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In the present paper, we use a coarse-graining approach to investigate the nonlinear
redistribution of free energy in both position and scale space for weakly collisional
magnetised plasma turbulence. For this purpose, we use high-resolution numerical simu-
lations of gyrokinetic (GK) turbulence that span the proton-electron range of scales, in a
straight magnetic guide field geometry. Accounting for the averaged effect of the particles’
fast gyro-motion on the slow plasma fluctuations, the GK approximation captures the
dominant energy redistribution mechanisms in strongly magnetised plasma turbulence.
Here, the GK system is coarse-grained with respect to a cut-off scale, separating in real
space the contributions to the nonlinear interactions from the coarse-grid-scales and the
sub-grid-scales (SGS). We concentrate on the analysis of nonlinear SGS effects. Not only
that this allows us to investigate the flux of free energy across the scales, but also to
now analyse its spatial density. We find that the net value of scale flux is an order of
magnitude smaller than both the positive and negative flux density contributions. The
dependence of the results on the filter type is also analysed. Moreover, we investigate the
advection of energy in position space. This rather novel approach for GK turbulence can
help in the development of SGS models that account for advective unstable structures for
space and fusion plasmas, and with the analysis of the turbulent transport saturation.

1. Introduction

Our understanding of turbulence in collisionless magnetised plasma has increased dra-
matically during the last decade. This was spearheaded by the need to predict transport
coefficients in magnetic confinement fusion and to explain solar wind observations at
scales smaller than the ion gyroradius (ρi). In both laboratory and astrophysical settings,
the relevant micro-physics requires a kinetic theory description, and it involves dynamics
in a position-velocity phase space. While a non-perturbative Vlasov-Maxwell approach
is ultimately desired, various approximations make the problem more tractable from a
numerical perspective. In particular, the gyrokinetic (GK) approximation for strongly
magnetised plasma requires only a five-dimensional phase space (see §2), and is used
mostly in magnetic confinement fusion studies (Krommes 2012; Helander et al. 2015;
Fasoli et al. 2016). In the astrophysical context, while it neglects cyclotron resonance and
has limitations that need to be considered (Told et al. 2016), GK theory captures the
crucial dynamics of three-dimensional kinetic Alfvén wave (KAW) turbulence (Chen et al.
2013). For turbulence at scales larger than the gyroradius, drift kinetic approximations
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can reduce the dynamics further and capture the problem in a four-dimensional space
(Zocco & Schekochihin 2011; Hatch et al. 2014).

In our current work, we look at KAW turbulence in the range of perpendicular scales
(`⊥ ∼ 1/k⊥) found between the ion and the electron gyroradii, ρi > `⊥ > ρe (see §2.2
for details on parameters). The use of a GK representation is needed to account for
the gyroaverage effects on the ions’ dynamics (k⊥ρi > 1). The comparison between the
ion and electron species also allows us to roughly see the qualitative difference between
gyrokinetic and drift-kinetic approximations, as the gyroaverage effects on the electrons
are negligible in this range of scales (k⊥ρe < 1). The work itself, which benefits from the
different qualitative behaviours of the ion and electron species, explores in position space
the configuration of the energy flux across scales and the spatial energy transport, as we
will elaborate next.

In classical turbulence, energising a fluctuation leads to a redistribution of energy via
nonlinear interactions. This redistribution can occur as a flux that cascades the energy
across scales, or as a spatial advection of energy in position space. The analysis of the
redistribution of energy in wave space (k) cannot track the spatial advection, while a real
space analysis cannot account for fluxes across scales. To merge the two, a coarse-grained
analysis can be performed, which consists in filtering the system in regard to a cut-off scale
(`c ∼ 1/kc) and then performing an analysis in real space. Doing so localises the nonlinear
dynamics in both position and scale space simultaneously, and is particularly useful if
inhomogeneities develop. Coarse graining the system allows us to separate the nonlinear
dynamics into coarse-grid-scale and sub-grid-scale (SGS) effects. The large, coarse-grid-
scales do not cause particular problems when accounting for turbulence numerically. The
complications that appear in the study of turbulence are mostly due to the sub-grid-
scales. These complications are usually considered in the development of Large Eddy
Simulations (LES) models. However, the scaling of SGS terms relates to the fundamental
problem of smoothness of turbulence, including for kinetic plasma (Eyink 2018). Being
the first numerical study of its kind for kinetic plasma, this work will concentrate on the
introduction of the definitions used and the presentation of qualitative numerical results.

In the current paper, using numerical solutions of GK turbulence (§2), we study the
effects of SGS on the energy flux across scales and across compact structures in the
perpendicular direction to the magnetic guide field (coarse graining introduced in §3). We
make this distinction based on the explicit form of the coarse-graining filter. Definitions
with appropriate spatial density in position space are used. This allows the analysis of
the redistribution of free energy in position space in addition to scale space (see §4).
While the analysis uses a straight magnetic guide field geometry and is done for KAW
relevant turbulence, introducing these effects will be useful for tokamak modelling, even
though we do not present such models here. Being able to track point-wise the flow of
free energy, our approach can help with the analysis of advective unstable structures
(Mcmillan et al. 2018), plasma blob dynamics (Theiler et al. 2009), and saturation
mechanisms for turbulent transport (Howard et al. 2016). While in the current paper
we do not perform a coarse graining in velocity space, accounting for the redistribution
of free energy in position space can help future works that deal with Landau damping in
inhomogeneous turbulent mediums, or that probe the nature of kinetic plasma turbulence
(Grošelj et al. 2019). Last, a real space analysis can help with the automatisation of
nonlinear diagnostics via machine learning algorithms, by identifying first in position
space and then tracking in phase space the most important structures or events of interest
(e.g. reconnections) for a turbulent plasma.
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2. The gyrokinetic system

2.1. Highlights of past works on gyrokinetic turbulence

In classical fluid turbulence (Frisch 1995), the energy cascade, the locality of inter-
actions and the intermittency behaviour are considered standard problems of interest.
While turbulence at kinetic scales inherits all of them, it also adds the phase space mixing
problem (includes Landau damping) that affects which route in phase space is selected
for the thermalisation of plasma fluctuations. In magnetised plasma, all of these problems
can be tackled via the GK approximation (for a review on the formal derivation of the
general equations, see Brizard & Hahm 2007).

The GK approximation was instrumental in probing turbulence at sub-ion scales
(kρi > 1). GK theory assumes low plasma frequencies compared to the ion cyclotron
frequency and small fluctuation levels compared to background quantities to remove
the particles’ fast gyro-motion, effectively reducing the relevant phase space to five-
dimensions. This approach was adopted by Howes et al. (2006) for the study of kinetic
Alfvén waves (KAW) and their turbulent cascade in the dissipative range of the solar
wind (Howes et al. 2008a,b, 2011). Compared to the use of global background profiles in
tokamak geometries (see Krommes 2012), the use of local background approximations in
a straight-field magnetic geometry, typical for the study of KAW turbulence, simplifies
the underlying dynamics.

