversion and defacing. Data was arranged according to the
brain imaging data structure (BIDS) specification68 using the HeuDi-
Conv tool (version 0.6.0.dev1; freely available from https://github.
com/nipy/heudiconv). Dicoms were converted to the NIfTI-1 format
using dcm2niix [version 1.0.20190410 GCC6.3.0; ref. 69]. In order to
make identification of studyparticipants highlyunlikely, we eliminated
facial features from all high-resolution structural images using pyde-
face (version 2.0; available from https://github.com/poldracklab/
pydeface). The data quality of all functional and structural acquisi-
tions were evaluated using the automated quality assessment tool
MRIQC (for details, (see ref. 70), and the MRIQC documentation). The
visual group-level reports confirmed that the overall MRI signal quality
was consistent across participants and runs.

fMRI preprocessing. Data were preprocessed using fMRIPrep 1.2.6
(refs. 71,72; RRID:SCR_016216), which is based on Nipype 1.1.7
(refs. 73,74; RRID:SCR_002502). Many internal operations of fMRIPrep
use Nilearn 0.5.0 (ref. 75, RRID:SCR_001362], mostly within the func-
tional processing workflow.

Specifically, the T1-weighted (T1w) image was corrected for
intensity non-uniformity (INU) using N4BiasFieldCorrection
(ref. 76, ANTs 2.2.0), and used as a T1w-reference throughout the
workflow. The anatomical image was skull-stripped using antsBrai-
nExtraction.sh (ANTs 2.2.0), using OASIS as the target template.
Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1,
RRID:SCR_001847, ref. 55), and the brain masks were estimated pre-
viously was refined with a custom variation of themethod to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle (RRID:SCR_002438, ref. 54). Spatial nor-
malization to the ICBM 152 Nonlinear Asymmetrical template version
2009c (ref. 77, RRID:SCR_008796) was performed through nonlinear
registration with antsRegistration (ANTs 2.2.0, RRID:SCR_004757,
ref. 78), using brain-extracted versions of both T1w volume and

template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM)was performed on the brain-
extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, ref. 79).

To preprocess the functional data, a reference volume for each
run and its skull-stripped version were generated using a custom
methodology of fMRIPrep. A deformation field to correct for sus-
ceptibility distortions was estimated based on two echo-planar ima-
ging (EPI) references with opposing phase-encoding directions, using
3dQwarp80 (AFNI 20160207). Based on the estimated susceptibility
distortion, an unwarped BOLD reference was calculated for a more
accurate co-registration with the anatomical reference. The BOLD
reference was then co-registered to the T1w reference using bbreg-
ister (FreeSurfer), which implements boundary-based registration81.
Co-registration was configured with nine degrees of freedom to
account for distortions remaining in the BOLD reference. Head-motion
parameters with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and translation parameters)
are estimated before any spatiotemporal filtering using mcflirt (FSL
5.0.982). BOLD runs were slice-time corrected using 3dTshift from
AFNI 20160207 (ref. 80, RRID:SCR_005927) and aligned to the middle
of each TR. The BOLD time-series (including slice-timing correction)
were resampled onto their original, native space by applying a single,
composite transform to correct for head-motion and susceptibility
distortions. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep.

