
AstroGrid-D

Deliverable D6.6

Implementation of Monitoring & Steering
Methods for AstroGrid-D Use Cases

Final Report1

Deliverable D6.6

Authors Thomas Radke (AEI)

Editors Thomas Radke (AEI)

Date 25 August 2008

Document Version 1.0.0

Current Version 1.0.0

Previous Versions 0.0.1

A: Status of this Document

Officially approved document for project deliverable D6.6.

B: Reference to project plan

This deliverable document refers to task TA VI-VI ”Anpassung der Anwendungen und Testen der
entwickelten Middleware” and milestone M36 of work package WP-6 in the project plan.

1This work is part of the D-Grid initiative and is funded by the German Federal Ministry of Education and Research
(BMBF).

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

C: Abstract

This document documents the grid-enabled generic application monitoring and steering methods
as finally implemented in AstroGrid-D use cases by the end of the AstroGrid-D project (August
2008).

D: Changes History

Version Date Name Brief summary

0.0.1 14 May 2008 Thomas Radke Working Draft Creation
0.0.2 20 June 2008 Thomas Radke Added introduction
0.0.3 24 June 2008 Thomas Radke Added software module descriptions
0.0.4 1 July 2008 Thomas Radke Added summary
0.1.0 11 August 2008 Thomas Radke Included comments from WP-VI
1.0.0 25 August 2008 Thomas Radke Publication as official AstroGrid-D Deliverable Document

AstroGrid-D - 2 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

E:

Contents

1 Introduction 5

2 Implementation of integrated grid-enabled Monitoring & Steering Methods as Cac-
tus Thorns 6

2.1 Cactus Thorn Formaline . 6

2.1.1 Implemented Functionality . 7

2.1.2 Parameters of Thorn Formaline . 7

2.2 Cactus Thorn Publish . 8

2.2.1 Implemented Functionality . 8

2.2.2 Parameters of Thorn Publish . 9

2.3 Cactus Thorn HTTPS . 9

2.3.1 Connecting to Cactus Simulations in Restricted HPC Environments 10

2.3.2 Interactive Simulation Control and Online Steering of Parameters 11

2.3.3 Access to temporary stdout/stderr Logfiles 11

2.3.4 Parameters of Thorn HTTPS . 13

2.4 Cactus Thorn Visualisation . 14

2.4.1 Parameters of Thorn Visualisation . 16

3 Cactus Metadata Management in the Portal 17

3.1 Cactus Integration Tests Module . 17

3.2 CactusRDF Portlet . 18

4 Code Dissemination 20

4.1 Cactus Thorn Formaline . 20

4.2 Cactus Thorns HTTPS, Publish, and Visualisation 20

4.3 Cactus Integration Tests . 20

4.4 Cactus RDF Portlet . 21

5 Code Deployment, Test Summary, and Dissemination 22

5.1 Specific Test Results . 22

AstroGrid-D - 3 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

5.2 Dissemination . 23

References 24

Appendix 26

Appendix A: Thorn Publish API Function Descriptions 26

AstroGrid-D - 4 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

1 Introduction

The goal of work group WG-VI ”Grid Job Monitoring & Steering” in the AstroGrid-D project was
to provide generic mechanisms to monitor and to interactively steer Grid jobs. For this purpose we
have in the course of the project

1. compiled an overview of existing monitoring/steering methods in AstroGrid-D applications
(AstroGrid-D deliverable document D6.1[2])

2. derived a list of requirements for grid-enabled monitoring/steering methods in AstroGrid-D
applications (AstroGrid-D deliverable document D6.2[3])

3. designed an architecture for grid-enabled monitoring/steering methods in AstroGrid-D appli-
cations (AstroGrid-D deliverable document D6.3[4])

4. implemented an initial prototype of this architecture (AstroGrid-D deliverable document
D6.4[5]) and and advanced version of it with complete functionality (AstroGrid-D deliver-
able document D6.5[6])

This AstroGrid-D deliverable document describes the final version of grid-enabled monitoring &
steering methods that have been implemented in work group WG-VI by the end of the project
(August 2008). This version includes the full functionality of both monitoring and steering methods
as specified and designed in the architecture document and implemented in the previous prototype
versions, plus a summary of experiences gathered from end users during the code testing and
stabilisation phase.

The methods described in this document have been specifically developed for and are closely
integrated into the Cactus framework, a computational framework to numerically simulate extremely
massive bodies, such as neutron stars and black holes. With these methods integrated in the
framework, astrophysicists are able to monitor and steer Cactus simulations in a collaborational
context. The methods’ design should also be generic and flexible enough to be incorporated in
future AstroGrid-D numerical simulations use cases as well.

Chapter 2 describes in detail the integrated grid-enabled monitoring & steering methods that have
been implementated as Cactus thorns. In chapter 3 the corresponding user interfaces for monitoring
and steering are illustrated in the form of GridSphere portlets embedded in the Cactus User Portal
and the Numerical Relativity Portal. Chapter 4 describes how the implemented software components
are disseminated within AstroGrid-D, and how end-users and other software developers can access
them. Finally, chapter 5 gives a short summary on practical experiences gathered in the process of
developing and testing the final version of the software components of working group WG-VI and
related services.

AstroGrid-D - 5 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

2 Implementation of integrated grid-enabled Monitoring & Steering
Methods as Cactus Thorns

This section describes the available grid-enabled monitoring & steering methods for the Cactus use
case (which is described in full detail in the AstroGrid-D use case survey[1]) as they are implemented
in their final version. This version comprises the functionality of

I a first prototype version which focused on the provision of monitoring functionality for Cactus
simulations (this prototype version is described in full detail in the AstroGrid-D deliverable
document D6.4[5]),

II a second prototype version which completes the existing monitoring/steering functionality,
focusing especially on grid-enabled methods to interactively control Cactus simulations and
emphasising on providing a user-friendly interface to intuitively follow the progress of a running
simulation or to visualise intermediate results (this prototype version is described in full detail
in the AstroGrid-D deliverable document D6.5[6]).

During an evaluation period in the past months the functionality of the final version was compre-
hensively tested by several end users, and optimised and generalised in such a way that it can be
used by the community for production-mode Cactus simulations on a broad range of computing
resources (both within D-Grid and other Grid infrastructures).

