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ABSTRACT

Inspired by the recent work on the spacetime structure near generic black hole horizons [1],

the near horizon charges for an explicit example in higher dimensions than four (d > 4),

namely for the five dimensional Myers-Perry metric with two equal rotation parameter are

found in Hamiltonian formalism. Finding the supertranslation and the one-form super-

rotation, it is proved that the Myers-Perry black hole with two equal rotation parameter

a = b does not satisfy the gauge flatness condition due to the non-vanishing associated field

strength in five dimensional spacetime. It is shown that as the near horizon limit of such

a metric satisfies a specific set of boundary conditions, the near horizon algebra can be

represented as an infinitely many copies of Heisenberg algebras as a generalisation to the

Kerr case in four dimensions.
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1 Introduction

The current note is based on [1] which mainly shows that any non-extremal1 (finite tem-

perature) horizon has an infinite set of near horizon symmetries and associated soft hair

excitations in the sense of Hawking, Perry and Strominger [2]. Defining suitable near horizon

boundary conditions while working in Hamiltonian formalism (providing the near horizon

conditions for spatial part of metric and its canonical momentum) [3–5], integrable finite

near horizon charges (associated to non-trivial diffeomorphisms) are calculated. It is also

shown that for horizons that are either flat or non-rotating, the near horizon symmetry can

be represented as infinitely many copies of Heisenberg algebras in any spacetime dimen-

sions. In this note, we consider an explicit example in higher dimensions than four. Near

horizon supertranslation and superrotation charges are calculated and it is shown that five

dimensional Myers-Perry black hole with a = b does satisfy the results presented in [1] as an

example in higher dimensions. However, we consider only a very maximally symmetric case

for the Myers-Perry black holes, which is the case with two equal rotation parameter. We

only focus to find the charges here rather than near horizon algebra as the near horizon met-

ric obviously satisfy the boundary conditions in [1] and therefore, the near horizon algebra

consists of infinitely many copies of the Heisenberg algebra which extends the results from

lower dimensions [6, 7]. We start with the known Kerr case and re-derive the near horizon

Heisenberg-like generators which we call them supertranslation and superrotation charges.

We then generalise the method to the five dimensional case by finding the Heisenberg-like

near horizon generators for the Myers-Perry black holes with a = b by presenting a detailed

1The metric can be brought into a Rindler form.
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calculation in Hamiltonian formulation of General Relativity.

2 Setup

The metric at the near horizon of a regular metric with the surface gravity κ can be written

in a Rindler-like form as (a and b shows the angular coordinates and runs from one in case

of a three dimensional black hole to higher dimensions)

ds2 = −κρ2dt2 + dρ2 +Ωabdx
adxb + ..., (2.1)

where, Ωab is the metric transverse to the horizon2. In the Hamiltonian formulation of GR

the metric can be written in the following form (i, j = radial coordinate and angular coordinates)

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt), (2.2)

where, N is the laps function, N is are shift functions and gij is the spatial part of the

metric. One needs to provide near horizon conditions for the spatial part of metric3. The

associated canonical momenta πij is found as

πρa =
Πρa

16πG
+O(ρ2), πρρ = O(ρ), πab = O(ρ),

N = κρ+O(ρ3), Nρ = O(ρ3), Na = O(ρ2). (2.3)

The above near horizon boundary conditions are preserved by a set of diffeomorphisms

generated by a set of vector field ξµ (µ = 0, 1, 2, ...) described by the vector field introduced

in (II.3) of [1]. It can be shown that the canonical charges can be defined as

P :=

√
Ω

8πG
, Ja := Ωab

Πρb

8πG
√
Ω
, (2.4)

where, P and Ja are near horizon supertranslations and superrotations. P is a scalar and

Ja is a one-form that can be decomposed into an exact, coexact and a harmonic part4. It is

shown that if Ja is locally exact Ja = 8πG∂aQ, which means the associated field strength

FH
ab := (dJ H)ab is zero.

2The determinant of Ω is non-zero to guarantee a non-singular metric on the horizon. Therefore, the
Tylor expansion in the near horizon region is allowed as we will use such expansions in the calculations.

3These conditions are defined in the boundary conditions (II.2) of [1]. However, we only need the
conditions for gij and the defined boundary conditions in (2.3).

4Refer to [8] for detailed discussion on the decomposition of p-forms.
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Then the following Poisson bracket construct the Heisenberg algebra as

{Q(x),P(y)} =
1

8πG
δ(x − y). (2.5)

We try to present the Heisenberg-like generators in Hamiltonian formalism, P and Ja for the

Kerr metric in details which is consistent with the calculations in [1]. Then, we generalise

this calculations to the simplest possible rotating black hole in higher dimensions, five

dimensional Myers-Perry black hole with two equal angular momenta.

