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1 Introduction

This paper completes the work started in [1], constructing the exceptional field theory for the
Kac-Moody group Ey. Exceptional field theories (ExFT) are the duality covariant formulations
of maximal supergravity built on the exceptional hidden symmetry groups F, that arise in di-
mensional reduction of eleven-dimensional (or type IIB) supergravity [2-5]. E,, ExFT is based
on a split of the coordinates of eleven-dimensional supergravity into D external and n = 11 — D
internal coordinates. The latter are embedded into an extended space-time with coordinates
transforming in a representation of the exceptional group FE,,. The original physical coordinates
are recovered as the solution of an E,, covariant section constraint that constrains the coordinate
dependence of all fields and gauge parameters. On the extended space-time, the original geomet-
ric diffeomorphisms and gauge symmetries are unified into generalised diffeomorphisms [6-18]
which provide the central symmetry structure organising and defining the theories.

Exceptional field theories have been constructed for all finite-dimensional duality groups, i.e.
for n < 8, and D > 3 external dimensions [19-26]. The resulting actions are modelled after
the structure of D-dimensional maximal (gauged) supergravities, with all fields living on the full
extended space-time (subject to the section contraint) and the non-abelian gauge structure of D-
dimensional supergravity replaced by the infinite-dimensional algebraic structure of generalised
diffeomorphisms. In particular, the scalar fields parametrise the coset space E,/K(FE,) and
couple via a (gauged) sigma-model on this space, where K (FE),) is the maximal compact subgroup
of E,.

For n = 9, the group Ejy is the infinite-dimensional affine group that appears as the global
symmetry of maximal two-dimensional supergravity [27,28], generalising the Geroch group in
the reduction of four-dimensional Einstein gravity [29-32]. The affine Lie algebra eg of Ey is
by definition the sum of the centrally extended loop algebra ¢g over eg and a one-dimensional
derivation algebra.! The study of the internal sector of ExFT based on this affine algebra was
initiated in [17] with the construction of generalised diffeomorphisms acting on fields whose
internal coordinates Y™ transform in the basic lowest weight representation R(Ag)_; of E,
and a section constraint of the generic form

YMNPQ oy @0y =0 (1.1)

where YM¥ pg is the Fy invariant tensor (3.3). In Eg ExFT, all fields live on the full extended
space-time with two external coordinates z* and internal coordinates Y™ subject to the section
constraint (1.1).

"'We denote the derivation of eg by d and it is related to the Virasoro generator Lo by d = Lo + A in a module
of weight h € C.



In a first paper [1], we have constructed the internal part of the action of Ey ExFT, usually
referred to as the potential, as a scalar field Lagrangian invariant under generalised diffeomor-
phisms. More precisely, this is the truncation of ExFT obtained after dropping all dependence
on the two external coordinates z* and truncating the gauge fields. The goal of this paper is to
extend this construction to the full £y exceptional field theory.

With respect to its lower-rank cousins, Fg ExFT comes with a number of additional technical
challenges. First of all, the affine nature of the duality group requires all bosonic objects to
appear in infinite-dimensional representations. This is reflected by the scalar fields parametrising
the infinite-dimensional coset space

Eg X (]R—lL—O X ]RLil)
K(Ey) ’

(1.2)

where Eg denotes the centrally extended loop group over Eg, and the factor ]RJLFO x Ry, is
obtained by exponentiating the Virasoro generators Ly and L_;.

Secondly, while the ExFT field content in generic dimensions is largely based on D-dimen-
sional maximal supergravity as imposed by the tensor hierarchy [33-35], closure of the gauge
algebra in general requires the introduction of additional p-forms of rank p > D — 2. These
additional fields are covariantly constrained by algebraic conditions analogous to the section
contraint (1.1). For sufficiently large D, the constrained fields may not be visible at the level
of the Lagrangian, but starting from D < 4, they become an inevitable part of the dynamical
equations of exceptional field theory. In particular, for D = 2, such constrained fields appear
in all sectors of the theory. Indeed, the results of [1] show that the construction of an invariant
scalar potential requires the coupling of an additional scalar field xs obeying the algebraic
constraints

YN poxu ®0n =0=Y"Npo xur @ xnv (1.3)
analogous to (1.1). Similarly, the gauge fields
Au = (A, BMN), (1.4)

combine vectors A} transforming in the basic lowest weight (coordinate) representation R(Ag)_1
of F9 with vector fields B“M ~ constrained in their last index analogously to (1.3). The set of vec-
tor fields (1.4) reflects the structure of gauge parameters of Eg generalised diffeomorphisms [17].

Thirdly, as known from the lower-rank exceptional field theories, their construction in an
even number of external dimensions D is typically hampered by the fact that in D-dimensional
supergravity only a subgroup of the duality group E, is realised off-shell while the full duality
group is only realised on the equations of motion. The most straightforward construction of the
ExFT dynamical field equations thus draws on a manifestly duality invariant pseudo-Lagrangian
which must be supplemented by a set of first order (self-)duality equations, in the spirit of the
so-called democratic formulation of supergravity theories [36]. In two-dimensional maximal
supergravity, the Lagrangian only depends on the 128 propagating scalar fields parametrising
Es/Spin(16), the dilaton p associated to Lg, and the conformal factor o of the external metric,



associated to the central charge K. The infinitely many fields parametrising the coset space (1.2)
are defined on-shell by virtue of an infinite set of duality relations typically formulated in terms of
a linear system [30-32,28] and its expansion in terms of a spectral parameter. In order to reflect
these structures, Fy ExFT will be based on a manifestly duality invariant pseudo-Lagrangian
which features all the scalar fields parametrising (1.2), together with duality equations relating
them to the physical ones. However, the spectral parameter of the linear system introduced
in [31,32] depends on the D = 2 space-time coordinates, a property that is a priori incompatible
with the definition of fields in Egy lowest weight modules like Aﬂ/[ in ExFT. This was not yet
an issue in the construction of the ExFT scalar potential [1] which corresponds to a truncation
of the theory in which all duality equations are consistently projected out. It will, however,
be relevant in the construction of the full dynamics, and one of the main achievements of this
paper will be to show that the ExFT duality equations reproduce the Breitenlohner—-Maison
linear system.

From the above discussion and the algebra of generalised diffeomorphisms, one might expect
that the fields of Ey ExFT comprise the coset scalar fields in (1.2), the unimodular metric
Guv, the constrained field xps and the vector fields (1.4). We will indeed define a minimal
formulation of the theory featuring these fields (in the gauge in which the scalar fields lie in
Ey/K(Ey), i.e. with the L_; scalar p = 0), as well as a single additional one-form field x,.
However, the relation of the E9 ExFT duality equation to the Breitenlohner—Maison linear
system cannot be unraveled in this minimal formulation. This can be resolved by adopting
a formulation of the Breitenlohner—Maison linear system that circumvents the problem of the
space-time dependent spectral parameter through the introduction of scalar fields in the negative
Virasoro group [37,38], enlarging the scalar target coset space (1.2) to

Eg x Vir™

K(Ea) (15)

where Vir~ is the group associated to the algebra vit™ = (L, |n < 0). We shall define a Virasoro-

extended formulation of Fg ExFT, in which the algebra of generalised diffeomorphisms is based

on Eg x Vir~. The set of vector fields is enlarged accordingly, with one vector field B,T)M N

associated to each negative Virasoro generator L_,. The truncation of the Virasoro-extended

formulation of ExFT to D = 2 supergravity (via the trivial solution of the section constraint)

will be shown to reproduce the Breitenlohner—-Maison linear system in the formulation of [37,38].
The scalar fields in (1.5) are parametrised by the coset representative

V= FV — p—Lo e~ P1l-1 o=¢2L—2 | f/erTfl eyzAng .o e oK (1.6)

upon introducing an additional infinite tower of scalar fields ¢, associated with the negative
half of the Virasoro algebra. The fields p and ¢, combine into the I'-factor in (1.6) whose
presence replaces the space-time dependent spectral parameter of the standard linear system on
(1.2) [31,32]. The Eg-valued matrix V in (1.6) carries the propagating scalar fields of D = 2
maximal supergravity while the negative mode generators T4 of the loop algebra are associated
with the infinite tower of dual potentials defined by the linear system.



The first-order duality relations encoding the ExFT scalar field dynamics are most compactly
formulated in terms of the covariant currents

Ju = MTIDM = 3,07 = (LA T+ Jpm L) + Juk K. (1.7)
meZ

obtained from the generalised metric M = V'V, and explicitly expanded in terms of the gen-
erators of Eg and the full Virasoro algebra. As standard in ExFT, the covariant derivative D,
employs the vector fields (1.4) (and a tower of Virasoro descendants B, y of the constrained
vectors) to gauge the action of Virasoro-extended Eg generalised diffeomorphisms. Its explicit
connection is defined in (4.6) in the main text. From (1.7), one may define a tower of shifted
currents

I = So(I 1S (T3 I )T + x4 K, (1.8)

where the operators S, shift the mode number of the Eg loop generators and the Virasoro
generators by m units and project out the component along the central charge K, while I' is
the Vir™ part of the coset representative (1.6). Covariance of the shifted currents (1.8) under
rigid Eg x Vir~ requires the introduction of a tower of new (external) one-forms X}, , as their

2 This is in complete analogy to the appearance of the constrained scalar field

K components.
XM (1.3) in the shifted current along internal derivatives which was introduced in [1] to define
the ExFT scalar potential. As a key result of this paper, we obtain the ExFT scalar twisted
self-duality equation in the form

*3 =30, (1.9)

where x denotes Hodge duality with respect to the unimodular two-dimensional metric in confor-
mal gauge g,, = 7,,,- Upon dropping internal derivatives and gauge fields, the duality equation
(1.9) reduces to a linear system for the field equations of D = 2 supergravity. The standard form
of the linear system [31,32] is recovered after integrating the vit™ part of the duality equation
in order to obtain polynomial expressions for the additional scalar fields ¢,, in (1.6) in terms of
the fields p and p ~ ¢1 parametrising the IRJLFO x Ry_, factor in (1.2).

Next, we construct in this paper a pseudo-Lagrangian which together with (1.9) determines
the full dynamics of Fg ExFT. According to the general structure of gauged supergravity in D =
2 dimensions [39], and more generally to the structure of two-dimensional gauged sigma models
with WZW terms [40], the full Virasoro-extended Ey ExFT pseudo-Lagrangian is expected
to extend the potential term of [1] by a topological term coupling the currents of the coset
space (1.5) to the gauge fields, as well as by a suitably gauged version of the linear system of
duality equations. The pseudo-Lagrangian consists accordingly of the potential term of [1] and
a topological term written as a top-form:

o0

_ 1 ” - 4
P 1£t0p = ,DX{ - 5“051511 /\15(51) 3 Z(ng —n)Pu A (Ppy1 4+ Pro1)
n=2
0 ~, ~,
Y P A =X ) X FY A+ (1.10)

n=1

2The superscript v is not an index, but rather a label related to the I' conjugation in (1.8), see Section 4.



The various ingredients are defined and detailed in Section 4. In particular, the covariant
derivative of x} = X}hdx“ is defined in (4.58). The second term in (1.10) is the gauged WZW-
like term and carries the algebra cocycle w®® corresponding to the central charge component of
the commutator

03,0 3% = (3 3V (1.11)
The currents P,,,, = %(DMFF_I)_H for n > 1 are defined as the vit™ components of the Maurer—
Cartan form from (1.6). The field X}(\/I,l in (1.10) is related by the field redefinition (4.76) to the
field x s appearing the potential in [1]. Finally, the last three terms in (1.10) are proportional
to the non-abelian field strengths

Fuw = (Fas, G0OMN), ke, (1.12)

of the gauge fields (1.4) (and their Virasoro-extensions). Their precise expressions are given
in (4.42) and (4.45) below. Remarkably, the full ExFT pseudo-Lagrangian, after gauge-fixing
¢n — 0 for the vit™ scalar fields at n > 2, is simply given by the combination

Eext = Etop —*xV ) (113)

of the topological term (1.10) with the potential V' constructed in [1]. In their most explicit
form, these two terms are given in (4.81) and (4.82) below. In particular, this pseudo-Lagrangian
does not carry a traditional kinetic term for the scalar fields.