The design and implementation of the monitoring & steering functionality strictly follows the Cactus
philosophy of encapsulating everything in the form of Cactus thorns, hence the software modules
can be integrated seemlessly into the Cactus Computational Toolkit.

2.1 Cactus Thorn Formaline

Formaline was originally written by Erik Schnetter as a Cactus thorn to send meta information
about a Cactus simulation run to a server, so that it is kept there forever (excerpt from the original
documentation). Within AstroGrid-D, thorn Formaline was specifically adopted to make use of
the services developed in work package WP-II ”Provision and Management of Metadata” and work
package VII ”User Interfaces and APIs”.

Formaline is now able to collect Cactus metadata, generate an RDF representation for it, and
send it to one or more AstroGrid-D information services. While this information is then immediately
available to users and can be accessed in order to monitor the status of their running simulations,
the idea beyond this approach is to store metadata about all Cactus simulations of all users, no
matter whether their simulations are running on a local machine or within a Grid context; the
metadata will be stored and archived in the external information service and can be accessed and
further processed at any later time, independent of the actual simulation and the environment it
ran in.

Access to the metadata in various ways, eg. as an overall summary status list of all simulations or
as user-defined queries for specific metadata information, is possible through a Cactus-specific user
portal as developed together with work package VII (see section 3.2 on page 18 for details).

AstroGrid-D - 6 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

2.1.1 Implemented Functionality

Formaline’s existing implementation was extended by several C functions

1. to query and collect specific metadata about the running simulation (using the Cactus thorn
programming API[10]),

2. to translate this metadata into a dynamically generated temporary RDF/XML document,

3. and to establish a TCP/IP connection to an external information service and upload the
RDF/XML document (using the AstroGrid-D information service programming interface)

Metadata information collected by thorn Formaline includes:

• the exact start date/time of the simulation

• the number of processors used by this simulation, and the host where the run was started on
(processor 0 for a parallel run)

• the user name of the job’s owner

• the name, location, and code release of the Cactus executable

• the name and location of the parameter file

• the current working directory and the location where Cactus output data will be written to

• a full listing of all parameters (names and typed values) set in the parameter file for this
simulation

This information is regarded as static metadata and therefore sent once at simulation startup to
an external AstroGrid-D information service.

At periodic intervals during the simulation’s runtime, thorn Formaline can also send dynamic
metadata such as the current iteration number, the current physical simulation time or the termi-
nation condition and time in case the run is about to finish.

In addition to gathering and uploading the above-mentioned predefined simulation metadata, thorn
Formaline also supports the Publish API (as described in section 2.2). Formaline can register
callback functions to process metadata defined and published by other code modules activated in
the same Cactus simulation.

2.1.2 Parameters of Thorn Formaline

The functionality of thorn Formaline can be controlled via parameter settings in a simulation’s
parameter file. Some of these parameters have additional logic built-in so that they can also be
steered at runtime.

boolean Formaline::send as rdf

whether to send Cactus metadata from this simulation to an external information service in
RDF format

AstroGrid-D - 7 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

string Formaline::rdf hostname[5]

array parameter to specify the hostname for one or more (up to 5 different) external infor-
mation services

integer Formaline::rdf port[5]

array parameter to specify the port number to connect to for one or more (up to 5 different)
external information services identified via their hostname(s)

boolean Formaline::use relay host

whether to use relaying to establish a TCP network connection between the simulation and
an external information service (necessary when running on an internal compute node with
no direct access to the outside)

string Formaline::relay host

the name of the relay host if relaying is used

integer Formaline::timeout

timeout (in seconds) for sending meta information to an external information server

integer Formaline::update interval

the update interval (in seconds) for publishing dynamic simulation metadata

integer Formaline::publish level

the importance level for metadata to be published via the Publish API

While the connection to an external information service is by default established directly, it can
be relayed through a proxy host. This is usually necessary for the case when the simulation is
running on a cluster or supercomputer where the compute nodes are hidden in an internal/VPN
network and therefore cannot talk to outside services directly (as described in [3, 4]). Relaying is
implemented in thorn Formaline as a function which – if activated by the user via a parameter
file setting (see above) – starts a remote shell on the cluster’s headnode and relays the TCP/IP
communication through a proxy process there.

2.2 Cactus Thorn Publish

Thorn Publish was developed in AstroGrid-D’s work package WP-VI, and in close collaboration
with work package WP-II, as a new thorn for the Cactus computational framework. It provides
generic functionality to announce and publish user-defined information about running Cactus sim-
ulations. User functions are defined for publishing arbitrary metadata in a structured format.
Callback functions can be registered to publish the announced metadata in such a way that it is
easily retrievable at a later time through external information services.

2.2.1 Implemented Functionality

Thorn Publish uses the general concept of metadata – information about data – in order to define a
flexible way for describing arbitrary user-defined runtime information about a simulation. The most
basic entity of metadata is described as a key/value pair; a scalar value of defined datatype holding
the actual information contents, and an associated key as a character string uniquely identifying

AstroGrid-D - 8 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

that value. Based on this basic scalar value entity, it is also possible to construct a structured
metadata entity by supplying a Cactus table of key/value pairs as its value. Optionally, the Cactus
Publish infrastructure allows each metadata entry to be tagged with additional information, eg. a
name identifying the source of the published metadata, the current iteration number and physical
simulation time or a date/time stamp to place the metadata publication in a runtime context.

It should be noted here that metadata entities are – in contrast to actual data (such as output
files) generated during the simulation – assumed to be small in their overall size, making it possible
to transparently process and publish them without (much) user-visible impact on the runtime
performance of the ongoing simulation.

Thorn Publish provides two APIs, each one consisting of a set of aliased functions:

1. a user API to publish user-defined metadata

Application thorns can use this set of aliased functions to publish user-defined metadata
describing specific runtime information about the ongoing simulation.

Metadata can be published as an entity of a single scalar value with a generic CCTK2 datatype,
or as compound entity of multiple such scalar values, defined in a key/value table.

2. a registry API to register/unregister Publish callback functions

Infrastructure thorns can provide callback functions for the Publish user API and register
them with thorn Publish at simulation startup. This thorn will then invoke all registered
callbacks each time an application thorn calls any of the Publish user API functions.

Publish callback functions are the actual worker routines behind the Publish API: they con-
sume the published user-defined metadata and process/publish them in various ways.

All functions of both the Publish user and registry API are described in detail in appendix A.

