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We consider the subalgebras of split real, non-twisted affine Kac–Moody Lie algebras

that are fixed by the Chevalley involution. These infinite-dimensional Lie algebras

are not of Kac–Moody type and admit finite-dimensional unfaithful representations.

We exhibit a formulation of these algebras in terms of N-graded Lie algebras that

allows the construction of a large class of representations using the techniques of

induced representations. We study how these representations relate to previously

established spinor representations as they arise in the theory of supergravity.
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1 Introduction

Every (split real) Kac–Moody algebra g = g(A) for an indecomposable generalised Cartan matrix

A has a Chevalley involution ω that defines an involutory (‘maximal compact’) Lie subalgebra

k = k(g) < g as its subalgebra of fixed points [K]. If g is of finite type, then k is compact, whence

reductive; its structure and representation theory play a key role in studies of symmetric spaces

and automorphic representations. For Kac–Moody algebras g, generators and relations for k

were given in the early work [B], but, curiously, very little is known about the representation

theory of k in the infinite-dimensional case. One reason for this is that these algebras do not fit

into more standard frameworks, as they do not exhibit a graded, but rather a filtered structure;

in particular, they are not Kac–Moody algebras [KN1], unlike the algebras from which they

descend. This means also that the customary tools of representation theory (lowest and highest

weight representations, character formulas, etc.) are not applicable. This being said, we point

out (see appendix A) that the complexification of k is a quotient of a GIM algebra as defined

by Slodowy [S]; therefore, the representation theory of the latter, once developed, should help

with understanding the (real and complex) representations of k.

A remarkable property of k is that it inherits an invariant bilinear form from g. For split

real g the bilinear form on g is indefinite but its restriction to k is (negative) definite and for

this reason k is sometimes referred to as maximal compact. One may thus consider the Hilbert

space completion k̂ of k with respect to the norm defined by the invariant bilinear form. One of

the results of our paper is that, for untwisted affine g, the Lie bracket does not close on k̂, so

that k̂ is not a Hilbert Lie algebra with respect to the standard invariant bilinear form; in fact,

it is not even a Lie algebra (see appendix B).

The Lie algebra k and their associated groups are potentially important in physics appli-

cations, namely as infinite-dimensional generalisations of the R symmetries which govern the
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fermionic sectors of certain supersymmetric unified models of the fundamental interactions.

Perhaps the most surprising result to come out of these physics motivated studies is that

the infinite-dimensional algebras k, unlike the Kac–Moody algebras they are embedded into,

admit non-trivial finite-dimensional, hence unfaithful, representations, in particular fermionic

(double-valued) ones, which cannot be obtained by decomposing representations of the an-

cestor Kac–Moody algebra g under its subalgebra k. These representations were originally

found by analysing the action of the infinite-dimensional duality groups arising in the dimen-

sional reduction of (super-)gravities to space-time dimensions D ≤ 2 on the fermions. For

the affine case it was realised already long ago [N,NS] that these actions correspond to eval-

uation representations of a novel type, involving not just the evaluation of loop group ele-

ments at one of two distinguished points in the complex spectral parameter plane, but also

its higher derivatives. Likewise, for the indefinite, and more specifically hyperbolic, extensions

of affine algebras and their involutory subalgebras, several concrete examples were found in

terms of actions on the supersymmetry parameters and the gravitino fields (at a given spatial

point) [dBHP1, DKN1, dBHP2, DKN2, KN2, DH]. These actions extend the so-called ‘gener-

alised holonomy’ groups in the physics literature [DS,DL,H] to an infinite-dimensional context.

Furthermore, and most relevant for the present work, some new finite-dimensional representa-

tions beyond supergravity were identified in [KN3,KN5], and their structure was further anal-

ysed in [KNV], where surprising features were discovered, such as the generic non-compactness

of the quotient algebras (and quotient groups) obtained by dividing the original algebra by

the annihilating ideal of the given representation. These representations were further studied

in [HKL,LK] where in particular the action of the corresponding (covering) group representa-

tion of K̃(G) [GHKW] was clarified; moreover, in complete analogy to the finite-dimensional

situation it turns out that in the simple-laced case this two-fold covering group K̃(G) is simply

connected with respect to its natural topology [HK] (induced from the Kac–Peterson topology

on the corresponding Kac–Moody group). All these studies of Lie algebra representations and

corresponding covering group representations so far, while applicable to large classes of gener-

alised Cartan matrices (simply-laced; often even any symmetrisable generalised Cartan matrix)

have been limited to a small number of explicitly known examples of concrete representations, as

all efforts to find a larger class of examples of representations and to understand their underlying

structure and representation theory in a more systematic way have failed until now.

In this paper, we study the simplest case, corresponding to untwisted affine Kac–Moody

algebras over K = R or K = C. We show that there do exist infinitely many such unfaithful rep-

resentations of ever increasing dimensions. Our construction finally provides a systematic raison

d’être for such representations. Here, we aim for an ab initio construction of k representations

(in particular of spinorial nature) and not for representations that are obtained by branching

representations of the affine g. The main method, which is inspired by the supergravity reali-

sation on fermions [NS], is to map the filtered structure to a graded one, by replacing Laurent

polynomials K[t, t−1] in a variable t by power series K[[u]] in another variable u that is related

to t by (3.3). We shall refer to the graded structure as the parabolic model of k. In the parabolic

model based on u, representations can be constructed easily by means of the Poincaré–Birkhoff–
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Witt (PBW) basis of the enveloping algebra of the underlying Lie algebra graded by powers of

u. We will present several explicit examples (related to maximal supergravity) to illustrate the

construction, which puts in evidence the rapid growth of the associated representations. Our

results can be viewed as a prelude to the construction of similar representations for involutory

subalgebras of hyperbolic Kac–Moody algebras, that will be required for a better understanding

of the fermionic sector of unified models, and perhaps pave the way for an embedding of the

Standard Model fermions into a unified framework [MN1,KN4,MN2].

In a more global view, the results of this paper afford not only a completely new perspective

on the representation theory of such algebras, but even more importantly, open new avenues

towards exploring the structure of the associated groups. This would be especially relevant for

infinite-dimensional Kac–Moody algebras of indefinite type for which, however, a representation

theory extending the present results remains to be developed. While the loop group approach

has proven very useful for affine Kac–Moody groups [PS] there is no comparable tool available

for studying indefinite Kac–Moody groups, where often one has to resort to ‘local-to-global’

methods. Namely, many mathematical observations concerning (two-spherical) Kac–Moody

groups rely upon ‘gluing’ the SL(2,R) subgroups associated to the simple real roots of the

underlying Kac–Moody algebra g and on exploiting Tits’ theory of buildings and extensions

thereof [T,KP,AM,CFF,M]. However, in this way one does not gain a truly ‘global’ perspective

on the associated groups. The same statement applies to an analogous construction of the

groups K(G) associated to involutory subalgebras k ⊂ g for indefinite g, which would proceed

by similarly ‘gluing’ compact SO(2) ⊂ SL(2,R) subgroups associated to the simple real roots

of g [GHKW] (which, contrary to the Kac–Moody group G, in fact also works in the non-two-

spherical case). By contrast, we here propose a fundamentally different approach which would be

based on the construction of infinite sequences of larger and larger, but still finite-dimensional,

quotient groups that, while remaining infinitely degenerate at each step of the sequence, capture

‘more and more’ of the infinite-dimensional group (and in particular the information contained

in the root spaces associated to imaginary roots), and in such a way that the group action is

fully under control at each step of the construction — in more mathematical terms, we propose

to investigate whether the involutory Lie subalgebra k and its corresponding group K(G) might

be residually finite-dimensional. That this is true for k in the affine case is part of proposition 20.

The paper is organised as follows: In section 2 we fix our notation for the involutory sub-

algebra k of an untwisted affine Kac–Moody algebra. We construct the parabolic analogues

N (K[[u]]) and N (PN ) of k over different rings in section 3 and show that there exist homomor-

phisms from k to them. Furthermore we establish that the homomorphism from k to N (K[[u]])

is injective. In section 4 we take a slight detour in first constructing induced representations of

N (K[u]) from representations of its classical subalgebra k̊. Although there is no homomorphism

from k to N (K[u]) we will show that these induced representations can be truncated to provide

finite-dimensional representations of N (PN ) and k. We will conclude section 4 by proving that

the inverse limit of these representations provides a fatihful infinite-dimensional representation

of k. We specialise our results to the case k (E9) in section 5 where we also describe the problem

of analysing the finite-dimensional representations’ structure in more detail.
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2 Affine Kac–Moody algebras and Chevalley involution

Let A be an indecomposable generalised Cartan matrix of untwisted affine type and let K denote

R or C, see [K, §4] for a complete list of the associated diagrams D(A). The Kac–Moody algebra

g := g(A) (K) can be constructed explicitly as an extension of the loop algebra L (̊g), where g̊

denotes the classical Lie-subalgebra g̊ < g(A) (K) that one obtains by deleting the affine node in

the generalised Dynkin diagram D(A). Denote by ω the Chevalley involution on g(A) (K) and

set

k := k(A) (K) = Fixω (g(A) (K)) . (2.1)

k(A) (K) is called the maximal compact subalgebra of g(A) (K) since the restriction of the stan-

dard invariant bilinear form on g to k is (negative) definite. Let us start with a description of k

that is adapted to the presentation of g in terms of the loop algebra L (̊g). In section 5, we will

complement this by a collection of correspondences to the basis described in [KNP, §4] for the

particular case g = e9, the affine extension of e8.

Denote by ∆̊ the root system of g̊ and its Chevalley involution1 by ω̊. The ±1 eigenspaces

of ω̊ provide the Cartan decomposition g̊ = k̊ ⊕ p̊. In terms of a Cartan basis
{
Eγ | γ ∈

∆̊
}
∪
{
h1, . . . , hd ∈ h̊

}
, this decomposition is realised as

k̊ = span
{
Eγ − E−γ | γ ∈ ∆̊

}
, p̊ = span

({
Eγ + E−γ | γ ∈ ∆̊

}
∪ h̊
)
, (2.2)

where h̊ denotes the Cartan subalgebra of g̊. Recall that p̊ is a k̊-module but not a Lie-algebra

since [̊p, p̊] = k̊. Denote by L the ring of Laurent polynomials over K. Then the loop algebra of

L (̊g) is given by the tensor product L⊗ g̊ with the commutator given by the bilinear extension

of

[P ⊗ x,Q⊗ y] = (PQ)⊗ [x, y] , (2.3)

where [·, ·] on the right-hand side denotes the bracket on g̊. As tn, t−n (for n ∈ N = {0, 1, . . .})

span L, the Lie algebra L (̊g) is spanned by
{
t±n ⊗ Eγ | γ ∈ ∆̊

}
∪
{
t±n ⊗ h | h ∈ h̊

}
for n ∈ N.