In order to make contact with the lower-rank exceptional field theories and to match the
field equations with those of eleven-dimensional (and type IIB) supergravity, it turns out to
be convenient to pass eventually from the Virasoro-extended to the minimal formulation of Fy
ExFT in which not only the vit™ scalar fields ¢, are gauge fixed to zero, but also the infinite
tower of constrained and auxiliary one-forms {B,(]L)M NsXpn} featuring in (1.10) is integrated
out in favour of the original gauge fields (1.4) and a single auxiliary one-form y,. Although
we shall prove that the minimal and Virasoro-extended formulations of the theory describe the
same dynamics, these two formulations differ in structure and will be discussed separately. In
particular, the current J in the minimal formulation is valued in the Lie algebra of the group
Eg x (IRJLrO x Rpz,_,) which is not closed under Hermitian conjugation unlike the current (1.7).
In this formulation, we relax the conformal gauge and consider an arbitrary unimodular metric
Juv, thereby allowing for the definition of external diffeomorphisms. To distinguish the currents
in the two formulations we will use a different notation, with the minimal formulation current

Ty = TuaT* =D AT+ o Lo+ Ju1 Loy + Juk K. (1.14)
meZ

In particular, J,k depends explicitly on the unimodular metric g,,, see (5.34), and J, 1 =
BuM m- The duality equation takes the form of a twisted self-duality

T =p L MTYS(T) + xK)TM | (1.15)

associated to an Fg invariant symmetric bilinear form. The resulting pseudo-Lagrangian, now
written as a density, takes the form

1 . . N -1 _ 3
Lin= L1+ Lo+ 3p " e G Dy Gow Dy dpr + 'OTMMN O ONGw — V (1.16)



where Ly is a topological term similar in structure to (1.10), whereas £; depends explicitly
on the metric §,, and plays the role of a kinetic term. They are defined below in (5.45) and
(5.46) and their variation with respect to BNM N is the contraction of the duality equation
(1.15) with (5BMM ~. The pseudo-Lagrangian (1.16) is a sum of terms separately invariant under
internal diffeomorphisms, whose relative coefficients are determined by external diffeomorphism
invariance, as is usually the case in ExF'T. The invariance of the system of equations under
external diffeomorphisms, including the duality equation (1.15), requires us to consider the
additional equation

FM = sptreM MNP g2 (1.17)

in its entirety while it only appears as an Euler-Lagrange equation contracted with the con-
strained variation dxas. The shifted internal current 7, , is defined in (5.47) as in [1].

Upon partially solving the section constraint (1.1), most of the components of the duality
equation (1.15) simply determine the non-vanishing components of the vector field BNM N. All
the solutions to the constraint (1.1) can be mapped under Fy to a form compatible with the
parabolic gauge (1.6), such that the fields only depend on the D = 3 external coordinates and the
248 internal coordinates of Fg ExFT. Using this solution and integrating out the unconstrained
components of BMM N one obtains that the pseudo-Lagrangian (1.16) becomes equivalent to the
one of Eg ExFT [22]. This proves that the dynamics of the theory reproduces the one of eleven-
dimensional supergravity or type IIB supergravity depending on the choice of solution to the
section constraint, confirming the dynamical content of the pseudo-Lagrangian (1.16).

The rest of this paper is organised as follows: In Section 2, we review the algebraic struc-
tures and how they appear in two-dimensional ungauged supergravity through a (Virasoro-
extended) linear system. Section 3 describes the structure of Ey generalised diffeomorphisms
and the associated gauge fields, including their Virasoro-extensions. In Section 4, we construct
the Virasoro-extended F9 ExFT by first determining a gauge-invariant topological term. The
Virasoro-extended topological term can be gauge-fixed and combined with the potential term.
The minimal formulation is presented in Section 5 where the gauge-fixing is used to reduce the
formulation of Fg EXFT to a finite set of fields. In this formulation, we moreover study external
diffeomorphisms and show consistency with Eg ExFT. Because the two formulations of Fg ExFT
are different in structure, we have exposed them in a way that can be read independently, so
that in particular Section 4 is not a prerequisite to Section 5 from 5.2 onwards. The equivalence
of the two formulations is proved in Section 5.1. In Section 6, we discuss possible applications
and generalisations of our results. Several appendices contain additional technical details.

2 Preliminaries on D = 2 supergravity and algebraic structures

In this section, we fix our notation for Fg and its extension by Virasoro generators. We also
review the so-called linear system [29-32,28] of the bosonic part of D = 2 maximal supergravity
and how the affine symmetry arises. In Section 2.3, we discuss a less well-known extension [37,38]
of the linear system that also features the Virasoro algebra.



2.1 E,, its Lie algebra and Virasoro extension

The split real affine Kac-Moody algebra eg has the basis Té, K and d with non-trivial commu-
tation relations

(12, T8] = fAB1S,, +mn*Bo, K, [d,T5] = —mT5. (2.1)

The element K is central in the Lie algebra and the indices A, B,C =1, ..., 248 parametrise the
adjoint of the underlying exceptional eg Lie algebra where eg is realised as a subalgebra by only
considering the elements 73! and has the Killing form n”. The mode number index m € Z
arises from the loop algebra construction of affine Lie algebras [41,42]. The element d is called
the derivation. We shall also encounter the centrally extended loop algebra

¢g = (T4 K) (2.2)

that differs from eg by the omission of the derivation d.

Lowest weight representations, denoted by R(A)y, are determined by giving a weight A of ¢g
and a conformal weight h. The latter corresponds to the eigenvalue under d while A summarises
the eigenvalues under the Cartan subalgebra of ¢g, that consists of the Cartan subalgebra of eg
and K. The most relevant instance for us is the so-called basic representation R(Ag)y, that is
constructed in Fock space notation from an eg-invariant ground state |0)

T0) =0, K[0) =]0), d|0) = h|0). (2.3)

The lowest weight condition means that 74[0) = 0 for n > 0 and the module is the unique
irreducible quotient obtained by acting with T, ,‘;‘ for n < 0 on the ground state.

The Kac—Moody group associated with eg will be denoted by Ey and we refer to Appendix F
for a discussion of some of the subtleties arising when defining this infinite-dimensional group.
The subgroup that is generated by only Té and K is the centrally extended loop group and
denoted by Eg in this paper.

The Sugawara construction [43,42] provides an infinite set of additional Virasoro generators
L., (m € Z) acting on any lowest weight module R(A)y,. These generators satisfy the Virasoro
algebra

[Luns L] = (m = 1) L + S2m(m? = 1), K (2.4)

where the Virasoro central charge is determined by A. For the basic representation we have
Coic = 8. The commutation relations with the eg generators in this representation are

(L, T = —nTh

m—+n

[Lim, K] =0, (2.5)

and we see that the action of Ly agrees with that of d and they can be related in the lowest
weight representation as d = Lg + h.
Denoting the Virasoro algebra by vit = (L,, | m € Z), we can form the extended algebra

¢s D vit, (2.6)



where the symbol @ indicates a semi-direct sum of Lie algebras since the Virasoro algebra acts
on ¢g according to (2.5). We shall denote the generators of ¢g @ vit collectively as T, so that
this index runs over ¢g and vit. For any fixed m € Z we define an ¢g-invariant bilinear form by

MmasT*@T? =Y n"PTAQTE | — L ®@K—K® Ly, . (2.7)
nez
For m = 0, this form coincides with the standard non-degenerate bilinear form eg when identi-
fying Lo with d. In this case we simply write 1,58 = 10 03-
We shall also use the so-called shift operators S, for m € Z that are defined on eg @ vit by

Sn(K) =0, Sn(Ln) = Lytn, Sm(Trj:x) = T£+nv (2.8)
which implies that
Nintm) apT® @ TP =1 sT* @ Sin(T7) — Lysm @ K. (2.9)

The shift operators are not invariant under ¢g and their properties are discussed in more detail
in [1] and in Appendix B. Therefore, when we define a shifted object we may want to introduce
its K completion, such that the completed expression transforms as an algebra-valued object.
This will be explained in Section 4. Notice that the definition for Sy differs from that in [1].
There, we defined Sy(K) = K while in this paper we find it convenient to use So(K) = 0.

Finally, we define the Hermitian conjugates of the generators of ¢g @ vit in the basic repre-
sentation R(Ag)p by

Lh =1t K=K, TM=npT? . (2.10)

n n

Writing the Kac-Moody group as FEy, this defines a unitary subgroup K (Fy) consisting of the
elements k that satisfy kk! = kTk = 1 when acting on R(Ag),. Under Hermitian conjugation
the shift operators transform as

Sn(XN) = (S_m(X)', X eg@ovir. (2.11)

2.2 D = 2 supergravity and the linear system

In this section we review how the infinite-dimensional algebras presented above appear as
symmetries of two-dimensional supergravity [29-32,28]. The entire discussion applies to two-
dimensional gravity coupled to a dilaton and scalars in a non-linear sigma model on a coset
space G/H based on a simple Lie group G. This includes the dimensional reduction to two
dimensions of pure D = 4 General Relativity, with G/H = SL(2)/SO(2), as well as reduc-
tions of many supergravity theories. For definiteness, we will take G/H = Eg/Spin(16) as it
appears in maximal supergravity, but all the results are easily generalised to the other cases.
We thus begin with (ungauged) maximal supergravity in three dimensions, whose bosonic field
content comprises a metric and scalar fields parametrising the symmetric space Fg/Spin(16).

Dimensionally reducing to two dimensions, the metric decomposes as®

ds2 = €* g, dardz” + p?(dp + w,daz*)? (2.12)

3Notice that there is no notion of Einstein frame in two-dimensional gravity. The metric we present is thus
just the dimensional split of the three-dimensional Einstein frame metric.



where g,,,, is the two-dimensional unimodular metric with det g = —1, €27 is the conformal factor,
 is the Kaluza—Klein coordinate, and all fields only depend on the two-dimensional space-time
coordinates z#. The vector field w, is non-dynamical and we set it to zero in this section. The
field p is a scalar in two dimensions and referred to as the dilaton. The Eg/Spin(16) scalar fields
are encoded in a coset representative V(m) which transforms as

V(z) = h(z)V(z)§, §cEs, h(z)e Spin(16). (2.13)

The equations of motion are phrased in terms of the coset and Spin(16) components of the
Maurer—Cartan form

Wwvt=r+Q, P=@>)7, Q=-(Q. (2.14)

The symbol T denotes transposition in eg, i.e. the anti-involution that singles out the maximal
compact subalgebra s0(16) and it agrees with restriction of the Hermitian conjugation defined
in (2.10) to T§'. The scalar field p is free:

dxdp=0, (2.15)

where x denotes Hodge duality with respect to the unimodular metric QW.4 The equations of

motion for the Eg scalars are
dx(pV'PV) =0 (2.16)

and finally the conformal factor is entirely specified by the Virasoro constraint which is most
easily written in conformal gauge g,, = 7., and light-cone coordinates xT such that n,_ =
N—4+ =1 and niy =0:

1 1
020 0xp — S0L01p — 5pilAB PAPB =0. (2.17)

There is also a second-order equation for o, which is implied by the other ones

1
d,0_0 + §nABPf PP =0. (2.18)

Equation (2.15) implies that we can define a dual scalar field p such that

dp = *dp. (2.19)

Combining this relation with (2.16) we can construct infinitely many scalar fields dual to the
currents P. The first of these duality relations reads

Y, =2p V1xPV, (2.20)

and the whole tower is best encoded into a linear system which we now describe in the form
given in [32,28].

4We use conventions such that x1 = dz® Ada'. For one-forms we have (xw), = Jue”’w, with €% =1 = —¢o;.
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We introduce a (constant) spectral parameter w € C and define an Eg valued function V (w)
with the requirement that it reduces to V as w — oo:’

A~

V(w) € Fy, lim V(w)=V. (2.21)

wW—00
Then, equations (2.15) and (2.16) imply integrability of the linear system®

~ ° 1+Y2ﬁ)— 2’Y

AV (w)V " (w) = Q — ol 1o *P. (2.22)

In order to reproduce the p factor in (2.16), y must be a space-time dependent function of p and

p and satisfy

dy 149y _
T

19~
d 2.23
LTIy pdp, (2.23)

Y
1 — 72
which is solved by

1= (sw) =52 VB =P =p) . v=v = (224)

Here, s(w) is an integration constant through which y depends on the spectral parameter. The
simplest choice compatible with the asymptotics described below is

s(w) =w, (2.25)

which we will use in the remainder of this section. More general choices are possible and we will

7 Because of the square root, the function y then defines a double

make use of this fact later.
covering of the w plane. The two sheets correspond to two solutions of (2.22) that are analytic

continuations of each other and are captured by writing

A

V(w) =V (y(w)). (2.26)

It is then straightforward to see that if V (y(w)) satisfies (2.22), so does V~T(1/y(w)), where
V—T = (VT)~!L. We then have that the monodromy matrix

M(w) = VT(l/y(w))V(y(w)) (2.27)

is symmetric, single-valued in w and constant, i.e. independent of the space-time coordinates
xH as a consequence of (2.22). The monodromy matrix entirely specifies a solution of the linear
system. It can be acted upon by constant elements of the loop group over Eg, namely Fg-valued
functions of the spectral parameter:

M(w) = g"(w) M(w) g(w),  g(w) € Es. (2.28)

SDependence on the space-time coordinates z* is understood.