Following the recipe of classical turbulence, a generalised free energy that is conserved
in the absence of collisions was identified for GK turbulence (see Howes et al. 2006;
Schekochihin et al. 2008, 2009). With the idea of a free energy cascade in phase space,
the concept of the nonlinear phase mixing for GK was introduced as well (Schekochihin
et al. 2008, 2009). The nonlinear phase mixing occurs in the direction perpendicular to the
magnetic guide field, and it refers in particular to the creation of small-scale structures
in velocity space due to the small-scale structure in position space. This effect results
from the nonlinear interaction between the distribution function and the gyroaveraged
potential fields. The gyro-average represents the effect of the fast gyro-motion on the
slower dynamics captured by GK theory. In the electrostatic limit, the phase space
cascade and the nonlinear phase mixing were studied extensively (Tatsuno et al. 2009,
2010; Plunk & Tatsuno 2011; Tatsuno et al. 2012) for “two-dimensional” GK turbulence
(i.e. neglecting parallel dynamics, see Plunk et al. 2010). For the five-dimensional GK
system, while still in the electrostatic limit, the energy balance equation and the energy
cascade problem was studied by Navarro et al. (2011a,b); Nakata et al. (2012) and later
by Teaca et al. (2014); Cerri et al. (2014); Maeyama et al. (2015). Measuring the intensity
of the energetic exchanges with the increase in separation between scales, the locality
of the nonlinear interactions was studied for electrostatic GK turbulence in Teaca et al.
(2012, 2014) and for the electromagnetic KAW case in Told et al. (2015); Teaca et al.
(2017). While GK turbulence exhibits a strong nonlocal interaction character, Teaca
et al. (2017) found that the nonlocal contribution is superimposed on top of a classic
asymptotically local contribution that depends only with the separation between scales,
rather than substituting the classic local character altogether. This is encouraging when
considering modelling the SGS effects. Last, the intermittency problem was looked at in
phase space for KAW turbulence by Teaca et al. (2019), where the deviation from scale
invariance was measured directly on the distribution functions.

In relation to the dissipation route for magnetised plasma fluctuations, Told et al.
(2015) showed via a multi-species GK simulation of KAW turbulence at plasma β = 1
that electrons dissipate most of the free energy at ion scales (k⊥ρi ∼ 1), while ions
dissipate at small scales (k⊥ρi > 1). Later, Navarro et al. (2016) showed on the same
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data that the electrons prefer parallel collisions, indicative of parallel linear phase mixing
(Hammett et al. 1992; Kanekar et al. 2015), while ions enter into a fluid-like cascade in the
perpendicular direction. The linear phase mixing problem is tied to the Landau damping
problem for GK turbulence (Tenbarge & Howes 2013) and has a non-trivial effect on its
structure character (Teaca et al. 2019). The balance between linear phase mixing in the
parallel direction and the nonlinear cascade in the perpendicular direction was introduced
for a drift-kinetic reduced model in Schekochihin et al. (2016). The four-dimensional drift-
kinetic models in question integrate over the perpendicular velocity, while retaining the
information for kρi < 1 scale dynamics (see also Hatch et al. 2014). The use of these
models was helpful in showcasing the linear flux of energy across parallel velocity scales
induced by linear phase mixing, and its suppression that leads to the fluidisation of
the kinetic turbulent problem (Meyrand et al. 2019). Last, depending on the plasma
parameters (plasma-β in particular), Kawazura et al. (2019) showed via hybrid GK
simulations that ions can exhibit parallel or (fluid-like) perpendicular dissipation routes
in phase space.

While understanding turbulence is a goal in itself, in tokamak studies, turbulence
is seen as a problem that overcomplicates the study of heat and particle transport
by energising small-scale fluctuations compared to the scale of the dominant linear
instabilities (Görler & Jenko 2008a,b). To model the effect of these small scales on the
nonlinear interactions at large scales, large eddy simulations (LES) have been adopted
for GK turbulence (Morel et al. 2011, 2012), and were refined further in Navarro et al.
(2014). To put it simply, LES models SGS effects. While extensively known in the
field of turbulence (see Eyink & Sreenivasan 2006, and the references within), an SGS
analysis for kinetic turbulence was introduced by Eyink (2018), where the entropy cascade
was rigorously defined for a full Vlasov-Maxwell-Landau system and an upper bound
scaling computed via functional analysis. Considering that velocity space integrals are
performed in addition to position space ones, cancellation effects cannot be overlooked
when computing the actual fluxes across scales. To what degree the upper bound
estimates overshoot the real levels can only be determined numerically, and it is one
of the questions we answer in the current paper for the GK system.

2.2. Plasma parameters and numerical simulation details

Depending on the geometry of the external magnetic guide field and the plasma regime,
the GK equations can have an intricate or simple explicit form. Before introducing the
GK equations, we start by presenting the main parameters for the plasma considered
and list the numerical details used to solve the system in practice.

In this study, we look at a proton-electron plasma that is weakly collisional and strongly
magnetised, and which evolves in the presence of a straight magnetic guide field (B0ẑ).
Proton (referred to as ion) and electron species are included with their real mass ratio
of mi/me = 1836. The plasma βi ≡ 8πniTi/B

2
0 = 1 is chosen to match solar wind

conditions at 1 astronomical unit. The plasma background is assumed to exhibit an
isotropic thermodynamic equilibrium with a temperature ratio of Ti/Te = 1. The electron
collisionality is chosen to be νe = 0.06ωA0 (with νi =

√
me/miνe), and ωA0 being the

frequency of the slowest Alfvén wave in the system. This allows for a KAW cascade.
The system is solved numerically with the help of the Eulerian code GENE (Jenko

et al. 2000). The data used in this work is from the simulation presented in Told et al.
(2015), and it is briefly summarised in the following: The evolution of the gyrocen-
ter distribution is tracked on a grid with the resolution {Nx, Ny, Nz, Nv‖ , Nµ, Ns} =
{768, 768, 96, 48, 15, 2}, where (Nx, Ny) are the perpendicular, (Nz) parallel, (Nv‖) par-
allel velocity, and (Nµ) magnetic moment grid points, respectively. This covers a perpen-
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dicular dealiased wavenumber range of 0.2 6 k⊥ρi 6 51.2 (or 0.0047 6 k⊥ρe 6 1.19) in
a domain Lx = Ly = 10πρi (ρs =

√
Tsmsc/eB). In the parallel direction, a Lz = 2πL‖

domain is used, where L‖ � ρi is assumed by the construction of GK theory. A velocity

domain up to three thermal velocity units (vT,s =
√

2Ts/ms) is taken in each direction.
The fluctuations in the system are driven to a steady state via a magnetic antenna
potential, which is prescribed solely at the largest scale and evolved in time according to
a Langevin equation (TenBarge et al. 2014).

2.3. The gyrokinetic equations

For the system considered above, we use the δf -approach. The particle distribution
function of each plasma species s is split into a time constant background Fs and a
perturbed part δfs, with δfs/Fs � 1. We consider a local approximation for Fs, which
for constant background density ns and temperature Ts (again, vT,s =

√
2Ts/ms) has

the Maxwellian form,

Fs(v) =
ns

(vT,s
√
π)3

exp

(
−
v2‖ + v2⊥

v2T,s

)
. (2.1)

In the presence of a strong external magnetic field compared to the fluctuating electro-
magnetic fields, the dynamics of the plasma become strongly anisotropic (k‖/k⊥ � 1).