Several confound regressors were calculated during preproces-
sing: six head-motion estimates (see above), Framewise displacement,
six anatomical component-based noise correction components
(aCompCorr) and 18 physiological parameters (8 respiratory, 6 heart
rate and 4 of their interaction). The head-motion estimates were cal-
culated during motion correction (see above). Framewise displace-
ment was calculated for each functional run, using the
implementations in Nipype (following the definitions by ref. 83). A set
of physiological regressors were extracted to allow for component-
based noise correction (CompCor84). Principal components are esti-
mated after high-pass filtering the BOLD time-series (using a discrete
cosine filter with 128s cut-off) for the two CompCor variants: temporal
(tCompCor, unused) and anatomical (aCompCor). For aCompCor, six
components are calculated within the intersection of the aforemen-
tioned mask and the union of CSF and WM masks calculated in T1w
space, after their projection to the native space of each functional run
(using the inverse BOLD-to-T1w transformation). All resamplings can
be performed with a single interpolation step by composing all the
pertinent transformations (i.e., head-motion transform matrices, sus-
ceptibility distortion correction, and co-registrations to anatomical
and template spaces). Gridded (volumetric) resamplings were per-
formed using antsApplyTransforms (ANTs), configured with Lanc-
zos interpolation tominimize the smoothing effects of other kernels85.
Lastly, for the 18 physiological parameters, correction for physiologi-
cal noise was performed via RETROICOR86,87 using Fourier expansions
of different order for the estimated phases of cardiac pulsation (3rd
order), respiration (4th order) and cardio-respiratory interactions (1st
order)88: the corresponding confound regressors were created using
theMatlab PhysIO Toolbox (ref. 89, open source code available as part
of the TAPAS software collection (Version 3.2.0): https://www.
translationalneuromodeling.org/tapas. For more details of the pipe-
line, and details on other confounds generated but not used in our
analyses, see https://fmriprep.readthedocs.io/en/latest/workflows.
html the section corresponding to workflows in fMRIPrep’s
documentation.

For univariate analyses, BOLD time-series were re-sampled to
MNI152NLin2009cAsym standard space in the fMRIPrep pipeline and
then smoothed using SPM (ref. 90, SPM12 (7771)) with 8mm FWHM,
except for ROI generation, where a 4mm FWHM kernel was used.
Multivariate analyses were conducted in native space, and data was
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smoothed with 4mm FWHM using SPM (ref. 90, SPM12 (7771)). Clas-
sification analyses further involved three preprocessing steps of voxel
time-series: First, extreme-values more than 8 standard deviations
from a voxels mean were corrected by moving them by 50% their
distance from themean toward themean (this wasdone to not bias the
last z scoring step). Second, the time-series of each voxel was detren-
ded, a high-pass filter at 128Hz was applied and confounds were
regressed out in one action using Nilearn 0.6.2 (later changed to
0.7.0)75. Lastly, the time-series of each voxel for each block was z
scored.

Univariate fMRI analysis
All GLMswereconducted using SPM1290,SPM12 (7771) inMATLAB60. All
GLMs consisted of two regressors of interest corresponding to the
onsets of the two trial-types (1D/2D, except for one GLM where 2D
onsets were split by Congruency) and included one parametric mod-
ulator of EV assigned to 1D onset and different combinations of para-
metric modulators of EV, Congruency, EVback and their interactions
(see Fig. S13 for GLM visualization). All parametric modulators were
demeaned before entering the GLM, but not orthogonalized. Regres-
sors of no interest reflected cue onsets in Motion and Color trials,
stimulus onsets in wrong and no-answer trials, outcome onsets and 31
nuisance regressors (e.g., motion and physiological parameters, see
fMRI-preprocessing). The duration of stimulus regressors corre-
sponded to the time the stimuli were on screen. The durations for the
rest of the onset regressors were set to 0.Microtime resolutionwas set
to 16 (64 slices/4 MB factor) and microtime onset was set to the 8
(since slice time correction aligned to middle slice, see fMRI-pre-
processing). Data for all univariate analyses were masked with a whole
brain mask computed as intercept of each functional run mask gen-
erated from fMRIprep55,56. MNI coordinates were translated to their
corresponding brain regions using the automated anatomical parcel-
lation toolbox (refs. 91–93, AAL3v1) for SPM. We verified the estim-
ability of the designmatrices by assessing the Variance Inflation Factor
(VIF) for each onset regressor in the HRF-convolved design matrix.
Specifically, for each subject, we computed the VIF (assisted by scripts
from https://github.com/sjgershm/ccnl-fmri) for each regressor in the
HRF-convolved designmatrix and averaged the VIFs of corresponding
onsets across the blocks. None of the VIFs surpassed a value of 3.5 (a
value of 5 is considered a conservative indicator for overly colinear
regressors, e.g. ref. 94, see Fig. S13 for details). Detailed descriptions of
all GLMs are reported in the main text. Additional GLMs verifying the
lack of Congruency in any frontal region can be found in Fig. S13.