2.2.2 Parameters of Thorn Publish

The functionality of thorn Publish can be controlled via parameter settings in a simulation’s
parameter file.

So far there is only a single integer parameter:

integer Publish::publish every

How often to publish some example data using the Publish API

Setting this integer parameter to a positive value will activate the self-test of thorn Publish where
the iteration number and the current physical time of the ongoing simulation are published to all
registered callback listeners.

2.3 Cactus Thorn HTTPS

The Cactus Computational Toolkit includes a Cactus thorn named HTTPD, written by Gabrielle
Allen, Tom Goodale and Thomas Radke, which implements a web server integrated into a Cactus

2
Cactus Computation ToolKit

AstroGrid-D - 9 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

simulation. This web server provides full-fledged functionality for application-specific monitoring
and steering capabilities. It uses the HTTP protocol for communication and can therefore be
contacted from any standard web browser[2].

Within AstroGrid-D, a new thorn HTTPS was developed on top of the existing thorn HTTPD.
In its first prototype it provides the same Cactus-specific monitoring and steering functionality as
HTTPD, but was enhanced to using HTTPS (HTTP over OpenSSL TCP/IP socket connections)
as the standard network protocol for client-server communication. This gives Cactus users a secure
method to monitor and steer their Cactus simulations online, which was one of the requirements
described in [3]. On the simulation startup page they can now log into the running simulation using
a self-defined password which will be prompted for by the web browser and automatically transfered
to the web server for user authentication. After successful authentication, all further communication
between the user (through the web browser) and the simulation – with thorn HTTPS acting as
its web server frontend – will be encrypted using standard OpenSSL functionality, just like in other
web and Grid services.

===

2.3.1 Connecting to Cactus Simulations in Restricted HPC Environments

At simulation startup, thorn HTTPS creates a server socket on the first processor of a parallel
simulation, using an available TCP port, and offers this https : // < hostname >:< port >
URL as connection point to login to the running simulation (eg. https://ic0092:5555/ in a
simulation’s stdout logfile example below). Users then simply point their standard web browser
to this URL in order to get to the simulation’s homepage.

HTTPS web server started on:

https://ic0092:5555/

HTTPS proxy server started on:

https://peyote.aei.mpg.de:24000/

However, it often happens in supercomputer environments that the compute nodes (where the
simulation is running) may be firewalled or not be visible from the outside world. This has the
effect that users cannot directly connect to a simulation using the URL pointing to the HTTPS
webserver location. As a solution for this known problem, a proxy server needs to be installed
on some publicly accessible frontend machine (eg. the headnode of a cluster) which would then
redirect all incoming client requests to the actual compute node where the simulation is running.
Such a proxy is launched automatically by thorn HTTPS for a known list of AEI’s PBS clusters
(https://peyote.aei.mpg.de:24000/ in the example above). Via parameters in the parameter
file the user can also manually set the name of the proxy host and provide an available port range;
HTTPS will then use this information and launch the web proxy accordingly.

AstroGrid-D - 10 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

2.3.2 Interactive Simulation Control and Online Steering of Parameters

As any other Grid service, thorn HTTPS uses X.509 certificates for user authentication and au-
thorisation: when a user connects to a running Cactus simulation, as described in the previous
section, the webserver thorn HTTPS asks the connecting webclient to present a user certificate
from which the simulation can find out who is connecting to it, and whether (s)he is allowed to do
so.
This standard method of user authentication is optional for just monitoring the status of a simu-
lation; it can be turned off by the owner of the simulation in order to allow anybody (even people
without a user certificate) to connect. However, it is required that every user, who also wants
to control the simulation and steer parameters, must present a valid certificate which matches an
entry in the list of authorised users with steering privileges as defined by the owner of the simulation
in the parameter file, like in the following parameter file excerpt:

HTTPS::authorised_users = "^/O=GermanGrid/OU=AEI/CN="

HTTPS::authorised_superusers = "^/O=GermanGrid/OU=AEI/CN=Thomas Radke$"

One would typically allow all users of a collaboration (in this case all astrophysicists from AEI with
a GermanGrid user certificate) to connect to and access a simulation with monitoring privileges;
only the owner of a simulation would add her/his own certificate to the list of superusers in order
to grant her/him also steering privileges. Both user authentication parameters of thorn HTTPS
are steerable which means they can be changed during runtime. Therefore a user with steering
privileges can dynamically add or remove other people from the list of authorised users to monitor
and/or steer a simulation.

Interactive steering of parameters is done on HTTPS’s Parameter Steering webpage (see figure
1) on which the user can search for specific parameters (by specifying a regular expression filter
string) or follow on to the list of all parameters for an active Cactus thorn.
A more specific method to dynamically interact with the simulation and change its runtime status
is provided on a Simulation Control page. Here the user can conveniently select – via a customised
HTML formular – to pause a running simulation, single-step to the next iteration (eg. for debugging
purposes), continue it, or terminate the run after the current iteration in a controlled way, possibly
triggering a termination checkpoint to be generated from which the simulation may then be restarted
at a later time.

Each parameter steering request by a user (that is, the full name name of the user as obtained
from her/his certificate, the name and new the value of the parameter, and the simulation time
at which the request was processed) is also logged by thorn HTTPS in the simulation’s stdout

logfile so that it is possible for other users to query this change of state and potentially reproduce
the dynamic behaviour in a different run.

2.3.3 Access to temporary stdout/stderr Logfiles

One of the requirements of most AstroGrid-D use cases on job/application monitoring[1, 3] was
that users can follow the progress of their running Grid jobs by watching the stdout/stderr

logfiles. When jobs are not run interactively on the Grid but instead submitted as batch jobs, the
problem arises that, while the job is running, its stdout/stderr messages are typically written
into temporary logfiles determined by the local queuing system, and moved only afterwards to their

AstroGrid-D - 11 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Figure 1: Snapshot of the Parameter Steering page of thorn HTTPS

final destination (eg. as specified in a job description). Depending on the configuration of the local
queuing system the names and locations of these temporary logfiles are site-specific and thus may
differ from Grid resource to Grid resource.

In order to access the temporary stdout/stderr logfiles, a service is necessary which has some
knowledge about the local queuing system, queries at runtime its type and configuration parameters,
and derives from this information the concrete location and names of the files. For Cactus, this
functionality has been implemented in thorn HTTPS as a Logfile Access webpage (see figure 2).

