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Abstract
We investigate theoretically the generation of nonlinear dissipative structures in optomechanical
(OM) systems containing discrete arrays of mechanical resonators. We consider both hybrid
models in which the optical system is a continuous multimode field, as it would happen in an OM
cavity containing an array of micro-mirrors, and also fully discrete models in which each
mechanical resonator interacts with a single optical mode, making contact with Ludwig and
Marquardt (2013 Phys. Rev. Lett. 101, 073603). Also, we study the connections between both types
of models and continuous OM models. While all three types of models merge naturally in the limit
of a large number of densely distributed mechanical resonators, we show that the spatial
localization and the pattern formation found in continuous OM models can still be observed for a
small number of mechanical elements, even in the presence of finite-size effects, which we discuss.
This opens new venues for experimental approaches to the subject.

1. Introduction

The emergence of patterns that spontaneously break some spatial symmetry is widespread in nonlinear
optical systems, especially in large aspect-ratio cavities. Such patterns show up across the plane transverse to
the light propagation direction—hence the name ‘transverse patterns’ to refer to them—and have been
theoretically and experimentally investigated in many different nonlinear optical cavities [1, 2]. Their study
constitutes a well developed discipline in modern nonlinear optics. In fact, these nonlinear patterns belong
to the wider class of dissipative structures, which are structures that self-sustain out of thermal equilibrium
by continuous interchange of energy with the environment [3]. Part of the interest of this research
program in nonlinear optics, apart from its intrinsic physical relevance, lies in the potential for optical
information storage and processing of a particular type of pattern, namely cavity solitons, which are
localized structures that can be individually written, erased, and even moved without affecting neighboring
structures [4–7].

Naturally, most of the studies on optical transverse patterns so far have considered cavities containing
usual passive or active nonlinear materials, like two-level systems, Kerr media, or second-order nonlinear
crystals, to cite a few. More recently, optomechanical (OM) systems have begun to be considered in this
respect. In [8] we analyzed theoretically the possibility of using the nonlinear coupling between the cavity
field and a deformable mechanical element to generate transverse patterns in OM cavities. These are
conceptually simple systems, consisting of an optical resonator with mechanical degrees of freedom that
couple to the light oscillating inside it [9]. The coupling appears either through radiation pressure (e.g.,
when the mechanical degree of freedom corresponds to the oscillation of a perfectly reflecting cavity
mirror) or through dispersive effects (e.g., when the mechanical degrees of freedom correspond to the local
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displacement of a partially transmitting membrane). Also, the formation of transverse patterns in OM
cavities containing cold atoms has been considered [10–12]. These systems are receiving intense and
continued attention mainly in the context of modern quantum technologies, where phenomena such as
cooling [13–15], induced transparency [16, 17], squeezing [18–20], as well as quantum-coherent effects
[21] have been demonstrated over the last decade. Generating dissipative structures in OM cavities could
endow them with new capabilities. It could also lead to a pattern forming system in which quantum
fluctuations play an important role: as OM cavities have demonstrated their ability to work within the
quantum regime, they open the possibility of studying quantum dissipative structures under the strong
influence of quantum fluctuations. Spontaneous dissipative structures indeed present quantum correlations
among different spatial points within the structure [22]. These effects are stronger for parameters close to
bifurcations, but some quantum properties remain even far from such points. For example, under certain
conditions, the spontaneous spatial symmetry breaking induced by the structure gives rise to quantum
correlations (squeezing, in particular) that are non-critical, in the sense that they do not depend on the
distance to the pattern-forming instability [23–25]. Most of these exciting quantum phenomena have been
predicted for optical parametric oscillators [23–29], but unfortunately the models are still far from realistic
experimental implementations [30].

Contrarily, OM cavities have demonstrated the feasibility of the simplest models as well as a large
versatility because of the variety of possible platforms, materials and designs [9, 31, 32]. As a first step
toward understanding this fully quantum picture, it is important to characterize the conditions required for
pattern formation in OM cavities.

Within the context of extended OM systems, Rakich and Marquardt [33] have recently formulated a
quantum theory of continuum optomechanics that is closely related to our theory [8]. The theory is
intended for treating OM interactions occurring along extended waveguides, which are naturally
space-dependent problems in which Brillouin scattering is the essential coupling, thus connecting Brillouin
physics with optomechanics. Below we address the formal connection between continuum optomechanics
and pattern forming OM cavities.

In [8] we demonstrated the feasibility of pattern formation in OM cavities by modeling the mechanical
element, be it an end mirror or an intracavity membrane, as a continuously deformable element.
Interestingly, a certain necessary condition, alien to other nonlinear optical cavities, must be fulfilled for
nonlinear pattern formation in OM cavities, namely that the mechanical array must possess a sufficiently
homogeneous mode, i.e. a state that is invariant under translations in the plane transverse to the light
propagation direction (cavity axis). This means that the equilibrium displacements of the mechanical
elements under a spatially uniform illumination must equal each other, what is called a homogeneous
spatial state. In [8] we suggested a way for implementing such condition through a quasi-one-dimensional
membrane, that is, a membrane clamped by a large aspect-ratio frame, such that only one or a few
transverse modes could be excited along the short direction. Under these conditions, the system naturally
develops a one-dimensional homogeneous mode along the long direction, which becomes unstable through
pattern forming instabilities under appropriate parameter settings. One of the limitations of that scheme is
that only one-dimensional (1D) transverse-patterns can be generated.

In the present paper we investigate a conceptually different possibility of pattern formation to that of [8]
by considering an OM cavity with an oscillating micro-structured end mirror consisting of an array of N
weakly-coupled micro-mirrors, see figure 1 for a sketch of the 1D case; of course, the system can also be
implemented in 2D. This configuration, indeed, allows automatically a homogeneous mode. Below we show
that in the limit of large N, one recovers the continuous linear-coupling model in [8], and hence all the
predictions in that work apply when the number of elements in the array is large. The interesting point is
that one can consider also the limit of small N and study the transition from the continuous to the discrete
limit. Among the interesting numerical results that we show below, it is remarkable the fact that a discrete
analog of the continuous-limit cavity solitons can be observed with a relatively small number of coupled
micro-mirrors, say N ≈ 10.