Now (see [K, §7] or [GO])

g = L (̊g)⊕K ·K ⊕K · d (2.4)

1Note that the abstract Chevalley involution of g̊ = g(Å) as a Kac–Moody algebra of finite type agrees with

the restriction of ω : g → g to g̊ < g because the Dynkin diagram of g̊ is a sub-diagram of D (A) due to our

assumption that A is untwisted.
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with K, d ∈ h so that k ⊂ L (̊g) because ω (h) = −h ∀h ∈ h. Thus, in order to describe

k = k(A) (K) we only need to study the loop algebra L (̊g) and in particular do not need to

consider the central extension of L (̊g) by a 2-cocycle, giving rise to K. The Chevalley involution

restricted to L (̊g) is given by the linear extension of

ω : P (t)⊗ x 7→ P
(
t−1
)
⊗ ω̊ (x) ∀P ∈ L. (2.5)

Denote by L± the ±1 eigenspaces of L under the involution η : t 7→ t−1. Observe that evaluation

of Laurent polynomials at t = ±1 is the only evaluation map that commutes with η which is

why we refer to t = ±1 as the fixed points of η. The fixed point set of ω can be constructed

from L±, k̊ and p̊:

ω (P ⊗ x) = P ⊗ x ∀P ∈ L+, x ∈ k̊, ω (Q⊗ y) = Q⊗ y ∀Q ∈ L−, y ∈ p̊

From this we arrive at the following explicit realisation of k:

⇒ k (A) (K) =
(
L+ ⊗ k̊

)
⊕
(
L− ⊗ p̊

)
. (2.6)

Remark 1. (i) The Laurent polynomials in L± are spanned by tn±t−n for n ∈ N. The product

of two such basis Laurent polynomials is for example

(tm + t−m)(tn − t−n) =
(
tm+n − t−(m+n)

)
− sgn(m− n)

(
t|m−n| − t−|m−n|

)
. (2.7)

We shall refer to this as a filtered structure on L that by (2.6) induces a filtered structure

on k.

(ii) The construction in (2.6) can be generalised to the case where L denotes a finitely generated

commutative K-algebra with involution and L± denote the ±1 eigenspaces with respect to

this involution. This produces an analogue of maximal compact subalgebras to the case

where g is a generalised current algebra. However, our interest lies in studying different

models of k. In particular, we will explore the relation of (2.6) to the cases L = K[[u]],

K[u] and K[u]�IN , where IN is the ideal generated by the monomial uN+1.

(iii) It is well known that one can form the semi-direct sum of any affine Lie algebra with the

Virasoro algebra of centrally extended infinitesimal diffeomorphisms of the circle [K,GO],

where both central extensions are identified. This structure descends to k and a ‘maximal

compact’ subalgebra of the Virasoro algebra [JN]. As this will play no role in our general

analysis, we defer its discussion to section 5.

(iv) The Lie algebra k comes with a definite and invariant bilinear form that is inherited from

g. In appendix B, we show that the Hilbert space completion with respect to this norm is

not compatible with the Lie algebra structure to form a Hilbert Lie algebra.
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3 Reformulation in terms of parabolic algebras

In this section, we construct a Lie algebra monomorphism from k to a larger Lie algebra by

replacing Laurent polynomials with formal power series. This corresponds to an expansion

around the fixed points t = ±1 of η instead of 0 as described in [NS,KNP].

Denote by P := K [[u]] the ring of formal power series together with the involutive ring

automorphism η : uk 7→ (−1)kuk. We refer to a formal power series in P either as
∑∞

k=0 aku
k or

just as (ak)k≥0 with ak ∈ K. Denote the ±1 eigenspaces of P with respect to η by P±, i.e., the

formally even/odd power series in u. One has

P+ :=
{
(ak)k∈N0

| a2k ∈ K, a2k+1 = 0 ∀ k ∈ N
}
,

P− :=
{
(ak)k∈N0

| a2k+1 ∈ K, a2k = 0 ∀ k ∈ N
}
.

We mimic the loop algebra construction by setting

N (K[[u]]) :=
(
P+ ⊗ k̊

)
⊕
(
P− ⊗ p̊

)
, [P ⊗ x,Q⊗ y] = (P ·Q)⊗ [x, y] , (3.1)

where the bracket on the right-hand side again denotes the g̊-bracket. Recall that multiplication

in the ring of formal power series is given by convolution, i.e., for P =
∑∞

n=0 anu
n and Q =∑∞

n=0 bnu
n one has

P ·Q =
∞∑

n=0

cnu
n, cn =

n∑

k=0

akbn−k. (3.2)

Remark 2. One could also consider replacing P by the ring of polynomials K[u]. In contrast to

L± which have a filtered structure, K[u] has a gradation given by the degree of polynomials. This

extends to a gradation on
(
K[u]+ ⊗ k̊

)
⊕ (K[u]− ⊗ p̊). If we were to construct a monomorphism

from k using only K[u] one would expect to be able to pull this gradation back to k (A) (K).

Since we doubt this to be possible we work over K [[u]] which arises as the formal completion of

K[u]. There we do not have a gradation by degree of polynomials any more in the proper sense

because for this any element in K [[u]] would have to decompose into the sum of finitely many

homogeneous elements. This is true for polynomials but not for formal power series. Thus, we

sacrifice a graded structure in order to achieve injectivity. However, in section 4 we will consider

this case as a preliminary step.

As the power series K[[u]] are associated with the expansion around the fixed point t = ±1

rather than t = 0, we construct a homomorphism by relating the expansion via a (Möbius-type)

transformation

u =
1∓ t

1± t
⇔ t = ±

1− u

1 + u
(3.3)

through the Taylor series (n ≥ 0)

tn + t−n = (±1)n
∑

k≥0

a
(n)
2k u2k , tn − t−n = (±1)n

∑

k≥0

a
(n)
2k+1u

2k+1 . (3.4)

The filtered multiplication of the Laurent polynomials in L± is then captured by the following

lemma.
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Lemma 3. For each n ∈ N the sequences
(
a
(n)
2k

)
k∈N

and
(
a
(n)
2k+1

)
k∈N

given by given by

a
(n)
2k = 2

n∑

ℓ=0

(
2n

2ℓ

)(
k − ℓ+ n− 1

k − ℓ

)
, a

(n)
2k+1 = −2

n−1∑

ℓ=0

(
2n

2ℓ+ 1

)(
k − ℓ+ n− 1

k − ℓ

)
(3.5)

satisfy

k∑

ℓ=0

a
(m)
2ℓ a

(n)
2(k−ℓ) = a

(m+n)
2k + a

(|m−n|)
2k (3.6a)

k∑

ℓ=0

a
(m)
2ℓ a

(n)
2(k−ℓ)+1 = a

(m+n)
2k+1 + sgn(n−m)a

(|m−n|)
2k+1 (3.6b)

k−1∑

ℓ=0

a
(m)
2ℓ+1a

(n)
2(k−ℓ)−1 = a

(m+n)
2k − a

(|m−n|)
2k . (3.6c)

The coefficients (−1)na
(n)
2k and (−1)na

(n)
2k+1 also satisfy eqs. (3.6a), (3.6b) and (3.6c). Further-

more, for fixed n ∈ N∗ = {1, 2, . . .}, the values of a
(n)
2k and a

(n)
2k+1 are given by polynomials in k

of degree n− 1 for all k ∈ N∗.

Remark 4. The transformations (3.3) have the property that they interchange the points 0 and

∞ (that are exchanged by the involution t ↔ t−1) with the fixed points ±1 of η. The maps

t 7→ u(t) in (3.3) are fixed uniquely by the requirement that (0,∞,+1,−1) 7→ (+1,−1, 0,∞)

and (0,∞,+1,−1) 7→ (+1,−1,∞, 0), respectively.

Proof. We first compute the Taylor series for the Möbius transformation (3.3) for n ∈ N

tn + t−n = (±1)n
2

(1− u2)n

n∑

ℓ=0

(
2n

2ℓ

)
u2ℓ = 2(±1)n

∑

k≥0

n∑

ℓ=0

(
2n

2ℓ

)(
n+ k − 1

k

)
u2(k+ℓ) ,

from which the first formula in (3.5) follows. The second identity in (3.5) is deduced similarly

from the expansion of tn−t−n. The order of the polynomial follows from the binomial coefficient(
n+k−ℓ−1

k−ℓ

)
.

The convolution properties (3.6) follow from multiplying out

(
tm + t−m

) (
tn + t−n

)
= tm+n + t−(m+n) + t|m−n| + t−|m−n|

for (3.6a) for the first one upon using (3.2). The identities (3.6b) and (3.6c) follow in the same

way by changing the appropriate signs.

We collect some formulae concerning the coefficients a
(n)
2k and a

(n)
2k+1. One has a

(n)
0 = 2 for

all n ∈ N. For k > 0 the first few coefficients a
(n)
2k are given by the following polynomials in k

(note that these expressions are not valid for k = 0):

a
(0)
2k = 0, a

(1)
2k = 4, a

(2)
2k = 16k, a

(3)
2k = 32k2 + 4, a

(4)
2k =

128

3
k3 +

64

3
k, (3.7)
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while the first few coefficients a
(n)
2k+1 are given by polynomials in k as well:

a
(1)
2k+1 = −4, a

(2)
2k+1 = −16k − 8, a

(3)
2k+1 = −32k2 − 32k − 12,

a
(4)
2k+1 = −

128

3
k3 − 64k2 −

160

3
k − 16. (3.8)

With lemma 3 above one can now construct a Lie algebra homomorphism from k toN(K[[u]]),

defined in (3.1), that is constructed using (3.4).

Proposition 5. The linear map ρ± : k(A) (K) → N (K[[u]]) defined by

(
tn + t−n

)
⊗ x 7→ (±1)n

∞∑

k=0

a
(n)
2k u2k ⊗ x ∀x ∈ k̊ (3.9a)

(
tn − t−n

)
⊗ y 7→ (±1)n

∞∑

k=0

a
(n)
2k+1u

2k+1 ⊗ y ∀ y ∈ p̊ (3.9b)

with a
(n)
2k , a

(n)
2k+1 as in (3.5) extends to a homomorphism of Lie algebras.

Proof. This can be checked case by case for pairs (a, b) ∈
(
L+⊗ k̊

)
×
(
L+⊗ k̊

)
,
(
L+⊗ k̊

)
×(L− ⊗ p̊),

(L− ⊗ p̊)× (L− ⊗ p̊) and extending the result by (bi-)linearity. We demonstrate this for the first

pair, the other pairs work analogously.

First, set x(n) := (tn + t−n)⊗ x for all x ∈ k̊. Then by definition

[
x
(m)
1 , x

(n)
2

]
=
(
tm+n + t−(m+n)

)
⊗ [x1, x2] +

(
t|m−n| + t−|m−n|

)
⊗ [x1, x2] ,

so that from (3.9a)

ρ±

([
x
(m)
1 , x

(n)
2

])
= (±1)m+n

∞∑

k=0

(
a
(m+n)
2k + a

(|m−n|)
2k

)
u2k ⊗ [x1, x2] .

On the other hand

[
ρ
(
x
(m)
1

)
, ρ
(
x
(n)
2

)]
= (±1)m+n

∞∑

k=0

k∑

ℓ=0

a
(m)
2(k−ℓ)a

(n)
2ℓ u2k ⊗ [x1, x2]

= (±1)m+n
∞∑

k=0

(
a
(m+n)
2k + a

(|m−n|)
2k

)
u2k ⊗ [x1, x2] ,

by (3.6a), proving the claim. For the other pairs one proceeds similarly, using in particular a
(n)
0 =

2 for all n, and this shows that the map ρ± extends to a homomorphism of Lie algebras.

It is now possible to introduce a cutoff in (3.9) in order to make all expressions finite sums.