At simulation startup, the thorn will determine from its shell environment whether it was started
as a batch job via a local queuing system. If so, it checks the type of queuing system (currently
PBS/OpenPBS/Torque and LoadLeveler are supported), assembles the names of the corresponding
temporary stdout/stderr logfiles, and verifies that they exist. In the case of success, the user
can then follow the simulation’s most recent messages to either stdout or stderr, repeatedly
updating the contents simply by reloading the webpage. Through a web form, the maximum
number of lines to be displayed can be chosen, as well as an optional string search parameter (as
a regular expression) to filter the logfile contents for user-specified keywords.

AstroGrid-D - 12 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Figure 2: Snapshot of HTTPS’s Logfile Access page for a Cactus simulation running on a super-
computer in the US-american LONI network

2.3.4 Parameters of Thorn HTTPS

The functionality of thorn Publish can be controlled via parameter settings in a simulation’s
parameter file.

integer HTTPS::port

HTTP port number to use (can be overridden by shell variable HTTPS PORT)

boolean HTTPS::hunt

Should the server hunt for a port if the specified one is taken ?

string HTTPS::proxy

Hostname and port range for an HTTPS proxy server to launch

boolean HTTPS::abort on proxy errors

How to continue if a proxy server couldn’t be launched at startup

boolean HTTPS::pause

Pause the simulation ?

AstroGrid-D - 13 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

boolean HTTPS::use pthreads

Use a threaded implementation if possible ?

boolean HTTPS::use cookies

Use cookies to uniquely identify Cactus simulations ?

boolean HTTPS::verbose

Print information about HTTP requests

string HTTPS::authorised users

List of distinguished names of users authorised to login with monitoring privileges

string HTTPS::authorised superusers

List of distinguished names of users authorised to login with monitoring and steering privileges

string HTTPS::trusted CA certificates dir

Directory containing an extra list of trusted certification authority certificates

real HTTPS::polling timeout

Maximum polling timeout in seconds

integer HTTPS::queue length

Listen queue length

real HTTPS::refresh seconds

Page refresh time in seconds

boolean HTTPS::terminate

Kill the simulation ?

boolean HTTPS::single step

Do one step then pause ?

boolean HTTPS::until it active

Use until it parameter ?

integer HTTPS::until it

Pause at this iteration

boolean HTTPS::until time active

Use until time parameter ?

real HTTPS::until time

Pause after this simulation time

2.4 Cactus Thorn Visualisation

Extensive work has been put into providing useful visualisation methods for the physicists to graph-
ically analyse intermediate simulation data and judge the quality of the results while the application
is still running. Driven by feedback from production-mode users in the Cactus community, different
visualisation methods for different types of Cactus simulation output data have been identified,

AstroGrid-D - 14 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Figure 3: Snapshot of online data visualisation with 2D surface plots

designed, and coded. All implemented visualisation methods are bundled together in a single Cac-
tus thorn AstroGrid/Visualisation. It uses the webserver infrastructure of thorn HTTPS to
provide its online data visualisation functionality as dynamically generated webpages.

When the first data output has been written to files (typically after initial data generation during
simulation setup), thorn Visualisation will iterate through the known list of all output directories
and query the names of output files it is able process. According to their filenames and extensions,
all output files are then sorted into type classes of different online visualisations. Currently the
following types are implemented:

• scalar data plots f(t)

• 1D line plots f(x)

• 2D surface plots f(x, y) (see figure 3 as an example)

• Black Hole diagnostics

• gravitational wave extraction

• timing statistics

AstroGrid-D - 15 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Each type is represented as a separate visualisation webpage which the user can choose on the
main visualisation page. For some of these visualisation types, the user can also select from a table
which quantities (eg. a specific (group of) variables, a certain norm, or a list of detector output
data for gravitational wave extraction) should be visualised in the following step.

In order to actually generate images from the simulation’s output data, the standard visualisation
package gnuplot[14] is invoked internally by thorn Visualisation: it compiles a script of specific
gnuplot commands to visualise the output data of the given visualisation type class and then pipes
this script into gnuplot which in turn will generate one or more PNG images from it. These images
are embedded as HTML tags into a dynamically generated webpage which is finally sent back to
the user’s browser for display.

2.4.1 Parameters of Thorn Visualisation

The functionality of thorn Publish can be controlled via parameter settings in a simulation’s
parameter file.

string Visualisation::out dir

Output directory for generated image files, overrides IO::out dir

string Visualisation::gnuplot path

Path to gnuplot executable

AstroGrid-D - 16 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

3 Cactus Metadata Management in the Portal

A considerable amount of work was also spent in implementing a specific Cactus application use
case scenario for monitoring the results of Cactus Integration Tests in a Cactus User Portal, based
on other AstroGrid-D technology developed in work package WP-II (an AstroGrid-D metadata
information service) and work package WP-VII (a web portal based on the standard GridSphere
portal framework).

The Cactus Computational Toolkit comes with a built-in mechanism to test individual parts of the
code and verify whether they are still functional; this mechanism – running a Cactus simulation
with a known input (the testsuite parameter file) and known output (the expected data files and
their contents) – is called a Cactus testsuite.

Within AstroGrid-D a specific Cactus use case scenario was developed to automate the procedure
of regular Cactus tests and allow users to conveniently monitor the status and history of such test
simulations. This scenario was realised using AstroGrid-D technology: (1) the information service
developed in work package WP-II for storing and managing application-specific metadata, and (2)
the GridSphere portal framework provided by work package WP-VII to build a Cactus User Portal
as a standardised web-based user interface to access and query application-specific metadata. In
work package WP-VI a Cactus Integration Tests module for generating the metadata and a
CactusRDF portlet for presenting the metadata were deveoped. These two software components
are described in the following.

3.1 Cactus Integration Tests Module

In order to automate the process of testing individual Cactus code modules, a software module
wrapping the Cactus testsuite mechanism was developed. This Cactus Integration Tests
module includes the following interdependent unit tests which are executed in the given order:

1. check out the Cactus flesh and all thorns listed in the given thornlist

2. create a Cactus configuration with the given configuration options

3. build the Cactus executable

4. build all utility programs associated with thorns

5. run all available Cactus testsuites

After running all unit tests, the module processes the corresponding logfiles, extracts a summary
of test results, and generates an RDF/XML document which represents them equivalently in a
machine-readable form. For the translation of human-readable textual metadata into RDF/XML,
an RDF schema was developed describing the following items of information:

• a descriptive name identifying this test

• the exact date/time of the test

• the hostname of the machine the test was run, plus the total number of processors used

AstroGrid-D - 17 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

• the login name of the user who ran the test

• the configuration options and thornlist used to build a Cactus executable

• the status results (succeeded/failed) and logfiles for each individual unit test:

• for the testsuites, also the names and a summary of passed/failed tests

Finally, the RDF/XML document is uploaded by the Cactus Integration Tests module to an
external AstroGrid-D information service to store the integration test results.