Of course, the problem we are addressing is closely connected with the theory of OM arrays [34–37] as
our model can be thought of as a special implementation of these systems in which all the OM elements are
nonlinearly driven through the same multimode intracavity optical field. As the continuum optomechanics
theory is recovered from the continuum limit of the OM array model, this opens the way for a formal
connection between pattern formation in OM array cavities and continuum optomechanics.

After this introduction, we present our model for the OM cavity with microstructured end-mirror in
section 2. In section 3 we establish the connection with our continuous model of [8] and in section 4 we
present some numerical results showing, in particular, the transition from the quasi-continuum limit to a
small number of mechanical elements. Then, in section 5, we establish a formal connection between the
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Figure 1. Sketch of the OM cavity. A coherent field of slowly-varying complex amplitude Ainj (z, r, t) is injected into the cavity
through a coupling mirror placed at the left end (z = 0). The intracavity field is given by the superposition of two
counter-propagating waves with slowly varying complex amplitudes A± (z, r, t). The right end of the cavity (z = L) is formed by
an array of N micro-mirrors that are weakly coupled by means of springs of stiffness κ⊥. The array is one-dimensional in the
figure for simplicity, but we consider two-dimensional ones along the text. Each mirror can oscillate back and forth along the
longitudinal direction (z axis) with angular frequency Ωm. We measure the displacement qj(t) of each micro-mirror with respect
to the reference flat state at z = L (gray dashed rectangle) when the cavity is not illuminated. For two adjacent micro-mirrors, a is
the distance between their centers and b is the distance between their edges, when they are at rest.

OM array models [36] and the continuum optomechanics, as well as we show some relevant numerical
results. Finally, in section 6 we give our main conclusions.

2. Model

Consider an optical cavity with large-area mirrors, one of which is plane, partially transmitting, and
immune to radiation pressure because of its stiffness and mass, while the other is a perfectly reflecting array
of micro-mirrors. We assume that they can be described by N identical spring-mass systems, weakly coupled
to each other by means of springs of stiffness κ⊥ (see figure 1). Also, we assume that the tilt induced by the
coupling springs is negligible, so that each micro-mirror oscillates along the z-axis with angular
frequency Ωm.

The field injected in the cavity through the coupling mirror is assumed to be a paraxial, coherent beam

Einj (z, r, t) = iVAinj (z, r, t) ei(kLz−ωLt) + c.c., (1)

where r =
(
x, y

)
denotes the position in the plane transverse to the cavity axis (z-axis), and V is a constant

having the dimensions of voltage, which we choose as V =
√
�ωc/4ε0L in order to make contact with

quantum optics (see appendix A), L being the length of the unperturbed cavity and ωc being the frequency
of the longitudinal cavity mode closest to the injected frequency ωL, with corresponding wave vector
kL = ωL/c.

The generic intracavity field E (z, r, t) can be written as

E (z, r, t) = iV
(
A+ eikLz + A− e−ikLz

)
e−iωLt + c.c., (2)

which is the superposition of two waves with slowly varying complex amplitudes A± (z, r, t), propagating
along the positive (A+) and negative (A−) z direction. Note that we are considering a single longitudinal
cavity mode (that closest to the injection’s frequency), which we justify at the end of the section. With
similar assumptions as those in [8, 38] (see appendix B for the derivation), the field A+ (z = L, r, t) at the
surface of the mechanical array, which we denote by A (r, t), obeys the following evolution equation

∂tA = γc

(
−1 + iΔ+ il2c∇2

⊥ + i
G

γc
Q

)
A + γcE . (3)

Here G = ωL/L is the frequency pull parameter [9], γc = cT/4L is the cavity damping rate ( with T the
transmissivity of the fixed mirror), Δ = (ωL − ωc) /γc is the dimensionless detuning parameter,
∇2

⊥ = ∂2
x + ∂2

y is the transverse Laplacian, E (r, t) = 2T−1/2Ainj (L, r, t + tc) is a scaled version of the

injected field amplitude (tc = 2L/c is the cavity round-trip time) and l2c = 2L/kLT is the square of the
diffraction length. The latter is the characteristic size for which diffraction is more effective, similarly to how
a Gaussian beam diffracts more at its waist, so that details of length lc of a given image will suffer more
diffraction than the rest of details. Furthermore, being any image a multimode coherent superposition of
spatial modes, the number of disks having a radius lc contained in the image provides a rough estimate for
the number of transverse modes required to describe it. In (3) we have introduced a field Q (r, t) that
measures the local displacement of the mechanical array with respect to the reference state, say the ‘flat
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state’, for which Q = 0 for any r (corresponding to the the gray dashed rectangle in figure 1). Next we
derive its equation of motion.

We describe the displacement of the mechanical array in terms of the individual displacements {qj}j∈Z2

of its constituent micro-mirrors, labeled by a double index j = (j1, j2) in a 2D configuration, as

Q (r, t) =
∑

j

qj(t)wj(r), (4)

where wj(r) is the characteristic function of the j-th mirror which equals 1 when r is on the surface of
micro-mirror j and is zero otherwise. In the following we assume for simplicity that the micro-mirrors are
much larger than the separation between them, that is, a � b in figure 1. Note that the latter condition
implicitly assumes that the micro-mirrors are square-shaped, although their specific shape is unsubstantial,
as long as all our previous assumptions hold (e.g., the space left between them is smaller than their size).
Each of these displacements is assumed to satisfy the equation of motion of a damped and forced harmonic
oscillator, the force acting on mirror j having two contributions, Fj = F(RP)

j + F(⊥)
j , respectively coming

from radiation pressure and from the coupling to neighboring mirrors. The first contribution is readily
obtained by integrating the radiation pressure (A.5) over the surface Sj of the corresponding micro-mirror

F(RP)
j = �G

∫
Sj

d2r|A (r, t)|2, (5)

where kc = ωc/c. As for the force coming from the coupling to neighboring mirrors, we assume that it
originates from a potential that harmonically couples neighbors as V⊥

j = κ⊥
∑

〈l〉j
(ql − qj)2/2, where 〈l〉j

means that the sum is performed over nearest neighbors, hence the corresponding force is computed as
F(⊥)

j = −∂V⊥
j /∂qj, which reads

F⊥
j = κ⊥Lν[qj]. (6)

where
Lν[qj] ≡

∑
〈l〉j

(ql − qj), (7)

being ν the coordination number. For instance, for an inner point in a two-dimensional square lattice
(ν = 4),

Lν[qj] = qj+ux + qj+uy + qj−ux + qj−uy − ν qj, (8)

where ux = (1, 0) and uy = (0, 1). For points at the boundary trivial modifications can be done to this
expression. Note that Lν[qj] is the finite-difference approximation to the Laplacian of a continuous field
Q (r, t) of which {qj} is a sampling.