5The negative signs in (2.22) may appear unusual compared to the expression in [32]. The explanation is that
the y parameter we use here corresponds to 1/t there.

"The meaning of the symbols s and w here is changed with respect to [32]. Also notice that [32] is in Euclidean
signature, which causes some further sign flips with respect to our discussion here.
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This defines the global Eg symmetry of the model. For compatibility with (2.21), we require
V(y(w)) to be expandable as a series in y and reduce to V as vy — oo. Then, the right Eg
action on V(y(w)) must be compensated on the left by a local transformation that preserves its
regularity properties:

V(y(w), x) — h(y(w), :17) V(y(w), x) g(w), h(y(w), x) = h_T(l/y(w), :1:) . (2.29)

where we have denoted explicitly which objects are space-time dependent (and y itself is space-
time dependent through p and p). The compensating transformation belongs to one K(Fy) =
K (Eg) subgroup of Eg and leaves the monodromy matrix invariant. It is defined in terms of a
field-dependent anti-involution which acts by inversion of y(w) and differs from the Hermitian
conjugation we introduced in (2.10) which, in the spectral parameter representation, acts by
inversion of w. This distinction will become relevant in the next section. We see that V(y(w))
is a coset representative for Eg /K (Eg). The conformal factor e also transforms under Ej,
compatibly with (2.17), in terms of a group cocycle that defines the central extension of Eg.

An infinite tower of dual fields and the associated duality equations generalising (2.20) are
obtained by expanding (2.22) around w — oo with®

V(y(w)) — 7 N1aTh Yau T2y YaaT2y (2.30)
Where we have defined
T4 = wmr (2.31)

with T4 a basis of generators for eg. We then see that the generators 7, ,ﬁ with m < 0 correspond
to shifts of the dual Y, potentials that do not affect the physical fields in V. Positive loop level
generators T4 with m > 0, instead, correspond to hidden symmetries that mix V with the dual
potentials.

There are three more global symmetry generators manifest in the linear system: a rescaling
of p combined with appropriate rescalings of the Y,, fields, captured by the action of the Lg
generator

)
Lo=—ws-, (2.32)

a shift of p corresponding to the choice of integration constant in (2.19) combined with a redef-
inition of the Y;, fields captured by the Virasoro generator

0

L=——
1 aw7

(2.33)
and finally a constant shift of o corresponding to the choice of integration constant in (2.17),
corresponding to K. Notice that the generators Ly, L_1 do not commute with the loop algebra
but normalise it.

8We provide more details on the definitions of Kac-Moody groups associated to a give Kac-Moody algebra in
Appendix F.
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2.3 Extended coset and twisted self-duality

In order to make contact with exceptional field theory, it is desirable to rewrite the linear
system in a form that is manifestly covariant under all the global symmetries described above
and independent of the K (Ey) gauge. Such a form should also incorporate the duality equation
between p and p on the same footing as the ones for the Y, fields. Furthermore, we will
need to write our coset representatives and currents in a lowest weight representation of Fy.
The natural definition of the maximal unitary subgroup K(Ey) will then be in terms of the
Hermitian conjugation (2.10) — corresponding here to the inversion w — 1/w combined with
Es transposition, rather than the field-dependent involution defined in (2.29). These issues are
addressed by extending the group theoretical structures found so far and rephrasing the linear
system as a twisted self-duality constraint on an enlarged set of dual fields.

This approach follows [37,38] with several adaptations. It is based on the similarity between
(2.23) and (2.22) and the association of p and p with the Virasoro generators Ly and L_;. The
basic idea is to regard y(w) as a diffeomorphism on the w plane. Infinitesimally, such changes
of variables are generated by the Virasoro elements

Ly, = —wm“% : (2.34)
There are some issues with such an interpretation, because the naive exponentiation of the
Virasoro algebra does not form a group [44]. This is reflected for instance in the fact that (2.24)
with s = w defines a double covering of the w plane and hence while y~!(w) is well defined, the
double inverse is not unique. To circumvent these issues, we shall focus only on the behaviour
of fields and group elements around w — +o0o. We shall consider redefinitions of the spectral
parameter that preserve the asymptotics at 400, namely we consider only transformations of
the form
w— fw) = fow+ fo+ frw™t + fow 24+ ... (2.35)

with real coefficient and with f_; > 0. It is not necessary for the power series to converge
(i.e., we accept formal power series). Group multiplication is given by composition of two such
transformations, and the coefficients of the inverse of (2.35) are finite expressions, uniquely
determined order by order in terms of the f;. There is a one-to-one correspondence between
(2.35) and (formal) products of exponentials of the non-positive part of the Virasoro algebra:
1 L, —Jog

Fw= f(w), Fle. . e T2 0 ()t (2.36)
where each exponent is a rational function of finitely many f;, whose explicit expression we will
not need. We shall denote vit™ the algebra generated by L., with m < 0 and by Vir™ the group
we just described. The function (2.24) belongs to this set when expanded around w — 400, so
that we can write close to w — +00

%(s(w)—ﬁj:\/(s(w)—ﬁﬂ—p):2S(w)—%— P___PP_ | (2.37)
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where we now also allow the integration constant s(w) to take a more general form than just
s(w) = w, compatibly with the regularity properties of V(w) stated above, so that

s(w) = s_qw+ 8o+ s;w ™+ sgw A+ ... (2.38)

with s_1 > 0. Namely, s(w) is itself a (constant) element of Vir~.
The key point of this reformulation is to regard y(w) as an arbitrary space-time-dependent
element of Vir™, which we shall write as

F_l — ... ed)SLfS e¢2L72 e¢1L71 pLO , »Y(w) = P_lw == - — = —F + o (239)
where ¢, (x), m > 0 are infinitely many scalar fields generalising the dual potential p(x). The
natural action of Vir~ elements on V(w) can be used, in particular, to rephrase (2.26) as

V(w) = V(y(w)) = F_1V(w)F, (2.40)

where expansion at w — 400 is understood and we must now regard y(w) as the arbitrary series
(2.39) rather than the expression that appears in the linear system. We therefore see that we
may define an extended coset representative which includes the Vir™ group element above:

V=TV (y(w)) = V(w). (2.41)

We can then combine this expression with the transformation property of V(y(w)) in (2.29) to
deduce how V transforms under the loop group. One finds that the compensating transformation
in (2.29) is brought to the left of V after conjugation by I' and therefore it depends on w directly,
rather than through y(w):

V=TV (y(w)) = h(w)Vgw),  hw)=hr"T1/w)= (" (w)" (2.42)

The compensating element h(w) belongs again to a K(Fy) subgroup of the loop group but now,
crucially, it is defined by a field-independent involution that acts by inversion of w rather than
y. Indeed this is the spectral parameter representation of the Hermitian conjugation (2.10)
that we were seeking. The extended coset representative also transforms under rigid Vir™
transformations such as (2.36):

V=TV (y(w)) — IV (y(w))F = FFV(y(f(w))> . (2.43)

In this case no compensating transformations are required. We conclude that we have found an
extended set of fields parameterising the coset space

Eg x Vir~

RE) (2.44)

where K (Ey) is defined in terms of the field independent Hermitian conjugation (2.10). This
allows us to define the coset representative V in arbitrary representations of Eg. At this point

°In the linear system, the choice of s(w) amounts to a redefinition of the Y;, fields with m > 2.
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we remind the reader that in the spectral parameter representation K is represented trivially.
The field associated to the central charge is 0 and we will include it in V later when we work in
a faithful representation of the algebra.

We can now introduce the twisted self-duality constraint equivalent to (2.22) and (2.23). We
introduce the Hermitian and anti-Hermitian parts of the Maurer—Cartan form

@V ) (w) = P(w) + Qw),  PT(1jw) = P(w), Q'(1/w)=-Qw). (2.45)

Notice that while dVV~! € ¢s @ vit™, P and Q take values also along the positive part of vir.
The twisted self-duality constraint takes the form'®

*P(w) = & (P(w)) = wP(w). (2.46)

Under the symmetries of the extended coset space, P(w) only transforms by conjugation with the
local K(FEy) transformation defined in (2.42). The shift operator does not commute with K (Ey),
but one can see that the commutator is again proportional to (2.46) and hence the twisted self-
duality constraint is invariant. In Lorentzian signature «?P(w) = P(w). The right-hand side of
(2.46) does not apparently square to P, but taking into account (2.11) and Hermiticity of P it
can be easily shown to define a Zsy action. On the other hand, (2.46) also implies a cascade of
duality relations

™ Pw) = S, (P(w)), meZ. (2.47)

We now show that (2.46) is equivalent to the linear system in the triangular K (Fy) gauge
of (2.21) and (2.30). Let us first focus on the loop components of the extended Maurer—Cartan
form. We define the components of P(w):

Pw)=> PiTa+ Y PnLm, (2.48)
meZ meZ

where PgT A = P is the eg coset element and does not depend on w. Equation (2.47) implies
PY =™ Py (2.49)
which in turn gives

1+w2. w1 .
P+ —— *P (2.50)

(VY1) (w) = T(@VV ()Tt = Q+

loop 1—w—

where it is understood that the denominators are expanded in a geometric series for |w| > 1.
Because P and () are w independent, we see that by conjugating this expression with ', (2.22)
is reproduced in a geometric expansion for |y(w)| > 1. We now only have to show that the vit

10We stress that we have so far defined P(w) in the spectral parameter representation so that P(w)|x = 0 by
construction. The twisted self-duality constraint introduced here must be modified when written in a faithful
representation of ¢s @ vit to take into account the central charge sector. This will be done in Section 4.
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components of (2.46) restrict the a priori arbitrary y(w) to solve (2.23). Following the same
steps as above we find for the vit components of the Maurer—Cartan form

arr-! — —p—ldp(Lo n 2ZL_2n) e *dp<2ZL_2n+1> (2.51)
n=1 n=1
g, LHwE 0 g 2w O (2.52)
=P T e TP P 1 w2Yow - '

Observing that d(F_lw) = dy(w) = —I'"'dI'T"'w, we see that it is sufficient to apply the
expression above to w, multiply by I'™! from the left and substitute (2.19) to reproduce (2.23),
which concludes our proof. This relation can also be reinterpeted as defining duality equations
for all the ¢, fields. Expanding dI'T'"! in the first few orders and using twisted self-duality we
find

dgpr=2xdp,  dgp=4d(p*),  dés—drdgy =2p>xdp, ... (2.53)

We see that ¢; is the same as p up to a factor of 2 and in fact, contrary to the loop case where
all dual potentials are non-locally related to each other, the whole tower of duality relations
can be integrated to algebraic expressions in p and p (or ¢1) exclusively, so that the only truly
non-local relation is (2.19):

¢ =2p — 250, By = p? — 251, b3 =2p%(p — s0) — 282, ... (2.54)

The integration constants s; are those appearing in (2.38) and we have set s_; = 1/2 using the
rigid Lo symmetry included in (2.43), as was already implied by the parameterisation (2.39).
We stress that there is no solution of twisted self-duality such that the vit™ scalar fields vanish
unless dp = 0.

We conclude this section by rewriting (2.46) in terms of the K (Fy) invariant and Eg x Vir~
covariant current

J=22"1Py. (2.55)
Dressing (2.46) with V, we find
*wJ(w) =y(w)J (w) = S{(J(w)). (2.56)

The operators S}, act as multiplication by y(w)™. Their definition in a lowest weight represen-
tation will be presented in Section 4 and Appendix B.