More importantly, particles develop fast cyclotron motions (of gyro-frequency Ωs = qsB0

msc
)

compared to the rest of the plasma dynamics (ω/Ωs � 1). Employing the guiding center
coordinate (Rs = xx̂ + yŷ + zẑ) transformation

Rs = r + v(θ)× ẑ/Ωs = r + v⊥(θ)× ẑ/Ωs , (2.2)

for v(θ) = v⊥(θ) + v‖ẑ = v⊥ sin(θ)x̂ + v⊥ cos(θ)ŷ + v‖ẑ, and integrating the dynamics
over the gyrophase angle (θ) allows us to reduce the dimension of the phase space by one,
obtaining the five-dimensional gyrocenter phase space (Rs, v‖, v⊥) of GK theory. We can
substitute the perpendicular velocity with the magnetic moment µ = msv

2
⊥/2B0. While

we do this in practice, some relations are more transparent when utilising v⊥.
For this simple case, considering δfs/Fs ∼ B⊥/B0 ∼ B‖/B0 ∼ (cE⊥/vT,s)/B0 ∼

k‖/k⊥ ∼ ω/Ωs ∼ ε � 1 as the the GK ordering, expanding all fields in powers of ε and
keeping contributions up to the first order, the perturbed distribution function becomes†

δfs(r,v, t) = −qsφ(r, t)

Ts
Fs(v) + hs(Rs, v‖, v⊥, t) , (2.3)

where we see a Boltzmann response contribution and a non-adiabatic part, hs(Rs, v‖, v⊥, t),
which here is the effective gyrokinetic distribution function.

The systematic expansion of the Vlasov-Maxwell system gives rise to the GK equations
(see Brizard & Hahm (2007) for a general Hamiltonian derivation, or Howes et al. (2006);
Schekochihin et al. (2009) for a simpler presentation appropriate in our case). For the
first order contribution hs(x, y, z, v‖, µ, t), the GK equations have the form

∂hs
∂t

+
c

B0

{
〈χ〉Rs , hs

}
+ v‖

∂hs
∂z

=
qsFs
Ts

∂〈χ〉Rs

∂t
+

(
∂hs
∂t

)

c

. (2.4)

While the electromagnetic potentials are computed at the particle position (r), only

† Formally this is obtained via a pull-back operation (Brizard & Hahm 2007) on the gyrocenter
distribution function and has an intricate expression. Only for a Maxwellian background Fs
does δfs ends up having the simple form given by (2.3). Assuming a Maxwellian form for the
background distribution function provides a tremendous simplification of the GK system.
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their gyroaveraged contribution affect the GK dynamics. For clarity, the gyroaveraged

gyrokinetic potential 〈χ(r)〉Rs = 1
2π

∫ 2π

0
χ
(
Rs − v⊥(θ)× ẑ/Ωs

)
dθ is found via its wave-

space representation as

〈χ〉Rs
=
∑

k

eik·R
[
J0(λs)

(
φ̂(k)− v‖

c
Â‖(k)

)
+

2µ

qs

J1(λs)

λs
B̂‖(k)

]
, (2.5)

where J0(λs) and J1(λs) are zero and first order Bessel functions, with λs = k⊥v⊥/Ωs =
k⊥
√

2µB0/ms/Ωs. The first order self-consistent electrostatic potential (φ), magnetic
potential in the parallel direction (A‖), and magnetic fluctuation in the parallel direction
(B‖) are obtained in wave space from their respective GK field equations as,

φ̂(k, t) =
∑

s

2πqs
B0

ms

∫ +∞

−∞
dv‖

∫ +∞

0

dµJ0(λs)ĥs(k, v‖, µ, t)

/∑

s

q2sns
Ts

, (2.6)

Â‖(k, t) =
4π

k2⊥c

∑

s

2πqs
B0

ms

∫ +∞

−∞
dv‖

∫ +∞

0

dµ v‖J0(λs)ĥs(k, v‖, µ, t) , (2.7)

B̂‖(k, t) = −4π
∑

s

2π
B0

ms

∫ +∞

−∞
dv‖

∫ +∞

0

dµµ
2J1(λs)

λs
ĥs(k, v‖, µ, t) . (2.8)

Considering the values of the Bessel functions J0 and 2J1(λs)/λs, we see that the
gyroaverage operation cannot be ignored for k⊥ρi > 1 scales, where we can imagine
the problem as the distribution of a system of electrical charged rings. Conversely,
the gyroaverage operation is not that important for k⊥ρi < 1 scales, and drift-kinetic
approximations can be obtained in the k⊥ρi � 1 limit, which can still account for
gyroaverage effects in a simplified way (Hammett et al. 1992; Hatch et al. 2014).

The (∂hs/∂t)c term represents the action of collisions, which are here modelled through
the action of a linearised Landau-Boltzmann collision operator (see supplementary mate-
rial from Navarro et al. 2016). Collisions represent the ultimate sink of plasma fluctuations
and, in the collisionless limit, they are assumed to occur at very small scales in velocity
space. For GK theory, due to the nonlinear phase mixing, the small scales in the
perpendicular velocity and the perpendicular small scales in position space are linked. As
a result, dissipation in the perpendicular direction occurs similarly as for a fluid via an
effective (hyper) Laplacian term in position space. For GK turbulence, the break from
the fluidisation can occur only when the parallel collisions dominate (Navarro et al. 2016)
and higher velocity moments in the v‖ direction become excited via linear phase mixing.

The nonlinear structure is given in terms of the spatial Poisson bracket (to simplify
the notation of gradients, from now on ∇ ≡ ∇Rs

= ∂/∂Rs),

{
a, b
}

= [∇a×∇b] · ẑ =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
, (2.9)

which possesses all its properties (antisymmetry, bilinearity, etc. see Appendix A for
details). To highlight the advective role of the nonlinearity, we can rewrite it as

c

B0

{
〈χ〉Rs

, hs
}

= us · ∇hs = ∇ · (ushs) , (2.10)

where the advective velocity us is simply the generalised drift velocity for GK,

us = − c

B0

[
∇〈χ〉Rs

× ẑ
]
. (2.11)

By definition, it is clear that us = us(x, y, z, v‖, µ, t) is zero-divergent (∇ · us = 0)
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Figure 1. Generalised drift velocity us for the GK system, at one point in z, v‖ and µ
(v‖ = −0.31 and µ = 0.015 in thermal velocity units). The difference between the ion and
electron species consists in the gyroaverage of χ. The electrons (left), which have a small
gyroaverage that can be neglected for the scales depicted, show classical turbulent structures.
For the ions (right), we see the phase mixing caused by the gyroaverage.

and that it differs slightly for each species due to the gyroaverage, see Figure 1. For the
analysis of the nonlinear redistribution of free energy, we will utilise the advective velocity
form for the nonlinear term. While key results will be presented in Poisson bracket form
as well, the advective velocity form allows for a much simpler connection with classical
turbulence. As mentioned in §2.1, the analog to the energy cascade in classical turbulence
is given for GK turbulence by the free energy cascade.