Putting everything together we get

q̈j + γmq̇j +Ω2
mqj −

κ⊥
m

Lν[qj] =
�

m
G

∫
Sj

d2r|A (r, t)|2, (9)

with γm, Ωm and m the damping rate, oscillation frequency, and mass of the micro-mirrors, respectively.
Equation (9) together with the optical field (3) and definition (4) form the equations of our model.

For the sake of completeness, we give in the remaining of this section a rough estimate for some relevant
parameters of the model. We stress that we found pattern formation and spatial localization in a very broad
region of the parameter space (see below), which means that the following estimates are illustrative, and not
a narrow condition that needs to be matched experimentally. Indeed, parameters may vary significantly
depending to the technology chosen for the experimental implementation (see for example section 5). The
most relevant parameter is the diffraction length lc in relation to the characteristic size a of a single
micro-mirror. lc increases with the cavity length L, and decreases with the frequency of the injected field or
the transmissivity T of the coupling mirror. Hence, for example, for L ∼ 1 mm–1 cm, and green-light
injection (λ ∼ 0.5 μm), one gets lc ∼ 50 μm–1 mm, evidencing the tunability of this parameter.
Considering a ≈ lc, then, an array of about 10 × 10 micro-mirrors would have a total size of about
0.5 mm × 0.5 mm to 1 cm × 1 cm.

We recall that our model considers just one cavity longitudinal mode, which is obviously justified as far
as no other longitudinal mode becomes excited. This is granted whenever the frequency separation between
neighboring longitudinal modes, i.e. the so-called cavity free spectral range (FSR), is large enough as
compared to the relevant mechanical frequencies, which is the case we consider. Otherwise a three-mode
parametric instability [39–42] that involves a mechanical mode and two optical modes with different
longitudinal order can settle in the system. That kind of instability can limit the performance of
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gravitational wave interferometers, whose very long arms (km sized) lead to FSR compatible with
mechanical frequencies existing in the system [39, 40]. Our relatively small cavities (5 orders of magnitude
shorter) have FSR exceeding the GHz, therefore well above typical mechanical frequencies. Our model does
contain however three-mode parametric instabilities between transverse modes with the same longitudinal
order (which are assumed quasi-degenerate in frequency, as required for a pattern-forming cavity with
translational invariance in the transverse plane). Nevertheless we are considering here a dynamical regime
where the homogeneous steady-state solution is unstable with respect to static pattern-forming instabilities
only, which roughly requires working with red-detuned injection, as shown by a standard linear stability
analysis such as the one we performed in our previous work of reference [8]. Note that this also excludes the
usual OM self-pulsing or Hopf instability [9], which occurs when the optical injection is blue detuned with
respect to the cavity mode frequency.

3. Continuous limit

In order to make contact with our previous work [8] and with [33], we now consider the limit in which the
number of micro-mirrors per unit length tends to infinity while keeping a finite mass density and sound
speed. The following reasoning is valid for a generic 2D lattice with lattice constant a and generated by a
pair of linearly-independent vectors {u1, u2}. Each mirror of the array is centered at the nodes of the lattice,
which are univocally identified by the the indices j = (j1, j2) ∈ Z

2 (see figure 2 for the example of a
triangular lattice). We first write the displacements as a function of the mechanical field Q as

qj =

∫
R2

d2r

a2
Q (r)wj(r). (10)

Next, using the immediate properties∫
Sj

d2r|A (r, t)|2 =
∫
R2

d2r|A (r, t)|2wj(r), (11a)

∫
R2

d2rQ (r)wj+m(r) =

∫
R2

d2rQ (r − a[m1u1 + m2u2])wj(r), (11b)

with m = (m1, m2) ∈ Z
2, the equation (9) for the motion of a generic displacement qj is turned into

∂2
t Q (r) + γm∂tQ (r) +Ω2

mQ (r) − Ω2
⊥

ν∑
n=1

(Q(r − avn) − Q(r)) =
�a2

m
G|A (r)|2 (12)

with Ω⊥ =
√
κ⊥/m, and where {vn}n=1,2,...,ν are the vectors that connect a given lattice node with its ν

nearest neighbors. Note that we are considering a micro-mirror that is not at the boundary of the flexible
mirror (as in the continuous limit the fields extend up to infinity), and hence have used (6). As specific
examples, let us consider the square and triangular lattices. The first one is generated by u1 = ux and
u2 = uy, with nearest neighbors connected through the vectors v1 = ux = −v2 and v3 = uy = −v4. In the
case of the triangular lattice, which is represented in figure 2, we have u1 = ux and u2 = (1,

√
3)/2, while

nodes are connected with their neighbors through {vn = (cos πn
3 , sin πn

3 )}n=1,...,6.
For any lattice, we next consider the continuous limit by assuming that the lattice constant a is much

smaller the scale in which spatial variations in the field Q take place (long-wavelength approximation). In
this limit we can approximate

Q (r − av)  Q (r) − a∂vQ (r) + a2∂2
v Q (r) /2, (13)

where ∂v = v ·∇⊥, with ∇⊥ = (∂x, ∂y). Using this expansion on equation (12) for a square lattice, while
keeping finite both the speed at which transverse perturbations propagate in the flexible mirror v = aΩ⊥
and its surface mass density σ = m/a2, we obtain