3 Gauge structure of Eg exceptional field theory

In this section, we exhibit the F9 ExFT gauge structures, beginning with a review of Fg gen-
eralised diffeomorphisms and defining a Dorfman structure for Ey. In Section 3.2 we then
introduce a minimal set of vector fields that are needed to covariantise external derivatives, and
we define their field strengths. We also define a natural set of transformation properties for
these fields in terms of the Dorfman product. However, some modifications to these structures
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will be required in order to construct the dynamical theory. As a necessary step to introduce the
Virasoro-extended formulation of the theory, in Section 3.3 we extend the definition of gener-
alised diffeomorphisms so that they gauge the larger algebra es @ vir™. The vector field contents
and their transformations are extended as well. In Section 5, when considering the minimal
formulation of Ey exceptional field theory, we will amend the (non-extended) gauge transforma-
tions of the vector fields and of their field strengths by a different choice of trivial parameters
compared to this section, and also introduce extra terms dependent on the external metric g, .

3.1 Generalised diffeomorphisms and Dorfman structure

The internal space of Fy exceptional field theory has coordinates Y transforming according to
the R(Ag)_1 and the generalised Lie derivative was introduced in [17]. It has a gauge parameter
AM that lies in the R(Ag)_; representation of Fy and an ancillary parameter ¥ y lying in the
representation R(Ag)o® R(Ag)—1. Due to the Fock space structure of the R(Ag)y representation
introduced in (2.3) we write the parameter A as a ket vector |A) and the ancillary parameter
YM y as an operator ¥ in this space that also changes the d weight. The two notations are
related by expanding out the ket vector in a basis and writing |A) = AM|eps). The coordinates

Y'M arise in this way and the derivatives (0| = (¢M |0 transform in the conjugate representation

R(Ag)-1.
The generalised Lie derivative acting on a vector |V') belonging to R(Ag)—1 is given by

Lias|V) = (0vIMV) = 1as@a TIA)TP V) — (Oa|A) V) — n_10sTe(T*S)TP|V).  (3.1)

Here, (0| is the derivative with respect to the internal coordinates written as a bra vector and
the subscript indicates which object the derivative is acting on. Thus, the first term in (3.1) is
the transport term, the second the rotation term and the third a weight term. The final term
realises the ancillary transformations. In index notation, (3.1) reads

E(A7E)VM = AN8NVM — 8NAMVN + YMNanNAPVQ — n_lagTaPQEQp TBMNVN , (3.2)
where the Y tensor defining the section constraint in (1.1) is defined as
YMN b = 6N 65 — 65 68 — napTM TV p . (3.3)

More generally, the action of the generalised Lie derivative on a generic field ®, with respect to
the pair of parameters A = (|A),Y), takes the form

LpP = (0p|A)P + [N, 0P, (3.4)
where we defined the linear combination [-], for any pair of parameters
M\]a = Nap <8A|TB|A> + -1 aBTr(TBE) ) (35)

and where 0% denotes an infinitesimal rigid eg @ L_1 variation. We insist that this includes the
variation with respect to d and not Lg. For a vector |V) in the R(Ao)_1 representation, as in
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(3.1), the weight term that appears then follows from the infinitesimal scaling associated with
the action d|V) = (Lo — 1)|V).

Covariance of the generalised Lie derivative under rigid eg @ L_; transformations requires
the combination [A], to be a projection onto the adjoint representation. This implies that the
parameters |A) and 3 must transform separately as

Xo 0%A) = — XaT[A) + Xo|A),

X, 698 = —Xo[T %] — Xo% + X_1|A) (0], (3.6)
where here by definition
XoT = XoLo+ X¢K+ > X2+ X 1Ly, (3.7)
nez

The last term in (3.6) indicates that the parameters |A) and ¥ transform together in an inde-
composable representation under L_;. In the following, the ‘doubled notation” A = (|A), ¥) will
be consistently used for other indecomposable pairs of fields.

Asisusual in EXFT, the algebra of generalised Lie derivatives closes only when an appropriate
(strong) section constraint is fulfilled. The section constraint (1.1) is written explicitly in terms
of eg generators [17]

Nag (01|T* © (0a|T7 + (01| @ (D] — (B @ (B1] = 0, (3.8)

where (01| and (0;| denote two partial derivatives acting on any objects in the theory. It moreover
implies that

Nkap(O|T* ® (R|TP =0, forall k€ Nt
Ni1as (01T @ @I + (BT & (0]T°) = 0. (3.9)

The ancillary parameter X is also section constrained [17], in the same way as happens for
Fg [22,45]. This can be expressed by writing it out in bases as ¥ = SM ylea) (V] = |X) (s,
where we have introduced a suggestive notation involving the bra vector (ms|.!' The constrained
nature of ¥ corresponds to replacing either (91| or (02| in (3.8) by it. The constraint on 3 also
ensures that the trace operation in (3.1) is well-defined even though we are acting on an infinite-
dimensional space. As an operator X has finite rank.

Any solution of the section constraint can be brought to the following form by an Eg trans-
formation:

(0] = (0], + (0|T,04 (3.10)

where 04 must satisfy the section constraint of Eg exceptional field theory [22].
The generalised Lie derivative closes according to

[Lais Lagl = Lingno)s (3.11)

1% is not factorised, but the notation |X)(ns| helps to describe the section constraint for ¥.
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with Ay = (|A1),21) and Ay = (|A2), X2), and where the the exceptional Lie bracket is given by

(M, NolE = (JA12), X12) (3.12)

with [17]

—_

|A12) = = (Liay0)lA2) — Lias0lA1)

1
212 == E(Al,O)EQ - §n_1agTr(Ta21)T522 (313)

\)

1
= 35 (00T A2)TPIAL) — (0|7 |A)T? A2) ) (9o = (1 6 2),

The action of the generalised Lie derivative on a pair of parameters is given by
Lo = <£/,\1|A2> s Lirr 052 — 1-105TH(TS) <Tﬁz:2 - 22T5> - Tr(21)|A2>(8A2|>
= <EA1|A2> , (D51 A1) D2 — 0ap (O, [T A1) TP S5 + Ea|Aq) (O, |
— 1 1ag (TS TS, — Tr(S1)[A2)(0n, ), (3.14)

where the term Tr(X1)|A2)(0a,| is due to the indecomposable structure of the pair Ay under L_;
transformations. In the second step of (3.14) we have used the section constraint to simplify a
few terms.

In order to bring out the covariance properties of the gauge fields and field strengths in the
next section, it is convenient to introduce a generalised Dorfman structure [46]. This is defined
via the following (non-commutative and non-associative) product which involves exclusively
pairs of parameters

Mohy = <£A1A2 s La 2+ 101006, [T A1)TP | A2)(On, |

F oA THT21)T740) 05, - A2 0815 ) (3.15)

A key property of the Dorfman product, which is not satisfied by the generalised Lie derivative,
is that it obeys the Leibniz property

M o (/\2 o /\3) = (/\1 o /\2) oMNg+ Mg o (/\1 o /\3) . (316)

This relation can be proved by showing that the Dorfman product closes according to the anti-
symmetric Dorfman bracket [Aq, s, = % (A1 o Ay — Ny o Ay), and that the symmetric bracket
{1, Ao} = 3 (M o Mg+ Ag o Ay) is trivial (with respect to o itself). These properties respectively
correspond to the projections of (3.16) onto its antisymmetric and symmetric parts in A; and
Mo, and are discussed in more detail in Appendix A. Let us simply note here that, on the first
entry of a pair of parameters, they imply that under the generalised Lie derivative

£V\1J\2]D = E[N,AQ}E > E{ﬂ\l,ﬁ\g} =0, (3.17)
where the E-bracket was defined in (3.13).

19



3.2 Covariant derivatives and field strengths

Using the Dorfman structure we can conveniently deduce the form and properties of the covariant
field strengths associated to a pair of ‘vector fields’

Ay = (AY . BMy) = (|Au), By) . (3.18)

The first component |A,,) is the usual vector field in two external dimensions, and it gauges the
|A)-diffeomorphisms. It is thus valued in the basic representation of FEg and it carries weight —1
under d. Its second component partner B, is associated to X-diffeomorphisms and is therefore
constrained on its lower index and carries weight +1. This means the two components of A,
behave as their respective parameters under an infinitesimal eg @ L_; variation (3.6) and, in
particular, also transform in an indecomposable representation under L_1.

We define a covariant derivative as

D=0, L, . (3.19)

As usual, its covariance under generalised diffeomorphisms is ensured if, acting on any vector
VM one has

opD, VM = £,D, VM, (3.20)
where A = (|A), ). Using (3.11), we find that this can be achieved by the transformation
Ipby = Oy —[Ay, N + trivial parameters

= Oy — A oA + trivial parameters

= 0N+ Mo A, + trivial parameters, (3.21)

in terms of the E-bracket (3.13) and the Dorfman product (3.15). We have given three equivalent
ways of writing the transformation and they differ by trivial parameters according to (3.17). This
is consistent since the transformation of A, is only defined up to trivial parameters, as A, only
appears as the parameter of a generalised Lie derivative in (3.20).

In exceptional field theory, one typically chooses to work with the second transformation
in (3.21) (without trivial parameters), which can be written in more compact form as

oph, = Dy, (3.22)
in terms of the Dorfman covariant derivative
D,=0,—A 0. (3.23)

However, for the purpose of Section 5, we will consider in this paper the third version of the
transformation in (3.21) (without trivial parameters). For the components of A, we then get
explicitly

5//\‘Au> = au’A> + EMAM> ) (3.24)
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and

5”\BH = 8“2 + EI\B;L
+ Mg (AT A)T?| Ay) (On] + 0as Tr(TOE)TP|A) (O] — |Ay) (05, (3.25)

that we have written without displaying internal space indices. We also recall that the second
term contains a term of the form Tr(3)|A,)(0a| which is due to the indecomposable structure
of the pair of gauge fields A,.

Using the covariant derivative (3.19) or its Dorfman version (3.23), we can introduce a pair
of field strengths

[FNV = (‘F/%7QMVMN) = (’ful/>7guu) (326)

Dy, D) = —LF [D,,D,)]) =-Fuo, (3.27)

pv?

where the former expression is implied by the latter. Note that these relations only define the
field strengths up to trivial parameters. Under rigid eg @ L_; transformations the pair of field
strengths behaves as the pairs of gauge parameters and gauge fields, namely is transforms in
an indecomposable representation like in (3.6). As is customary in exceptional field theory,
covariance of the field strengths under generalised diffeomorphisms requires us to introduce
higher (external) forms which enter in their expressions as trivial parameters. Once again, for
the purpose of Section 5, we can choose to write

[F,Lw =2 O[MAV] — [Al“ AV]E + LTJCHV, (328)

where C,,,, denotes the set of two-forms defined in (A.24), while wC,,, is the Dorfman doublet
of associated trivial parameter using (A.11). The parts of the field strength components that
are independent of the two-forms will be denoted by |F,,) and G,,. In form notation, their
expressions follow from (3.13) and thus read'?

IF) =d|A) — 3Dl A)A) + 10as(0a|T|A)TP|A'Y + 1(04]A)|A")
1
G =dB — (3B|A)B + 15(0a|T*|A) T’ B + B|A)(a| + En_lagTr(To‘B)TﬁB
— 01 ap(0A|T TP A'Y (04| — 11 0p(0a|T*|AYTP|A) (D4, (3.29)

The explicit dependence on two-forms in (3.28) as well as their transformations under generalised
diffeomorphisms are given in detail in Appendix A, and are tuned to cancel the non-covariant
variations of (3.29). This ultimately ensures that the field strengths transform covariantly as

SAF = Ao . (3.30)

!2We use the notation |A’) to distinguish the vector field that is not derived by the bra (9|, so that (94| ®
|A) ® |A’) means in components dpr AN AT
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We stress that these are not the final transformation properties for the field strengths of Eg ex-
ceptional field theory, for several reasons. In the extended formulation of Section 4, an extended
o product is necessary to capture the gauge transformations of a larger set of vector fields. This
is explained in the next subsection. In the minimal formulation of Section 5, the transformation
properties of both the B field and its field strength G are modified by extra terms involving the
external unimodular metric g,,. Furthermore, both formulations of Ey exceptional field the-
ory imply an Euler-Lagrange equation for |F) that appears with a projection. This projected
equation is gauge-invariant by construction. If one wants to extend the duality equation to
be unprojected and gauge-invariant, the gauge transformation of ' must be modified by triv-
ial parameters. This applies to both formulations, and we shall see explicitly in the minimal
formulation in Section 5 that external diffeormorphism invariance requires the inclusion of the
unprojected duality equation.