2.4. The free energy

As presented in Howes et al. (2006); Schekochihin et al. (2008, 2009), the generalised
free energy is conserved for GK turbulence in the absence of collisions and external
sources. The free energy is defined as,

W =

∫
d3r

[∑

s

∫
d3v

Tsδf
2
s

2Fs
+
B2

8π

]
, (2.12)

where we neglect the electric field energy contribution due to free charges, as the scales
of interest here are much larger than the Debye length. Considering the quantities that
express the GK equation and eq. (2.3), the equivalent definitions are obtained,

W =

∫
d3r

[∑

s

∫
d3v

Ts〈h2s〉r
2Fs

−
∑

s

q2sns
2Ts

φ2 +
|∇⊥A‖|2

8π
+
B2
‖

8π

]

=
∑

k

[∑

s

2πB0

ms

∫
dv‖dµ

Ts
2Fs
|ĥs(k, v‖, µ, t)|2

−
∑

s

q2sns
2Ts
|φ̂(k)|2 +

k2⊥|Â‖(k)|2
8π

+
|B̂‖(k)|2

8π

]
, (2.13)

with 〈h2〉r = 1
2π

∫ 2π

0
h2
(
r + v⊥(θ)×ẑ/Ωs, v‖,v⊥(θ)

)
dθ =

∑
k e

ik·rJ0
(
k⊥v⊥
Ωs

)
ĥ2(k, v‖, v⊥).
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Figure 2. Spectra in the perpendicular direction for the contributions to the free energy,
normalised to the global level of free energy in the system.

Considering the contribution of individual terms, with an appropriate selective sum-
mation in wave space defined as

∑
⊥ ≡

∑
kz

∑k⊥+∆k
|k⊥|=k⊥ , we compute the unit band (∆k)

spectra in the perpendicular direction

Whs(k⊥) =
∑

⊥

2πB0

ms

∫
dv‖dµ

Ts
2Fs
|ĥs(k, v‖, µ, t)|2 , (2.14)

Wφ(k⊥) =
∑

⊥

∑

s

q2sns
2Ts
|φ̂(k)|2 , (2.15)

WB⊥(k⊥) =
∑

⊥

k2⊥|Â‖(k)|2
8π

, (2.16)

WB‖(k⊥) =
∑

⊥

|B̂‖(k)|2
8π

. (2.17)

The total free energy spectrum can be found simply as the sum,

W (k⊥) =
∑

s

Whs(k⊥)−Wφ(k⊥) +WB⊥(k⊥) +WB‖(k⊥). (2.18)

We plot in Figure 2 the spectra for all the contributions to the free energy. We see that
the so-called (Schekochihin et al. 2008) entropic contributions (Whs) dominate the free
energy. The scaling of the magnetic fields is the same as listed in Told et al. (2016).
Notably, for k⊥ρi < 1, Whi and Wφ have the same energy, as expected in the MHD limit
(Howes et al. 2006).

From the GK equations (2.4), multiplying by Tshs/Fs we obtain the balance equation
for the h2s variance,

Ts
2Fs

[
∂h2s
∂t

+
c

B0

{
〈χ〉Rs

, h2s
}

+ v‖
∂h2s
∂z

]
= qshs

∂〈χ〉Rs

∂t
+
Ts
Fs
hs

(
∂hs
∂t

)

c

. (2.19)

Integrating over the velocity space, position and summing over all species we can show
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that we recover the evolution of the free energy (see Appendix B),

dW

dt
=

d

dt

∫
d3r

[∑

s

(∫
d3v

Ts〈h2s〉r
2Fs

− q2sφ
2ns

2Ts

)
+
B2

8π

]
. (2.20)

We are interested in the nonlinear contribution to the evolution of free energy for a scale,
knowing that for a finite-scale system, globally, nonlinear interactions conserve h2s (see
Appendix A),

dW

dt

∣∣∣∣
NL

=

∫
d3Rs

∑

s

∫
d3v

Ts
2Fs

c

B0

{
〈χ〉Rs

, h2s
}

=

∫
d3Rs

∑

s

∫
d3v

Ts
2Fs

us · ∇h2s = 0 .

(2.21)

Next, we look at the GK equations and at the nonlinear contribution to the free energy
balance for a system coarse-grained in the perpendicular direction in gyrocenter space.

3. The coarse-grained gyrokinetic system

3.1. Definition of coarse graining

The coarse graining of the Vlasov-Maxwell kinetic system was done by Eyink (2018)
using isotropic kernels assumed to be smooth (e.g. infinitely differentiable) and rapidly
decaying (e.g. compact) phase space functions. For magnetised plasma turbulence cap-
tured by GK theory, the parallel and perpendicular scales are too disjointed in size to
justify the use of isotopic filtering kernels. We concentrate here on the perpendicular
scales. Accounting that the GK dynamics of interest occur in the gyrocenter space, we
define the perpendicular coarse-grid filtering for a R⊥s function as

a(R⊥s) =

∫
dR′⊥sG`(R

′
⊥s)a(R⊥s + R′⊥s) (3.1)

=

∫
dR′⊥sG`(R

′
⊥s −R⊥s)a(R′⊥s) = [G` ? a](R⊥s) . (3.2)

The ? symbol denotes the convolution operation. The filtering functions are considered
as G`(R⊥s) = `−3c G(R⊥s/`c) with the G kernels having a series of desirable properties,

G(R⊥s) > 0 (non-negative), (3.3)∫
dR′⊥sG(R⊥s) = 1 (normalised), (3.4)

∫
dR′⊥s R⊥sG(R⊥s) = 0 (centered), (3.5)

∫
dR′⊥s |R⊥s|2G(R⊥s) = 1 (unit variance). (3.6)

A Gaussian kernel,

G(R⊥s/`c) =
1

π`2c
exp

(
−R2

⊥s
`2c

)
, (3.7)

represents a good selection for the filtering function, as it obeys the properties (3.3-3.6).

This has the advantage of a simple wave space representation, Ĝ(k⊥/kc) ∼ e−(k⊥/kc)
2

,
which reduces the filtering convolution for the wavenumber cut-off kc = 2π/`c to a simple
multiplicative operation. However, in our work we will also consider a sharp k-filter in
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Figure 3. Showcasing for Whe , the wavenumber support for different filtering kernels Ĝα

considered for the same three cut-offs kcρi = {1, 4, 16}, with α = {2, 4, 8} and α = ∞
representing the sharp k-filter. Not shown, for α = 64 the hyper-Gaussian filter would overlap
near-identically the sharp filter.

wave space (i.e. a Dirichlet kernel in real space). We also consider a general (hyper-
Gaussian) kernel,

Ĝα(k⊥/kc) ∼ e−(k⊥/kc)
α

, (3.8)

that is isotropic in the perpendicular direction, knowing that for α = 2 we recover the
Gaussian kernel and for large α we tend towards the sharp k-filter in respect to k⊥.
Figure 3 showcases this for the Whe spectra, i.e. we filter the he before computing the
spectra.

3.2. Coarse-grained GK equations

We start from the GK equations given in the advective velocity form and apply the
coarse-graining operation (G`?) term by term. The overbar notation is moved only on
the quantities that undergo coarse graining to obtain,

∂hs
∂t

+∇ · (ushs) + v‖
∂hs
∂z

=
qsFs
Ts

∂〈χ〉Rs

∂t
+

(
∂hs
∂t

)

c

. (3.9)

The field equations are linear in hs and thus do not pose any complications under the
coarse-graining operation. Simply replacing hs by h̄s in (2.6-2.8) yields the coarse-grained
field equations.

Natural for a nonlinear system, the ushs term, coarse-grained on a grid of resolution `c,
contains contributions from sub-grid-scales. In the nonlinear term, to separate the purely
coarse-grained contributions from any SGS contributions, we make use of the cumulant

τs = ushs − ushs . (3.10)

Now τs is the term that contains all the SGS contributions to the nonlinear dynamics.
An important property of τs is that it is Galilean invariant by definition. Indeed, for
u′s = us + U, with U = U, we have τ ′s = (us + U)hs − (us + U)hs = ushs − ushs +
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Uhs −Uhs = τs. In a similar way, τs is also invariant to a h′s = hs +H transformation,
for H = H.