∂2
t Q + γm∂tQ +

(
Ω2

m − v2∇2
⊥
)

Q =
�

σ
G|A|2. (14)

For the triangular lattice, one obtains the same form for the equation, but with a modified speed v,
specifically enhanced by a factor

√
3/2. Remarkably, this is the same equation of motion we derived in the

model of [8] (for the linear coupling case). For sake of later use, we note that in that work it was evidenced
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Figure 2. Triangular lattice as an example of a possible geometry for our array of micro-mirrors (shown in gray). The
two-dimensional lattice is generated by two linearly-independent unit vectors u1 and u2, and each micro-mirror is univocally
determined by an index j ∈ Z

2.

the importance of the rigidity parameter ρ = v/Ωmlc, which can be expressed in terms of our model
parameters as

ρ =
a
√

κ⊥/m

Ωmlc
. (15)

In the continuous limit, pattern formation requires ρ smaller than a certain critical value that is on the
order of 1 or above, depending on the light’s detuning [8]. Considering then a ≈ lc ≈ 126 μm as in the
previous section, common mechanical oscillation frequencies Ωm on the order of MHz, and a sound speed
on the broad range of v ∼ 102 –103 m s−1, we obtain rigidity parameters ρ ∼ 0.8–8, as required.

4. Numerical simulations

From the previous derivation of the continuous model we can conclude that, at least in the limit of a very
large number of micro-mirrors, the system we are proposing is equivalent to that studied in [8]. This
implies that all the results that we obtained in [8] for the linear coupling model apply in this limit, both the
analytical (concerning homogeneous steady states and their stability properties) and the numerical ones
(types of patterns, generalized bistability, temporal dynamics, etc). Of course, one must wonder how large
must the density of micro-mirrors be for the results of the continuous model to still apply, as well as how
do the results change when departing from such continuous limit. We have performed extensive numerical
simulations of both the discrete (equations (3) and (9)) and continuous (equations (3) and (14)) models,
and figures 3 and 4 summarize our main findings. For simplicity, we have restricted the simulations to one
dimension, but similar conclusions are drawn in 2D. We have numerically simulated the continuous model
by using the usual split-step method, which at any time step provides an approximation of the fields at
certain space points. The same method can be applied to the discrete model, and in particular, we take M
spatial points for the optical field at every micro-mirror, denoting by (j, l) point l of mirror j, so that the
field amplitude A(x) is represented by the array {Aj,l}l=1,2,...,M

j=1,2,...,N , giving a total of N × M points. The next step
consists in choosing a finite-differences form of the integral appearing in the mechanical equations (9). We
have found that, for stability purposes, an integration rule of the type

∫
Sj

dx|A (x, t)|2 ≈ a
M+1∑
l=0

dl

∣∣Aj,l (t)
∣∣2

, (16)

where Aj,0 = Aj−1,M and Aj,M+1 = Aj+1,1, is what works best, that is, we use a discrete representation of the
integral over mirror j that includes the last point of the previous mirror and the first point of the next one.
The weights satisfy the constrain

∑M+1
j=0 dl = 1, and we have chosen a second order integration rule

{dl}l=0,1,...,M+1 = {1, 23, 24, 24, . . . , 24, 23, 1}/24M which seems to provide very good convergence
properties.

Following our previous work [8] and for the sake of convenience, we express equations (3) and (9) in
terms of dimensionless variables. To this purpose we define the following dimensionless versions of the
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Figure 3. Normalized field amplitude (squared) |F(x)|2 and mechanical field Z(x) in the steady-state as a function of the
position, for a 1D system of finite size x ∈ [−40lc, 40lc]. The solutions have been obtained by numerical resolution of the discrete
(solid blue) and continuous (dashed red) models described in the text, and under a top-hat illumination. In all cases M = 11,
γ = 0.1, Ω = 10, Δ = −2.2, and ρ = 1.13. The injection values E2

0 have been chosen in the region where solitons ((a)–(d)) or
periodic patterns ((e)–(h)) are expected from the continuous model. For the discrete model we consider N micro-mirrors as
specified in the figure, so that their individual size is a = 80lc/N.

mechanical displacement and optical field,

zj =
G

γc
qj, F =

G

Ωm

√
�a

mγc
A. (17)

We also define the dimensionless injection E = (G/Ωm)(�a/mγc)1/2E and write κ⊥/m = v2/a2 in terms of
the effective rigidity parameter ρ = v/Ωmlc which together with the detuning was shown to control the
appearance of dissipative structures in the continuous model [8]. We finally introduce normalized versions
of other parameters, namely γ = γm/γc, Ω = Ωm/γc.

Combining this normalization with the discrete form (16) of the integral, and introducing into
equations (3) and (9) dimensionless versions of time and space, τ = γct and x̄ = x/lc, respectively, we
obtain the normalized equations

d2zj

dτ 2
+ γ

dzj

dτ
+Ω2zj = ρ2Ω2 l2c

a2
L2[zj] +Ω2

M+1∑
l=0

dl

∣∣Fj,l

∣∣2
, (18a)

∂τF =
(
−1 + iΔ+ i∂2

x̄ + iZ
)

F + E, (18b)

where we define the normalized mechanical field Z(x, t) =
∑

j zj(t)wj(x) and remind that L2[zj] refers to the
finite-difference version of the Laplacian, see (7). Note that after rescaling the mechanical and optical
amplitudes, the equations have become independent of the OM coupling represented by G. This means
that, at the classical level, G plays no role in the dynamics of the system, other than as a scaling factor of the
amplitudes and the injection. In contrast, G is expected to have a bigger impact at the quantum level, where
the presence of quantum noise does not allow for the same kind of trivial elimination of such parameter.