Denote by

IN :=
(
uN+1

)
(3.10)
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the ideal in K[[u]] that is generated by the element uN+1 and set PN := K[[u]]�IN . Furthermore,

define the even and odd parts as

P+
N := spanK

{
u2k + IN |k = 0, . . . ,

⌊
N

2

⌋}
, P−N := spanK

{
u2k+1 + IN |k =

⌊
N − 1

2

⌋}

and consider the Lie algebra

N (PN) :=
(
P+
N ⊗ k̊

)
⊕
(
P−N ⊗ p̊

)
, [P ⊗ x,Q⊗ y] = (P ·Q)⊗ [x, y] (3.11)

where the bracket on the right-hand side still denotes the g̊-bracket.

Remark 6. Note that the ring of formal power series P is isomorphic to the inverse limit of the

inverse system (PN )N∈N with the obvious bonding maps [R]. As a consequence N (K[[u]]) is the

inverse limit of the N (PN ):

N(K[[u]]) = lim
←−

N→∞

N(PN ). (3.12)

In the following we will construct homomorphisms ρ
(N)
± : k(A) (K) → N (PN) which are then

shown to be surjective. As ρ
(N)
± is constructed via ρ± and the natural projection PrN from

N (K[[u]]) to N (PN) the ρ
(N)
± are compatible with the natural projections from N (PN+M) to

N (PN ). Assuming we had started with the ρ
(N)
± then by the universal property of inverse limits

we would have obtained ρ± as the unique homomorphism ρ± : k(A) (K) → N (K[[u]]) such that

ρ
(N)
± = ρ± ◦ PrN .

Corollary 7. The homomorphisms of Lie algebras ρ± : k(A) (K) → N (K[[u]]) induce homo-

morphisms ρ
(N)
± : k(A) (K) → N (PN) which are given explicitly by

(
tn + t−n

)
⊗ x 7→ (±1)n

⌊N/2⌋∑

k=0

a
(n)
2k

(
u2k + IN

)
⊗ x ∀x ∈ k̊ (3.13)

(
tn − t−n

)
⊗ y 7→ (±1)n

⌊(N−1)/2⌋∑

k=0

a
(n)
2k+1

(
u2k+1 + IN

)
⊗ y ∀ y ∈ p̊. (3.14)

Proof. N (PN ) is a quotient of N (K[[u]]) because PN = K[[u]]�IN is a quotient of P.

Next, we want to show that the homomorphisms ρ± are injective but not surjective. Towards

this we will need the following fact about matrices whose entries are obtained from evaluation

of polynomials:

Lemma 8. Let 0 6= p1, . . . , pn ∈ K[t] be linearly independent polynomials. Then there exist

N1, . . . , Nn ∈ N such that the matrix M (N1, . . . , Nn) := (pi (Nj))
n
i,j=1 is regular.

Proof. This can be achieved by induction on n and an expansion of the determinant which yields

a linear combination of linearly independent polynomials. As a nonzero polynomial p(t) is equal

to 0 for only finitely many t ∈ K this can be used to show regularity of M (N1, . . . , Nn) for

suitable N1, . . . , Nn.
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Proposition 9. The homomorphism of Lie algebras ρ± : k (A) (K) → N (K[[u]]) from proposi-

tion 5 is injective. Furthermore its image does not contain elements in N (K[[u]]) = (P+ ⊗ k)⊕

(P− ⊗ p) whose formal power series contain only finitely many nonzero coefficients. In particu-

lar, the elements u2k+2 ⊗x for x ∈ k̊ and u2k+1⊗ y for y ∈ p̊ and k ≥ 0 are not contained in the

image of k (A) (K) in N (K[[u]]).

Remark 10. Observe that there is a certain asymmetry. It is possible to map elements from

k(A) (K) to N (K[[u]]) by allowing formal power series but in the reverse direction it is not

possible to define such a map for elements such as u2k+2 ⊗ x because the Laurent polynomials

do not have a completion that behaves well under the involution η. One can only complete in

one direction, i.e., for an element
∑

n∈Z cnu
n ⊗x in some completion of k (A) (K), cn 6= 0 is only

possible for either n > N or n < N but not both at the same time. But this does not agree

with the demand c−n = ±cn unless cn 6= 0 for only finitely many n.

Proof. For a generic element in k (A) (K) one can split the analysis into two pieces because

elements from L+ ⊗ k̊ are mapped to elements which only involve even powers u2k while the

ones from L−⊗ p̊ are mapped to series involving only odd powers u2k+1. Therefore consider the

image of

χ :=

K∑

i=1

(
tni + t−ni

)
⊗ xi

under ρ:

ρ (χ) =
K∑

i=1

∑

k≥0

a
(ni)
2k u2k ⊗ xi =

∑

k≥0

K∑

i=1

a
(ni)
2k u2k ⊗ xi = 0,

so that we need
∑K

i=1 a
(ni)
2k xi = 0 for all k ≥ 0. For a basis e1, . . . , ed of k̊ and xi =

∑d
j=1 c

j
i ej

this yields

K∑

i=1

d∑

j=1

a
(ni)
2k cji ej = 0 ∀ k ≥ 0 ⇔

K∑

i=1

a
(ni)
2k cji = 0 ∀ k ≥ 0, ∀ j = 1, . . . , d.

This way one sees that ρ(χ) = 0 admits nontrivial solutions if and only if the infinite linear

system of equations
K∑

i=1

a
(ni)
2k zi = 0 ∀ k ≥ 0 (3.15)

does. The coefficient a
(n)
2N is given by the evaluation at N of a nontrivial polynomial pn ∈ K[x]

of degree n − 1 according to eq. (3.5) Note that the polynomials pn1 , . . . , pnK
are linearly

independent if the n1, . . . , nK are pairwise distinct because then they are of different degree.

Consider a subsystem of linear equations of (3.15) given by

K∑

i=1

a
(ni)
2k zi = 0 ∀ k ∈ {N1, . . . , NK} ⇔

K∑

i=1

pni
(k)zi = 0 ∀ k ∈ {N1, . . . , NK} .
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By lemma 8 it is possible to choose N1, . . . , NK such that the matrix (pni
(Nj))

K
i,j=1 is regular.

Thus, this subsystem of linear equations admits only the trivial solution and therefore so does

(3.15). Another way to put this result is that for a basis {e1, . . . , ed} of k̊ the elements of the set

{
ρ
((
tn + t−n

)
⊗ ei

)
| n ≥ 0, i = 1, . . . , d

}
∈ N (K) (3.16)

are linearly independent. Since a
(n)
2N+1 is also given by a polynomial the same argument works

for {
ρ
((
tn − t−n

)
⊗ fi

)
| n ≥ 1, i = 1, . . . ,D

}
∈ N (K) , (3.17)

where {f1, . . . , fD} is a basis of p̊. This shows that ρ± is injective.

We next consider the claim that elements
∑

k≥0 b2ku
2k ⊗ xk with only finitely many b2k 6= 0

are not contained in the image of k (A) (K) in N (K[[u]]). Any element in the image of k (A) (K)

in N (K[[u]]) can be written as a linear combination of elements in (3.16) and (3.17). It suffices

to focus on one set as they are split into even and odd coefficients. For elements of type (3.16)

this implies that there exist b1, . . . , bN ∈ K \ {0} such that

N∑

j=1

bja
(nj)
2k = 0 ∀ k > 0 ⇔

N∑

j=1

bjp
(nj)(k) = 0 ∀ k > 0.

The polynomials p(nj) are linearly independent and so their sum is a polynomial of fixed degree

greater than 0. Then the above equation is a contradiction to the fact that a nonzero polynomial

can be equal to 0 only at finitely many points.

Proposition 11. The homomorphisms ρ
(N)
± : k (A) (K) → N (PN) are surjective.

Proof. Set

k̊(2k) := spanK

{(
u2k + IN

)
⊗ x | x ∈ k̊

}
⊂ N (PN ) , (3.18a)

p̊(2k+1) := spanK

{(
u2k+1 + IN

)
⊗ y | y ∈ p̊

}
⊂ N (PN ) (3.18b)

and note that N (PN ) decomposes into vector spaces as

N (PN) ∼=

⌊N/2⌋⊕

k=0

k̊(2k) ⊕

⌊(N−1)/2⌋⊕

k=0

p̊(2k+1). (3.19)

The image of ρ
(N)
± in N (PN ) is spanned by elements of the form

⌊N/2⌋∑

k=0

a
(n)
2k

(
u2k + IN

)
⊗ x ∀n ∈ N, x ∈ k̊,

⌊(N−1)/2⌋∑

k=0

a
(n)
2k+1

(
u2k+1 + IN

)
⊗ y ∀n ∈ N∗, y ∈ p̊.

Since a
(0)
2k = 2δk,0 one already has k̊(0) =

{
1⊗ x | x ∈ k̊

}
⊂ im ρ

(N)
± . With this it is possible to

remove the k̊(0)-part from other elements:

ρ
(N)
±

(
x(m) −

1

2
(±1)m a

(m)
0 x(0)

)
=

⌊N/2⌋∑

k=1

a
(n)
2k

(
u2k + IN

)
⊗ x ∀n ∈ N, x ∈ k̊.
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By the properties of the Cartan decomposition (cf. [HN, prop. 13.1.10]) one has that if g̊ is

simple and non-compact then k̊ = [̊p, p̊] and that p̊ is a simple k̊-module. Therefore any element

x ∈ k̊ can be written as an iterated commutator
[
x(1),

[
x(2), . . . , x(k)

]]
for x(1), . . . , x(k) ∈ k̊ or p̊.

Choose levels n1, . . . , nk such that n1 + · · ·+ nk = ⌊N/2⌋ and set

x̃
(i)
(ni)

:= x
(i)
(ni)

−
1

2
(±1)ni a

(ni)
0 x

(i)
(0).

Then

ρ
(N)
±

([
x̃
(1)
(n1)

,
[
. . . , x̃

(k)
(nk)

]])
=
(
u2⌊N/2⌋ + IN

)
⊗ x

which shows that {(
u2⌊N/2⌋ + IN

)
⊗ x | x ∈ k̊

}

is contained in the image of ρ
(N)
± . The same procedure works for

(
u2k+1 + IN

)
⊗ p̊ because p̊

is a simple k̊-module and therefore there exist iterated commutators here as well. Repeat this

process for the lower levels as now the level
(
u2⌊N/2⌋ + IN

)
can be removed. This shows by

induction that each homogeneous space in (3.19) lies in the image of ρ
(N)
± which concludes the

proof.

We next consider the structure of the Lie algebras N(PN ).

Proposition 12. Let k̊(2k) and p̊(2k+1) be as in (3.18a) and (3.18b) and denote by z
(̊
k(0)
)
the

center2 of k̊(0), then

J(N) := z
(̊
k(0)
)
⊕

⌊N/2⌋⊕

k=1

k̊(2k) ⊕

⌊(N−1)/2⌋⊕

k=0

p̊(2k+1) ⊂ N (PN )

is the radical of N (PN), i.e., the unique maximal solvable ideal in N (PN ). Hence, the Levi

decomposition of N (PN ) is given by

N (PN ) ∼=
[
k̊(0), k̊(0)

]
⋉ J(N).

Proof. The N-graded structure of N (PN ) is given by its decomposition into vector spaces (3.19).