3.2 CactusRDF Portlet

Closely related to the generation of Cactus metadata on the application side is its presentation
through a human-machine interface in the form of a web-based Cactus user portal. Such a portal,
based on the GridSphere portal framework, has been deployed by work package WP-VII. In work
group WP-VI the necessary Cactus metadata management portlet was developed which provides
functionality to query Cactus integration test results from an external AstroGrid-D information
service and present them in a flexible and user-friendly format. Its implementation follows the
requirements specification on a Cactus user portal which have been described in [13]. Since it uses
AstroGrid-D technology (the Cactus integration test metadata RDF scheme and the RDF/SPARQL
API to interact with an external information service), the portlet was named CactusRDF.

When logged in, the user can then switch to the Cactus metadata page provided by the Cactus-
RDF portlet and display Cactus integration test results in three different ways:

Version 1.0 of the Cactus User Portal, which was released as part of the D6.4 deliverable of work
package VI, includes a predefined guest user account by which Cactus users can simply login with
guest as user name and password. A snapshot of the Cactus User Portal login page can be seen
in figure 4.

1. a summary view of all most recent integration tests from all test machines, showing the status
of all unit tests

2. a detailed view of Cactus testsuites for an individual integration test, showing the status of
all testsuites

3. a history view for an individual Cactus testsuite, queried over all available integration tests
results on all test machines

For the queries, the user can also specify parameters to restrict size of the resulting metadata shown
in the portal by binding the result set eg. to an individual Cactus integration test (identified by
its name), to the user who ran the test (identified by the user’s login name), or to a specific test
machine where the test was run (identified by the hostname).

The Cactus User Portal is available on https://portal.cactuscode.org. Also available is a
Numerical Relativity Portal with personalised user access for physicists of the Numerical Relativity
community; this portal, online under https://portal.aei.mpg.de, provides Cactus Integration
Test results for the majority of non-public Cactus thorns which are used by the numerical relativists
for their daily Cactus production runs.

AstroGrid-D - 18 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Figure 4: Login Page of the Cactus User Portal

AstroGrid-D - 19 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

4 Code Dissemination

This chapter gives detailed information about how to obtain the source code of all monitoring &
steering methods and accompanying GridSphere portlets. While the latter are kept in the AstroGrid-
D SVN repository, the implemented Cactus thorns are managed by AEI’s eScience group on their
own SVN server in order to make them accessable via anonymous SVN access (as required by the
Cactus user community).

4.1 Cactus Thorn Formaline

The Cactus thorn Formaline is publicly downloadable via anonymous SVN (with username
cvs anon and password anon) from

export SVNROOT=https://svn.aei.mpg.de:/numrel # for bash

setenv SVNROOT https://svn.aei.mpg.de:/numrel # for (t)csh

svn checkout $SVNROOT/AEIThorns/Formaline/trunk Formaline

Documentation for this thorn is contained in the SVN source module in the toplevel directory as a
REAME file.

4.2 Cactus Thorns HTTPS, Publish, and Visualisation

The Cactus thorns HTTPS, Publish, and Visualisation are publicly downloadable via anony-
mous SVN (with username cvs anon and password anon) from

export SVNROOT=https://svn.aei.mpg.de:/eScience # for bash

setenv SVNROOT https://svn.aei.mpg.de:/eScience # for (t)csh

svn checkout $SVNROOT/AstroGrid/Cactus/Thorns/HTTPS/trunk HTTPS

svn checkout $SVNROOT/AstroGrid/Cactus/Thorns/Publish/trunk Publish

svn checkout $SVNROOT/AstroGrid/Cactus/Thorns/Visualisation/trunk Visualisation

The Publish thorn also contains the RDF schema describing Cactus metadata defined by this
thorn and the user-defined metadata generated throughtthe Publish API.

Documentation for both thorns is contained in the SVN source modules in a subdirectory doc/;
it comes in LATEXformat so that it can be easily integrated in the standard Cactus thornguide
documentation.

4.3 Cactus Integration Tests

The source code for the Cactus Integration Tests is publicly downloadable via anonymous SVN
(with username cvs anon and password anon) from

AstroGrid-D - 20 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

export SVNROOT=https://svn.aei.mpg.de:/eScience # for bash

setenv SVNROOT https://svn.aei.mpg.de:/eScience # for (t)csh

svn checkout $SVNROOT/AstroGrid/Cactus/IntegrationTests/trunk IntegrationTests

This SVN module contains both the RDF metadata schema used for Cactus integration tests, as
well as the perl script to run the tests on a given machine, generate the RDF metadata, and send
them off to the AstroGrid-D metadata information service.

4.4 Cactus RDF Portlet

The Cactus RDF portlet for GridSphere is available for AstroGrid-D users via the AstroGrid-D SVN:

svn checkout svn://svn.gac-grid.org/software/cactusmetadata

AstroGrid-D - 21 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

5 Code Deployment, Test Summary, and Dissemination

The Cactus simulation monitoring & steering methods described in chapter 2 have been thoroughly
tested so far on cluster production machines of the Numerical Relativity group at AEI and their
collaborators at the Center for Computation and Technology (CCT) at Louisiana State University,
Baton Rouge, USA. The Cactus thorns HTTPS, Publish, and Visualisation which implement
this functionality were made available to the Cactus developers community in May 2007, and have
been used since then by several Cactus users in their production-mode simulation runs.

Since month 17 into the AstroGrid-D project, the Cactus Integration Tests module and
the CactusRDF portlet (as described in chapter 3) are being used as production services in two
user portals based on GridSphere: the publicly available Cactus User Portal [11] and the Numerical
Relativity Portal [12] which is restricted to physicists in the NumRel community at AEI and CCT.
Both portals are running on a production server machine at AEI (portal.aei.mpg.de) and are
managed by AEI’s eScience group. Integration tests have been running since November 2006 as
nightly cron jobs on 4 different supercomputers and HPC clusters at AEI and CCT. The results are
uploaded to an AstroGrid-D information service instance and accumulated there. The information
service instance was deployed on a Grid server machine at AEI (buran.aei.mpg.de), along with
proper firewall setup and periodic database backups.