In actual experiments a plane-wave injection is realized by a Gaussian beam having a waist much larger
than the (finite) transverse dimensions of the OM cavity. However, for the numerical implementation, the
use of the split-step algorithm requires either periodic boundaries or an infinitely extended system. For this
reason, in order to simulate the finite size of the system, we use the well-known approach that considers a
flat injection presenting a finite transverse size, while we keep periodic boundary conditions in the
transverse plane. In particular, we take a top-hat injection profile with finite width, modeled as a
super-Gaussian E(x̄) = E0 exp(−x̄20/2σ20

x ). In figure 3, we show in solid blue the stationary structures we
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Figure 4. Normalized field amplitude (squared) |F(x)|2 and mechanical field Z(x) in the steady-state as a function of the
position, for a 1D system of finite size x ∈ [−40lc, 40lc]. Figures 4(a) and (b) show a localized structure that has been written
around position x̄ = 12; an additional localized structure has been written around x̄ = −12 in figures 4(c) and (d), which clearly
does not disturb the previous structure. The basic shape of the injection (E2) is represented in dashed red, on top of which a
Gaussian profile with the proper width and position is initially fed in order to write the localized structures. The parameters in
this simulation are N = 7, M = 11, γ = 0.1, Ω = 10, Δ = −2.2, ρ = 1.13, E0 =

√
1.5, and σx = 23.

have found in a spatial window x ∈ [−40lc,+40lc] for different number of micro-mirrors N (whose
individual size is then a = 80lc/N), taking M = 11 field points per micro-mirror. We are showing results for
the special case γ = 0.1, Ω = 10, Δ = −2.2, and ρ = 1.13, and studied the spatial structures for two values
of the injection, E2

0 = 2.25 and 2.7 (with σx = 40). For these parameters the continuous limit predicts the
appearance of, respectively, cavity solitons and periodic patterns [8]. In the figure we show in dashed red
the corresponding structures found in the continuous limit for these same parameters. We see that cavity
solitons are better captured with a small number of micro-mirrors than periodic patterns. This is so because
we need enough space to hold such an extended structure, but they can still be observed with not so many
micro-mirrors, as we show below.

In figure 4 we illustrate what happens when the number of micro-mirrors is small, a limit that is easier
to implement experimentally. We take N = 7 micro-mirrors and show how localized structures can be
supported by a single micro-mirror. We are able to write and erase such structures by an additional
Gaussian optical injection at the desired position, and hence they are equivalent to the cavity solitons
present in the continuous case. We find it remarkable that with such a small number of micro-mirrors the
cavity solitons of the continuous model can still be recovered.

Once we have demonstrated that the predictions of the continuous model are robust for the discrete
model, we pass to study a factor that may severely affect pattern formation, namely boundary effects. When
a homogeneous solution is stable, any perturbation of it will be damped and will tend to disappear.
However, the decay of the perturbation may be accompanied by spatial oscillations with characteristic
spatial decay and a wavenumber [43], so that depending on the relation between these quantities and the
extension of the array and the individual micro-mirror size, resonances may occur. As the boundaries of the
mechanical array constitute a perturbation of the homogeneous solution, we can expect a strong influence
of their presence in the patterns developed by the system.

We first illustrate the spatial oscillations in figure 5. For the parameters chosen (the system is driven by
E2

0 = 3.5), the system has a stable homogeneous solution Z̄ = |F̄|2 = 2.73 for the continuous model [8],
however the numerical simulation shows damped spatial oscillations starting from the two edges. We
compare three different situations where the spatial extension of the mirror array is 40lc, 80lc and 160lc (see
figures 5(a)–(c) respectively). For all the other parameters fixed, the characteristic decay length is the same
for the three situations. In particular, we obtain λrelax ≈ 8.5lc by fitting the envelope of the damped
oscillations of |F(x)|2 to the function

y(x) = |F̄|2 + Ke(|x|−xmax)/λrelax (19)

where K is an additional fitting parameter and xmax is the largest transverse position that we consider, that
is, x ∈ [−xmax, xmax]. This fit is shown as a green-dashed line in figure 5. When the size of the system is
comparable to this length, we observe the formation of a stable pattern, see figure 5(a). On the contrary
when the system size becomes larger, then spatial oscillating perturbation is completely damped at the
center where the homogeneous solution is re-established, see figure 5(c).

8



New J. Phys. 22 (2020) 093076 J Ruiz-Rivas et al

Figure 5. Normalized field intensity |F(x)|2 (solid blue) in the steady-state as a function of the position, for a 1D system of finite
size with: (a) x ∈ [−20lc, 20lc], (b) x ∈ [−40lc, 40lc] and (c) x ∈ [−80lc, 80lc]. The parameters in this simulation are N = 91,
M = 11, γ = 0.1, Ω = 10, Δ = −2.2, ρ = 1.13 and E0 =

√
3.5. The red horizontal dashed curve represents the homogeneous

solution expected from the continuous model, and the green dashed curve is obtained by fitting the envelope of the damped
spatial modulation, it corresponds to a relaxation characteristic length of λrelax ≈ 8.5lc.

As stated, because of the discreteness of the mirror array, the perturbation induced by the boundaries
gives origin to another effect when it resonates with the spatial period of the mirror array. In this case we
observe the emergence of a pattern of spatial period λc = 2π/Re{kc} when the size a of the micro-mirrors
is such that

a ≈ λc/2 (20)

where kc is the critical wave vector (in general a complex number) for which one of the eigenvalues of the
linear stability analysis is equal to zero. In practical terms, we find it by setting to zero equation (C12d) in
[8]. In figure 6 we present the case of an array of mirrors of total size equal to 160lc, when the system is
driven in the upper homogeneous branch by a pump field E2

0 = 3.5, for three different values of mirror size.
In figure 6(a) we choose N = 40 so that a = 4, in figure 6(b) N = 55 so that a ≈ 2.9, and in figure 6(c)
N = 80 so that a = 2. The critical wavevector for the case considered is such that Re[kc] ≈ 1.1. As discussed
in the previous paragraph, the boundary conditions induce a perturbation that is spatially modulated
relaxing toward the homogeneous solution with some characteristic length. In the case we are considering
there is enough room for these oscillations to relax on the homogeneous solution. Indeed in figures 6(a)
and (c) the spatial period of the discrete array is very different from λc/2 ≈ 2.85, while for (b) expression
(20) is matched so that a periodical pattern emerges.