3 Kerr black holes

The Kerr metric in Boyer-Lindquist coordinates (t, r, θ, φ) is as fallows

ds2 = −dt2 + 2Mr

Σ

(

a sin2θ dφ− dt
)2

+Σ

(

dr2

∆
+ dθ2

)

+
(

r2 + a2
)

sin2θ dφ2, (3.1)

with

∆ := r2 − 2Mr + a2, Σ := r2 + a2cos2θ. (3.2)

To find the location of Killing horizons, one has to find roots of ∆ = 0 where we have

infinite red shift as

∆ = 0 =⇒ r± =M ±
√

M2 − a2. (3.3)

Introducing the new parameter R = r−/r+, mass, rotation parameter and the surface

gravity can be found as

M =
r+ + r−

2
=
r+
2
(1 +R), a2 = r+r− = r2+R, κ =

r+
a2 + r2+

− 1

2r+
=

1−R

2r+(1 +R)
.

(3.4)

Now we should look for a coordinate transformation such that shifts the outer horizon of

Kerr black hole r = r+ to ρ = 0 and brings it to a form where the near horizon metric has

a Rindler form. Choosing the following coordinate transformations with introducing the
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parameter α(θ) = 1−R
2r+(1+Rcos2θ)

,

r = r+ +
α(θ)

2
ρ2, φ = ϕ+

2κ
√
R

1−R
t. (3.5)

Therefore, the boosted Kerr metric in the coordinates (t, ρ, θ, ϕ) reads as

ds2 =

(

−1 +
8Mr

Σ

κ2R

(1−R)2
a2sin4θ +

2Mr

Σ
− 8Mr

Σ

κ
√
R

1−R
a sin2θ + (r2 + a2)

4κ2Rsin2θ

(1−R)2

)

dτ2

+

(

8Mr

Σ

κ
√
R

1−R
a2sin4θ − 4Mr

Σ
a sin2θ + (r2 + a2)

4κ
√
R

1−R
sin2θ

)

dτdϕ

+

(

Σ

∆
α2 ρ2

)

dρ2 +

(

Σ

∆
αα′ρ3

)

dρ dθ +

(

Σ+
Σ

∆

α′2

4
ρ4

)

dθ2

+

(

2Mr

Σ
a2sin4θ + (r2 + a2) sin2θ

)

dϕ2. (3.6)

We are interested to know how the Kerr metric looks like in the near horizon region at

ρ→ 0. Using the following expansions in this limit,

r

Σ
=

1

r+ (1 +R cos2θ)
+O(ρ2),

Σ

∆
=

2r+ (1 +R cos2θ)

(1−R) α ρ2
+

1− 2R −R cos2θ

(1−R)2
+

(R− 3) α ρ2

2r+ (1−R)2
+O(ρ4), (3.7)

the near horizon expansion of the components of the metric (3.6) reads as

gtt = − (1−R)2

4r2+ (1 +R)2
ρ2 +O(ρ4),

gtϕ = −(1−R)
√
R (−6 + (−3 +R) R− (1−R) R cos[2θ]) sin2θ

8(1 +R)r+(1 +R cos2θ)2
ρ2 +O(ρ4),

gρρ = 1 +O(ρ2),

gρθ =
R sinθ cosθ

(1 +R cos2θ)
ρ+O(ρ3),

gθθ = r2+(1 +R cos2θ) +O(ρ2),

gϕϕ =
r2+ sin2θ (1 +R)2

(1 +R cos2θ)
+O(ρ2).

(3.8)
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3.1 Three-plus-one dimensional decomposition of the Kerr metric in the

near horizon region

In the context of Arnowitt-Deser-Misner (ADM) decomposition, the Laps and shift func-

tions, and the spatial part of the metric can be obtained by (Note that i, j = ρ, θ, φ)

3gij ≡ 4gij , Ni ≡ 4g0i, N ≡ (−4gtt)(−1/2). (3.9)

The conjugate momenta can be found by

πij =
√

−4g (4Γ0
pq − gpq

4Γ0
rs g

rs) gip gjq. (3.10)

Thus, one can easily find

Nϕ = −(1−R)
√
R (−6 + (−3 +R) R− (1−R) R cos[2θ]) sin2θ

8(1 +R)r+(1 +R cos2θ)2
ρ2 +O(ρ4),

Nρ = Nθ = 0,

N = κ ρ+O(ρ3).