5.1 Specific Test Results

In order to use the simulation steering features provided by thorn HTTPS, Cactus users had to
obtain a valid grid certificate. This was done using the newly deployed D-Grid certification authority
service where they requested a GermanGrid certificate issued by the Forschungszentrum Karlsruhe.
The process of applying for a grid certificate went smoothly; however it was found that the user
interface could be improved to provide simple-to-understand information and guidelines for non-Grid
users. A corresponding feature request was sent back to the certification authority maintainers.

The proxy webserver solution in thorn HTTPS was gradually deployed and – for the AEI clusters
(which are mostly used by the Numerical Relativists at AEI) – has been automated in such a way
that users do not have to manually set any proxy parameters in their Cactus parameter files. The
automatic detection by HTTPS of resources where Cactus is running on has simplified the usability
of the thorn substantially.

The online visualisation functionality implemented in thorn Visualisation has been developed
in close contact with the Cactus community. Starting from the knowledge about standard post-
processing and analysis steps of Cactus simulation data, several prototype versions of online visu-
alisation methods were built, incorporating the users’ feedback on which methods are most useful,
what type classes should the output data be sorted in, and how the generated images should be
presented. Because users typically have their own individual style of analysing and visualising data
from their simulations, a compromise had to be found in the end between personal configurability
of thorn Visualisation on one hand versus code complexity and simplicity of use on the other
hand.

The Simulation Control page was improved based on the experience and feedback of users running
production simulations on a day-to-day basis. Simply by adding small features such as a Checkpoint
Next and a Checkpoint on Terminate toggle, the web interface for Cactus simulation control already

AstroGrid-D - 22 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

received an added value which turned out to be very useful for power users.

HTTPS’s logfile access functionality has been tested on all of AEI’s PBS clusters3 and on LRZ’s
HLRB2 supercomputer4 in Germany as well as on various Torque/LoadLeveler systems in the LONI
network5 and TeraGrid6 in the U.S.A. Since queuing system configurations are typically site-specific,
adoptions of the code may be necessary when new resources should be supported too.

5.2 Dissemination

The implemented monitoring & steering functionality has been presented during several practical
demonstrations of the code and in face-to-face hand-on sessions with the Cactus users at AEI.
Through the official Cactus Users and Cactus Developers mailing lists, the work has also been
disseminated to the collaborating Numerical Relativity group at the CCT as well as other external
physicists in the Cactus community.

3http://supercomputers.aei.mpg.de/
4http://www.lrz-muenchen.de/services/hpc/hlrb/intro/
5http://www.loni.org/systems/
6http://www.teragrid.org/userinfo/hardware/index.php

AstroGrid-D - 23 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

F: References / Bibliography

References

[1] AstroGrid-D Use Case inquiry. AstroGrid-D public webpage;
http://www.gac-grid.org/project-documents/UseCases.html

[2] Thomas Radke: Existing Monitoring & Steering Functionality in AstroGrid-D Applications.
Comparison Study, Work Group VI deliverable document D6.1, AstroGrid-D project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_1.pdf

[3] Thomas Radke: Requirements on grid-enabled Monitoring & Steering Methods in AstroGrid-
D Applications. Requirements Specification, Work Group VI deliverable document D6.2,
AstroGrid-D project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_2.pdf

[4] Thomas Radke: Architecture of generic grid-enabled Monitoring & Steering Methods in
AstroGrid-D Applications. Architecture Specification, Work Group VI deliverable document
D6.3, AstroGrid-D project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_3.pdf

[5] Thomas Radke: Prototype Implementation of grid-enabled Monitoring Methods. Documenta-
tion and Test Report, Work Group VI deliverable document D6.4, AstroGrid-D project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_4.pdf

[6] Thomas Radke: Advanced Prototype Implementation of Monitoring & Steering Methods.
Documentation and Test Report, Work Group VI deliverable document D6.5, AstroGrid-D
project;
http://www.gac-grid.org/project-documents/deliverables/wp6/WG6_D6_5.pdf

[7] Thomas Radke: Status WG6 and Informationservice for Cactus. Presentation at the 4th
AstroGrid-D Project Meeting, 24./25. July 2006, ZAH Heidelberg;
http://www.gac-grid.org/project-overview/events-meetings/meetings/

meetingzib-1/wg6-status-report.pdf

[8] Thomas Radke: Cactus Metadata Management. Presentation at the 5th AstroGrid-D Project
Meeting, 14./15. November 2006, MPE Garching;
http://www.gac-grid.org/project-overview/events-meetings/meetings/

meeting-MPE/cactus-metadata-management.pdf

[9] Thomas Radke: Status Report WP-VI: Grid Monitoring and Steering. Presentation at the 6th
AstroGrid-D Project Meeting, 30. January 2007, AEI Golm;
http://www.gac-grid.org/project-overview/events-meetings/meetings/

AEIMeeting/Presentations/wg6-status-report.pdf

[10] Cactus Reference Guide Manual describing the Cactus flesh and thorn programming interfaces.
http://www.cactuscode.org/old/Guides/Stable/ReferenceManual/

ReferenceManualStable.pdf

AstroGrid-D - 24 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

[11] Cactus User Portal A public user portal for the Cactus community.
https://portal.cactuscode.org

[12] Numerical Relativity Portal A portal for members of the Numerical Relativity community.
https://portal.aei.mpg.de

[13] Oliver Wehrens: Requirement analysis for specific components and services of the Astro com-
munity for the GACG portal. Work Group VII deliverable document D7.2, AstroGrid-D project;
http://www.gac-grid.org/project-documents/deliverables/wp7/M2.pdf

[14] gnuplot homepage http://www.gnuplot.info/

AstroGrid-D - 25 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

G: Appendix

Appendix A: Thorn Publish API Function Descriptions

AstroGrid-D - 26 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Publish{Boolean,Int,Real,String,Table}

Publish user API functions to publish user-defined information as an entity of either a single scalar
value of a given datatype, or a table of such scalar values

Synopsis

#include "Publish.h"