5. Connection with the standard OM array theory

In the limit where the intracavity optical field varies slowly enough with respect to the size a of the
micro-mirrors and the diffraction length lc is larger than a, we have about one optical mode locally
interacting with each micro-mirror. In this case our model defined by equations (3) and (9) can be mapped
onto the OM array suggested in [36] where ‘[. . . ] a localized mechanical mode interacts with one laser-driven
cavity (optical) mode [. . . ] and where both photons and phonons can hop between neighboring sites’ .

Then, we consider the optical field Aj = A(rj) at each node rj of the lattice defined by our mechanical
array, and approximate the Laplacian in (3) by its finite-differences expression of (7),

∇2
⊥A ≈ 1

a2
Lν[Aj]. (21)

As a consequence, equation (3) can be mapped onto the classical part of the quantum Langevin equation
for the optical field αj in [36]

dαj

dt
=

[
− κ̄

2
+ iΔ̄ + ig0q̄j

]
αj + i

J

ν

∑
〈l〉j

αl − iαL (22)

and (9) can be mapped onto the classical part of the quantum Langevin equation for the mechanical field βj

in [36]

dq̄j

dt
= Ω̄p̄j, (23a)

dp̄j

dt
= −Γ

2
p̄j − Ω̄q̄j + 2g0

∣∣αj

∣∣2
+

K

ν

∑
〈l〉j

q̄l (23b)
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Figure 6. Normalized field intensity |F(x)|2 (solid blue) in the steady-state as a function of the position, in a 1D system of finite
size with x ∈ [−80lc, 80lc] for (a) N = 40, (b) N = 55 and (c) N = 80. The parameters in this simulation are M = 11, γ = 0.1,
Ω = 10, Δ = −2.2, ρ = 1.13 and E0 =

√
3.5. The red horizontal dashed curve represent the homogeneous solution expected

from the continuous model.

where q̄j = βj + β∗
j , p̄j = −i

(
βj − β∗

j

)
and

αj = aAj, (24a)

q̄j = qj/Δq0, (24b)

p̄j = mq̇j/Δp0, (24c)

with Δq0 =
√
�/2mΩ̄ and Δp0 = �/Δq0 the zero point fluctuations. Then, we obtain a one-to-one

correspondence with the dynamics of the OM arrays of [36], established by the following correspondence
between the parameters of the two models.

g0 = GΔq0, (25a)

κ̄ = 2γc, (25b)

Γ̄ = 2γm, (25c)

αL = −iγcE , (25d)

K

ν
=

κ⊥Δq0

Δp0
, (25e)

J

ν
=

γcl2c
a2

, (25f)

Δ̄ = γc

(
Δ− ν

l2c
a2

)
, (25g)

Ω̄ =

√
Ω2

m + νκ⊥/m. (25h)

The above derivation, thus, allows the connection between our model and the standard OM array model
[36] and, given that both discrete models are discrete versions of continuous models, the derivation also
establishes the relation between our pattern forming model and the continuum optomechanics theory
of [33].

Next we proceed to numerically illustrate the type of patterns appearing in this standard OM array limit.
We have chosen a square array with 32 × 32 mirrors and a total area of (32lc)2 (x, y ∈ [−16lc, 16lc]), such
that the area of each mirror is a2 = l2c . This means that we are just at the limit where our model can be
mapped onto the discrete model. For improving the validity of the correspondence between the two models
(i.e. a < lc) either one can increase the number of mirrors or reduce the size of the array. While the first
option has, in principle, no limitation apart from having enough computational power
or—experimentally—having a large array, the second option is physically limited by the fact that the total
size of the array should provide enough room for the emergence of structures that have a characteristic
linear size on the order of lc. For an array area smaller than (32lc)2 we observed a reduced capacity of
sustaining structures. Finally we have chosen the remaining parameters as in the previous section: γ = 0.1,
Ω = 10, Δ = −2.2 and ρ = 1.13. The corresponding parameters of the OM array model, given by
equations (22) and (5), are K ≈ 0.82κ̄, J ≈ 3.67κ̄, Δ̄ ≈ −5.87κ̄, Ω̄ ≈ 23.85κ̄, and Γ̄ = 0.1κ̄. Similarly to
our previous equations, the bare OM coupling g0 can be removed from the equations by rescaling the
variables, and hence again plays no role apart from a scaling factor.

By virtue of the model correspondence, the OM array presents the same curve of steady-state
homogeneous solutions as the model of equations (3) and (9) (also of [8]), which is bistable for the chosen

10
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Figure 7. Simulations of the standard OM array limit. Normalized mechanical displacement zj relative to the jth OM cell (with
j = ( jx, jy)) in the steady state for a 32 × 32 square lattice. Figure 7(a) shows periodic pattern corresponding to an injection
E2

0 = 3; figure 7(b) shows a soliton for an injection E2
0 = 2.35. This solution emerges from instability of the homogeneous

solution in the upper branch of the steady state curve. It coexists with steady state homogeneous solution in the lower branch.
Figure 7(c) shows the steady state after the writing of two solitons centered at j = (9, 9) and j = (23, 23) with injection
E2

0 = 2.35.

parameters. Interestingly, when the system is driven by an injection field E2
0 = 3.0, the system spontaneously

generates a 4 × 4 square pattern both in the optical and mechanical fields (the numerical simulations are
again performed by using periodic boundary conditions and a top-hat super-Gaussian injection in two
dimensions, with σx = σy = 0.95 × 16lc). This can be appreciated in figure 7(a), where we show the
normalized mechanical displacement zj as a function of the OM-cell index j. When the injection field is
reduced to E2

0 = 2.35, the optical and mechanical fields spatially localize into a cavity soliton as the steady
state. This is shown in figure 7(b), where it is appreciated that the soliton involves only 5 elementary cells.
This solution coexists with the homogeneous solution of the lower branch of the steady state curve. As a
consequence it is possible to write several localized structures for E2

0 = 2.35. This is shown in figure 7(c)
where two solitons have been written at j = (9, 9) and j = (23, 23). Differently from examples shown in
figure 4, in the case of OM arrays it is not possible to write a soliton for a too small number of cells (for
example N = 7). This is because in the situation of figure 4 we are in the lc < a limit, so that structures
smaller than one mirror can be sustained by the optical field, allowing for a small size of the array. In
contrast, in the case of OM array of this section, we are in the lc � a limit, for which the characteristic size
of self-localized structures is larger than the size of the micro-mirrors, as clearly appreciated in figure 7. In
terms of the model equations (23a) and (23b) this is equivalent to asking J/ν > γc. This limitation could be
circumvented by considering a generalization of the model in [36] where each elementary cell is an OM
cavity which is degenerate for at least two optical modes.