The nonlinear term simply becomes,

∇ · (ushs) = ∇ · (ushs + τs) , (3.11)

where we now separate the coarse-grid-scale us and hs from the sub-grid-scale τs
contributions.

Last, considering the definition (2.11) for us, we obtain the equivalent τs formula,

τs = − c

B0
ẑ×

[
∇〈χ〉Rs

hs −∇〈χ〉Rs
hs

]
, (3.12)

which gives the SGS contribution to the nonlinear term expressed in term of the Poisson
bracket structure as,

∇ · τs =
c

B0

[
{〈χ〉Rs

, hs} − {〈χ〉Rs
, hs}

]
. (3.13)

3.3. The coarse-grained redistribution of free energy

We look at the evolution of the coarse-grained free energy as result of the nonlinear
interactions. This is obtained from (3.11) by multiplying with Tshs/Fs, integrating over
the velocity and position space and summing over the species,

dW

dt

∣∣∣∣
NL

=
∑

s

∫
d3Rs

∫
d3v

Ts
Fs

[
∇ · (ushs + τs)

]
hs =

∑

s

Πs(`c) , (3.14)

where Πs(`c) represents the SGS net flux of free energy through the coarse-grained scales
`c for the species s,

Πs(`c) =

∫
d3Rs

∫
d3v

Ts
Fs

[
− τs · ∇hs

]
. (3.15)

Since the free energy is a nonlinear invariant, for a finite-scale system (as considered
numerically in the current paper), we find the SGS net flux through an infinitely small
coarse-grain scale to be equal to zero,

lim
`c→0

dW

dt

∣∣∣∣
NL

= lim
`c→0

∑

s

Πs(`c) = 0 . (3.16)

Furthermore, the contributions to the free energy from each plasma species are inde-
pendently invariant under the action of the nonlinear terms, i.e. lim`c→0Πs(`c) = 0.
Naturally, for an infinite-scale system given by the Do→∞ limit, where Do ∼ (kνi⊥ ρi)

5/3

is the Dorland number (for the definition convention see Schekochihin et al. 2009) defined
here on the ion dissipation scale (i.e. the scale at which the finite collisional dissipation
peaks in amplitude), taking the `c → 0 limit will give a constant flux value once parallel
mixing can be neglected. In the current paper Do ≈ 228 and strong parallel mixing
affects the scaling of the electron flux.

With this knowledge, we consider the Rs-density of free energy for each plasma species,
i.e. Ws(Rs, t), see Appendix B, and look at its coarse-grained variation due to the action
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of nonlinear interactions,

∂W s(Rs, t)

∂t

∣∣∣∣
NL

=

∫
d3v

[
∇ · (ushs + τs)

]
hs
Ts
Fs

=

∫
d3v

[
∇ · (uh2s/2 + τhs)

Ts
Fs

]
+

∫
d3v

[
− τs · ∇hs

Ts
Fs

]
. (3.17)

The first term on the rhs corresponds to a transport in position space of free energy, while
the second corresponds to the density of the SGS scale flux. We introduce the following
definitions,

Υ s(Rs, t) =

∫
d3v

Ts
Fs

[
∇ · (ush

2

s/2 + τshs)

]
, (3.18)

Πs(Rs, t) =

∫
d3v

Ts
Fs

[
− τs · ∇hs

]
. (3.19)

Since the definitions above are the two integrals from eq. (3.17), we see that we could move
the ∇· (τshs) term from (3.18) to (3.19) in an attempt to contain the SGS contributions
into a single hs∇·τs quantity. In fact, the SGS net flux (3.15) is defined up to a divergence
term, and the integrant could be written simply as hs∇ · τs. However, while the SGS
net flux is not changed by adding or subtracting a divergence term, the resulting spatial
density would be different. It is hard to see a good reason to add an extra contribution to
the flux density Πs(Rs, t) that does not contribute at all to the net flux across a scale†.
As such, we decide on the definitions given by eqs. (3.18-3.19) for our current work.

In terms of the Poisson bracket structure, the (3.19) integrant becomes

τs · ∇hs =
c

B0

[
hs{〈χ〉Rs

, hs} −
1

2
{〈χ〉Rs

, h
2

s}
]
. (3.20)

For clarity,

hs{〈χ〉Rs
, hs} = hs

∂〈χ〉Rs

∂x

∂hs
∂y
− hs

∂〈χ〉Rs

∂y

∂hs
∂x

(3.21)

and it shows why the Poisson bracket notations become cumbersome when dealing with
coarse graining. Only terms of the form •{•, •}, that coarse grain across the Poisson
bracket structure, give SGS contributions. From the properties of the Poisson bracket (see
Appendix A) we know that the second term integrates spatially to zero (x, y integration
suffices). However, this second term is important to ensure the gauge invariance of the
SGS flux density. Simple algebra shows that the transformation h′s = hs+H and 〈χ′〉Rs

=
〈χ〉Rs

+ a, with H = H and a = a leaves (3.20) invariant. We also ask for the SGS
flux density to be Galilean invariant, meaning that a change in the system of reference
cannot change the intensity of turbulence, and see that the (3.19) definition fulfils this
requirement. The link with Galilean invariance mentioned for τs is given by U = U =
− c
B0

[∇a × ẑ]. In the same spirit, the h′s = hs + H invariance shows that by adding or
subtracting background density values to hs (during the δf splitting for example), we
cannot change the intensity of turbulence. This also highlights why the hs∇· τs quantity
does not make for a good SGS flux density, while eq. (3.19) does.

We will normalise the nonlinear results in respect to,

εNL =
∑

s

[ ∫
d3Rs

(
Υs(Rs, t) +Πs(Rs, t)

)2]1/2
. (3.22)

† See p. 15 of (Eyink 2018), following eq. (5.20), for a similar discussion on the entropy flux.
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Figure 4. The ion and electron SGS net flux Πs(`c) normalised to εNL, for `c = 2π/kc. The
vertical dashed lines represent the same kc cut-off values as considered in Teaca et al. (2017).
We obtain the same behaviour as previously reported in Teaca et al. (2017), where the flux was
computed via a triple-scale-decomposition. While the electron flux exhibits a −2/3 scaling, the
ion flux tends to be constant across the ”inertial range” scales. The small bottleneck around
k⊥ρi ≈ 26 is due to the relatively abrupt transition towards the range of scales dominated by
collisional dissipation.

Since Υ s(Rs, t) is defined as the divergence of a vector field, we clearly see that
it integrates to zero for periodic or appropriate asymptotic boundary conditions (i.e.∫
d3Rs Υ s(Rs, t) = 0). Υ s(Rs, t) does not contribute to the redistribution of free energy

across the cut-off scale. Its role is to transport free energy in position space. The nonlinear
transport of free energy can be seen as being due to the coarse-grained advective velocity
and due to the SGS interactions, Υ s = Υu,s + Υ τ,s, with

Υu,s =

∫
d3v

Ts
Fs

[
∇ · (ush

2

s/2)

]
, (3.23)

Υ τ,s =

∫
d3v

Ts
Fs

[
∇ · (τshs)

]
. (3.24)

The density of the SGS flux is much more interesting to us. Performing the spatial
integration, we recover the Πs(`c) flux,

∫
d3RsΠs(Rs, t) = Πs(`c) , (3.25)

which we plot in Figure 4. As noted, while the (3.14) integral recovers Πs(`c), it does
not provide for a good definition for the SGS flux density.