CCTK_INT istatus = PublishBoolean (CCTK_POINTER_TO_CONST cctkGH,

CCTK_INT level,

CCTK_INT value,

CCTK_STRING key,

CCTK_STRING name)

CCTK_INT istatus = PublishInt (CCTK_POINTER_TO_CONST cctkGH,

CCTK_INT level,

CCTK_INT value,

CCTK_STRING key,

CCTK_STRING name)

CCTK_INT istatus = PublishReal (CCTK_POINTER_TO_CONST cctkGH,

CCTK_INT level,

CCTK_REAL value,

CCTK_STRING key,

CCTK_STRING name)

CCTK_INT istatus = PublishString (CCTK_POINTER_TO_CONST cctkGH,

CCTK_INT level,

CCTK_STRING value,

CCTK_STRING key,

CCTK_STRING name)

CCTK_INT istatus = PublishTable (CCTK_POINTER_TO_CONST cctkGH,

CCTK_INT level,

CCTK_INT table,

CCTK_STRING key,

CCTK_STRING name)

Parameters

cctkGH optional pointer to a cGH structure, or NULL if not available

level the importance level for the entity to be published; this integer parameter should take as
its value one of the following preprocessor constants defined in the Publish.h header file:
PUBLISH LEVEL ERROR, PUBLISH LEVEL WARNING, PUBLISH LEVEL NOTICE, PUBLISH LEVEL INFO,

PUBLISH LEVEL DEBUG

value the value of the entity to be published; this is either a scalar value of type CCTK INT,

CCTK REAL, or CCTK STRING, or a key/value table of one or more scalar values of that
type (note that PublishBoolean() expects a CCTK INT typed value which is then

AstroGrid-D - 27 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

interpreted internally as a boolean (true or false)

key the case-sensitive key to associate with the entity to be published (must be passsed as
a pointer to a non-empty string)

name an optional case-sensitive identifier to be attached to the entity to be published (if passed
as a pointer to a non-empty string)

Result

istatus (≥ 0)
how often this entity was published by registered Publish callbacks

Errors

PUBLISH ERROR INVALID KEY the key argument is a NULL pointer or points to an empty
string

PUBLISH ERROR INVALID LEVEL the level argument is negative

Discussion

This set of Publish API functions can be used by application thorns to publish user-
defined metadata: either as a single entity of a scalar value of one of Cactus’s generic
datatypes CCTK INT, CCKT REAL, or CCTK STRING; or as a compound entity of multiple
such scalar values, defined in a key/value table. For scalar entities it is also possible to
publish a boolean value (true or false); since there doesn’t exist a corresponding CCTK
datatype for that in Cactus, such a value must be passed as a CCTK INT (non-zero or
zero).

Each published entity’s value gets associated with it a case-sensitive string key which
can be used as a unique identifier when querying for specific metadata. Additionally,
an optional case-sensitive string name can be given which is then also attached to the
published entity.

The cctkGH pointer argument is optional; when available in the calling routine it should
be passed through the Publish API as a hint to the registered publish callback functions.
If not available, a NULL pointer value should be passed instead.

The level positive integer argument may be used by registered Publish callback func-
tions to decide whether this entity should be published or not. Its value may be set
to one of the following preprocessor integer constants defined in the Publish.h header
file:

PUBLISH LEVEL ERROR (= 0) for error conditions
PUBLISH LEVEL WARNING (= 1) for warning conditions
PUBLISH LEVEL NOTICE (= 2) for normal, but important, conditions
PUBLISH LEVEL INFO (= 3) for normal, but less important, conditions
PUBLISH LEVEL DEBUG (= 4) for debugging purposes

Note that these predefined constants are similar, but not identical to, the CCTK VWarn()

warning levels. The total number of registered callbacks which did publish the given
entity is returned as result of the Publish API functions. It can be zero if all registered
callbacks decided (based on the level argument) not to publish the entity, or if no
callbacks had been registered in the first place, eg. if no thorn providing Publish callbacks
was activated, or – as is often the case in multiprocessor runs – callbacks were registered
only on a single processor (eg. on processor 0).

AstroGrid-D - 28 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

See Also

Publish{Boolean,Int,Real,String,Table} Register()

Register Publish API callback functions.

Publish{Boolean,Int,Real,String,Table} Unregister()

Unregister Publish API callback functions.

Examples

C++ #include <iostream>

#include "cctk.h"

#include "cctk_Arguments.h"

#include "util_Table.h"

#include "Publish.h"

// we assume that the current routine uses the DECLARE_CCTK_ARGUMENTS macro

// to get access to cGH information

if (CCTK_IsFunctionAliased ("PublishTable"))

{

std::ostringsteam buffer;

buffer << "cctk_iteration = " << cctk_iteration << std::endl

<< "cctk_time = " << cctk_time << std::endl;

const int table = Util_TableCreateFromString (buffer.str().c_str());

PublishTable (NULL, PUBLISH_LEVEL_DEBUG, table,

"Runtime Info", CCTK_THORNSTRING);

Util_TableDestroy (table);

}

Fortran #include "cctk.h"

#include "Publish.h"

integer istatus

CCTK_POINTER cctkGH

call CCTK_IsFunctionAliased (istatus, "PublishString")

if (istatus .ne. 0) then

cctkGH = CCTK_NullPointer ()

call PublishString (cctkGH, PUBLISH_LEVEL_NOTICE, &

"Horizon found", "event", CCTK_THORNSTRING)

end if

AstroGrid-D - 29 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Publish{Boolean,Int,Real,String,Table} Register

Publish registry API: Register callback functions for the Publish API

Synopsis

CCTK_INT istatus =

PublishBoolean_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,

CCTK_INT level,

CCTK_INT value,

CCTK_STRING key,

CCTK_STRING name),

CCTK_POINTER cb_data,

CCTK_STRING name)

CCTK_INT istatus =

PublishInt_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,

CCTK_INT level,

CCTK_INT value,

CCTK_STRING key,

CCTK_STRING name),

CCTK_POINTER cb_data,

CCTK_STRING name)

CCTK_INT istatus =

PublishReal_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,

CCTK_INT level,

CCTK_REAL value,

CCTK_STRING key,

CCTK_STRING name),

CCTK_POINTER cb_data,

CCTK_STRING name)

CCTK_INT istatus =

PublishString_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,

CCTK_INT level,

CCTK_STRING value,

CCTK_STRING key,

CCTK_STRING name),

CCTK_POINTER cb_data,

CCTK_STRING name)

CCTK_INT istatus =

PublishTable_Register (CCTK_INT (cb) (CCTK_POINTER_TO_CONST cctkGH,

AstroGrid-D - 30 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

CCTK_POINTER cb_data,

CCTK_INT level,

CCTK_INT value,

CCTK_STRING key,

CCTK_STRING name),

CCTK_POINTER cb_data,

CCTK_STRING name)

Parameters

cb the function pointer of the callback function be registered

cb data an optional user-defined data pointer to associate with the callback function to be
registered (may be given as NULL pointer)

name a case-sensitive non-empty string uniquely identifying the callback function to be regis-
tered

Result

istatus All register functions return 0 (zero) for success, or a negative integer value in case of
an error.