Functionally defined vmPFC ROI. Our fMRI analyses focused on
understanding the representations of expected values in vmPFC. We
therefore first sought to identify a value-sensitive region of interest
(ROI) that reflected expected values in 1D and 2D trials, following
commonprocedures in the literature (e.g. ref. 4).We analyzed the fMRI
data using general linear models (GLMs) with separate onsets and EV
parametric modulators for 1D and 2D trials (at stimulus presentation
with 0 s duration) and defined a functional ROI for value representa-
tions centered on vmPFC using the union of the EV modulators for 1D
and 2D trials (EV1D + EV2D >0), Fig. 3a,p < 0.0005 FDR corrected). Note
that thisGLMhadno information regarding the contextually irrelevant
context. The group ROI was generated in MNI space and included 998
voxels. Multivariate analyses were conducted in native space and the
ROI was transformed to native space using ANTs and nearest neighbor
interpolation (ANTs 2.2.078) while keeping only voxels within the union
of subject- and run-specific brain masks produced by the fMRIprep
pipeline55,56. The resulting subject-specific ROIs therefore had varying
number of voxels (μ = 768.14, σ = 65.62, min = 667, max = 954).

Verifying design trial-wise estimability. To verify that the individual
trials are estimable (for the trial-wise multivariate analysis) and as a

control over multi-collinearity94, we convolved a design matrix with
theHRF for each subjectwith one regressor per stimuli (432 regressors
with duration equal to the stimulus duration), two regressor across all
cues (split by context) and three regressor for all outcomes (one for
each EV). We then computed the VIF for each stimulus regressor (i.e.,
how predictive is each regressor by the other ones). None of the VIFs
surpassed 1.57 across all trials and subjects (μVIF = 1.42, σVIF = 0.033,
min = 1.34). When repeating this analysis with a GLM in which also
outcomes were split into trialwise regressors, we found no stimuli VIF
larger than 3.09 (μVIF = 2.64, σVIF = 0.132, min = 1.9). Note that 1 is the
minimum (best) value and 5 is a relatively conservative threshold for
collinearity issues (e.g. ref. 94). Thismeans that the BOLD responses of
individual trials can be modeled separately and should not have col-
linearity issueswithother stimuli norwith theoutcomepresentationof
each trial.

Multivariate analysis
RDM analyses. RDM was conducted using betas taken from a GLM fit
to data in native space (4mm smoothing) with one onset for EV of 1D
trials and one onset for each combination or EV and EVback for 2D trials
(e.g., one onset for all trials where EV= 30 and EVback = 30, one onset
when EV = 30 and EVback = 50, etc.). Duration of the onsets was set to 0.
Regressors of no interest were identical to the GLMs described in
“Univariate fMRI analysis” section above. For each subject, we extrac-
ted the beta values for each run from the above defined functional ROI
for each one of the 2D onset regressors. We then performed multi-
variate noise normalization (normalize each voxel by its residuals47)
and mean pattern subtraction (i.e., subtract the mean pattern across
conditions for each voxel from each response pattern47). Lastly, we
computed the Euclideandistance between each pair of patterns across
runs using Nilearn75. Note that noise-normalized Euclidean distance is
equivalent to the Mahalanobis distance47. To prevent biasing the
diagonal, we excluded any correlation within a run across conditions
(where the diagonal would be 1). This resulted in a 9 × 9 RDM for each
subject and each block comparison. The resulting distances (half the
matrix including the diagonal for each subject) were analyzed in R (R
version 3.6.364, RStudio version 1.3.95965) with Generalized Linear
Mixed Models using Template Model Builder (glmmTMB95) models,
employing a gamma distribution family with a “inverse” link function.
Whendescribingmain effects ofmodels, the χ2 represents Type IIWald
χ2 tests, whereaswhen describingmodel comparison, the χ2 represents
the log-likelihood ratio test. Model comparison throughout the paper
wasdoneusing the “anova” function. Throughout all the analyses, each
regressor was scaled prior to fitting the models.