By the gradation one deduces

[̊
p(2k−1), p̊(2ℓ−1)

]
⊆ k̊(2k+2ℓ−2),

[
k̊(2k), p̊(2ℓ−1)

]
⊆ p̊(2k+2ℓ−1),

[
k̊(2k), k̊(2ℓ)

]
⊆ k̊(2k+2ℓ),

where it is understood that k̊(2k) = {0} = p̊(2ℓ+1) for k > ⌊N/2⌋ and ℓ > ⌊(N − 1)/2⌋. From this

it follows that J(N) is an ideal as in particular

[
k̊(0), k̊(2ℓ)

]
⊆ k̊(2ℓ) and

[
k̊(0), p̊(2ℓ−1)

]
⊆ p̊(2ℓ−1).

2Note that for a generalised Dynkin diagram A of untwisted affine type, the only cases when z(̊k(0)) is nontrivial

are A = C
(1)
l and A = A

(1)
1 . For k̊(0) = k (Cl) one has k (Cl) ∼= ul which contains a nontrivial center, whereas for

k (A1) ∼= R the center is already all of k̊(0).
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Since
[
z
(̊
k(0)
)
, z
(̊
k(0)
)]

= {0} the lowest degree in
[
J(N),J(N)

]
is 1 and therefore J(N) is solvable

because k̊(2k) = {0} = p̊(2l+1) for k > ⌊N/2⌋ and ℓ > ⌊(N − 1)/2⌋. Consider the ideal generated

by J(N) + x for 0 6= x ∈
[
k̊(0), k̊(0)

]
. As

[
k̊(0), k̊(0)

]
is semi-simple so is the ideal j0 in

[
k̊(0), k̊(0)

]

generated by x. Since ideals of semisimple Lie algebras are semisimple, j0 is also perfect. Thus,

the upper derived series j
(n+1)
0 :=

[
j
(n)
0 , j

(n)
0

]
becomes constant at j0 := [j0, j0] and therefore the

upper derived series J
(n+1)
(N)

:=
[
J
(n)
(N),J

(n)
(N)

]
will always contain j0. Thus, J(N) is a maximal

solvable ideal and therefore by definition the radical of N (PN ).

Remark 13. We call N(K[[u]]) a parabolic Lie algebra since it is the inverse limit of the parabolic

Lie algebra N(PN ). By proposition 5 and corollary 7, we can construct representations of the

involutory subalgebra k by considering representations of N(K[[u]]) or N(PN ), respectively.

Remark 14. By a consequence of Lie’s theorem one has that every simple representation of

N (PN ) over a complex vector space is given by the tensor product of a simple representation

of N (PN )�rad (N (PN )) ∼= [̊k, k̊] with a one-dimensional representation of N (PN ). Therefore,

the simple representations of k (A) (K) that factor through N (PN ) are essentially the simple

representations of k̊ (K). These correspond to truncation at N = 0.

The kernels ker ρ
(N)
± are described by linear systems of equations as the following proposition

shows:

Proposition 15. Let ker ρ
(N)
± be the kernel of the homomorphism described in cor. 7. Then

with

x(m) :=
(
tm + t−m

)
⊗ x ∀x ∈ k̊, y(m) :=

(
tm − t−m

)
⊗ y ∀ y ∈ p̊

one has

ker ρ
(N)
± = span

{
M∑

i=1

(±1)mi bix(mi)

∣∣∣∣∣

M∑

i=1

(±1)mi bia
(mi)
2k = 0 ∀ k=0, . . ., ⌊N/2⌋ , ∀x∈̊k

}

⊕ span

{
M∑

i=1

(±1)mi biy(mi)

∣∣∣∣∣

M∑

i=1

(±1)mi bia
(mi)
2k+1 = 0 ∀ k=0, . . ., ⌊(N−1)/2⌋ , ∀ y∈̊p

}

ker ρ
(N)
± ⊃ ker ρ

(N+1)
± .

Proof. In general one has for x ∈ k̊, y ∈ p̊ that

ρ
(N)
±

(
x(m)

)
= (±1)m

⌊N/2⌋∑

k=0

a
(m)
2k u2k ⊗ x, ρ

(N)
±

(
y(m)

)
= (±1)m

⌊(N−1)/2⌋∑

k=0

a
(m)
2k+1u

2k+1 ⊗ y

and one computes for
∑M

i=1 (±1)mi bix(mi) that

ρ
(N)
±

(
M∑

i=1

(±1)mi bix(mi)

)
=

M∑

i=1

(±1)mi bi

⌊N/2⌋∑

k=0

a
(mi)
2k u2k ⊗ x

=

⌊N/2⌋∑

k=0

(
M∑

i=1

(±1)mi bia
(mi)
2k

)
u2k ⊗ x = 0

13



if and only if
M∑

i=1

(±1)mi bia
(mi)
2k = 0 ∀ k = 0, . . . , ⌊N/2⌋ .

Similarly one deduces that

ρ
(N)
±

(
M∑

i=1

(±1)mi biy(mi)

)
= 0 ⇔

M∑

i=1

(±1)mi bia
(mi)
2k+1 = 0 ∀ k = 0, . . . , ⌊(N − 1)/2⌋ .

These equations remain unaltered by changing N 7→ N + N0, N0 ∈ N, there only appear

additional equations to be satisfied. This shows that

ker ρ
(N)
± ⊃ ker ρ

(N+1)
± .

Remark 16. Specialised to A = E9 the ideals ker ρ
(0)
± in k (E9) (K) coincide with the Dirac ideals

of [KNP]. Furthermore, these ideals can be shown to be principal ideals.

4 Representations from quotients of induced representations

In this section, we consider representations of k that are constructed using induced representa-

tions of N (K[u]), the model of k over the polynomial ring which will be defined below. Since

representations of N (K[u]) in general do not provide representations of k, we will then describe

how to recover representations of k.

Construct the Lie algebra N (K[u]) in the same way as N(K[[u]]) in (3.1) but replace K[[u]]

by the ring of polynomials K[u]. As mentioned in remark 2, N (K[u]) is N-graded and its graded

decomposition is given by

N (K[u]) =
∞⊕

k=0

N(k) , (4.1)

where

N(k) =

{
spanK

{
u2n ⊗ k̊

}
, k = 2n even,

spanK
{
u2n+1 ⊗ p̊

}
, k = 2n+ 1 odd.

We believe that there does not exist any non-trivial Lie algebra homomorphism from k into

N (K[u]). Such homomorphisms, similar to those of proposition 11, only exist when we quotient

by IN defined in (3.10) which can also be thought of as an ideal of K[u]. The structure of

N (K[u]) is analogous to that of N(PN) described in proposition 12. In particular, the (now no

longer solvable) ideal N+ is given by

N+ = z(̊k)⊕
⊕

k>0

N(k) ,
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where z(̊k) denotes the center of k̊. The ideal N+ inherits the N-grading from N (K[u]). We

shall in the following assume that z(̊k) = 0 for simplicity. All statements can be generalised

straight-forwardly.

The universal enveloping algebras U(N+) and U(N (K[u])) also inherit the N-gradation from

the Lie algebra and the Poincaré–Birkhoff–Witt theorem provides a basis of them. One has

U(N+) =

∞⊕

ℓ=0

Uℓ, (4.2)

where Uℓ denotes the (ordered) words in the tensor algebra of degree ℓ with respect to the

N-grading, where x ≤ y if deg(x) ≤ deg(y). For the first few levels, this means

U0 = 1 , U1 = N(1) ,

U2 = Sym2
(
N(1)

)
⊕N(2) , U3 = Sym3

(
N(1)

)
⊕N(1) ⊗N(2) ⊕N(3) .

The N(k) are k̊-modules because the adjoint action of k̊ preserves the degree. We will make these

expressions more explicit in the example in section 5. For the full universal enveloping algebra

one has

U(N (K[u])) ∼= U (̊k)⊗K U(N+) (4.3)

as a tensor product of K-vector spaces. In terms of the multiplication · in U (N(K[u])) the above

decomposition is better written as

U (N (K[u])) = U (̊k) · U (N+) (4.4)

This fact is due to the PBW-theorem applied to a suitably chosen order that is such that elements

of degree 0 appear to the left in the basis that is provided by the PBW-theorem. Recall that all

elements of k̊ = N(0) ⊂ N (K[u]) have degree 0.

Now consider a finite-dimensional k̊-module V0 which we view as a left U
(̊
k
)
-module. As

U
(
N (K[u])

)
allows the structure of a right U

(̊
k
)
-module we build the induced N (K[u])-module

via the tensor product

V := U (N (K[u]))⊗U (̊k) V0, (4.5)

where the tensor product is defined with U (N (K[u])) as a right U
(̊
k
)
-module. Explicitly one

has

a⊗ (x · v) = ax⊗ v

for v ∈ V , x ∈ U
(̊
k
)
, a ∈ U (N (K[u])). V, however, is viewed as a left U (N (K[u]))-module, i.e.

for a, b ∈ U (N (K[u])), v ∈ V one has

a · (b⊗ v) = (a · b)⊗ v.
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Lemma 17. The induced module V inherits the N-grading

V =

∞⊕

i=0

Vi (4.6)

from U (N (K[u])) and is an infinite-dimensional representation of N (K[u]). V is generated by

the action of U(N+) on 1⊗V0. Furthermore, a K-basis of V is given by the Kronecker product

of a PBW-basis of U (N+) with a basis of V0.

Proof. The inherited gradation on V is given by assigning deg(u ⊗ v) = deg(u). It is infinite-

dimensional because U (N+) is. In order to determine a K-basis of (4.5), consider it as a k̊-module

and show that it is isomorphic to the K-tensor product of U (N+) and V0. Recall that k̊ acts

on N+ via the adjoint action from N (K[u]). Due to the above decomposition (4.4) one has for

x ∈ U
(̊
k
)
, y ∈ U (N+) and v ∈ V that

xy ⊗ v = (yx+ [x, y])⊗ v = y ⊗ v′ + y′ ⊗ v (4.7)

with y′ = [x, y] ∈ U(N+) and v′ = x.v ∈ V . We want to view (4.5) as a K-tensor product

modulo an equivalence relation. The equivalence relation on U
(̊
k
)
⊗K U (N+)⊗K V induced by

⊗U (̊k) now is the multilinear extension of

x⊗K y ⊗K v ∼ 1⊗K y ⊗K v′ + 1⊗K y′ ⊗K v, (4.8)

where y′ = [x, y] ∈ U(N+), v
′ = x.v ∈ V and

U (N (K[u]))⊗U (̊k) V
∼= U

(̊
k
)
⊗K U (N+)⊗K V� ∼

as K-vector spaces. The original equivalence relation in U (N (K[u]))⊗K V is

yx⊗K v ∼ y ⊗K xv ∀x ∈ U
(̊
k
)

but decomposing yx = xy − [x, y] according to (4.4) leads to the formulation (4.8) of ∼. Eq.

(4.8) shows that each element x⊗K y⊗K v is ∼-equivalent to an element of 1⊗K U (N+)⊗K V ∼=

U (N+)⊗K V where the isomorphism is as K-vector spaces. Since

1⊗K U (N+)⊗K V ⊂ U
(̊
k
)
⊗K U (N+)⊗K V

one deduces that the elements of U
(̊
k
)
⊗K U (N+)⊗K V� ∼ are in 1-1-correspondence with the

elements of U (N+)⊗K V and hence,

U (N (K[u]))⊗U (̊k) V
∼= U (N+)⊗K V (4.9)

as K-vector spaces. Now U
(̊
k
)
acts on U (N+)⊗U (̊k) V via left-multiplication but as a result of

(4.7) one has that

xy ⊗ v = [x, y]⊗ v + y ⊗ xv.
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This action is identical to the action of U
(̊
k
)
on the K-tensor product of k̊-modules U (N+) and

V . Thus, one finds

U (N (K[u]))⊗U (̊k) V
∼= U (N+)⊗K V

as k̊-modules. The Kronecker basis of this tensor product also provides a basis for the U
(
N
(
K[u]

))
-

module V because U (N+) ∩ U
(̊
k
)
= K · 1.