We finish this section by presenting a set of Bianchi identities. Using (3.27) to formally
evaluate the action of three antisymmetrised Dorfman covariant derivative on a generic pair
V = (]V),V) leads to the relation D(F o V) = F o DV, which means that

(DF) oV =0. (3.31)

On the first component of V this relation reduces to Lpg|V) = 0, and implies the following two
identities
(0IDF) =0, [DF], =0, (3.32)

where the projection in the second equation was defined in (3.5).

3.3 Extended gauge structure

The extension of the group theoretical structure discussed in Section 2.3 in the context of two-
dimensional supergravity suggests the existence of an extended gauge structure for exceptional
field theory. In this section, we show that one can indeed consistently enlarge the algebra that
is gauged by generalised diffeomorphisms to ¢g @ vit™. Many of the identities and results of
the previous section still hold in this extended setting and we will allow ourselves to be more
schematic.

We start by considering an extension of the generalised Lie derivative (3.4) in which the
rotation term now involves an infinitesimal ¢g @ vit™ variation. The set of gauge parameters is
thus also enlarged, and now consists of

A= (|JA), ™) keINt. (3.33)
On a vector |V') that lies in R(Ag)—1, we have
LAV) = (Ov|A)|V) + [N 40| V)
= (Ov|A) V) = 1ap (OAITINTP V) — (OaIN)|V) — in—kaﬁTr(TaE(k))Tﬁ\V% (3.34)

k=1
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where the parameter X" corresponds to X in the previous section, and where we have defined
[Al, as the natural extension of the projection (3.5) onto ¢g @ vir™

[Na = nag(OaITPIA) + > n_rasgTr(TPED). (3.35)
k=1

We recall that the weight term in (3.34) is due to the fact that 6% includes a variation with
respect to d and not Lg. Acting on a generic field, we use (3.4) together with (3.35).

In order for the projection [A], to transform in the adjoint, the set of gauge parameters must
transform under rigid ¢g @ vit™ variations as

Xo 0%A) = =X TA) + Xo|A),

Xo098® = =X, [T ]+ Y (2p — k)X X077 4 b X_4|A)(0al, (3.36)
0<p<k

for all k € INT, where

[e.e]
XoT® = X L+ XK+ X% (3.37)

p=0 nez
The parameters X®) thus carry weight k under d. Note that, similarly to the unextended case, the
gauge parameters A = (|A), ¥®) transform in an indecomposable representation under L_,, for
all p > 0. Let us also point out that a further extension of generalised diffeomorphisms to include
gaugings of the full Virasoro algebra would not be compatible with the section constraints.
The set of constraints (3.8) and (3.9) are indeed invariant under vit™ transformations, but
not under any of the transformations generated Lj with k£ > 0, for instance an infinitesimal
L, transformation applied to (3.8) maps 7,8 to 114, but the symmetrisation in (3.9) is not
reproduced.

The generalised Lie derivative (3.34) still closes as in (3.11), but according to an extended
E-bracket [A1, Ao]g = (|A12), 2{%) which reads explicitly

(Liay0)lA2) = Liay0)|A1))

N =

|A12) =

, 1S o , 1 B
215 = L0085 — 5 ) pasT(TOS)TISY — o 37 (2p — WT(S7)55 7" (3.38)
p=1 0<p<k

1
— 2 08 10 (00 TA2) TP Ar) = (00 [T*A1) T71A2) ) (9ol = (1 5 2).

The proof of closure only relies on the use of the section constraints (3.8) and (3.9) which
were already necessary for consistency of the unextended gauge algebra, and is presented in
Appendix A. Note that E(lkz) is still correctly on section.

The gauge parameters X*) are highly degenerate. The only new gauge transformations
introduced by ©® with k > 2 are those generated by L_j with k > 1, associated to Tr(X®))
and acting as shifts on the dual potentials ¢y introduced in Section 2.3. The ¢g transformations
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generated by X* can all be reabsorbed into ™ up to trivial parameters. To see this, we take
the ¥ components of (3.35) and apply (2.9) to write

S kg TH(TOEO)TE = 3 <naﬁTr(Z(’“)T°‘)S_k(Tﬁ) - Tr(2<k>L_k)K) . (3.39)
k=1 k=1

By rigid Eg covariance we can assume that the X* solve the section constraint as in (3.10).
Substituting into the above expression and focussing on the gauging of loop generators, one finds
that X gauges some eg generators TOA, a larger set of T fl generators, and all Tf‘n for n > 2.
Higher X then gauge the same algebra shifted by 1 — k along the negative loop levels. Hence,
each X for k > 2 gauges a loop subalgebra of the one gauged by . The only new generators
gauged by X* for k > 2 are then L_y, associated with Tr(X*®). Rigid Ey covariance of [A],
then guarantees that this conclusion holds for any other solution of the section contraint.

In order to simplify the definition and transformation properties of the vector fields and their
field strengths, we introduce a o product naturally extending (3.15)

Aohy = <ﬁ//\11\2, Lp 25 4 05 11 ap (O, [T A TP | A2) (0, | + NapTr(TSS)TP | Ag) (O, |

~ )05 1 — = (T A) O]~ 3@ A)) ) . (340

This expression satisfies (3.17), meaning that it is equivalent to the extended E-bracket (3.38)
up to the addition of trivial parameters. However, this extended o product does not satisfy
the Leibniz identity (3.16). More precisely, it fails to satisfy it by a trivial parameter. We can
nevertheless use it to define the transformation properties of the vector fields and their field
strengths in direct analogy with Section 3.2. We then introduce additional constrained gauge
fields B,(f), and their field strengths Q,(ﬁ,), associated to the new generalised diffeomorphisms
generated by L_j. Our notations are thus naturally extended as follows

A= (14w, BY) s B = (1Fw) Gi) s (3.41)

with & € INT. Under rigid ¢9 @ bit~ variations these sets of gauge fields and field strengths
form indecomposable pairs and transform as the set of parameters A = (JA), ™) in (3.36).
The extended gauge connection still transforms according to (3.21) and the field strengths are
defined according to the first expression in (3.27) which we reproduce here:

Dy, D)) = —Lf,, - (3.42)

The second expression in (3.27) now only holds up to a trivial parameter. The extended field
strengths contain a trivial combination of two-form fields as discussed in the previous section,
but now including the novel extended trivial parameters described in Appendix A.4. Then,
combining (3.11) with (3.42) we find that the transformation property (3.30) still holds in the
extended setting, with any trivial parameter that may arise on the right-hand side absorbed into
the two-form transformation.'® Finally, the Bianchi identities (3.32) still hold in the extended

13 As stressed after (3.30) and discussed in Section 5, invariance under external diffeomorphisms requires to
introduce an unprojected duality equation for |F) which in turn requires to amend (3.30) by a trivial parameter.
We will not discuss external diffeomorphisms in the extended formulation, so (3.30) will suffice in this setting.
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setting, as they can be also deduced by formally evaluating the action of three D differentials
on a covariant field.

4 Virasoro-extended Eg exceptional field theory

We are now equipped to introduce the field content of Fg exceptional field theory and build a
pseudo-Lagrangian to determine its dynamics. The approach we follow in this section is based on
the formalism introduced in Section 2.3. In particular, the twisted self-duality constraint will be
the natural covariantisation of (2.46) and (2.56). This makes the connection to two-dimensional
supergravity and to the linear system straightforward, and has the further advantage that scalar
field currents covariant under generalised diffeomorphisms can be naturally defined in terms of a
gauge connection A transforming according to (3.21) and (3.40). We will however only develop
this formalism in the conformal gauge g,, = 7. We refer to this approach as ‘extended’
because of the presence of the vit™ scalar fields ¢,,, their associated symmetries and gauge fields
B™. The ‘minimal’ approach to Ey exceptional field theory and its dynamics is introduced in
Section 5.

In this section we always leave wedge products as understood, writing for instance JJ in
place of J A J.

4.1 Covariant currents and twisted self-duality

We begin by introducing the (Es x Vir~)/K (Ey) coset representative

V=TV = p_LO e~ ®1L1 g=b2La V14T YouT4, | —oK (4.1)

where we work now in a faithful representation of the algebra so that K # 0. We will regard
e~ 7K as contained in V.

These expressions involve products of infinite products. However, the coefficients of any
generator T f‘m or L_,, in the Maurer—Cartan form are finite expressions that can be computed
by truncating the infinite products to the first m factors. We then define the generalised metric
(of weight 0)*

M=VV, (4.2)

that transforms under g € Eg x Vir™ as

M = gt Myg. (4.3)

14Because Hermitian conjugation does not map Vir~ nor the completed loop group to themselves, expressions
like M need qualification. One way is to first identify the K (FE9) singlet element in R(Ao)o ®sym R(Ao)o, which
we denote as Ayn (the underlined indices transform under the local K(FEg) symmetry), and then regard the

generalised metric as a field dependent element of R(Ao)o®sym R(Ao)o, which we write as Myn = APQVB]\/[VQN.
However, it will turn out to be more convenient to treat M as a group element. All manipulations% encounter
are then justified by switching to the Unendlichbein formulation in terms of the Hermitian and anti-Hermitian
projections P and Q of the Maurer—Cartan form, see (4.26) and Section 4.4. We provide more details on the
definitions of the group F9 and its representations in Appendix F.
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We will always take V and M in the R(Ag)o representation and write explicitly the p factors
when they act on representations of non-zero conformal weight h.
Taking an internal derivative of M we define the internal current

I oT® = M7oyM, (4.4)

which satisfies the section constraint along the index M. Translating this index to braket nota-
tion we shall write Jas o7 (M| = (J.| ® T with (eM| a basis for R(Ag)_;. Under generalised
diffeomorphisms M transforms covariantly, namely dpM = L M with

MTLAM = (To|A) T + [na5(8A|Tﬁ|A> + 3 NrasTr[2OT7] } (Ta + M—l(Ta)TM) ,

r=1

— (TaA) T + [N, (Ta n M—l(Ta)w) , (4.5)

Notice that compared to [1], we now include the action of infinitely many Virasoro generators
in both the gauge parameters (through Tr(X¢)) and in the conjugation by M. In the second
line we have used the shortcut expression [A], introduced in (3.35). We can then define the
external current that is covariant under rigid Eg x Vir™ transformations as well as generalised
diffeomorphisms

J = M'DM = MUAM — (Jo]A) T + [Al, (T”‘ + M‘l(TQ)TM> : (4.6)
We expand the algebra components of J as follows:

I=3T"=> (AT + JmLm) + Ik K. (4.7)
meZ
The twisted self-duality constraint of exceptional field theory will essentially be the covari-
antisation of the two-dimensional expression (2.56), but we now need to take into account the K
component of the current which was trivially represented in Section 2.3. The shift operators S,
and Sy, introduced in (2.8) and at the end of Section 2.3 can be interpreted as multiplication
by w™ and y(w)™ respectively, and we can thus relate them by I' conjugation using (2.39):

SLX) =8 (T7!S,(TXTHT) (4.8)

for any X € ¢g @ vir. Any Sy, can be expanded as a series in Sj, operators, with £ < m and p
and ¢, dependent coefficients. For instance, (2.39) is reproduced as

ST= S-S S - nSa— (044 god)sat .. ] (19)

The Sy operator on the right-hand side of (4.8) is only necessary to remove any spurious K
component that might be generated by I' conjugation because of the vit central charge. Several
properties of these Vir~ field dependent shift operators S}, are described in Appendix B. In
particular, notice that because of the factors of p generated by I' conjugation all S}, operators
carry weight 0, whereas S, carry weight m.
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Consider now the shift SY, (J) of the covariant current. The transformation properties of J
and I' imply that under a rigid transformation X € ¢g @ vit™

0xSH(J) = —[X,SLEA) — w X (SHQ) 4K, (4.10)

where we are varying both J and the I' implicit in the definition of the shift operator. The
expression w®? is the algebra cocycle corresponding to (minus) the central charge component of
the eg @ vit commutator: given X, Z € eg @ vir with components

X =XoT% =Y (XFT + XpnLm) + XkK, (4.11)
meZ

and similarly for Z, we define

W XoZs = ~IX, 7)), = 0B X3 25" — % (n® —n) Xp Z . (4.12)
nez ne”Z

To compensate for this cocycle term in (4.10) we follow the same strategy as in [1] and define
covariant shifted currents
3 = 853) + XK, (4.13)

where the new one-form fields x}, satisfy the indecomposable transformation property
dx X, = w? X0 30" (4.14)

where we have used w® = 0 to write J'™ in place of Sp, (J). This transformation property guar-
antees that the shifted current transforms as an algebra element (of ¢g@vit) under X € eg @ vir™:

ox3M = —[X, 3], (4.15)

More generally, for any Z € ¢g @ pit transforming as an algebra element under ég @ vit™, we
may define a K completion Z}, of S},(Z) such that

20 = SL(Z)+ ZEK,  oxZ = —[X, 2], (4.16)

When the K completion of an object can be expressed entirely in terms of other fields of the
theory, we will use the notation introduced above. If the K completion is an independent field,
we use a new symbol for it, as we did for J and /..