The best explaining model for the main effects of the RDM was:

dk
i,j =β0 + γ0k + β1DiagonalEV +β2DiagonalEVback

+ ζ0k,frequency
ð4Þ

where dk
i,j is the Mahalanobis distance of combination i and j for sub-

ject k, where i and j each represent all possible patterns (i.e., combi-
nation of EV and EVback. β0 and γ0k represent global and subject-
specific intercepts. DiagonalEV is 1 when the EV of pattern i is the same
as the EV of pattern j. DiagonalEVback

is 1 when the EVback of pattern i is
the same as EVback of pattern j. ζ0k,frequency

is an additional intercept for
every level of frequency nested within each within each subject level.
For details on the effect of frequency, see Fig. S6.

The best explaining model for the value difference effects of the
RDM was:

dk
i,j =β0 + γ0k +β1ValueDifferenceEV +β2ValueDifferenceEVback

+ ζ0k,frequency
ð5Þ

where all parameters are identical to Eq. (4) above, only that
ValueDifferenceEV corresponds to the value difference between the EV
of pattern i and the EV of pattern j and ValueDifferenceEVback

is the value
difference between the EVback of pattern i and the EVback of pattern j.
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Classification procedure. The training set for Value and Context
classifiers consisted of fMRI data from behaviorally accurate 1D trials.
For each trial, we took the TR corresponding to ~5 s after stimulus onset
(round(onset + 5)) to match the peak of the Haemodynamic Response
Function (HRF) estimated by SPM90. Training of Value and Context
classifiers was done using a leave-one-run-out scheme across the four
runs with 1D trials. To avoid bias in the training set after sub-setting
only to behaviorally accurate trials (i.e., over-representation of some
information) we up-sampled each training set to ensure equal number
of examples in the training set for each combination of EV (3), Context
(2) and Chosen-Side (2). Specifically, if one particular category was less
frequent than another (e.g., more value-30, left, color trials than value-
50, left-color trials) we up-sampled that example category by randomly
selecting a trial from the same category to duplicate in the training set,
whilst prioritizing block-wise balance (i.e., if one block had 2 trials in the
chunk and another block had only 1, we first duplicated the trial from
under-represented block, etc.). We did not up-sample the testing set.
The EVback classifiers were trained on behaviorally accurate 2D trials (5 s
after stimulus onset) and up-sampled by EV (3), Context (2) and EVback

(3) (without Chosen-Side as this resulted in excludingmany subjects for
lack of trials in some training sets). Due to strong imbalance of unique
examples of EVback in the training sets (see below) we trained 3 one-vs.-
rest classifiers, each tasked with identifying one level of EVback. This
required to adjust the sample weights in order to account for the
higher frequency of the “rest” compared to the “one” label.

Decoding was conducted using multinomial logistic regression as
implemented in scikit-learn 0.22.296, using a C parameter of 1.0, L2
regularization and the lbgfs solver. For each test example (i.e., trial) we
obtained the predicted probability per class. To avoid numerical issues
in the subsequentmodeling of the classifier’s predictions, probabilities
were constrained to lie within 0.00001 and0.99999, rather than0 and
1. In addition to the probabilities, we obtained the balanced classifi-
cation accuracy (i.e., is the class with the highest probability also the
correct class of the test trial). We separately averaged classification for
each participant, test fold and label (this ensured controlling for any
label imbalance in the testing set).