6. Conclusions

In this paper we have proposed an architecture for an OM cavity that allows for the generation of dissipative
structures. The device consists of an OM cavity with an oscillating end-mirror formed by an array of
weakly-coupled micro-mirrors. This configuration fulfills the basic requirement necessary for OM
dissipative structures: the existence of a homogeneous mechanical transverse mode [8]. This proposal offers
then an alternative to our previous one [8] that consisted in mounting a flexible mirror on a large aspect
ratio frame (with dimensions Lx � Ly).

The model we are proposing coincides mathematically with that studied in [8] in the limit of large
density of micro-mirrors, making all its analytical and numerical results applicable in such limit. We have
numerically shown that this is also the case, more qualitatively, when the number of micro-mirrors is not
very large, and have found that with a relatively small number of elements there exist solutions reminiscent
of the continuous-case cavity solitons. More concretely, we have found that a discrete model consisting of
N ≈ 10 micro-mirrors with size a ≈ 4lc is enough to observe localized structures exactly as predicted by the
continuous limit model. Periodic patterns may require a larger number of micro-mirrors depending on
their periodicity, but in any case they should still be well captured with a reasonable number of these (say
N < 100). In the second part of the paper we have also connected our model with the discrete OM arrays
model recently put forward in [36]. The connection appears through the discretized version in [36]
meaning that our OM cavity model (with micro-structured mirror) is equivalent to an OM array when the
diffraction length is larger that the individual micro-mirror size. Hence, implementing pattern formation in
a microsructured OM-cavity is a way of implementing OM arrays and, with more generality, pattern
formation is a robust implementation of continuum optomechanics. We hope that our work be useful in
the experimental search of dissipative structures in OM devices.

11



New J. Phys. 22 (2020) 093076 J Ruiz-Rivas et al

Acknowledgments

We thank Chiara Molinelli for useful discussions in the initial brainstorming phase. This work was funded
by Spanish Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación, and
European Union FEDER (projects FIS2014-60715-P and FIS2017-89988-P). CNB acknowledges additional
support from a Shanghai talent program and from the Shanghai Municipal Science and Technology Major
Project (Grant No. 2019SHZDZX01). GP acknowledges support from Lille University within the framework
‘Internationalisation de la recherche 2019 - collaboration bilatérales’.

Appendix A. Interpretation of the optical field amplitude and radiation pressure

In the main text we wrote the electric field propagating to the right as

E+ (z, r, t) = ixVA+ (z, r, t) eikLz−iωLt + c.c., (A.1)

where here we include the polarization of the electric field (defining the x direction with corresponding unit
vector x), which was omitted in the main text for simplicity. The aim of this section is to explain how the
choice V =

√
�ωc/4ε0L characteristic of quantum optics allows us to give a simple interpretation to the

amplitude A+ (and similarly for A− and Ainj), as well as writing the expression for the radiation pressure
exerted by E+ in terms of this amplitude.

Let us first remind that, within the paraxial approximation, the magnetic field associated to (A.1) can be
written as (y is the unit vector in the y direction)

B+ (z, r, t) = iyc−1VA+ (z, r, t) eikLz−iωLt + c.c.; (A.2)

the corresponding Poynting vector is then written as (z is the unit vector in the z direction)

S+ =
1

μ0
E+ × B+ = −V2z

μ0c

(
A+ eikLz−iωLt − c.c.

)2
, (A.3)

whose magnitude averaged over an optical cycle

〈S+〉|z=L =
2π

ωL

∫ t+π/ωL

t−π/ωL

dτ |S+ (L, r, τ)|  2V2

μ0c
|A (r, t)|2,

provides the instantaneous measurable power impinging point r of the mirror located at z = L per unit area
(irradiance). Note that we have made use of the slowly time-varying nature of the amplitude, and
remember that we defined A (r, t) = A+ (L, r, t) in the main text. Now it is customary in quantum optics to
take V =

√
�ωc/4ε0L so that

|A (r, t)|2 = tc〈S+〉|z=L

�ωc
, (A.4)

can be interpreted as the number of photons per unit area which arrive to point r of the mirror during a
round-trip (tc = 2L/c is the cavity round-trip time). With this choice, the theory is quantized by
interpreting this amplitude as an operator satisfying equal-time commutation relations
[Â (r, t) , Â† (r′, t

)
] = δ(r − r′) and [Â (r, t) , Â

(
r′, t

)
] = 0.

From the Poynting vector, we can get the radiation pressure exerted onto a point r of the flexible mirror
as P(r, t) = 〈S+〉|z=L/c; this is a quantity of fundamental relevance to our work, and in our case takes the
particular expression

P(r, t) =
�kc

tc
|A (r, t)|2; (A.5)

given our interpretation of |A (r, t)|2, this coincides precisely with the total momentum (momentum per
photon × number of photons) hitting point r of the flexible mirror per unit time and area.