We define the xJ, fields to be covariant of weight 0 under generalised diffeomorphisms.
Namely, their transformation descends from (4.14):

Sty = Oy AN, +w P NI (4.17)

This implies in turn that the 3™ are covariant, their transformation under generalised diffeo-
morphisms follows from (3.4) and (4.15):

a3 = (03] A)3™ — [N [T, 3] (4.18)
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Notice that (4.12) depends implicitly on the representation in which we write J, through the
vit central charge cyi.. This means that we must specify in which representation we write J in
order to define the x}, fields. We have defined J in the R(Ag)o representation and hence ¢y, = 8
as this is the natural choice for Ey exceptional field theory, because its internal derivatives,
gauge parameters and generalised metric all sit in (tensor products of) R(Ag)p, representations
and their duals. Our construction applies to loop groups over any other simple Lie group, and in
each case ¢y will take a different value. Hence it will be more convenient to leave ¢y, unspecified
in (4.12) to keep track of where it appears.

The current satisfies J = M~13T M. This allows us to relate the action of opposite shifts by
bringing M through a shift operator

SH(3) = M7 (ST (@) M+ (M) I K, (4.19)
where we have introduced the (group) cocycle
W (M) = M8y (T*) M — So(M™H(T*) M) = MY (T*) M|, — 55 . (4.20)

Several properties of such cocycles are collected in Appendix B. We then see that we can identify
x" fields associated to opposite shifts up to a cocycle, by imposing

M E) M =3 (4.21)
so that
X = Xl + 0 (M) II =31 — (M) ™ (4.22)

Finally, we obviously want J(© = J and hence identify xo = Jk-
With the definitions and transformation properties above we can state the covariant twisted
self-duality equation of exceptional field theory

*3 =3W, (4.23)

which reduces to (2.56) along the loop and vit components for (9| = 0 and B™ = 0. The K
component of this equation reads
*xJk = X11( ) (424)

which is not a duality equation for o but rather shows that x] is an auxiliary field that does not
carry any on-shell degrees of freedom. While #*J = J, the shift operator on the right-hand side
does not square to Sp.'” This means that by iterating (4.23) along the loop and bit components
we recover a cascade of duality relations analogous to (2.47). In order to complete the K sector
of such relations we then introduce the appropriate xi, fields for every shift, obtaining

#ml gn) = ymtn) m,n €. (4.25)

We stress that the loop and vit components of these relations are simply linear combinations of
the components of (4.23) and are therefore redundant. On the other hand, the K component

15We can also rewrite (4.23) in the equivalent form «J = M~*(3®)¥ M so that the operator on the right-hand
side is involutive.
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reads ™|y}, = x7,.,, which relates all x" fields to each other and to Jk. The relations (4.23)
and (4.25) are manifestly invariant under rigid Eg x Vir~ and generalised diffeomorphisms, and
compatible with (4.22).

We can also introduce the covariant versions of the Hermitian and anti-Hermitian projections
of the Maurer—Cartan one-form

DYVW=P+Q, P =P, Q'=-Q. (4.26)

The relation to the currents J is conjugation by V:

J=20"1PVy, (4.27)
and we can require a similar relation for the shifted currents which, using (B.10), leads to the
definitions 1 1

P = Su(P) +XmK,  Xm = Xem = 5 — 5 (VI (4.28)

so that 3™ = 2V=1P(™) Y. The one-forms ¥,, complete the K component of S,,,(P) so that P
transforms with a commutator under K (eg), analogously to the K completions of S}, introduced
in (4.16).

With these definitions we can rewrite twisted self-duality (4.23) and (4.25) as

*P =PWL Hmlpn) — plmn) (4.29)
We shall expand P and Q similarly to (4.7):

P=> (PRTp+PuLn) +Pc. Q= (QRTh+Qnlm). (4.30)
meZ meZ

In terms of these components, twisted self-duality implies in particular

P ylmlp0  p _ lmlpy. (4.31)

4.2 Shifted Maurer—Cartan equations

We will now construct a topological pseudo-Lagrangian for vit™ extended Ey exceptional field
theory. The Euler-Lagrange equations obtained by varying this pseudo-Lagrangian must be sup-
plemented with the twisted self-duality constraint (4.23) (or (4.29)) to reproduce the equations
of motion. In particular, in analogy with lower-rank exceptional field theories, we will require
that the Euler-Lagrange equations for the x}, fields as well as the B(™ fields vanish upon using
twisted self-duality, reflecting the fact that these fields do not encode any physical degrees of
freedom. We will work only in conformal gauge with the two-dimensional unimodular metric
fixed to the Minkowski metric: g,, = 7,,. From the point of view of Kaluza-Klein decomposi-
tion of a higher-dimensional metric, it is always possible to partially gauge fix higher-dimensional
diffeomorphisms so that a 2 x 2 non-degenerate block on the diagonal of the higher dimensinoal
metric is reduced to 7, (or d,,). In other words, even when g,,, depends on the YM coordinates
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subject to the section constraint, reflecting that our theory is in fact a higher-dimensional su-
pergravity, it is still possible to switch to conformal gauge without loss of generality. As a result,
however, the equations of motion obtained from the pseudo-Lagrangian and twisted self-duality
must be supplemented with the covariantised version of the Virasoro constraint (2.17). We will
come back to this in Section 4.6. We will restore g,, in Section 5.

The two-dimensional current (2.55) satisfies the Maurer—Cartan equation dJ + 5 [J J] =0,
where the wedge product is understood and the commutators are implicitly graded with the
rank of the p-forms, namely for A and B any ¢g @ vit valued forms, [A, B] = A, A BBfO‘BA,TV.
For the covariant current J this expression becomes

DI+ S [3, I + (Jal F) T + [Flo (T + M™HT*) M) =0, (4.32)

N =

which is deduced from (4.6) and the first equation in (3.27). We will apply this identity to
a shifted current 3™ in order to construct a candidate topological term for exceptional field
theory. The idea is that while all components of J satisfy the above integrability condition, the
central charge component of J™ is y¥, which is a fundamental field. Thus, we will be able
to write a set of two-forms based on J™ and its derivatives that transform by conjugation
under rigid Eg x Vir~ and such that, because of the identity (4.32), only their K components
are non-vanishing. As a consequence, these expressions are automatically invariant under rigid
Eg xVir~. We will then find that only one such expression is compatible with twisted self-duality,
covariant under generalised diffeomorphisms and independent of the two-form fields appearing
in the covariant field strengths F. That will be the main part of our pseudo-Lagrangian.
We begin by taking a covariant derivative of J(™):

D™ = DSY (3) + Dxt, K
:So< (I~ F”P_l)P)>+DXZnK

S (r—l(smabrr—l, P3r-1) - [DIT, &, (T30 )))T )+SY (D3) + D, K

=m» (DIT)_;8!_,(3) +SL(DI) + Dy}, K. (4.33)
q=0

In the last line (DI'T~1)_, is the L_, component of the Maurer—Cartan form and we used (B.2).
We now apply (4.32) to the second term and use (B.12) to arrive at the identity

wm) L Lea m o . o
DI 4 L3, 3] + S DIT )y (8114 (3) — 8Ly ) + (el F) S4,(T%)
q=1
Fla S5 (7% + M (1)1 M) + (gwamag’”’ DY, K = 0. (434)

This expression contains several shift operators which we now want to complete by adding
terms proportional to K, as described in (4.16), so that the completed expression transforms
as an algebra-valued object under rigid eg @ vit~. For each shift of J we will of course add
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the associated x? one-form. The shift of the internal current (7| is completed in analogy with

the external one and with [1] by introducing and internal scalar field {xJ,| in the R(Ag)_1
representation, defining

(T @ T = (Jal @ SL(TY) + (Xl ® K, (4.35)
and imposing the rigid transformation property
Ix (x| = (X5 X — Xo(xl| + waBXOC(jﬁ("”\ ; X € egDoir . (4.36)

The internal index of the internal current (represented by ( |) comes from an internal derivative
and satisfies the section constraint (3.8), therefore (x1,| must satisfy the section constraint, too.
Eventually we will find that only one such scalar appears in the pseudo-Lagrangian and that it
is related to the (x| field introduced in [1].

Finally, we need to construct the K completion of the expression [[],Sh, (TO‘ +M‘1(T°‘)TM)
as in (4.16). For reference let us write down

[Fla = 0ag(0F|T°|F) + Y nnapTr(GMT7). (4.37)

n=1

This expression transforms covariantly under Eg x Vir~. In particular, the rigid indecompos-
able transformation (3.36) of (F, G'™) guarantees Vir~ covariance. When we apply the shift
operator, Vir~ covariance of [F],Sh, (T%) still holds because Sy, commutes with Vir~ thanks to
the transformation of T" in (4.8), and because [[], does not take values along the positive vit
generators, so that no central charge term is generated. The same holds true when we apply M
conjugation before the shift operator. Hence, we simply have

i ([Fla ST + MO T M) ) = ~[Fla [ Loy, SHET 4 MOTM)) (038)

In order to look at the loop transformation, we first focus on [[F]aSln(T") and use the fact that
S, can be written as a series of constant S,,, operators such as (4.9), and the coefficients are Fg
invariant:

Sh=">Y_ ay(p,4) S (4.39)

k<m

Thus, we look at a single Sy, operator acting on [[], and perform a finite g € Eg transformation.
Using (B.14) we find

[Fla Sk(g™'T%9) = [Fla (97 Sk(T%)g — w®1(g7HK) (4.40)

Opening up the cocycle term using (B.7), (B.15) and (2.9), it reads
—[Flaw(g7") = —w(¢™") <77kaﬁ (OF|T°|F) + ) nk_naﬁTr(g(”Tﬂ))
n=1

= (0r|(9Leg ™" = Lo)IF) + > Tr(G™(9Lp—ng " — L)) (4.41)

n=1
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Where we used (B.16) in the second line. Recalling that this is just the transformation of one
term in the series of shifts defining Sy, and that of course Ly_,, = Si(L_,), we are led to the
definition

FY, = — (07185 (Lo)|F) — Z Te (™S (L) ) . (4.42)
such that in the loop variation of the comblnatlon
[FIST = [Fl,SY(T*) + FY K (4.43)

the cocycle terms coming from (4.40) cancel out. Furthermore, one can see that due to the
indecomposable Vir~ transformation of the field strengths, (4.42) is Vir~ invariant. This guar-
antees that (4.43) transforms as an algebra element. In order to define the K completion of the
term [FloSh (M~HT)TM), we observe that the M conjugate of (4 43) also transforms as an
algebra element. Sending m — —m and writing M = TTMT with Mt = M ¢ Eg, conjugating
(4.43) with M and applying Hermitian conjugation gives us

[Flo M™H(SY (T M +FY, K

t
[, <MSO <F—1S_ (rrer-t ) Y

a

_— i
- [[F]a <SO (FTMS_m( TOT > (M)[ﬂ‘_](ﬂ”)) K
= [Fla S5 (M7(T?) M) + ( !t <M>m£;’">) K
= [Flo St (M~H(T*) M) +MF1, K, (4.44)

where in the third line we brought M through Sy generating a cocycle term (written in terms
of (4.43) using wX(M) = 0), and in the fourth line we brought M through S_,,, which does
not generate cocycles because of the overall Sy projection. We then propagated Hermitian
conjugation through Sg. The K component of the third and fourth line is the expression we are
looking for. In the last line, for later convenience, we defined

ML =T, et (M)IFIS™ (4.45)

We can now complete each shift operator in (4.34) with the appropriate central charge term
arriving at the identity

F(TNF) + [FIST + [Flo S, (MHT) M) + MFYL K
1 > ~ -
— (Pt 520067 410 3 P = ) + ORI + T4, K
n=1

= XK. (4.46)
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In the first line we have used that the vit™ components of the Maurer—Cartan form are propor-
tional to the vir components of P: Py, = %(DFF_l)_n for n # 0. The internal shifted current
(J ™| is defined in (4.35). Because the left-hand side of this equation transforms by conjugation
under rigid Eg x Vir™, so does the right-hand side, which is therefore invariant.