In the classification analyses we modeled directly the class prob-
abilities estimated by the classifiers with beta regressionmixed effects
models48. For technical reasons, before modeling the probabilities
using linear mixed effects models, we averaged the classifiers prob-
abilities across the nuisance effects, i.e., we obtained one average
probability for each combination of relevant and irrelevant values.
Crossing each level of EV (three levels) with each level of irrelevant
value of the chosen side combined with irrelevant value of the non-
chosen side (12 level, see Fig. 1), resulted in 36 combinations per par-
ticipant. Note that the relevant value of the unchosen cloudwas always
EV - 20 and thereforewedid not include this as a parameter of interest.
After averaging, we computed for each combination of values the
EVback, Congruency and alternative parameters (see Fig. S9). The main
model comparison, as well as the lack of effects of any nuisance
regressor, was confirmed on a dataset with raw, i.e., non-averaged,
probabilities (see Figs. S7 and S9). Because in the one-vs.-rest training
of EVback classifiers the three class probabilities for each trial were
obtained independently, they sum to 1. We therefore first normalized
the probabilities for each testing trial.

Probabilities were analyzed in R (R version 3.6.364, RStudio version
1.3.95965) with Generalized Linear MixedModels using Template Model
Builder (glmmTMB95) models, employing a beta distribution family
with a “logit” link function.Whendescribingmain effects ofmodels, the
χ2 represents Type II Wald χ2 tests, whereas when describing model
comparison, the χ2 represents the log-likelihood ratio test. Model
comparison throughout the paper was done using the “anova“ func-
tion. Throughout all the analyses, each regressor was scaled prior to
fitting themodels. Lastly, for the analysis of behavioral accuracy (Fig. 6)
we also included behaviorally wrong trials.

Additional coding of the analyses in Python (3.797) using NumPy
(1.19.598) and pandas (1.1.599). Most of the plots were produced using
ggplot2 (3.3.5100).

Value similarity analyses. Asked whether the predicted probabilities
reflected the difference from the objective probability class.

The model we found to best explain the data was:

Pk
t,c =β0 + γ0k +β1∣EVt � ct ∣+β2∣EVt � ct ∣EVbackt

ð6Þ

where Pkt,c is the probability that the Value classifier assigned to class c
in trial t for subject k, β0 and γ0k represent global and subject-specific
intercepts, ∣EVt −Classc,t∣ is the absolute difference between the EV of
the trial and the class the probability is assigned to and ∣EVt �
Classc,t ∣EVbackt

is the interaction of this absolute difference with EVback.
For models nested in the levels of EV, we included ζ0k,EV

, which is the
EV-specific intercept nested within each within each subject level. In
thesemodels, testing formain effects of EVback or Congruency was not
sensible because both factors do not discriminate between the classes,
but rather assign the samevalue to all three probabilities fromthat trial
(which sum to 1). More details can be found in Fig. S7.

Values, not perceptual features and not attention capture, explain
our effects best. For the feature similarity model we substituted
∣EVt − ct∣ from Eq. (6) with a “similarity” parameter that encoded the
perceptual similarity between each trial in the test set and the per-
ceptual features that constituted the training examples of each class of
the classifier. For 1D trials, this perceptual parameter was identical to
the value similarity parameter (∣EVt − ct∣). This was because from the
shown pairs of colors, both colors overlapped between training and
test if the valueswere identical; one color overlapped if the valueswere
different by one reward level (e.g., a 30 vs. 50 comparison corre-
sponded to two trials that involvedpink vs. green andgreen vs. orange,
i.e., sharing the color green); and no colors overlapped if the values
were different by two levels (30 vs. 70). On 2D trials however, due to
changing background features and their value-difference variation,
perceptual similarity of training and test was not identical to value
similarity. Even though both the value similarity and the perceptual
similarity parameter correlated (ρ = 0.789, σ = 0.005), we found that
the value similaritymodel provided a better AIC score (value similarity
AIC: −3898, Feature similarity AIC: −3893, Fig. S7d). Detailed descrip-
tion with examples can be found in Fig. S7. Crucially, even when
keeping the value difference of the irrelevant features at 20, thus
limiting the testing set only to trials with feature-pairs that were
included in the training, our value similarity model provided a better
AIC (−1959) than the feature similarity model (−1956). To test for a
perceptual alternative of EVback we substituted the corresponding
parameter from the model with Similarityback. This perceptual para-
meter takes on 1 if the perceptual feature corresponding to the EVback

appeared in the 1D training class (as highest or lowest value) and 0
otherwise. As described in the main text, none of the perceptual-
similarity encoding alternatives provided a better fit than our models
that focused on the expected values the features represented.