(3.11)

The inverse of the spatial part of the near horizon metric in three dimensions, 3gij reads as

3gij = 4gij + (N i N j/N2). (3.12)

Therefore,

3gρρ = 1 +O(ρ2),

3gρθ = − R sinθ cosθ

r2+ (1 +R cos2θ)2
ρ+O(ρ3),

3gθθ =
1

r2+ (1 +R cos2θ)
+O(ρ2),

3gϕϕ =
1 +R cos2θ

r2+ (1 +R)2 sin2θ
+O(ρ2).

(3.13)

Since
√

−4g = N
√

3g we have 3g = r4+(1+R)2 sin2θ, where g is the determinant of the
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metric. The associated momenta reads as

πρϕ = −
√
R sinθ (3 +R+ (R−R2) cos2θ)

(1 +R) (1 +R cos2θ)
+O(ρ2),

πθϕ = O(ρ),

πρρ = πθθ = πϕϕ = 0.

(3.14)

The horizon metric is obtained as

Ωab =





r2+(1 +R cos2θ) 0

0 r2+
sin2θ (1+R)2

1+R cos2θ



 .

with the determinant

Ω = r4+sin
2θ (1 +R)2. (3.15)

The state-dependent Heisenberg-like generators P and JH
a thus, read as

P =

√
Ω

8πG
=
r2+ (1 +R)

8πG
sinθ, (3.16)

JH
a = δϕaΩϕϕ

πρϕ

8πG
√
Ω

= −δϕa
√
R
3 +R+ (R −R2)cos2θ

8πG (1 +Rcos2θ)2
sin2θ. (3.17)

The associated field strength for the Kerr black holes reads as

FH
θϕ =

√
R(1 +R)2(Rcos2θ − 3) sin[2θ]

(1 +Rcos2θ)3
. (3.18)

Therefore, due to the non-vanishing value of FH
θϕ, the Kerr black hole does not satisfy the

gauge flatness condition FH
ab = 0. However, the flux through the horizon associated with

FH
θϕ is zero due to a regular horizon5. As noted in [1], the superrotation generator JH

a has

a coexact part with together with P makes the charge algebra denoted in (2.5). In the next

section, we generalise a similar calculation for the five dimensional case.

4 Five dimensional Myers-Perry black holes with a = b

The five dimensional Myers-Perry metric reads as

5For the case with NUT charges, the flux through the horizon is non-zero.
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ds2 = −dt2 + M

Σ

(

dt− a sin2θ dφ− b cos2θ dψ
)2

+Σ

(

r2

∆
dr2 + dθ2

)

+ (r2 + a2) sin2θ dφ2 + (r2 + b2) cos2θ dψ2, (4.1)

where, M is the mass and a and b are rotation parameters. Assuming a very special case

with a = b, Σ, ∆ and the inner and outer horizons read as

Σ = r2 + a2, ∆ = (r2 + a2) (r2 + a2)−Mr2,

r2± =
1

2

(

M − 2a2 ±
√

M2 − 4M a2
)

. (4.2)

Introducing a new parameter R = r−/r+, the rotation parameter, mass and the surface

gravity can be read as

a2 = r2+R, M = r2+(1 +R)2, κ =
1−R

r+(1 +R)
. (4.3)

Using the following coordinate change with γ =
√
R

r+ (1+R) and β = 1−R
2r+

brings in the Rindler

form and shifts the outer horizon r = r+ to ρ = 0.

r = r+ + β(θ) ρ2, φ = ϕ+ γ(θ) t, ψ = χ+ γ(θ) t. (4.4)

Using the above coordinate transformations, the components of the metric (4.1) in (t, ρ, θ, ϕ, χ)

coordinates in the near horizon region are as follows

8



gtt = − (1−R)2

r2+ (1 +R)2
ρ2 +

(1−R)2 (3 +R2)

4 r4+ (1 +R)3
ρ4 +O(ρ6),

gρρ = 1 +
(3− 4R+ 3R2)

4 r2+ (1 +R)
ρ2 +

(2R3 +R2 − 3)

2r4+ (1 +R)2
ρ4 +O(ρ6),

gθθ = r2+(1 +R) + (1−R)ρ2 +
(1−R)2

4r2+
+O(ρ6),

gϕϕ = r2+(1 +R) sin2θ (1 +Rsin2θ) +
1

2
(1−R) (2−R+R cos[2θ]) sin2θρ2

+
(1−R)2 (2 + (R− 5) R+ (R− 3) R cos[2θ])sin2θ

8 r2+ (1 +R)
ρ4 +O(ρ6),

gχχ = r2+(1 +R) cos2θ (1 +Rcos2θ)− 1

2
(1−R)(−2 +R+R cos[2θ]) cos2θρ2

−(1−R)2 (−2− (R2 − 5R) + (R− 3) R cos[2θ]) cos2θ

8 r2+ (1 +R)
ρ4 +O(ρ6),

gϕχ = Rr2+ (1 +R) sin2θ cos2θ − (1−R) R sin2θ cos2θ ρ2

−(R− 3) (1−R)2 R sin2[2θ]