Due to the N-graded structure on N (K[u]), V has many invariant subspaces. In particular,

any

V(N) =

∞⊕

i=N

Vi (4.10)

for N > 0 is a proper invariant subspace of V. The quotient representation

V/V(N) (4.11)

is by construction a finite-dimensional representation of N (K[u]) for any fixed choice N . The

important point now is

Proposition 18. The quotient V/V(N) defined in (4.11) is a finite-dimensional module of

N(PN ) and therefore, by propositions 5 and 11, a representation of k.

Proof. This statement follows from the fact that IN ⊗ (̊k⊕ p̊)∩N (K[u]) acts trivially on V/V(N)

by the N-grading and therefore V/V(N) is a representation of the corresponding quotient. Since

the quotients K[u]�IN and K[[u]]�IN are isomorphic, we deduce that V/V(N) is a finite-

dimensional representation of N(PN ) defined in (3.11) and therefore can be pulled back to a

representation of k by proposition 11.

Remark 19. The quotient algebra acts non-trivially on V/V(k) and is given by all k generators

of degree at most k. While all other elements of the parabolic model N (K[u]) act trivially, we

deduce from proposition 5 that infinitely many generators of k act non-trivially.

Other invariant subspaces ofV can be considered by taking any vector w ∈ V and considering

the subrepresentation W ⊂ V that it generates under the action of N (K[u]). A natural choice

would be to select some irreducible k̊ representation Wk within one of the Vk. Clearly, the

submodule W generated by Wk is a subspace of V(k). In general, it can be of arbitrary co-

dimension in it. The representation of N (K[u]) we are interested in then is the quotient

V/W . (4.12)

If this quotient is finite-dimensional it can again be pulled back to a representation of k since

it is a quotient of one of the spaces V/V(N) described above. Analysing (4.12) in general is

more complicated than in the case (4.11). To illustrate this point, we shall analyse an explicit

example for e9 in the next section 5.
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0 1 2 3 4 5 6 7

8

Figure 1: Dynkin diagram of E9 with nodes labelled.

Proposition 20. Recall the graded decomposition (4.6) of V and consider its formal completion

V := {(vi) | vi ∈ Vi} . (4.13)

On V there exists a natural, faithful N (K[[u]])-action. Furthermore, V is the inverse limit of

the modules of proposition 18 and it is spinorial as a k-representation if the k̊-representation V0

that induces V is. Also, faithfulness shows that k is residually finite-dimensional, that is, for

each non-trivial element x ∈ k there exists a finite-dimensional representation on which x acts

non-trivially.3

Proof. The natural action is given by

v 7→ x · v with (x · v)i =

i∑

j=0

xj · vi−j for i ∈ N (4.14)

for x = (xi) ∈ N (K[[u]]) and v = (vi) ∈ V. Since only xi and vN−i enter at degree N this

action commutes with the projection to V�V
(i)
, where V

(i)
denotes the formal completion of

V(i). As V�V
(i) ∼= V�V(i), one can check that V is the inverse limit of the finite-dimensional

representations V�V(i) by also establishing that the elements in V and the inverse limit of the

V�V(i) are in 1-1-correspondence. The representation is faithful , because for (xi) ∈ N (K[[u]])

one can pick (v0, 0, 0, . . . ) ∈ V with 0 6= v0 ∈ V0. Since N(k) is part of the PBW-basis of

U (N (K[u])), there always exists a k > 0 and 0 6= v0 such that xk.v0 6= 0 ∈ V according to

lemma 17. The only exception is when (xi) ∈ N (K[[u]]) is such that only x0 6= 0. Even if V0 is

the trivial module, the action of this element is nontrivial because U (N+) is a faithful k̊-module.

Spinoriality of V0 implies that of V because k̊ maps to N(0) ⊂ N (K[[u]]).

5 A detailed example: k(e9)

In this section, we illustrate the general considerations from the previous sections in the case of

k(e9) where g = e9 ≡ e
(1)
8 denotes the non-twisted affine extension of the split real exceptional

Lie algebra g̊ = e8 (also denoted as e8(8)). The algebra k(e9) enters in the fermionic sector of

maximal supergravity in D = 2 dimensions where unfaithful representations have been found

previously [NS] and is therefore of particular interest in physics.

3We believe this property to be known already for affine g(A), although we were unable to find a reference.

Hence, our proposition just reproves residual finiteness of k as a byproduct.
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5.1 The affine algebra e9

The Cartan decomposition of e8 is

e8 = k̊⊕ p̊ with k̊ ∼= so(16) (5.1)

and p̊ is a 128-dimensional irreducible spinor representation of so(16). To explicitly parametrise

the symmetric space decomposition we introduce the following adapted basis of generators

so(16) =
〈
XIJ

∣∣XIJ = −XJI , I, J = 1, . . . 16
〉
,

p̊ =
〈
Y A

∣∣A = 1, . . . , 128
〉
, (5.2)

so that the XIJ are the exterior square of the defining 16-dimensional representation of so(16)

and the Y A are in an irreducible spinor representation. The conjugate spinor representation will

be denoted with dotted indices Ȧ and will play a role in the construction of k(e9) representations

below.

In order to write the e8 commutation relations in the basis (5.2), we utilise so(16) gamma

matrices ΓI
AȦ

where AȦ denote the matrix components of degree one elements in the Clifford

algebra of 16-dimensional Euclidean space. These are real 128-by-128 matrices satisfying the

Clifford multiplication law

ΓI
AȦ

ΓJ
BȦ

+ ΓJ
AȦ

ΓI
BȦ

= 2δIJδAB (5.3)

where repeated indices are summed over (a convention we shall employ throughout this section)

and δIJ and δAB are the Euclidean so(16)-invariant bilinear forms in the representation spaces.

k-fold antisymmetric products of gamma matrices are written as ΓI1...Ik normalised with a 1/k!

times the signed sum over permutations of I1, . . . , Ik, e.g.

ΓI1I2
AB =

1

2!

(
ΓI1
AȦ

ΓI2
BȦ

− ΓI2
AȦ

ΓI1
BȦ

)
,

ΓI1I2
ȦḂ

=
1

2!

(
ΓI1
AȦ

ΓI2
AḂ

− ΓI2
AȦ

ΓI1
AḂ

)
,

ΓI1I2I3
AḂ

=
1

3!

(
ΓI1
AȦ

ΓI2
BȦ

ΓI3
BḂ

± 5 permutations
)
. (5.4)

For more details on the use of these gamma matrices see [NS,KNP].

The explicit commutations relations of (5.1) in the basis (5.2) are then given by

[
XIJ ,XKL

]
= δJKXIL − δIKXJL − δJLXIK + δILXJK , (5.5a)

[
XIJ , Y A

]
= −

1

2
ΓIJ
ABY

B , (5.5b)

[
Y A, Y B

]
=

1

4
ΓIJ
ABX

IJ . (5.5c)

The first line is just the k̊ ∼= so(16) Lie algebra while the others are manifestations of the Cartan

decomposition’s properties
[̊
k, p̊
]
⊂ p̊ and

[̊
p, p̊
]
= k̊. In particular, the last relation can be

viewed as a projection from Alt2(̊p) to the factor that is isomorphic to the adjoint module of k̊.

19



The affine algebra is then obtained according to (2.4) by introducing the loop generators

XIJ
m = tm ⊗XIJ , Y A

m = tm ⊗ Y A (5.6)

for m ∈ Z. The commutation relations, including the central element K and derivation d, are

then given by

[
XIJ

m ,XKL
n

]
= δJKXIL

m+n − δIKXJL
m+n − δJLXIK

m+n + δILXJK
m+n

−m
(
δIKδJL − δJKδIL

)
δm,−nK , (5.7)

[
XIJ

m , Y A
n

]
= −

1

2
ΓIJ
ABY

B
m+n , (5.8)

[
Y A
m , Y B

n

]
=

1

4
ΓIJ
ABX

IJ
m+n +mδABδm,−nK , (5.9)

[
d,XIJ

m

]
= −mXIJ

m ,
[
d, Y A

m

]
= −mY A

m , (5.10)

and K commutes with everything.

As is well known, there is an action of the Virasoro algebra on loop algebras [K,GO]. The

Virasoro algebra is a central extension of the Witt algebra generated by the operators

Lm = −tm+1 d

dt
(m ∈ Z) (5.11)

acting on Laurent polynomials and the non-trivial commutators with the e9 loop generators are

[
Lm,XIJ

n

]
= −nXIJ

m+n ,
[
Lm, Y A

n

]
= −nY A

m+n . (5.12)

L0 therefore acts like d. The commutators among the Virasoro generators is

[Lm, Ln] = (m− n)Lm+n +
cVir

12
m(m2 − 1)δm,−nK (5.13)

with the same central element K as in the affine algebra and cVir a free coefficient. In any

given highest or lowest weight representation of the affine algebra, one can find a realisation of

the Virasoro algebra in the universal enveloping algebra of the loop algebra via the Sugawara

construction and this fixes cVir, see [GO] for a review.

5.2 Involutory subalgebra k(e9)

The involutory subalgebra k ≡ k(e9) was defined in (2.6). We shall give explicit forms of the

filtered structure and the parabolic model discussed in sections 2 and 3, respectively.

5.2.1 Filtered basis

We recall that the central element K and the derivation d are not invariant under the involution

ω and therefore not part of k(e9). The generators of k(e9) can be expressed in terms of (5.6)
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according to

X IJ
m =

1

2
(tm + t−m)⊗XIJ ≡

1

2

(
XIJ

m +XIJ
−m

)
, (5.14a)

YA
m =

1

2
(tm − t−m)⊗ Y A ≡

1

2

(
Y A
m − Y A

−m

)
. (5.14b)

where t is the spectral parameter and m ∈ N. Note that YA
0 ≡ 0. Here, we have introduced a

factor of 1/2 such that X IJ
0 = XIJ

0 is also an so(16) Lie algebra with the same normalisation.

The complete k(e9) Lie algebra in the basis (5.14) reads

[
X IJ
m ,XKL

n

]
=

1

2
δJK

(
X IL
m+n + X IL

|m−n|

)
−

1

2
δIK

(
X JL
m+n + X JL

|m−n|

)

−
1

2
δJL

(
X IK
m+n + X IK

|m−n|

)
+

1

2
δIL

(
X JK
m+n + X JK

|m−n|

)
, (5.15a)

[
X IJ
m ,YA

n

]
= −

1

4
ΓIJ
AB

(
YB
m+n − sgn(m− n)YB

|m−n|

)
, (5.15b)

[
YA
m,YB

n

]
=

1

8
ΓIJ
AB

(
X IJ
m+n − X IJ

|m−n|

)
, (5.15c)

where sgn(k) is the sign function with sgn(0) = 0.