Scaling laws predicted via functional analysis, like in Eyink (2018) for the Vlasov-
Maxwell system, are computed for absolute values (i.e. Lp norms). This prohibits can-
cellation effects from occurring when integrating any sign indefinite quantity. To make a
comparison, we define the maximal (upper bound) values for the spatial transfer and SGS
flux. We do so by taking the absolute value before integrating the respective quantities
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Figure 5. Top row shows the transport of free energy in position space for the ions, Υ i(Rs, t).
The plots depict the typical perpendicular structures at an arbitrary z slice and are normalised
to their maximal in-plane value. From left to right, the k-filtering cut-offs are kcρi = {1, 2, 4, 8}.
Bottom row shows the same plots for Υ

max
i (Rs, t).

in velocity space.

Υ
max

s (Rs, t) =

∫
d3v

Ts
Fs

∣∣∣∣∇ · (ush
2

s/2 + τshs)

∣∣∣∣ , (3.26)

Π
max

s (Rs, t) =

∫
d3v

Ts
Fs

∣∣∣∣τs · ∇hs
∣∣∣∣ . (3.27)

Next, we present a numerical analysis of the SGS flux density and spatial transport of
free energy, concentrating on one aspect at a time.

4. Numerical analysis

4.1. The free energy transport in position space

We plot the space density of the nonlinear transport of free energy in Figure 5 for the
ions and in Figure 6 for the electrons, respectively. In addition, in each figure, we plot
the upper bound transport density (Υ

max

s ) for the two species. Varying the cut-off value
in dyadic increments (i.e. kcρi = {1, 2, 4, 8}) allows us to observe the change in transport
as smaller and smaller structures are accounted. For Υ s, the cut-off scale indicates how
a structure of that size perceives the spatial transport of free energy. As the cut-off
scales are taken to be smaller and smaller, we see more fine-structure being added to the
transport behaviour. In particular for the electrons, this is seen best from the plots of
their upper bound transport (Υ

max
). For the transport, while more fine structures are

added for small scales, the peaks tend not to change. This is natural, as the advection of
large scales by the small scales is negligible in most turbulent systems.

Since globally the spatial transport integrates to zero for any coarse-grained cut-off,
we look instead in Figure 7 at the global variation with scale of Υ

max

s . Defined similarly
to (3.26), we also plot in the same figure the upper bound values for the individual

contributions Υ
max

u,s =
∫
d3v TsFs

∣∣∇·(ush
2

s/2)
∣∣ and Υ

max

τ,s =
∫
d3v TsFs

∣∣∇·(τshs)
∣∣. As expected,
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Figure 6. Top row shows the transport of free energy in position space for the electrons,
Υ e(Rs, t). The plots depict the typical perpendicular structures at an arbitrary z slice and
are normalised to their maximal in-plane value. From left to right, the k-filtering cut-offs are

kcρi = {1, 2, 4, 8}. Bottom row shows the same plots for Υ
max
e (Rs, t).
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Figure 7. The global variation with the cut-off scale of the upper bound transport of free energy

(Υ
max
s ) for ions (on the left) and electrons (on the right). The individual contributions from us

and τs are shown as well. All the plots are normalised to εNL.

doing so allows us to clearly see that the total transport is mainly due to the advective
velocity and not due to the SGS terms. For ions, small-scale contributions add up fast,
which we believe is due to the advective velocity and its fine perpendicular velocity
structure induced by the gyroaverage, structure that cannot cancel out when taken in
absolute value. In fact, past the initial large scales, the density plots for the upper bound
transport are indistinguishable from the advective velocity contribution (not shown here).

For reference, we plot in Figure 8 a z-slice in the density of Υ
max

τ,s for the kcρi = 2 cut-

off. Not surprising, the Υ
max

τ,s structures are closer in shape but not location to the ones
observed for the energy flux density, as we will see next.
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Figure 8. A z slice in the density of Υ
max
τ,i (Rs, t) (on the left) and Υ

max
τ,e (Rs, t) (on the right)

for kcρi = 2. The plots are normalised to their maximal in-plane value. While the scale defined

structures are visible as for the flux (see §4.2), their overall distribution follow the Υ
max
s plots.

4.2. The free energy flux density

We plot the density of the SGS flux of free energy for the ions (Figure 9) and for the
electrons (Figure 10), respectively. The upper bound (maximal) value of the flux density
for each species are presented as well. Compared to the transport density, the SGS flux
density shows that as the cut-off scales become smaller, the small scale information
replaces the larger scale ones. We do not observe more fine scale structures being added
on top of a larger one, but small scales replacing larger one. This is one of the best ways
to perceive the flux of free energy across a scale (we will refine further this argument to
account for the filter type in §4.3).

For the ions, the SGS flux density tends to homogenise for smaller and smaller
structures. The electrons show an opposite behaviour, with structures of higher intensity
than the background occupying a smaller and smaller volume. These behaviours are
clearly seen in Figure 11, where we plot the normalised histogram of the SGS flux density
values. We see the histogram tails for the electrons becoming more pronounced as the cut-
off scales become smaller, while the ions’ values tend towards a Gaussian distribution
at small scales. This is inline with the intermittency measurements performed on the
distribution function in Teaca et al. (2019).

One of the advantages of measuring SGS flux density is the ability to separate positive

Π
(+)

s (`c) and negative Π
(−)
s (`c) valued contributions to the net flux,

Π
(+)

s (`c) =

∫
d3RsΠs(Rs, t), for Πs(Rs, t) > 0 , (4.1)

Π
(−)
s (`c) = −

∫
d3RsΠs(Rs, t), for Πs(Rs, t) < 0 . (4.2)

The positive value indicates a transfer towards the small scales, while a negative value
indicates a backscatter from small scales towards large ones. From Figure 11, we clearly

see that the positive branch dominates. We plot in Figure 12 the positive (Π
(+)

s ) and

negative (Π
(−)
s ) contributions to the net flux. The difference of the positive and negative

contributions give the net flux, i.e. Πs=Π
(+)

s -Π
(−)
s . Across the entire range of scales, we

see how the net flux for the electrons is the result of density cancellations of an order
of magnitude higher. For the ions, a drastic cancelation is only observed up to about
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Figure 9. Top row shows the SGS flux density of free energy for the ions, Πi(Rs, t). The
plots depict the typical perpendicular structures at an arbitrary z point. From left to right, the
k-filtering cut-offs are kcρi = {1, 2, 4, 8}. Bottom row shows the same plots for the absolute SGS

flux density Π
max
i (Rs, t).
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Figure 10. Top row shows the SGS flux density of free energy for the electrons, Πe(Rs, t). The
plots depict the typical perpendicular structures at an arbitrary z point. From left to right, the
k-filtering cut-offs are kcρi = {1, 2, 4, 8}. Bottom row shows the same plots for the absolute SGS

flux density Π
max
e (Rs, t).

k⊥ρi ∼ 2. We can say that more energy is moved up and down the energy cascade in
scale space than the secular-like net flux that is ultimately dissipated into heat. This
is important as this diffusion in scale space has an impact on the self-organisation of
turbulence. The fact that the net flux through a given scale is smaller in value than
typical values of the flux density, shows the benefit of using upper bound calculations in
determining the intensity of nonlinear dynamics.
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Figure 11. The normalised histogram of the SGS flux density Πs(Rs, t) for (left) ions and
(right) electrons. Observe the slight asymmetry in favour of the positive values. For visual
reference, the dashed lines depict the corresponding Gaussian distributions.
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Figure 12. The net SGS flux Πs(`c) computed as the difference of positive Π
(+)
s (`c) (direct

cascade) and negative Π
(−)
s (`c) (backscatter) contributions for (left) ions and (right) electrons.