4.3 Gauge invariant topological term

We will now show that only X can be used to construct a pseudo-Lagrangian. First, we notice
that by M conjugation X™ = X=™ and hence we focus on m > 0 (X® = 0 identically). Then,
we stress that all X™ have weight 0 under the generalised Lie derivative:

LAX™ = (Ox|A)X™ . (4.47)

Even assuming a covariant transformation property for X™ under generalised diffeomorphisms
(so that their variation equals the generalised Lie derivative, which we will prove for X" below),
we need objects of weight 1 to be able to integrate out the transport term above. Our candidate
pseudo-Lagrangians are therefore of the form pX‘™. Knowing this, we must check that the
Euler—Lagrange equations for the x? forms and the B fields vanish upon imposing twisted self-
duality. The B-field variation is more involved and will in fact require an extra correction to
the action, but the x? variation is straightforward. Using (4.22) to relate x forms associated to
opposite shifts and then variying with respect to x/,, m > 0, we find

5(pX™) o P oy, + m< > P X — Z Prn—p 0X) = Y Prmp X5 ) (4.48)

p>m p>0

and one sees for instance that the 5)({ term is proportional to P,,—1 + P41 for any m > 2
which does not vanish under (4.29). Instead, for m = 1 this expression simplifies to

[e.9]

P 1= p+1)5Xp7 (449)
p:l

which vanishes upon imposing twisted self-duality. This indicates that the correct topological
term should be based on X®.16
We now prove gauge invariance of pX™ (up to a total internal derivative). The first three

terms in (4.46) are manifestly covariant under generalised diffeomorphisms. Let us focus on [l?{
and compute its non-covariant variation

Ap = dp— L. (4.50)

'Rewriting the Euler-Lagrange equations (4.49) in terms of DI'T'™! one finds an expression analogous to
(2.51), with covariantised derivatives and Dp in place of xDp (and ¢1 = 2p). This shows that the one-forms
X', are Lagrange multipliers imposing that y(w), as defined in (2.39), reduces to (2.37) and hence essentially to
the function used in the Breitenlohner—Maison linear system. Lagrangian mechanics does not generally allow
integrating out one field using the Euler-Lagrange equations of another, hence we cannot naively substitute the
relations descending from (4.49) directly into the pseudo-Lagrangian.
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Because the field strengths transform with the extended o product (3.40) as in (3.30), one has
ApF = Ao F — LAF. Substituting into (4.37), (4.42) and (4.45), after some work we find

ApFla = —[No (041 F), (4.51)
ANFY = = MO, F) + p~ O SD|F) — p ' Te(S0) (0| F) (4.52)
ANFY = =N (04 F) (4.53)

where }\’1( and M]\’l( are defined as in (4.42) and (4.45) but with (JA), X®) in place of (|F), G*).
We prove these results in Appendix C.1. Notice that in the last two lines the partial derivatives
act on A = (JA), X™) contained within N and Mm, but not on the scalar fields. We arrive at
the result

ANX = (Aa(x]l = (B +R)) @al + p~HO8ISY — p I TR(ED) 5] )IF) . (454)

Notice that the entire expression in the parenthesis satisfies the section constraint. This means
that we can define the generalised diffeomorphism transformation of (x!| to cancel the above
variation:

AN = (NN (8] — p~ 10 [Z + p~ ' Tr(SM) (85| (4.55)

With this definition, we have that pX®) is Eg X Vir™ invariant and generalised diffeomorphism
invariant up to a total internal derivative. If we follow the same approach for pX™, m > 1,
we find that A/\ﬂn contains terms that cannot be reabsorbed into the variation of (x|, and
therefore pX(™ is not invariant under generalised diffeomorphisms. This is also described in
Appendix C.1. We again conclude that only pX™ is a suitable candidate for our topological
term.

One last cross-check on the suitability of pX* as a candidate pseudo-Lagrangian is that the
two-forms appearing in the covariant field strengths (3.28) must not contribute. These terms can
potentially appear in the ﬂtl contributions to X, but a direct computation shows that they
vanish up to a total internal derivative. To see this, we start by recalling the definition (4.42)
and use (4.39) to write S}, (Ly,) as a series of vir generators Ly with k& < m + n. Then, we see
that [FA_Y_l (which appears through (4.45)) only involves contractions with negative vir generators
and hence no trivial parameters contribute (such traces appear in the K component of [F], and
therefore anything that contributes to them is by definition not trivial). A similar argument
shows that the two-forms included in G*, k > 2 do not contribute to ﬂ, and that contributions
from the |F) dependent term drop out as total derivatives. One is then left with evaluating the
two-form contributions of Tr(g(l)Lo). One immediately sees that the two-forms associated to
the trivial parameters (A.5a) to (A.5c) appear only through a total derivative and hence are
discarded. The parameters (A.5d) to (A.5f) do not involve any derivative and direct calculation
shows their contribution vanishes. We exemplify this for (A.5d). Using the symmetries of the
U parameter, its contribution to [FA_{ is proportional to

M ap ((T1|[Lo, T)UL) (mo|TP|Us) + (w1 |T|UL) (m2|[Lo, TP)|U2)) = —n1ap(mi|T|UL) (e | TP |Us)
(4.56)
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which vanishes by the section constraint since U is symmetric in (71| and (m|. The general
result can be deduced from equations (5.18), (A.13) and (A.14). Again, it is straightforward to
see that two-form independence does not hold for pX™ for any m > 2.

The expression pX™" is not the final topological term. The vit components of P defined in
(4.27) are invariant under rigid Eg x Vir~ and transform as scalars under generalised diffeo-
morphisms, hence any bilinear in these components (times p) defines an invariant action. This
apparent ambiguity is fixed by computing the Euler—-Lagrange equations of p and the B fields,
which we will do in Section 4.6. For now, we just claim that one such contribution is necessary
to reproduce the correct equations of motion, giving

oo

Coi
»Ctop = px(l) - P% ;(ng - n)Pn(Pn—i-l + Pn—l) 5
so that explicitly
1 Coir
-1 _ Yy L aBa A1) Coic 3
P ﬁtop - DXl 2“ xjonjg 6 nz_;(n n)Pn(Pn-i-l + Pn—l)
+ 3 Pul i = XI_n) + 00 1F) + FY+ VY (4.57)

n=1

There are several ¢, dependent couplings in this pseudo-Lagrangian. Beyond the explicit
term we have just added in the first line, the w®? cocycle contains a vit component, and a similar
cocycle is contained within Dy]:

DX} = (d = (Bl )X} + wP[AlaT} (4.58)

This reflects the fact that the definition of x}, depends on the choice of representation in which
we write J. We will see in the next section that all ¢, dependent couplings cancel out when we
rewrite the pseudo-Lagrangian in terms of x,, defined in (4.28), whose transformation properties
are cpir independent.

4.4 Unendlichbein formulation

We can reformulate (4.57) in terms of the Hermitian projection P of the Maurer—Cartan form
and the x,, forms introduced in (4.28). In order to do so, we first provide more details on how
several objects we need are defined and how they transform. The coset representative (4.1)
transforms as follows under infinitesimal rigid Eg x Vir~ transformations

5V = VT +h*Y,  h* € K(eg), (4.59)
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where h® is a local compensating transformation. The Maurer—Cartan form and its projections
(4.26) are then expanded as'”

DYV~ = dvy = (o[ AV)VT = o (VTOVT 4 8% (4.60)
P= %(dVV‘l +hie.) — (PalA) T - [zzx]cé(VTo‘V‘1 +he.), (4.61)
Q= %(dw—l —h.c.) — (Qa|A) T* — [ma% (VTov™h —hc) — [Alah®, (4.62)

where (P,| and (Q,| are the projections of the internal Maurer-Cartan form (9y V)V~ (M|
which appears in the first line contracted with |A). Taking the differential of the above expres-

sions we find the gauged Maurer—Cartan equations'®

DP —[Q, P] = —(Pu| F) T* — [Flaz (VT*V' + h.c.), (4.63)

1
“2
1

DO~ 1[Q, Q] - [P, Pl = ~(QulA) T ~ [Flag (VT*V ™ —hc) — [Flah™. (464

“2

With this information we can in principle repeat the computation of the shifted Maurer—
Cartan equation of the previous section in terms of P rather than J. More simply, we can take
the left-hand side of (4.46) (with m = 1), conjugate the expression with V and use (4.27) and
(4.28) to find

X = 2D31 + 20 Qo P +23 Pr(Xns1 — Xn-1)

n=1

+2(0|F) + FL+FY, +wo () (A + FISY) (4.65)

where (x1| is the internal equivalent of the one-form x; and completes the K component of
(Po| ® 81(T9). Tt is related to (x!| just like its one-form siblings in (4.28). The last three terms
in the second line are the K completions of [F],S+1 (VT O‘V_l). It is important to notice that in
this expression the h® compensator cancels out. To see this, we expand the covariant derivative
of >~<1:

D1 = A1 — (B5]A) T — [Ala (h%) 5w P (4.66)

where h® = (h®)gT?. This reflects the fact that Y transforms under K (Eq) such that

()80 ey P = 10, P]. (4.67)

"Notice that the local compensating transformation h® satisfies (h*)" = —h® and does not take values along
vit. On the other hand, Q also takes values in the anti-Hermitian part of vit.

8Notice that the rigid és@vit~ variation of h* cannot be entirely specified without reference to the specific gauge
choice of V and associated Killing vectors. Only the antisymmetrised part admits a covariant algebraic expression
201pfl = fef_RY 4+ [h®, K?]. This can be used for instance to compute 6%(DVV™!) = Dh® + [h®, DYV ™| as
expected, and hence the second covariant differential acting on DYV ™! is well-defined. On the other hand, to
derive (4.64) we simply use D? = — L so that no Dh* term appears and we do not need knowledge of 8%hP. This
is of course standard in computing gauged Maurer-Cartan equations on coset spaces.
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The cocycle term in D1 then cancels out with the h* contained in the @ connection in the second
term. In fact, the entire first line of (4.65) can be identified with the generalised diffeomorphism
and local K(Fy) covariant derivative of y;. To see this, we can rewrite the last term of the
first line as —2% " QuX14n, using the relation Q,, = —sgn(n)P,, which is valid because the
Maurer—Cartan form does not take values along the positive levels of the vit algebra.'?

We anticipated in (4.57) that in order to write the full topological Lagrangian we need to
subtract a ¢y, dependent term quadratic in the vit components of P. We can now give a better
description of such a subtraction. The algebra cocycle in the first line of (4.65) contains a
Virasoro component according to the definition (4.12), and using again that Q, = —sgn(n)P,
we can rewrite it as a term quadratic in P:

Cyi Coi -
— % (Tl3 — n) Qn Pn+l == % Z(n?’ — n) Pn (Pn+1 + Pn—l) . (468)
nez n=2

As stated in (4.57) and proved below in Section 4.6 this is exactly the term that must be
removed from the pseudo-Lagrangian in order to reproduce the correct equations of motion. We
can therefore rewrite (4.57) as follows

o
P Liop =2D%1 — 202> nQAPE T +2)  Pu(Xng1 — Xn-1) (4.69)
nez n=1

2l F) + B+ T+ w0 ) (09 + 05Y)

Notice that in this expression there are no ¢, dependent couplings. The group cocycle in the
second line does not generate cy;, dependent terms because the Virasoro components of [F], only
run along vit™. Hence, the pseudo-Lagrangian is independent of the representation in which P
is defined. This reflects the fact that the x,, only transform under local K (Eg) transformations
and so their transformation does not include any vit cocycle. This must be contrasted with the
coic dependent transformation of xJ,. In fact, the whole first line of (4.69) can be regarded as
the generalised diffeomorphisms and K (Ey) covariant derivative of x1 at c¢yir = 0, a fact that will
greatly simplify the computation of the scalar field equations of motion. The reason cyi. does
not cancel out from (4.57) is that the relation (4.28) between Y1 and x! is based on a group
cocycle that is itself ¢, dependent. Such a dependence also disappears if we use generalised
diffeomorphisms to gauge fix ¢,, — 0 for n > 2. This is proved explicitly in Appendix C.2.