In this so(16)-covariant formulation, k(e9) can be described as the algebra generated by the

X IJ
0 , X IJ

1 and YA
1 with the property that the X IJ

0 form an so(16) algebra and that X IJ
1 and YA

1

transform correctly under this algebra according to (5.15). The X IJ
0 , X IJ

1 and YA
1 obey

7ΓIJ
AB

[
YA
1 ,Y

B
1

]
− 32

[
X IK
1 ,XKJ

1

]
= −448X IJ

0 , (5.16a)

ΓI1...I6
AB

[
YA
1 ,Y

B
1

]
= 0 . (5.16b)

These are the so(16)-covariant forms of the Berman relation [x0, [x0, x1]] = −x1 in a Chevalley–

Serre basis

xi := ei − fi (5.17)

and where we use the convention that 0 is the affine node of the e9 Dynkin diagram that

attaches to the adjoint node, labelled 1, of the e8 Dynkin diagram, see figure 1. To write out the

‘affine’ Berman generator x0 explicitly in terms of the basis (5.14), we need to make use of the

SO(8) decompositions (A.9) in Appendix A of [KNP]; using the notation and transformations

of Appendix B of that reference there we have

x0 = −
1

2
γ1
αβ̇

(
Xαβ̇
1 + Yαβ̇

1

)
(5.18)

with the SO(8) gamma matrices γi
αβ̇

(for i = 1, ..., 8). The remaining Berman generators in this

basis are given by

xi =
1

4

(
γi,i+1
αβ Xαβ

0 + γi,i+1

α̇β̇
X α̇β̇
0

)
(for i = 1, ..., 7) , x8 = −

1

2
γ678
αβ̇

Xαβ̇
0 . (5.19)
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The Virasoro algebra likewise can be restricted to an involutory subalgebra [JN]. The ‘max-

imal compact’ subalgebra of the Virasoro algebra is generated by

Km := Lm − L−m ≡ −
(
tm+1 − t−m+1

) d
dt

for m ≥ 1. (5.20)

The relevant commutation relations when acting on K(e9) in the basis (5.14) read

[
Km , X IJ

n

]
= −n

(
X IJ
m+n − X IJ

|m−n|

)

[
Km , YA

n

]
= −n

(
YA
m+n − sgn(m− n)YA

|m−n|

)
(5.21)

and

[Km , Kn] = (m− n)Km+n − sign(m− n)(m+ n)K|m−n| (5.22)

Note that the central term drops out here as well.

5.2.2 Parabolic model

As discussed in sections 3 and 4, it is very useful for constructing representations of k(e9) to

consider the parabolic algebras N (K[[u]]) and N (K[u]) defined in (3.1) and (4.1), respectively.

Since polynomials have a graded product, N (K[u]) is a graded Lie algebra. We write the variable

of the polynomial as u as in section 3 and it is related to the variable t in the filtered basis by

u = 1−t
1+t so that expansions around u = 0 are expansions around t = 1 and vice versa.

The definition of the basis generators of N (K[u]) is then explicitly

AIJ
2m := u2m ⊗XIJ , SA

2m+1 := u2m+1 ⊗ Y A for m ∈ N . (5.23)

The Lie algebra of these generators is graded and given by

[
AIJ

2m,AKL
2n

]
=

1

2
δJKAIL

2(m+n) −
1

2
δIKAJL

2(m+n) −
1

2
δJLAIK

2(m+n) +
1

2
δILAJK

2(m+n) , (5.24a)

[
AIJ

2m,SKL
2n+1

]
= −

1

4
ΓIJ
ABS

B
2(m+n)+1 , (5.24b)

[
SA
2m+1,S

B
2n+1

]
=

1

8
ΓIJ
ABA

IJ
2(m+n+1) . (5.24c)

The generators of N (K[[u]]) also include infinite linear combinations of (5.23) since N (K[[u]])

is constructed using power series rather than polynomials.

The maps (3.9a) and (3.9b) from the filtered to the parabolic bases now read

ρ±(X
IJ
n ) = (±1)n

1

2

∑

k≥0

a
(n)
2k AIJ

2k , ρ±(Y
A
n ) = (±1)n

1

2

∑

k≥0

a
(n)
2k+1S

A
2k+1 , (5.25)
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where the factors of 1
2 are due to our definition (5.14). More specifically, the images of the first

few generators of k(e9) according to proposition 5 are given in the above basis by

ρ+
(
X IJ
0

)
= AIJ

0 ,

ρ+
(
X IJ
1

)
= AIJ

0 + 2
∑

k≥1

AIJ
2k ,

ρ+
(
X IJ
2

)
= AIJ

0 + 8
∑

k≥1

kAIJ
2k ,

ρ+
(
X IJ
3

)
= AIJ

0 + 2
∑

k≥1

(1 + 8k2)AIJ
2k

ρ+
(
X IJ
4

)
= AIJ

0 +
32

3

∑

k≥1

(k + 2k3)AIJ
2k

ρ+
(
X IJ
5

)
= AIJ

0 +
2

3

∑

k≥1

(3 + 40k2 + 32k4)AIJ
2k (5.26)

for the X IJ
m . For the YA

m the relations read

ρ+
(
YA
1

)
= −2

∑

k≥0

SA
2k+1 ,

ρ+
(
YA
2

)
= −4

∑

k≥0

(2k + 1)SA
2k+1 ,

ρ+
(
YA
3

)
= −2

∑

k≥0

(8k2 + 8k + 3)SA
2k+1 ,

ρ+
(
YA
4

)
= −

8

3

∑

k≥0

(3 + 10k + 12k2 + 8k3)SA
2k+1 ,

ρ+
(
YA
5

)
= −

2

3

∑

k≥0

(15 + 56k + 88k2 + 64k3 + 32k4)SA
2k+1 . (5.27)

We note that, unlike (5.16), there is no known presentation of N (K[[u]]) as a finitely gen-

erated algebra, say by AIJ
0 and SA

1 , with a finite number of Berman-like relations. Using the

algebra (5.24) we find the following Berman-type relations for all k ≥ 1

7ΓIJ
AB

∑

k1 , k2≥0
k1+k2=k−1

[
SA
2k1+1 , S

B
2k2+1

]
− 32

∑

k1,k2≥1
k1+k2=k

[
AIK

2k1 ,A
KJ
2k2

]
= 448AIJ

2k , (5.28a)

ΓI1...I6
AB

∑

k1 , k2≥0
k1+k2=k−1

[
SA
2k1+1 , S

B
2k2+1

]
= 0 , (5.28b)

where we have evaluated the commutators involving A0 in the first line.

The maximal compact Virasoro generators Km introduced in (5.20) can also be expressed

using the variable u. In particular,

K1 = L1 − L−1 =
(
1− t2)

d

dt
= 2u

d

du
(5.29)
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generates an SO(1,1) group, and acts as a counting operator on the basis of the parabolic

model (5.23): [
K1 , A

IJ
2k

]
= 4kAIJ

2k ,
[
K1 , S

A
2k+1

]
= 2(2k + 1)SA

2k+1 (5.30)

More generally the operators Km admit the following realisation as differential operators

Km =
1

2

1

(1− u2)m−1
[
(1 + u)2m − (1− u)2m

] d
du

(5.31)

Proceeding as before we find for instance

[K2,A
IJ
2m] = 8m

(
AIJ

2m + 2AIJ
2m+2 + 2AIJ

2m+4 + · · ·
)

(5.32)

so for m ≥ 2 these operators mix all levels.

5.3 Representations

Representations of k(e9) can be constructed via the technique described in section 4. This means

that we construct a basis of the universal enveloping algebra of N+ ⊂ N (given by all generators

in (5.23) with degree greater than 0) and let this act on a k̊ ∼= so(16) representation V0 as the

initial vector space. We shall exploit that everything is so(16) covariant and graded.

5.3.1 Universal enveloping algebra basis

The basis (4.3) of U (N+) at the first few levels becomes

ℓ = 0 : 1 (5.33a)

ℓ = 1 : SA
1 (5.33b)

ℓ = 2 : S
(A
1 S

B)
1 , Aα

2 (5.33c)

ℓ = 3 : S
(A
1 SB

1 S
C)
1 , SA

1 A
α
2 , SA

3 (5.33d)

ℓ = 4 : S
(A
1 SB

1 SC
1 S

D)
1 , S

(A
1 S

B)
1 Aα

2 , SB
1 SA

3 , A
(α
2 A

β)
2 , Aα

4 (5.33e)

where we now use α ≡ [IJ ] for I < J to denote an adjoint index of so(16). The symmetrisa-

tions (· · · ) for similar generators on the same level are necessary to implement the ordering in

accordance with the PBW theorem.

In terms of so(16) representations the first levels Uℓ of U(N+) are
4

ℓ = 0 : 1 (5.34a)

ℓ = 1 : 128s (5.34b)

ℓ = 2 :
(
1⊕ 1820 ⊕ 6435+

)
⊕ 120 (5.34c)

ℓ = 3 :
(
128s ⊕ 13312s ⊕ 161280s ⊕ 183040s

)

⊕
(
128s ⊕ 1920c ⊕ 13312s

)
⊕ 128s (5.34d)

4The parentheses are used to group the representations according to the different words in the induced repre-

sentation module list after decomposing into so(16).
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Here, we have labelled the so(16) representations by their real dimensions. A translation to

highest weight labels can be found in appendix C.

The module V as in (4.5) built from an k̊ ∼= so(16) representation V0 is graded as

V =

∞⊕

ℓ=0

Vℓ , Vℓ := Uℓ ⊗V0

and each level decomposes further as a so(16)-representation. For instance, in the case of the

V0 = 16 we obtain

V0 = 16 , (5.35a)

V1 = 128c ⊕ 1920s , (5.35b)

V2 =
(
16⊕ 560⊕ 4368 ⊕ 11440 ⊕ 24192⊕ 91520+

)
⊕
(
16⊕ 560⊕ 1344

)
, (5.35c)

V3 =
(
128c ⊕ 2×1920s ⊕ 13312c ⊕ 2×56320s ⊕ 141440s ⊕ 161280c

⊕ 326144s ⊕ 439296c ⊕ 2036736s ⊕ 2489344s

)

⊕
(
2×128c ⊕ 3×1920s ⊕ 13312c ⊕ 15360c ⊕ 56320s ⊕ 141440s

)

⊕
(
128c ⊕ 1920s

)
. (5.35d)

5.3.2 A quotient example

As is clear from (5.35), the module grows very rapidly and it is desirable to find smaller k(e9)

representations by identifying invariant subspaces and taking quotients.

The simplest quotient example is to consider Ws=1/2 = V(1) in the notation (4.10) to be

given by all spaces of degree greater than zero, then we obtain as k(e9) representation simply

V/Ws=1/2
∼= V0

∼= 16 which is nothing but the irreducible spin-1/2 representation appearing

in supergravity [NS].

A non-trivial example can be obtained by looking at the construction (4.12) that uses the

invariant subspaces W generated by an so(16) representation Wk sitting at a given level. As

the example we take W1 = 1920s within (5.35). In order to describe this, we shall need a more

explicit parametrisation of the elements of the module’s homogeneous parts Vℓ for 0 ≤ ℓ ≤ 2.

At level ℓ = 0 we need an element of the 16-dimensional defining representation of so(16) that

we write as ϕI
0.