Modeling the influence of irrelevant values and Context signals on
EV representation. The following model of the probability of the
objective EV was found to explain the data best:

Pk
t,EV = β0 + γ0k +β1EVbackt

+β2P
k
t,Context ð7Þ

where Pkt,EV is the probability assigned to the objective class by the
Value classifier (corresponding to EV of the trial t) for subject k, β0 and
γ0k represent global and subject-specific intercepts, EVback is the
maximum of the two ignored values (or the EV of the contextually
irrelevant context) and Pkt,Context is the probability assigned to the
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objective class by the Context classifier (logit-transformed, i.e.,
logitðPÞ= log P

1�P, and scaled for each subject). For models nested in
the levels of EV, we included ζ0k,EV

which is EV specific intercept nested
within each within each subject level (see Fig. S9). Investigations of
alternative parametrizations of the values can be found in Fig. S9.
Including an additional regressor that encoded trials in which
EV = EVback (or: match) which did not improve model fit, and no
evidence for an interaction of the match regressor with the EVback was
found (LR test with added terms: χ2ð1Þ =0:45, p = 0.502, χ2ð1Þ =0:77,
p =0.379, respectively). This might indicate that when value expecta-
tions of both contexts matched, there was neither an increase nor a
decrease of PEV.

To compute the correlations between each pair of classes we
transformed the probabilities for each class using a multinomial logit
transform. For example, for class 30 we performed probabilities were
transformedwithmlogitðPt,30Þ=0:5ðlog Pt,30

Pt,50
+ log Pt,30

Pt,70
Þ. To examine the

relationship between EV and EVback, weonly included 2D trials inwhich
EV ≠ EVback. This allowed us to categorize all three probabilities as
either EV, EVback or Other, whereby Other reflected the value that was
neither the EV, nor the EVback. Toprevent biaswe included only trials in
which Other was presented on screen (as relevant or irrelevant value).
We then averaged across nuisance regressors (see “Classification
procedure”) and computed the correlation across all trials (Spearman
rank correlation). Lastly, we Fisher z-transformed the correlations
(0:5 log 1+ρ

1�ρ) to approximate normality for the t test. To validate these
results, we performed an additional model comparison in which we
added a term of the logit transformed PEVback

or of Pother to Eq. (7)
(β2mlogitðPt,EVback

Þ orβ2mlogit(Pt,Other),respectively). As reported in the
main text, adding a term reflecting PEVback

resulted in a smaller (better)
AIC score than when we added a term for Pother (−567, −475, respec-
tively). This was also preserved when running the analysis including
nuisance regressors (see νs. in Eq. (2)) on the non-averaged data (AICs:
−5913.3, −5813.3). We note that subsetting the data the way we did
resulted in a strong negative correlation in the design matrix between
EV and EVback (ρ = −0.798, averaged across subjects). Although this
should not directly influence our interpretation, we validated the
results by using alternative models with effects hierarchically nested
within the levels of EV and EVback (Averageddata AICs:−560, −463, Raw
data AICs: −5906.8, −5804.3).

As previously clarified, P2DEVback
was derived from a classifier trained

on 2D trials. The number of unique examples for each class of EVback

differed drastically (due to our design, see Figs. 1c and S6), which
motivated us to split the decoding of EVback to three classifiers, each
trained on a different label (see “Classification procedure”). However,
our approach of combining one-vs.-rest training with oversampling
and sample weights could not fully counteract these imbalances and a
balanced accuracy did not surpass chance level (t-test against chance:
t(34) = 0.96, p =0.171) and the probabilities each classifier assigned to
its corresponding class (P2DEVback

) were still biased by class imbalances.
Specifically, the correlation of P2DEVback

and EVback was ρμ = 0.26, ρσ =0.07
across subjects, where “2D” indicates the classifier was directly trained
on 2D trials, unlike with PEVback

which comes from a classifier trained on
EV in 1D trials. Since in this analysis we were mainly interested in the
neural representation of EVback regardless of whether EVbackwas 30, 50
or 70 in given trial, we solved this issue by using mixed effect models
and setting a random intercept for each level of EVback (i.e., running the
models nested within the levels of EVback). Importantly, due to the
symmetric nature of the RDM, this trial frequency bias is orthogonal to
the main effect of EVback reported earlier (Fig. S6a–c).