Errors

PUBLISH ERROR INVALID CALLBACK the cb argument is a NULL pointer

PUBLISH ERROR INVALID CALLBACK NAME

the name argument is a NULL pointer or points to an empty
string

PUBLISH ERROR CALLBACK ALREADY REGISTERED

a callback under the same name has already been registered

Discussion

Before application thorns can make practical use of the Publish API (as described on
pages 5.2ff), publish callback functions must be registered; such functions will receive
the information to be published and then do the actual work.

The Publish registry API provides a separate function for registering a callback to han-
dle each of the supported scalar datatypes and for key/value tables. Each callback is
registered under a unique name which distinguishes it from other callbacks of the same
type. In order to unregister a callback, that name must be given as unique identifier.

Publish callbacks get passed as function arguments the information from the application
routine invoking the Publish API: the value to be published, either as single scalar value
entity or as a compound entity defined by a key/value table; a case-sensitive key to
associate with that entity; an optional case-sensitive name to be attached to the entity;
and an integer value to specify the importance level for the entity to be published).
When available in the calling routine, a pointer to the current grid hierarchy structure
should be passed by the user in the first argument (of type CCTK POINTER TO CONST as
a hint to the Publish callback function. Registered callback functions must not rely on
the presence of such a hint provided by the user – if a NULL pointer value is passed
instead, the callback should gracefully deal with this case (ie. not treat it as an error).
Additionally, a CCTK POINTER argument will be passed to each registered callback. This

AstroGrid-D - 31 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

argument is defined at registration time by the callback provider who can pass here
a pointer to some user-defined data structure, to be used within the Publish callback
function.

Preferably a register operation should be scheduled early in the process of simulation
startup (eg. at STARTUP after Driver Startup).

See Also

Publish{Boolean,Int,Real,String,Table}()
Publish API functions.

Publish{Boolean,Int,Real,String,Table} Unregister()

Unregister Publish API callback functions.

Examples

C #include <stdio.h>

#include <stdlib.h>

#include "cctk.h"

#include "cctk_Arguments.h"

#include "cctk_Parameters.h"

/* the Publish logfile is open when registering callbacks */

static FILE* logfile = NULL;

/* define the Publish callback somewhere in your code */

static CCTK_INT PublishInt_ToStdout (CCTK_POINTER_TO_CONST cctkGH,

CCTK_POINTER cb_data,

CCTK_INT level,

CCTK_INT value,

CCTK_STRING key,

CCTK_STRING name)

char* datatime = Util_CurrentDateTime ();

fprintf (logfile, "%s", datetime);

free (datetime);

if (cctkGH)

{

fprintf (logfile, "[it=%d, time=%g]", cctkGH->cctk_iteration, cctkGH->cctk_time);

}

fprintf (logfile, ": Publishing integer value %d with key ’%s’\n", value, key);

return (1);

}

/* this routine should be scheduled at simulation startup, eg. at CCTK_WRAGH */

void PublishToStdout_RegisterCallback (CCTK_ARGUMENTS)

{

DECLARE_CCTK_PARAMETERS;

if (CCTK_IsFunctionAliased ("PublishInt_Register"))

AstroGrid-D - 32 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

{

/* register only on processor 0 */

if (CCTK_MyProc (cctkGH) == 0)

{

/* the logfilename parameter specifies the name for the Publish logfile */

logfile = fopen (logfilename, "w");

if (logfile)

{

PublishInt_Register (PublishInt_ToStdout, NULL, "Publish To Stdout");

}

}

}

}

Fortran Since Publish callback functions have to process CCTK POINTER, CCTK POINTER TO CONST

and CCTK STRING arguments, it is unlikely that someone will code them in the Fortran
language. Therefore no Fortran code example is given here.

AstroGrid-D - 33 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

Publish{Boolean,Int,Real,String,Table} Unregister

Publish registry API: Unregister callback functions for the Publish API

Synopsis

CCTK_INT istatus = PublishBoolean_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishInt_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishReal_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishString_Unregister (CCTK_STRING name)

CCTK_INT istatus = PublishTable_Unregister (CCTK_STRING name)

Parameters

name a case-sensitive non-empty string uniquely identifying the callback to be unregistered

Result

istatus All unregister functions return 0 (zero) for success, or a negative value in case of an
error.

Errors

PUBLISH ERROR INVALID CALLBACK NAME

the name argument is a NULL pointer or points to an empty
string

PUBLISH ERROR CALLBACK NOT REGISTERED

no callback was registered under the given name

Discussion

Registered callback functions may need to be unregistered in order to safely shut down
any underlying Publish services (eg. flush/close an open logfile or database, close the
connection to external metadata information storage or publishing services such as a
portal).

Preferably an unregister operation should be scheduled late in the process of simulation
termination (eg. at TERMINATE before Driver Terminate).

See Also

Publish{Boolean,Int,Real,String,Table}()
Publish API functions.

Publish{Boolean,Int,Real,String,Table} Register()

Register Publish API callback functions.

Examples

C #include "cctk.h"

if (CCTK_IsFunctionAliased ("PublishTable_Unregister"))

AstroGrid-D - 34 - Deliverable D6.6

Implementation of Monitoring & Steering Methods for AstroGrid-D Use Cases Version 1.0.0

{

PublishTable_Unregister ("Publish To Stdout");

}

Fortran #include "cctk.h"

integer istatus

call CCTK_IsFunctionAliased (istatus, "PublishReal_Unregister")

if (istatus .ne. 0) then

call PublishReal_Unregister ("Publish To Stdout")

end if

AstroGrid-D - 35 - Deliverable D6.6