The elements of V1
∼= 128s ⊗ 16 are of the form SA

1 ϕ
I
0 and decompose into a conjugate

spinor 128c and a traceless vector-spinor 1920s

SA
1 ϕ

I = ΓI
AȦ

χȦ
1 + χIA

1

according to V1 = 128c⊕1920s. Note that the occurrence of 128c in the above tensor product

is tied to the existence of a suitable Γ-matrix ΓI
AȦ

. The condition that projects onto the 1920s

is

χIA
1 = SA

1 ϕ
I
0 −

1

16
(ΓIΓJ)ABS

B
1 ϕJ

0
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and the quotient we want to consider is the one where this component and all vectors generated

from it are set to zero. In other words, all elements of the quotient module V/W satisfy

SB
1 ϕI

0 =
1

16
(ΓIΓJ)BCS

C
1 ϕJ

0 (5.36)

and any relations obtained from it by acting with k(e9).

To find what this imposes on V2 as given in (5.35c) we parametrise all its elements as

SA
1 S

B
1 ϕI

0 = δABϕI
2 + ΓJ1J2

AB ϕJ1J2;I
2 + ΓJ1...J4

AB ϕJ1...J4;I
2 + ΓJ1...J8

AB ϕJ1...J8;I
2 , (5.37)

This formula follows from the so(16) tensor product 128s ⊗ 128s that is relevant for the word

SA
1 S

B
1 and that we decompose into its symmetric and anti-symmetric parts

Sym2 (128s) = 1⊕ 1820 ⊕ 6435+ ,

Alt2 (128s) = 120⊕ 8008 .

The first line consists of a scalar, a four-form and a self-dual eight-form of so(16), while the

second line represents a two-form and a six-form. These intertwiners from 128s ⊗ 128s to p-

forms are given by the Γ-matrices Γ
I1...Ip
AB . As the anti-symmetric product S

[A
1 S

B]
1 is proportional

to the commutator (5.24c) that does not contain a six-form, the ansatz (5.37) does not contain

a term in ΓI1...I6
AB . The final so(16) tensor product on the left-hand side of (5.37) is then to

multiply 128s ⊗ 128s (written as p-forms) with 16 which is the representation of ϕI
0. These

tensor products are written using a semi-colon, so that for instance

ϕJ1J2;I
2 ∈ 120⊗ 16 = 16⊕ 560⊕ 1344 .

Acting on (5.36) with SA
1 then leads to the relation

δABϕ
I
2 + ΓJ1J2

AB ϕJ1J2;I
2 + ΓJ1...J4

AB ϕJ1...J4;I
2 + ΓJ1...J8

AB ϕJ1...J8;I
2

!
=

1

16
(ΓIΓK)BC

(
δACϕK

2 − ΓJ1J2
CA ϕJ1J2;K

2 + ΓJ1...J4
CA ϕJ1...J4;K

2 + ΓJ1...J8
CA ϕJ1...J8;K

2

)

=
1

16
δABϕ

I
2 −

1

16
ΓIJ
ABϕ

J
2 +

1

16
ΓJ1J2
AB ϕJ1J2;I

2 −
1

16
ΓIJ1J2J3
AB ϕJ1J2;J3

2 +
1

8
ΓJ1J2
AB ϕIJ1;J2

2 −
1

8
ΓIJ
ABϕ

JK;K
2

+
1

8
δABϕ

IJ ;J
2 +

1

16
ΓJ1...J4
AB ϕJ1...J4;I −

1

16
ΓIJ1...J5
AB ϕJ1...J4;J5

2 −
1

4
ΓIJ1...J3
AB ϕJ1...J3K;K

2

+
1

4
ΓJ1...J4
AB ϕIJ1...J3;J4

2 +
3

4
ΓJ1J2
AB ϕIJ1J2K;K

2 +
1

16
ΓJ1...J8
AB ϕJ1...J8;I

2 −
1

16
ΓIJ1...J9
AB ϕJ1...J8;J9

2

−
1

2
ΓIJ1...J7
AB ϕJ1...J7K;K

2 −
1

2
ΓJ1...J8
AB ϕIJ1...J7;J8

2 +
7

2
ΓJ1...J6
AB ϕIJ1...J6K;K

2 . (5.38)

Projecting this onto the various irreducible pieces in (5.35c) leads to the conditions

ϕIJ ;J
2 =

15

2
ϕI
2 (relation between the two 16)

ϕI1I2I3J ;J
2 =

13

12
ϕ
[I1I2;I3]
2 (relation between the two 560) (5.39)
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and the fact that all other irreducible components must vanish. Therefore, at level ℓ = 2, the

quotient is given by only

V2/W2
∼= 16⊕ 560 , (5.40)

a comparatively small subspace of (5.35c). Already at the next level the above computation

becomes almost unfeasible. If one formally substracts the so(16)-decompositions of Uℓ+1 ⊗V0

and Uℓ ⊗W1 the result indicates that only 128c survives at level three, and that there are only

two 16s at level four, after which the procedure terminates. In summary, the above computation

shows

V0/W0
∼= V0

∼= 16 ,

V1/W1
∼= 128c ,

V2/W2
∼= 16⊕ 560 , (5.41)

and we conjecture

V3/W3
∼= 128c ,

V4/W4
∼= 2× 16 ,

Vℓ/Wℓ
∼= 0 ∀ ℓ ≥ 5 . (5.42)

This is related to the analogue of the spin-52 representation studied in [KN5]. The spin-3/2

representation of supergravity [NS,KNP] can also be obtained from this construction by taking

a further quotient. More precisely, one quotients by all Vℓ with ℓ > 2 and also by the 560

representation in (5.40). The remaining so(16) representations are 16⊕128⊕16 that form one

chiral half of the supergravity spin-3/2 fields.

Remark 21. As is evident from the analysis above, determining the quotient V/W can become

intricate quickly since the precise structure of the submodule W is hard to analyse. In the case

of complex simple Lie algebras a similar problem arises when constructing irreducible highest

weight representations as quotients of Verma modules by the maximal proper submodule. In

that case, there is a description of the quotient in terms of the Weyl character formula. A similar

technique for representations of k is not known to the best of our knowledge.
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A k (E9) (C) as the quotient of a GIM-algebra

Generalised intersection algebras, GIM-algebras in short for Generalised Intersection Matrix,

are constructed similarly to Kac–Moody algebras. One starts from a so-called generalised in-

tersection matrix A where one replaces the condition Aij ≤ 0 for i 6= j by Aij ≤ 0 ⇔ Aji ≤ 0

and Aij > 0 ⇔ Aji > 0. GIMs can be visualised quite neatly by drawing solid lines for Aij < 0

and dotted edges for Aij > 0. In [B], Berman explores a connection between his involutory

subalgebras and GIM-algebras. As it turns out due to the work of Slodowy, GIM-algebras fall

into two classes. The first class consists of those GIM-algebras which are in fact isomorphic to a

Kac–Moody-algebra and the second class are those which are isomorphic to an involutory sub-

algebra of a Kac–Moody-algebra according to Berman’s construction. This isomorphism relies

on doubling the number of vertices of the respective GIM-diagram and the involution that is

used involves a diagram automorphism of the new diagram which is of Kac–Moody-type. So

even though our k is an involutory subalgebra it is not of the type that is directly isomorphic to

a GIM-algebra. For k (E9) (C) it turns out that it is a quotient of a GIM-algebra, although we

do not know the precise structure of the defining ideal. In particular we do not know whether

it is generated by (A.15)–(A.19) or whether one needs additional relations. We will collect the

most essential definitions and results here (see the work of Slodowy [S] for more details) and

state our result in proposition 27.

Definition 22. Let I be a finite index set and h a C-vector space of dimension r. Let ∆∨ :=

{hi | i ∈ I} ⊂ h and ∆ := {αi | i ∈ I} ⊂ h∗. Then (h,∆∨,∆) is called a C-root basis, its

reductive rank is defined to be equal to r, whereas its semi-simple rank is defined to be |I|.

Associate a matrix A to (h,∆∨,∆), called its structure matrix, by setting

Aij := αj (hi) ∀ i, j ∈ I. (A.1)

A root basis is called free if both ∆∨ and ∆ are linearly independent.

Definition 23. Let A ∈ Zℓ×ℓ such that

(i) Aii = 2 ∀ i = 1, . . . , ℓ

(ii) Aij < 0 ⇔ Aji < 0 ∀ i 6= j

(iii) Aij > 0 ⇔ Aji > 0 ∀ i 6= j,

then A is called a generalised intersection matrix (GIM). A GIM A is called symmetrisable if

there exist D,B ∈ Qℓ×ℓ such that D is diagonal and B is symmetric and it holds A = DB.

A root basis (h,∆∨,∆) whose structure matrix is a generalised intersection matrix is called a

GIM-root basis.

Definition 24. Let (h,∆∨,∆) be a GIM-root basis with structure matrix A. Then ∆(A) is a

coloured, weighted graph with vertices ∆ with:

1. Two vertices i and j are connected by a dotted edge if Aij = αj (hi) > 0.

2. Two vertices i and j are connected by a solid edge if Aij = αj (hi) < 0.
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3. There is no edge between two vertices i and j if Aij = 0.

4. The edges (i, j) are weighted by the weight mij according to the following table

αi (hj) · αj (hi) 0 1 2 3 ≥ 4

mij 2 3 4 6 ∞

The weights mij = 2, 3 are not set apart graphically in the diagram’s visualisation. In the case

of mij = 4, 6 one draws an arrow towards the node j if |Aji| = |αi (hj)| > |αj (hi)| = |Aij |.

Definition 25. Let (h,∆∨,∆) be a GIM-root basis with structure matrix A and let f be the

free Lie algebra over C generated by h and elements eα, e−α for α ∈ ∆. Let I be the ideal in f

generated by the relations (identify h−α ≡ −hα for α ∈ −∆)

[
h, h′

]
= 0, [h, eα] = α(h)eα ∀h, h′ ∈ h, α ∈ ±∆,

[eα, e−α] = hα, ad (eα)
max(1,1−β(hα)) (eβ) = 0 ∀α, β ∈ ±∆ and α 6= −β.

Set g := f�I then g is called the GIM-Lie algebra to (h,∆∨,∆). Note that every GIM A has

a free realisation (h,∆∨,∆) that is unique up to isomorphism. In this sense one can associate a

GIM-Lie algebra gim(A) to a structure matrix A or equivalently a GIM-diagram ∆(A).

If one spells out the above relations for Aij < 0, one obtains with ei = eαi
, fi = e−αi

the

familiar Serre-relations

ad (ei)
1−Aij (ej) = 0 = ad (fi)

1−Aij (fj) , [ei, f j] = 0 = [ej , fi]

but for Aij > 0 one obtains

ad (ei)
1+Aij (fj) = 0 = ad (fi)

1+Aij (ej) , [ei, ej ] = 0 = [fi, fj] .