Appendix B. Derivation of the light field equation

Here we derive equation (3) of the main text. To this aim we use the approach of references [8, 38], which
consists in propagating the complex amplitudes A± (z, r, t) along a full cavity round-trip. Assuming that
they are slowly varying in space and time, they satisfy the paraxial wave equation

(
∂z ± c−1∂t

)
A± = ± i

2kL
∇2

⊥A±. (B.1)
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Given the amplitude A+ (z = L, r, t), after reflection on the flexible mirror we get

A− (L, r, t) e−ikLL = −A+ (L, r, t) eikL[L+2Q(r,t)], (B.2)

where Q (r, t) represents the displacement of the mirror from its rest position (Q = 0 at rest). The
amplitude A− (L, r, t) propagates from z = L to z = 0 giving rise to a new amplitude

A−

(
0, r, t +

1

2
tc

)
= ULA− (L, r, t) , (B.3)

where
UL = exp

[
i(L/2kL)∇2

]
, (B.4)

is the paraxial propagation operator in free space. After reflection onto the coupling mirror, a new
amplitude

A+

(
0, r, t +

1

2
tc

)
= −

√
RA−

(
0, r, t +

1

2
tc

)
+
√

TAinj

(
0, r, t +

1

2
tc

)
, (B.5)

is got, with R and T the reflectivity and transmissivity factors of the coupling mirror, respectively
(R + T = 1 is assumed: lossless mirror). Finally, propagation from z = 0 to z = L yields
A+ (L, r, t + tc) = ULA+

(
0, r, t + 1

2 tc

)
. Adding all parts together one gets

A (r, t + tc) =
√

R e2ikLLU2
L exp [2ikLQ (r, t)] A (r, t) +

√
TAinj (L, r, t + tc) , (B.6)

where we used ULAinj

(
0, r, t + 1

2 tc

)
= Ainj (L, r, t + tc). We now take into account that R → 1 (equivalently,

T → 0) so that
√

R =
√

1 − T → 1 − T/2. Next we assume that light is almost resonant with the cavity,
specifically we impose that 2 (ωL − ωc) L/c = δ is of order T, where ωc is the cavity longitudinal mode
frequency (hence ωc = mπc/L, m ∈ N) closest to ωL, what allows approximating
exp(2ikLL) = exp(2iωLL/c) ≈ 1 + iδ. We assume as well that kLQ (r, t) is of order T (the mirror
displacement/deformations are much smaller that the optical wavelength), so that exp [2ikLQ (r, t)] ≈
1 + 2ikLQ (r, t). Similarly we assume that the effect of diffraction is small (this implies that both mirrors
must be sufficiently close each other, either physically or by means of lenses) so that we can expand
U2

L ≈ 1 + i(L/kL)∇2
⊥. All these assumptions imply that the overall variation of A between consecutive

round-trips is very small and then one can approximate ∂tA by [A (r, t + tc) − A (r, t)] t−1
c . With all these

approximations we get, to the lowest nontrivial order,

∂tA (r, t) = γc

(
−1 + iΔ+ il2c∇2

⊥ + i
4kL

T
Q

)
A + γcE , (B.7)

where all the parameters are defined in the main text; this is precisely (3), and it is the same light-field
equation we derived in the linear-coupling model of [8].
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[39] Braginsky V B, Strigin S E and Vyatchanin S P 2001 Phys. Lett. A 287 331
[40] Braginsky V B, Strigin S E and Vyatchanin S P 2002 Phys. Lett. A 305 111
[41] Chen X et al 2015 Phys. Rev. A 91 033832
[42] Evans M et al 2015 Phys. Rev. Lett. 114 161102
[43] Sánchez-Morcillo V J and Staliunas K 1999 Phys. Rev. E 60 6153

14

https://doi.org/10.1016/s1049-250x(08)60114-7
https://doi.org/10.1016/s1049-250x(08)60114-7
https://doi.org/10.1209/epl/i2005-10530-3
https://doi.org/10.1209/epl/i2005-10530-3
https://doi.org/10.1103/PhysRevA.75.063802
https://doi.org/10.1103/PhysRevA.75.063802
https://doi.org/10.1103/PhysRevLett.100.203601
https://doi.org/10.1103/PhysRevLett.100.203601
https://doi.org/10.1209/0295-5075/29/9/004
https://doi.org/10.1209/0295-5075/29/9/004
https://doi.org/10.1103/physrevlett.70.3868
https://doi.org/10.1103/physrevlett.70.3868
https://doi.org/10.1103/physreva.52.1675
https://doi.org/10.1103/physreva.52.1675
https://doi.org/10.1103/physrevlett.79.3633
https://doi.org/10.1103/physrevlett.79.3633
https://doi.org/10.1103/physrevlett.83.5278
https://doi.org/10.1103/physrevlett.83.5278
https://doi.org/10.1364/optica.6.000213
https://doi.org/10.1364/optica.6.000213
https://doi.org/10.1364/optica.6.000778
https://doi.org/10.1364/optica.6.000778
https://doi.org/10.1088/1367-2630/aaac4f
https://doi.org/10.1088/1367-2630/aaac4f
https://doi.org/10.1103/physrevlett.107.043603
https://doi.org/10.1103/physrevlett.107.043603
https://doi.org/10.1103/physreve.85.066203
https://doi.org/10.1103/physreve.85.066203
https://doi.org/10.1103/physrevlett.111.073603
https://doi.org/10.1103/physrevlett.111.073603
https://doi.org/10.1103/physrevlett.121.110506
https://doi.org/10.1103/physrevlett.121.110506
https://doi.org/10.1103/physrevlett.101.254101
https://doi.org/10.1103/physrevlett.101.254101
https://doi.org/10.1016/s0375-9601(01)00510-2
https://doi.org/10.1016/s0375-9601(01)00510-2
https://doi.org/10.1016/s0375-9601(02)01357-9
https://doi.org/10.1016/s0375-9601(02)01357-9
https://doi.org/10.1103/PhysRevA.91.03383
https://doi.org/10.1103/PhysRevA.91.03383
https://doi.org/10.1103/physrevlett.114.161102
https://doi.org/10.1103/physrevlett.114.161102
https://doi.org/10.1103/physreve.60.6153
https://doi.org/10.1103/physreve.60.6153

	Spatial localization and pattern formation in discrete optomechanical cavities and arrays
	1.  Introduction
	2.  Model
	3.  Continuous limit
	4.  Numerical simulations
	5.  Connection with the standard OM array theory
	6.  Conclusions
	Acknowledgments
	Appendix A.  Interpretation of the optical field amplitude and radiation pressure
	Appendix B.  Derivation of the light field equation
	References