Thus, when testing across the levels of EVback, themodel that best
explained the data was:

Pk
t,EV =β0 + γ0k +β1EVbackt

+β2P
k
t,Context +β3P

k,2D
t,EVback

+β4P
k
t,ContextP

k,2D
t,EVback

+ ζ0k,EVback

ð8Þ

where similar to Eq. (7), Pkt,EV, is the probability assigned to the EV class
by the Value classifier for trial t and subject k, β0 and γ0k represent
global and subject-specific intercepts and Pkt,Context is the logit-
transformed probability assigned to Context class. Pk,2Dt,EVback

is the
probability the EVback classifier assigned the correct class (inmain text:
P2DEVback

, where 2D notes that this classifier was trained on 2D trials) and
ζ0k,EVback

is EVback specific intercept nested within each within each
subject level.

Linking MRI effects to behavior. When modeling the probability of
EVback from the Value classifier (PEVback

, Fig. 6a), we did not average
across nuisance regressors. Our baseline model was:
Pk
t,EVback

=β0 + γ0k + ν1sideðtÞ+ ν2switchðtÞ+ ν3ContextðtÞ. Neither
including a main effect nor interactions between EV, EVback and Con-
gruency improvedmodel fit. When including behaviorally wrong trials
in the model, we used drop1 in combination with χ2-tests from lmer4
package66 to test which of the main effects or interactions improves
the fit. This resulted in the followingmodel as best explaining the data:

Pk
t,EVback

= β0 + γ0k +β1EVt ×EVbackt
+β2CongruencytAccuracyt

+ ν1t + ν2sidet + ν3switcht + ν4Contextt
ð9Þ

where Pkt,EVback
is the probability the Value classifier assigned to the

EVback class (corresponding to EVback of trial t) for subject k, β0 and γ0k
represent global and subject-specific intercepts, EV is themaximumof
the two relevant and EVback is the maximum of the two ignored values.
Congruency reflects whether the actions chosen in the relevant vs.
irrelevant contextwould be the same, and the Accuracy regressor has 1
if participants chose the highest relevant value and 0 otherwise. We
note that the interaction EV × EVback (χ2ð1Þ =4:18, p =0.041) indicates
higher in trials in which EV and EVback were more similar, the
probability assigned to EVback was higher. However, we find this effect
hard to interpret since this corresponds to the value similarity effect
we previously reported.

In order to investigate the effect of vmPFC neural representations
on behavioral accuracy, we used hierarchical model comparison to
directly test the influence of neural representation of EV, EVback and
Context on behavioral accuracy separately for congruent and incon-
gruent trials (Fig. 6b, c). First, we tested if adding logit(Pt,Context),
mlogit(Pt,EV) or mlogitðPt,EVback

Þ to Eq. (3), would help to explain the
behavioral accuracy better. Because the analysis was split for con-
gruent and incongruent trials, we excluded the terms involving a
Congruency effect. For incongruent trials, only logit(Pt,Context)
improved the fit (LR-tests: logit(Pt,Context): χ2ð1Þ =3:66, p = 0.055,
mlogit(Pt,EV): χ2ð1Þ =0:28,p =0.599,mlogitðPt,EVback

Þ: χ2ð1Þ =0:0,p =0.957).
In a second step we then separately tested the interactions
logit(Pt,Context) ×mlogit(Pt,EV) or logit(Pt,Context) ×mlogitðPt,EVback