One knows on abstract grounds that the complexification k (A8) (C) of the canonical subalgebra

k (A8) < k (E9) is isomorphic to B4 (C) ∼= so (9,C). Let us spell out the relationship between the

description of k (A8) (C) via Berman generators

xi = ei − fi (A.2)

and the usual description of g (B4) (C) in terms of a Chevalley basis. Let i1, i2, . . . , ik ∈ {1, . . . , 9}

and set

xαi1
+···+αik

:=
[
xi1 ,

[
xi2 ,

[
. . . ,

[
xik−1

, xik
]]]]

. (A.3)

Note that the order in the sum αi1 + · · · + αik matters. For i < j define roots β
(1)
i,j , . . . , β

(4)
i,j ∈

∆(A8) ⊂ ∆(E9) by

β
(1)
i,j = α2i + · · ·+ α2j−1 , β

(2)
i,j = α2i + · · ·+ α2j−2 (A.4)

β
(3)
i,j = α2i−1 + · · · + α2j−1 , β

(4)
i,j = α2i−1 + · · · + α2j−2. (A.5)
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Now set

eε1Li+ε2Lj
:=

i

2
·

(
x
β
(1)
i,j

− iε2xβ(2)
i,j

− iε1xβ(3)
i,j

− ε1ε2xβ(4)
i,j

)
∀ i < j ∈ {1, 2, 3, 4}, (A.6)

Hj := −ix2j−1, for j = 1, . . . , 4 , (A.7)

e±Lj
:= i ·

(
xα2j+···+α8 ∓ ixα2j−1+···+α2j

)
. (A.8)

Proposition 26. Consider the abelian subalgebra hB4
:= spanC {H1, . . . ,H4} together with the

linear functionals Li : h
∗
B4

→ C defined via Li (Hj) = δij . Then with the above definitions (A.6),

(A.7) and (A.8) one has

[
h, eε1Li+ε2Lj

]
= (ε1Li + ε2Lj) (h) eε1Li+ε2Lj

,
[
h, e±Lj

]
= ±Lj (h) e±Lj

∀h ∈ hB4

Thus, (A.6) and (A.8) provide a root space decomposition of k (A8) (C) ∼= B4 (C) with respect to

the Cartan subalgebra hB4 spanned by (A.7). A corresponding Chevalley basis is given by

ei := eLi−Li+1 , fi := e−Li+Li+1 , hi := Hi −Hi+1 ∀ i = 1, 2, 3,

e4 = e+L4 , f4 := e−L4 , h4 := 2H4.

Proof. One verifies that (A.6) and (A.8) are eigenvectors unde the adjoint action of hB4 with the

correct eigenvalues by direct computation. This suffices for a root space decomposition because

one knows abstractly that this exhausts k (A8) (C) as its isomorphism type is known. Checking

the Chevalley basis is a matter of fixing suitable prefactors.

Now set

x± := i (x9 ∓ i [x3, x9]) (A.9)

then one has

[x+, x−] = 2H2, [H2, x±] = ±x±, [Hi, x±] = 0 ∀ i 6= 2, (A.10)

and the Slodowy-type relations

[x+, y] = 0 ∀ y ∈ {f1, e2} ∪ {e3, e4, f3, f4} , (A.11)

ad (x+)
3 (y) = 0 = ad (y)2 (x+) ∀ y ∈ {e1, f2} ∪ {e3, e4, f3, f4} , (A.12)

[x−, y] = 0 ∀ y ∈ {e1, f2} ∪ {e3, e4, f3, f4} , (A.13)

ad (x−)
3 (y) = 0 = ad (y)2 (x−) ∀ y ∈ {f1, e2} ∪ {e3, e4, f3, f4} , (A.14)

as well as additional relations that hold in k (E9) (C)

[x+, eεL1−L2 ] = xα2+α3+α9 − iεxα1+α2+α3+α9 = [x−, eεL1+L2 ] (A.15)

ad (x+)
2 (eεL1−L2) = 2eεL1+L2 , ad (x−)

2 (eεL1+L2) = 2eεL1−L2 (A.16)

[x+, e+L2+εL3 ] = 0 = [x−, e−L2+εL3 ] (A.17)

[x+, e−L2+εL3 ] = −εxα9+α3+α4 − ixα9+α3+α4+α5 = − [x−, eL2+εL3 ] (A.18)
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1 2 3 4

B4

1 2 3 4

0
B⋄4

Figure 2: The diagrams associated to B4 and B⋄4 with labelling of nodes.

ad (x+)
2 (e−L2+εL3) = −2eL2+εL3 , ad (x−)

2 (eL2+εL3) = −2e−L2+εL3 . (A.19)

Consider the Cartan matrix of B4 and a GIM which we call B⋄4 that extends it:

B4 =




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −2 2


 , B⋄4 =




2 −2 2 0 0

−1 2 −1 0 0

1 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −2 2




The nontrivial Serre relations (for the ei only) of B4 spell out to be

ad (ei)
2 (ei+1) = 0 = ad (ei+1)

2 (ei) ∀ i = 1, 2

ad (e3)
2 (e4) = 0 = ad (e4)

3 (e3) .

Denote the associated GIM-algebra to B⋄4 over C by gim (B⋄4) (C). The diagrams of B4 and

B⋄4 are given in figure 2.

Proposition 27. Denote the Chevalley generators of gim (B⋄4) (C) by E0, . . . , E4, F0, . . . , F4

and Hγ0 , . . . ,Hγ4 . There exists a surjective homomorphism of Lie algebras φ : gim (B⋄4) (C) →

k (E9) (C) that is given on the Level of generators via

φ (E0) = x+, φ (F0) = x−, φ (Hγ0) = 2H2 = 2h2 + 2h3 + h4

φ (Ei) = ei, φ (Fi) = fi, φ (Hγi) = hi ∀ i = 1, 2, 3, 4.

Proof. One verifies that the defining relations between the generators from definition (25) are

satisfied. The B4-relations are unproblematic and towards the relations

ad (E0)
3 (E1) = 0 = ad (E1)

2 (E0) , ad (E0)
3 (F2) = 0 = ad (F2)

2 (E0)

we refer to equations (A.11)–(A.14). One also has to check that Hγ0 7→ 2H2 satisfies all necessary

identities which is the case. Thus, φ is a homomorphism of Lie-algebras. Surjectivity follows

from the fact that all Berman generators of k (E9) (C) can be recovered from the image of the

generators of gim (B⋄4) (C). For x1, . . . , x8 this is a basis transformation within B4 (C) and for

x9 one notes that (A.9) implies

x+ + x− = 2ix9.
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GIM-algebras are graded with respect to their root system although their root system does

not split into positive and negative roots. Now consider an element [E0, [E0, E1]] − 2EL1+L2

with EL1+L2 ∝ [E1, [E2, [E4, [E4, E3]]]]. This element is nonzero because the two summands lie

in different root spaces and are nonzero themselves. But because of (A.16) it is equal to 0 in

the image. This implies that k (E9) (C) is a (nontrivial) quotient of gim (B⋄4) (C).

In conclusion, representations of gim (B⋄4) (C) could potentially be useful to find represen-

tations of k (E9) (C) if it is possible to check whether or not a given representation factors

through the projection of proposition 27. Conversely, our results from sections 3 and 4 provide

representations of gim (B⋄4) (C) both of finite and infinite dimension.

B The Hilbert space completion k̂ is not a Lie algebra

Because the restriction of the standard bilinear form is positive definite we can complete k to

a Hilbert space k̂. Here we show by means of a simple explicit example that this Hilbert space

completion is not compatible with the Lie algebra structure. Define

JN (ω) :=
1

2
ωIJ

N∑

n=1

1

n1/2+ε
X IJ
n (B.1)

The positive definite bilinear form can be normalised such that (for m,n ≥ 0)

〈
X IJ
m |XKL

n

〉
= δmnδ

IJ
KL (B.2)

The induced norm is distinguished by its invariance, which implies that the right-hand side is

independent of m and n. Consequently,

||JN ||2 = C0

N∑

n=1

1

n1+2ε
(B.3)

where C0 = C0(ω) is an irrelevant strictly positive constant. For ε > 0 this sum converges, and

therefore the limit J∞(ω) ≡ limN→∞ JN (ω) belongs to the Hilbert space k̂. We next compute

the commutator
[
JN (ω1) , JN (ω2)

]
=

1

2
[ω1, ω2]

IJ
N∑

n=1

fnX
IJ
n (B.4)

with

fn =

n−1∑

m=1

1

m1/2+ε

1

(n−m)1/2+ε
+

N∑

m=1

1

m1/2+ε

1

(n+m)1/2+ε
(B.5)

Estimating the first sum on the right-hand side as (n > 1)

n−1∑

m=1

1

m1/2+ε

1

(n−m)1/2+ε
>

n− 1

n1+2ε
(B.6)

it is easy to see that

fn >
C1

n2ε
(B.7)
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with another irrelevant strictly positive constant C1. For ε < 1
4 the sum

∑∞
n=1 |fn|

2 diverges,

whence (B.4) does not converge in the limit N → ∞. In other words, although J∞(ω1) and

J∞(ω2) separately do belong to k̂, their commutator does not exist as an element of k̂. Hence k̂

is not even a Lie algebra, and a fortiori also not a Hilbert Lie algebra, which would in addition

require ||[x, y]|| < C2||x||||y|| for all x, y ∈ k̂.

We stress that the failure of k̂ to be a Lie algebra depends on the norm used for the completion

which in the analysis above was the standard invariant bilinear form. Other norms are possible

and the corresponding completions of k can be Lie algebras, and even Hilbert Lie algebras.

However, in those cases the norm is not invariant.

Although k̂ is not a Lie algebra, an interesting open question is whether one can still make

sense of the commutator as a distribution, by considering the commutator of two elements

belonging to a dense subspace of k̂. This would fit with earlier observations in [KNP].

C so(16) representations

The translation of dimensions of so(16) representations to the labels of the highest weight in the

conventions of the LiE software [vLCL] are

1 ↔ [0,0,0,0,0,0,0,0]

16 ↔ [1,0,0,0,0,0,0,0]

120 ↔ [0,1,0,0,0,0,0,0]

128s ↔ [0,0,0,0,0,0,0,1]

128c ↔ [0,0,0,0,0,0,1,0]

560 ↔ [0,0,1,0,0,0,0,0]

1344 ↔ [1,1,0,0,0,0,0,0]

1820 ↔ [0,0,0,1,0,0,0,0]

1920s ↔ [1,0,0,0,0,0,0,1]

4368 ↔ [0,0,0,0,1,0,0,0]

6435+ ↔ [0,0,0,0,0,0,0,2]

7020 ↔ [1,0,1,0,0,0,0,0]

8008 ↔ [0,0,0,0,0,1,0,0]

11440 ↔ [0,0,0,0,0,0,1,1]

13312s ↔ [0,1,0,0,0,0,0,1]

13312c ↔ [0,1,0,0,0,0,1,0]

15360c ↔ [2,0,0,0,0,0,1,0]

24192 ↔ [1,0,0,1,0,0,0,0]

56320s ↔ [0,0,1,0,0,0,0,1]

60060 ↔ [1,0,0,0,1,0,0,0]

91520+ ↔ [1,0,0,0,0,0,0,2]

112320 ↔ [1,0,0,0,0,1,0,0]

141372 ↔ [0,1,0,1,0,0,0,0]

141440s ↔ [1,1,0,0,0,0,0,1]

161280s ↔ [0,0,0,1,0,0,0,1]

161280c ↔ [0,0,0,1,0,0,1,0]

162162 ↔ [1,0,0,0,0,0,1,1]

183040s ↔ [0,0,0,0,0,0,0,3]

326144s ↔ [0,0,0,0,1,0,0,1]

439296c ↔ [0,0,0,0,0,0,1,2]

465920c ↔ [0,0,0,0,0,1,1,0]

595595+ ↔ [0,1,0,0,0,0,0,2]

670208s ↔ [1,0,1,0,0,0,0,1]

2036736s ↔ [1,0,0,1,0,0,0,1]

2489344s ↔ [1,0,0,0,0,0,0,3]

6223360s ↔ [1,0,0,0,0,1,0,1]
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