16 r2+ (1 +R)
ρ4 +O(ρ6),

gϕt =
2 (1−R)

√
R sin2θ

r+ (1 +R)
ρ2 +

(1−R)3
√
R sin2θ

2 r3+(1 +R)2
ρ4 +O(ρ6),

gχt =
2 (1−R)

√
R cos2θ

r+ (1 +R)
ρ2 +

(1−R)3
√
R cos2θ

2 r3+ (1 +R)2
ρ4 +O(ρ6),

gρθ = gϕθ = gχθ = 0. (4.5)

We can find the metric on the horizon as

Ωabdx
adxb = r2+[(1 +R) sin2θ (1 +Rsin2θ) dϕ2 + 2Rsin2θ cos2θdϕdχ

+(1 +R) cos2θ (1 +Rcos2θ)dχ2 + (1 +R)dθ2], (4.6)

with the determinant

Ω = r6+(1 +R)4 sin2θ cos2θ. (4.7)

Thus, using Eq. (4.7), the near horizon supertranslation charge can be found as

P =

√
Ω

8πG
=
r3+(1 +R)2

8πG
sinθ cosθ. (4.8)
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The horizon metric (4.6) is topologically a 3-sphere with Ricci scalar

R =
2(R− 3)

r2+(R+ 1)
. (4.9)

The Euler characteristic is

∫ 2π

0
dϕ

∫ 2π

0
dχ

∫ π

0
dθ

√
Ω R = 0. (4.10)

4.1 Four-plus-one dimensional decomposition of the metric

To find the near horizon superrotation generators, we need the conjugate momenta. There-

fore, we do a four plus one decomposition in the context of ADM decomposition. The

spatial components of the metric, the laps and shift functions together with the conjugate

momenta can be obtained using (Note that i, j = ρ, θ, ϕ, χ)

4gij ≡ 5gij , Ni ≡ 5g0i, N ≡ (−5gtt)(−1/2),

πij =
√

−5g (5Γ0
pq − gpq

5Γ0
rs g

rs) gip gjq. (4.11)

Thus, the laps function reads as

N = (−5gtt)(−1/2) = κρ2 (1 +O(ρ2). (4.12)

Since N i = N2 5gti, one can find the shift functions as

Nϕ =
2 (1−R)

√
R

r3+ (1 +R)3
ρ2 +O(ρ4), (4.13)

Nχ =
2 (1−R)

√
R

r3+ (1 +R)3
ρ2 +O(ρ4), (4.14)

Nρ = N θ = 0. (4.15)

The spatial components of the metric 4gij can be obtained as

4gij = 5gij + (N i N j/N2). (4.16)
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Thus,

4gρρ = 1 +O(ρ2),

4gθθ =
1

r2+ (1 +R)
− (1−R)

r4+ (1 +R)2
ρ2 +O(ρ4),

4gϕχ = − R

r2+ (1 +R)2
+O(ρ2),

4gϕϕ =
(1 +R cos2θ)

r2+ (1 +R)2 sin2θ
+O(ρ2),

4gχχ =
(1 +R sin2θ)

r2+ (1 +R)2 cos2θ
+O(ρ2).

(4.17)

The conjugate momenta can be found by

πρϕ = 2
√
R sinθ cosθ +O(ρ2). (4.18)

πρχ = 2
√
R sinθ cosθ +O(ρ2). (4.19)

Using the associated conjugate momenta mentioned in (4.18) and (4.19), the superrotation

generators JH
a = Ωab

πρb

8πG
√
Ω
, can be found as

JH
ϕ = 2

√
R sin2θ, (4.20)

JH
χ = 2

√
R cos2θ. (4.21)

Thus, the one-form superrotaion reads as

J H = 2
√
R (sin2θ dϕ+ cos2θ dχ). (4.22)

Myers-Perry black hole does not satisfy the gauge flatness condition due to non-vanishing

associated field strength as

FH
θϕ = (dJ H)θϕ = −FH

θχ = 2
√
R sin[2θ]. (4.23)

However, similar to the Kerr case, the flux through the 3-sphere horizon associated with

FH
ab is zero. The coexact part of the Heisenberg-like generator (4.22) together with the

supertranslation charge (4.8), construct the charge algebra introduced in [1] as the near
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horizon boundary conditions are satisfied. It should be noted that, here we only considered

a very maximally symmetric Myers-Perry black hole with two equal rotation parameter

which is an explicit example of metric which satisfies the boundary conditions defined in [1]

in higher dimensions than four.
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