Þ and
found that only the latter had improved the fit (χ2ð1Þ = 1:78, p =0.183,
χ2ð1Þ =6:33, p =0.012, respectively). For congruent trials, only
mlogitðPt,EVback

Þ and marginally mlogit(Pt,EV) improved the fit (LR-tests:
logit(Pt,Context): χ2ð1Þ =0:0, p =0.922, mlogit(Pt,EV): χ2ð1Þ =3:5, p =0.061,
mlogitðPt,EVback

Þ: χ2ð1Þ =6:48, p =0.011). In a second step we tested
separately the interactions logit(Pt,Context) ×mlogit(Pt,EV),
logit(Pt,Context) ×mlogitðPt,EVback

Þ or mlogitðPt,EVback
Þ ×mlogit(Pt,EV) and

found none of these improvedmodel fit when adding them to amodel
that included both main effects from the previous step (χ2ð1Þ =0:34,
p =0.560, χ2ð1Þ =0:278, p =0.598, χ2ð1Þ =2:49, p = 0.115, respectively).

To investigate the effectof vmPFCneural representations onRT in
behaviorally accurate trials, we asked whether subjects who had a
stronger effect of Context representation (Pcontext) on EV representa-
tion (PEV) or a stronger Spearman rank correlation between PEV and
PEVback

(taken from the Value classifier) also had a stronger effect of
Congruency on their RT. Additionally, we asked whether subjects who
had a stronger effect of EVback on PEV and or a stronger effect of Pk,2DEVback

on PEV also had a stronger modulation of EVback on the Congruency RT
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effect. To obtain subject specific effect of Congruency on RTweadded
γ1k Congruency and γ2kCongruencyEVbackt

to the RT model (Eq. (2)),
representing subject-specific slopes of Congruency for subject k and
for the interaction of Congruency and EVback, respectively. The
subject-specific correlation of PEV and PEVback

was estimated by using
only trials in which EV ≠ EVback. Probabilities were multinomial logit
transformed and correlations were Fisher z-transformed (see above)
before averaging across trials to achieve one correlation value per
subject. In the main text and in Fig 5e, f we did not average the data to
achieve maximum sensitivity to trial-wise variations. The results
reported in the main text replicate when running the same procedure
while averaging the data across nuisance regressors following the
multinomial logit transformation (R =0.38, p =0.023). To extract
subject-specific slopes for the effect of EVback on PEV we included a
term for this effect (γ1kEVbackt

) in Eq. (7), but due to convergence issues
duringmodelfitting, wehad todrop the subject-specific intercept (γ0k)
in thatmodel. Similarly, to extract subject-specific slopes for the effect
of P2DEVback

on PEV we included a term for this effect (γ1kP
k,2D
t,EVback

) in Eq. (8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Behavioral data can be found in https://git.mpib-berlin.mpg.de/
moneta/parallelrepresentation. All individual fMRI datasets can be
found at https://gin.g-node.org/nirmoneta/SODIVA and are shared
under Creative Commons Attribution-ShareAlike 4.0 International
Public License (see LICENSEfile in repository).We supply the fMRI data
needed to reproduce the findings presented in the manuscript, i.e.,
conventionally preprocessed data (fmriprep71,72) from the functionally
defined vmPFC ROI (smoothed at 4 and 8mm, in MNI and native
space). We additionally share data from various steps of the analyses:
defaced T1 images, functionally defined ROIs in MNI and individual
native space, preprocessed data ready to be classified including indi-
vidual classifier decoding results, individual RSAs (see README in
https://git.mpib-berlin.mpg.de/moneta/parallelrepresentation for full
details on the data folder structure). In case of interest in the whole
brain raw data, please contact the corresponding authors. Source data
are provided with this paper.

Code availability
Custom code for the task, behavioral analyses, preprocessing of fMRI
data aswell as fMRI analyses to reproduce thefindings presented in the
manuscript have been deposited in https://git.mpib-berlin.mpg.de/
moneta/parallelrepresentation under Creative Commons Attribution-
ShareAlike 4.0 International Public License (see LICENSE file in
repository).
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