The positive contributions dominate. For both species, the maximal flux Π
max
s (`c) given by

(3.27) is plotted as well. All are normalised to εNL. The net SGS flux and the `c = 2π/kc cut-off
values depicted by vertical short-dash lines are the same as in Figure. 4.

4.3. Filtering kernel dependence

We want to understand if the filtering kernel impacts our results. In theory, the results
should be insensitive to the type of filters used, but in practice, especially when dealing
with finite resolution numerical effects, they matter. We also state that we are less
concerned with the representation of the electromagnetic fields and hs as a result of
the filter (we found no visual difference; not shown), and are more concerned with the
change of the SGS flux and its density.

While a sharp filter can be seen as a scale separation, a Gaussian filter is best seen as
separating compact structures in real space. With our choice of definition (3.8), we can
transition from the Gaussian filter to the sharp one by increasing the value of α. From
Figure 13 we see that the more compact structures of an approximate scale give way
to more spread out structures of well defined scale size. The flux is shown in Figure 14,
where no change in the scaling is observed once we are past the smallest of wavenumbers.
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Figure 13. The election’s SGS flux density Πe(Rs, t) for (top) kcρi = 2 and (bottom) kcρi = 4.

Left to right we use Ĝα with α = {2, 4, 8,∞}. The tendency to spatially delocalise the
structures in position space, while at the same time increase the consistency of their scale
size representation, can be observed for larger α.
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Ĝ4

Ĝ8
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Figure 14. SGS net flux Πs for (left) ions and (right) electrons normalised to εNL, for Ĝα

with α = {2, 4, 8,∞}.

However, from Figure 15 we see that the distribution of flux density values has more
pronounced tails for a Gaussian filter.

5. Conclusions and discussions

We revisited the problem of the redistribution of free energy in strongly magnetised
plasma turbulence. The plasma is embedded in a strong straight-line magnetic guide
field, and the dynamics of turbulence in the proton-electron range of scales are captured
via a gyrokinetic approximation. This approximation is well suited for the analysis of
the energy redistribution in phase space and the subsequent thermalisation of plasma
fluctuations. We concentrated on the redistribution of free energy in the perpendicular
direction to the guide field as the result of the nonlinear interactions. Unlike past works
that emphasised the spectral analysis, here, a novel approach in the field of GK turbulence
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Figure 15. The normalised histogram of the SGS flux density Πs(Rs, t) at kcρi = 2 using a

Gaussian filter (Ĝ2) and a sharp one (Ĝ∞) for (left) ions and (right) electrons. The insert pictures
show the same for kcρi = 16. We see that the Gaussian filter has increased tail contributions
and that the positive branch (direct cascade) dominates. For visual reference, the dashed lines
depict the corresponding Gaussian distributions.

was employed. For a given reference scale, we decomposed the nonlinear interactions in
terms of coarse-grid-scales and sub-grid-scales. This approach allowed us to measure the
spatial density of the SGS flux of free energy and the spatial advection of free energy.

Employing an appropriate definition for the SGS flux, which also accounts for its
invariance to a change in the system of reference, and which recovers previously published
results (Teaca et al. 2017), we were able to analyse its spatial density properties. The
use of the flux density highlights the intermittent behaviour of nonlinear dynamics
in turbulence, with high intensity flux structures occupying only a fraction of the
total volume. For progressively smaller cut-off scales, the intermittency of the flux
density increases for the electrons and decreases for the ions. This striking result,
which is consistent with our previous work on phase-space intermittency (Teaca et al.
2019), should be investigated further and for a wider range of plasma parameters. The
dependence of filtered quantities on the type of scale filter has been analysed as well.
While a sharp filter in k-space provides the best scale separation, a Gaussian filter allows
for better structure localisation. The hyper-Gaussian filters introduced here allowed for
a transition between the sharp and Gaussian filter types. While the structures of the
filtered fields do not depend strongly on the filter type, we have found that the nonlinear
dynamics are sensitive enough that care needs to be shown when analysing intermittent
nonlinear behaviour.

We have also obtained the positive value and the negative value (backscatter) con-
tributions to the SGS flux. The difference between the two gives the net flux across a
scale, which is much smaller in value. This emphasises that nonlinear interactions are
much larger in absolute amplitude than the resulting net flux, and that SGS effects
should be modelled locally, at the density level. Previous studies (e.g. Navarro et al.
2011b; Nakata et al. 2012; Navarro et al. 2014; Teaca et al. 2014; Maeyama et al.
2015) that studied the energetic interactions between scales, did so by looking at the
coupling of spectral modes or spectral bands, meaning that they could not differentiate
between contributions to a scale arising from different spatial structures. Moreover, SGS
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models for LES methods that model solely the net flux significantly contaminate the
local representation of structures above the cut-off scale. It is also important for SGS
models to allow for the negative scale fluxes (backscatter), and move away from the idea
that scale fluxes are simply sinks of energy. This is particularly important in plasma that
undergoes complex self-organisation of structures at large scales, such as in tokamaks
or stellarators, where global transport levels are known to be influenced by small-scale
effects (Görler & Jenko 2008b; Maeyama et al. 2015; Howard et al. 2016). A density level
approach to LES modelling would take into account that not all large structures are
equally affected. For this, multifractal models developed for fluid flows (Burton & Dahm
2005) can be considered. Or models that account for the effect of small-scales on large-
scale fluctuations can be adapted from non-equilibrium statistical physics; see Maeyama
& Watanabe (2020) on the use of the Mori-Zwanzig formalism for this purpose. Moreover,
the lessons learned from the LES modelling of passive-scalars (Warhaft 2000) should
be examined as well, since the nonlinear terms have an active and passive advection
role for kinetic systems, which for GK systems is best seen from a Laguerre–Hermite
representation of the equations (Mandell et al. 2018).

Knowing that nonlinear interactions are responsible for a spatial advection of free
energy in addition to the energy flux across scales, we have looked at the spatial
transport of free energy. Not surprisingly, the coarse-grid-scales are found to dominate
the spatial transport. This implies that while a SGS model is needed to truncate the
nonlinear interaction in scale space, the coarse-grid-scale fields suffice to obtain the spatial
balance of structures when investigating spatial advection. Spatial advection needs to
be accounted for the analysis of saturation levels of turbulent transport, especially in
complex tokamak or stellarator geometries, or in general whenever advective unstable
structures develop. This also gives hope that by prescribing the large scale redistribution
of free energy in position space, machine learning algorithms could be trained to identify
relevant correlations between structures and guess the correct SGS density flux, providing
effective SGS models in the process.

Last, to better understand the relation between theoretical and numerical estimates,
we have computed upper-bound values for the flux and spatial transport of free energy.
We have found the upper-bound (maximal) SGS fluxes to be much higher than the
actual spatially integrated values that allow for cancellations. To complete our current
approach for the analysis of the energy redistribution, a coarse graining of v‖ scales needs
to be additionally considered. This was not attempted here due to practical numerical
limitations. This is a problem left for the future, that will be best performed via a drift-
kinetic approximation.
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supported by B. Teaca’s EPSRC grant No. EP/P02064X/1. We acknowledge the Max-
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this paper. We thank the anonymous referees for their constructive criticism, which lead
to an improved form for the article.

Appendix A. Poisson bracket properties

The binary operation,

{
f, g
}

= [∇f ×∇g] · ẑ =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (A 1)

defines a Poisson bracket structure in the x, y space that satisfies the properties:
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• antisymmetry
{
f, g
}

= −
{
g, f
}

(A 2)

• bilinearity
{
αf + βg, h

}
= α

{
f, h
}

+ β
{
g, h
}

(A 3)
{
f, βg + γh

}
= β

{
f, g
}

+ γ
{
f, h
}

(A 4)

• Leibniz-Newton rule
{
fg, h

}
= f

{
g, h
}

+
{
f, h
}
g (A 5)

{
f, gh

}
=
{
f, g
}
h+ g

{
f, h
}

(A 6)

• Jacobi identity
{
f,
{
g, h
}}

+
{
g,
{
h, f

}}
+
{
h,
{
f, g
}}

= 0 (A 7)

• null for a constant
{
f, α

}
= 0 (A 8)

• differential operator behaviour

D
{
f, g
}

=
{
Df, g

}
+
{
f,Dg

}
(A 9)

The proofs for all the properties above are obtained directly from the definition (A 1)
for f, g, h functions of (x, y) and α, β, γ numerical constants. In practice, the operator D
stands in for ∂/∂t or ∂/∂v‖.

From the definition, integrating by parts for appropriate boundary conditions (periodic,
asymptotic, etc.) we obtain,

∫∫ {
f, g
}
dxdy = 0 . (A 10)

As a direct consequence of bilinearity and the Leibniz-Newton rule, we obtain that the
integral of the product of

{
f, g
}

with any linear combination of f and g monomials is
zero,

∫∫
(αfmgn)

{
f, g
}
dxdy =

α

(m+ 1)(n+ 1)

∫∫ {
fm+1, gn+1

}
dxdy = 0 . (A 11)

For GK theory, this implies that since
{
〈χ〉Rs , hs

}
is the nonlinear term that leaves

hs invariant (globally conserved), any statistical moments of hs (i.e. hms ) are nonlinear
invariants as well. More generally, any quantity that can be written under the form of
the Poisson bracket will be globally conserved.

Appendix B. Free energy balance equation

As presented in Howes et al. (2006); Schekochihin et al. (2008, 2009), starting from
the GK equations,

∂hs
∂t

+
c

B0

{
〈χ〉Rs

, hs
}

+ v‖
∂hs
∂z

=
qsFs
Ts

∂〈χ〉Rs

∂t
+

(
∂hs
∂t

)

c

, (B 1)
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multiplying by Tshs/Fs, integrating over the velocity space, position and summing over
all species, we obtain

∫
d3Rs

∑

s

∫
d3v

Ts
2Fs

[
∂h2s
∂t

+
c

B0

{
〈χ〉Rs

, h2s
}

+ v‖
∂h2s
∂z

]

=

∫
d3Rs

∑

s

∫
d3vqshs

∂〈χ〉Rs

∂t
+

∫
d3Rs

∑

s

∫
d3v

Ts
Fs
hs

(
∂hs
∂t

)

c

. (B 2)

Defining d∗/dt = ∂∗/∂t+ c
B0

{
〈χ〉Rs

, ∗
}

+ v‖∂∗/∂z in the gyrocenter space, we write the
lhs term as,

∫
d3Rs

∑

s

∫
d3v

Ts
2Fs

(
∂h2s
∂t

+
c

B0

{
〈χ〉Rs

, h2s
}

+ v‖
∂h2s
∂z

)

=
d

dt

∫
d3Rs

∑

s

∫
d3v

Tsh
2
s

2Fs
=

d

dt

∫
d3r

∑

s

∫
d3v

Ts〈h2s〉r
2Fs

. (B 3)

On the rhs, using χ = φ− v ·A/c, we manipulate the first term as,

∫
d3Rs

∑

s

∫
d3v qs

∂〈χ〉Rs

∂t
hs =

∫
d3Rs

∑

s

qs

∫
d3v

〈
∂χ

∂t
hs

〉

Rs

=

∫
d3r

∑

s

qs

∫
d3v

〈
∂χ

∂t
hs

〉

r

=

∫
d3r

∑

s

qs

∫
d3v

〈
∂φ

∂t
hs −

1

c

∂A

∂t
· v hs

〉

r

=

∫
d3r

∑

s

qs

∫
d3v

〈
dφ

dt
hs −∇rφ · v hs −

1

c

∂A

∂t
· v hs

〉

r

=

∫
d3r

∑

s

qs

∫
d3v

〈
dφ

dt
hs + E · v hs

〉

r

=

∫
d3r

dφ

dt

∑

s

qs

∫
d3v
〈
hs
〉
r

+

∫
d3rE ·

∑

s

qs

∫
d3v
〈
v hs

〉
r

=

∫
d3r

dφ

dt

∑

s

φ
q2sns
2Ts

+

∫
d3rE · j

=
d

dt

[ ∫
d3r

∑

s

q2sφ
2ns

2Ts
−
∫
d3r

B2

8π

]
, (B 4)

where we have used the relation dφ/dt = ∂φ/∂t + v · ∇rφ, the electric field definition
E = −∇rφ+∂A/c∂t and the electric current expression j =

∑
s qs

∫
d3v
〈
v hs

〉
r

. For the

last equality we have used the quasi-neutrality condition
∑
s qs

∫
〈hs〉rd3v =

∑
s qs

qsφ
Ts
ns

and the Poynting theorem in the form,

∫
d3rE · j = − d

dt

∫
d3r

B2

8π
. (B 5)

Grouping all the terms and knowing that the last term on the rhs represents the change



24 B. Teaca et al.

of free energy due to collisions, we obtain the free energy balance equation,

dW

dt
=

d

dt

∫
d3r

[∑

s

(∫
d3v

Ts〈h2s〉r
2Fs

− q2sφ
2ns

2Ts

)
+
B2

8π

]

=

∫
d3Rs

∑

s

∫
d3v

Ts
Fs
hs

(
∂hs
∂t

)

c

. (B 6)

Last, we define the Rs-density of the free energy contribution of species s as

Ws(Rs, t) =

∫
d3v

[
hs −

qsFs
Ts
〈χ〉Rs

]
Ts
Fs
hs, (B 7)

The quantity Ws(Rs, t) recovers the free energy upon summing over the plasma species
and integrating over the position space. To show this, one just needs to trivially follow
the steps presented in this appendix. From (B 1), multiplying by Tshs/Fs and integrating
only over the velocity space, we find the balance equation for Ws(Rs, t) to be

∂Ws(Rs, t)

∂t
=

∫
d3v

Ts
2Fs

[
− c

B0

{
〈χ〉Rs , h

2
s

}
− v‖

∂h2s
∂z

+ 2hs

(
∂hs
∂t

)

c

]
. (B 8)

We clearly see now that the variation of the free energy density for each species is due
to the actions of a nonlinear term, a linear parallel term and a collisional term.
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