4.5 Vir~ gauge fixing and full pseudo-Lagrangian

The coset representative (4.1) contains exponentials of all the negative Virasoro generators. By
contrast, the Fg exceptional field theory scalar potential we constructed in [1] only includes
exponentials of Ly and L_;. We will not attempt here to generalise the scalar potential of [1] to

9Such sum over Q. appears in the K (F9) covariant derivative of Y1 because constant shift operators Sy, do not
commute with vir and hence the K completions of S,,(P) must transform equivalently to w™ under the Virasoro
components of Q.
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include the other Virasoro fields. Instead, we will use the gauge freedom associated to Tr(B™)
to set

¢n =0, n=>2. (4.70)

We have stressed in Section 2.3 that (4.70) does not solve the two-dimensional twisted self-
duality constraint. In exceptional field theory, this is remedied by the Stiickelberg coupling of
¢n to Tr(B™) through the covariant derivative. This means that we can impose (4.70) at the
price of keeping Tr(B™) # 0 in order to respect the vir components of (4.23), as each and all
vit components of J must be dual to Dp and hence generally non-zero. This has an important
consequence. The gauge-fixed residual generalised diffeomorphisms are generated by |A) and X
(because traceless (™, n > 2 parameters can be reabsorbed into X up to trivial parameters),
taking the form described in Section 3.1 and familiar from the previous papers [17,1]. However,
the B™ fields and their field strengths G are non-vanishing for any n > 0.

We choose to keep ¢1 # 0. In fact, we shall substitute ¢; — p in the rest of this section,
arriving at the coset representative

Y = pLo e Plo1 §7 YiaT2 You T, | —oK (4.71)

which matches the one we used in [1]. The duality equation between p and p as it descends from
(4.23) reads, expanding the covariant derivatives,

25(d = (0, A) — (9a]4))p = (d — (5| A) — (9a]A))p — Te(BY). (4.72)

The factor of 2 on the right-hand side does not match the two-dimensional relation (2.19) if we
drop internal derivatives and B fields, reflecting the fact that this is really the covariantisation
of the duality relation between p and ¢ given in (2.53), but again this is remedied here by
Tr(B™) which trivialises the relation between p and g and hence also the distinction between p
and ¢;.
The gauge fixing reduces y(w) to the finite expression
yw) = 2L (4.73)
p

Comparing with the expression (2.24) appearing in the two-dimensional linear system, we see
that the gauge-fixed function is missing the square root. Reproducing the square root in terms
of exponentials of Virasoro generators is what had made it necessary to introduce the ¢, fields
and their duality relations, but again this is now compensated for by the presence of the B fields.
We can use (4.73) to expand S, in terms of the constant S, as binomial series. In particular,

S p (S =pS0), Sy =) "Soan. (4.74)

n=0

Notice that the series on the right-hand side appears in the scalar potential we found in [1],
acting on the internal current (7,|. We thus see that S’ is the vit™ generalisation of that
expression (up to an overall factor of p).
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In order to match the expression of the scalar potential and its field content we also need to
relate (x]| to the (x| field appearing in [1]. Up to a factor of p (which is just due to different
weight assignments), the latter gives the K completion of the (gauge fixed) S, shift of the
internal current, written in terms of the series (4.74). Indeed we defined there

(T | @T = (Jal @ Y p"S_1-n(T*) + (x| ®K, (4.75)
n=0

which equals p~ (74 V| and transforms as an algebra valued object under rigid és @ (L_1). To
match this relation we perform the field redefinition

(Xt = x| = 2(P1] = pw™(M)(Ty |- (4.76)

where (P| = —1p7'(8|p. The presence of (Pi| has no effect on rigid ¢s @ (L_1) covariance,
instead it is motivated by matching the transformation properties of (x| under generalised dif-
feomorphisms as found in [1]. The non-covariant variation of (x!| is given in (4.55). Those of
(P1]| and (J| were derived in [1] and we reproduce them here:

Ap(Tal @ T = [No(T* + M7HT*) M) (0], (4.77)
_ P 1 .
An(Pr] = =5 (0al4)(@al - %MS (s (4.78)

Combining these relations with Apw®(M) = 0 and using relations and definitions analogous to
(4.42), (4.44) and (4.45) for A, we then find

1~ -~ 1 p
Aall = (L + MR @] = (02 - §<0A\A><am . (4.79)

We show in Appendix C.2 that this transformation property matches the one we derived in [1].
The final pseudo-Lagrangian density, in form notation, gauge-fixed to (4.70), reads

£oxt = £t0p —*V (480)
with the topological term expanded as follows?’
P Lrop = dX] — (Ol AX] + o™ Y n (4 +207) (U5 = pJ5")
nez

1 _ n n—2 - e
— 5P Dp (% — Je) + Zp Z( k >(—p)’“Tr(B( P (X = X1-n)

+{px — 2P — pw®(M)J5 | F) + F} + “F7, (4.81)

where J' are the loop components of the covariant current (4.7), [A]’y are the loop components
of [A], defined analogously to (3.35), Dp = dp — (9|(p|A)) — Tr(BW), the cocycle w*(M) is

20 Alternatively, one can use the more compact Unendlichbein formulation (4.69), together with equation (4.116)
of [1]. In this case, notice that (x| as defined there equals 2(x1| + 2(Pi| as defined here.
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defined in (4.20), the internal shifted current (7, | is defined in (4.75), and finally @1( and M@{
are defined in (4.42) and (4.45). The ¢y, dependent couplings in (4.57) cancel out with the
gauge fixing as argued at the end of the previous section and proved explicitly in Appendix C.2.
The scalar potential V' comes from [1]:

1 s ~ —-n — n 1 -
V= D0 A P MO ) (R M)

n€Z k=0
2
= SBIM ox = P — ot (M) PIMT )
1 1
= 5 el TPMITNT) + ST TP MI T T o (RTOM T (482)

We used | 7o) = ((J.|)T (and similarly for other objects) to simplify the notation, thus regarding
|7.) as an element of R(Ag);1. The expression w®(M)(J; | read instead p~2Q%(M){(T,| in [1].
We define Q%(M) and prove equivalence of the two expressions in Appendix B.

Note that the topological term and the potential are both invariant under (internal) gener-
alised diffeomorphisms. The relative coefficient between the two in (4.80) is fixed by requiring
that, when partially soving the section constraint as in (3.10), the field equations for the various
scalar fields reproduce those of Eg exceptional field theory. This can for instance be verified
by using the field equation (4.99) obtained by varying with respect to (x|. We expect that the
coefficient could be alternatively fixed by imposing invariance under conformal external diffeo-
morphisms. In the minimal formulation of Section 5, where the conformal gauge is relaxed, the
relative coefficient between the topological term and the potential will be fixed (and confirmed)
explicitly by requiring invariance under external diffeomorphisms.

4.6 Equations of motion

We shall now take a look at the equations of motion of Virasoro-extended Fg exceptional field
theory. These are obtained as the Euler-Lagrange equations of the pseudo-Lagrangian con-
structed in the previous sections, combined with the twisted self-duality condition (4.23) (or
equivalently (4.29)) and with the covariantisation of the Virasoro constraint (2.17)

DioDip — %Dipip - %pnAB(Pi)%(Pi)% =0, (4.83)
written here in light-cone coordinates. Up to twisted self-duality it is invariant under rigid Eg X
Vir~ transformations and, by covariance, under generalised diffeomorphisms. This constraint
must be imposed because we only wrote the covariant action in conformal gauge. We will
relax conformal gauge and see the Virasoro constraint arise as an FEuler-Lagrange equation in
Section 5. The equivalence of this Euler-Lagrange equation with (4.83) is shown in Appendix D.
In Appendix C.4 we will exemplify how the equations of motion derived here reproduce those
of Eg exceptional field theory, by matching the equations of motion for the Eg scalar fields. A
complete matching at the level of the action will be given in the minimal formalism of Section 5.
In computing the equations of motion we will not explicitly vary the scalar potential, which was
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already shown to match Fg exceptional field theory in [1], and instead focus on the variation of
the topological term. These explicit computations are also meant to clarify some details of the
Vir~ extended formalism, such as the need for the regularisation of certain series induced by
the cocycle term in the action and motivating the addition of the extra invariant term in (4.57)
compared to pX™.

The trivial variations

We have already addressed the Euler-Lagrange equations for the one-forms xJ, (or equivalently
Xm) in (4.49), which shows that these fields appear as Lagrange multipliers for a subset of the
relations imposed by twisted self-duality, and hence their equations of motion are trivialised
once the latter is imposed. Let us now look at the field variations with respect to the B® fields,
which should also trivialise upon imposing twisted self-duality. Without loss of generality we
will also gauge fix

on —0, Vn>1, (4.84)

just like we did in the previous section, but now also setting p — 0. The scalar potential of course
does not contribute to the variation and we will use (4.69) as a starting point. We therefore
consider the variation

A = (0, 6BW). (4.85)

(We will consider the variation with respect to |A) below, starting from (4.123).)

We have already stressed that the K(F9) compensator h* appearing in (4.60)—(4.62) and
other expressions cancels out in the topological term. To simplify the exposition, in this section
we will then use the definitions (4.60)—(4.62) and (4.66), but removing by hand the compensator

K =0, (4.86)

since it is guaranteed to cancel out anyway. With this in mind, we write the B field variation
of the Maurer—Cartan form, of P and of Q as’!

S(DVVY) = —[BAl VTV = —2[5A], T, (4.87)
6P = —[0Ao(T + h.c.), (4.88)
§Q = —[0Ao(T* — h.c.), (4.89)

where we have used (4.86) and we introduced the underlined notation to denote dressing by V:

1
[N T = 3 [N VTVL. (4.90)
To further simplify the exposition, we shall use rigid Fg invariance to assume that the
solution of the section contraint is of the form (3.10). This guarantees that [A], takes values in

vit” and the non-positive loop levels only, the ones whose exponentials appear in our choice of

21Because we are ignoring the compensator, DYV ! is formally no longer valued in a parabolic subalgebra of
¢s @it~ but gains positive loop components proportional to [A]l,. This is reflected in the following computations.
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coset representative (4.1), except for an [A]Xl component. In particular, the B™® fields do not

contribute to the K component, namely
Tr(B®L_;)=0. (4.91)
Furthermore, the 4 index of [A]Xl satisfies the Fg section constraint and reads explicitly
(A5 = 80(0|A) = dow, (4.92)

where in a reduction from three to two dimensions w corresponds to the Kaluza—Klein vector,
see (2.12).

Looking at (4.69), the variation of the last term of the first line clearly vanishes upon imposing
(4.29). The only other contribution from the first line comes from the loop cocycle:

—2pn*P 6 (Z n Q4 Pg"*) = 4p P BAIG (P + [T P) + dpn P OALP AT, (4.93)
neZ

where we have repeatedly used twisted self-duality and also used the fact that [54&]?4 satisfies
the Eg section (because of the section constraint on §B*) to remove a contraction with a term
@Xl (the coset dressing reduces to conjugation by V which cancels out in the contraction).
The @El components appear when converting le to Pf in order to use twisted self-duality

on the latter. Explicitly,

Qi =—Py—2M, Q' =-P'+2l',  Qi=-sen(m)Ph, [n|=2, (4.94)
where the position of the eg index in the middle equation is due to the eg transposition @IA =
nABw}g and we could write more explicitly Q;l = —Pgl + 26 ABnBcwlc. We will use this

notation throughout this section and in Appendix C.

We now look at the variation of the second line of (4.69). The (x1|F) term does not contain
any B fields so we can ignore it. The other terms can be rewritten in a more compact form
thanks to the gauge fixing (4.84), which allows us to reinterpret the w®(V) terms as arising from
dressing a vit generator with the coset representative, as discussed in Appendix B. This gives
the convenient expression

pFL + By +pw (V) (1Y + IFICY)
4.84 _ = _
LY 0V I+ LVIF) = S P T (GOV T (L Lo )Y) . (4.95)
k=1
In order to vary this expression we use closure of the generalised Lie derivative, (3.17), and
(3.42) to deduce the natural relation??

OF = DJA + trivial parameters . (4.96)

22YWe still use the definition (3.23) for D even if the extended o product does not satisfy the Leibniz identity.
The trivial parameters on the right-hand side of (4.96) would vanish in the non-extended case.
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In our case the right-hand side reduces to (0, DéB™) using (4.85) and noticing that the difference
between the extended o product and the generalised Lie derivative vanishes when the first
component of a doubled object is zero. The trivial parameters can be ignored as we know they
at most contribute by a total derivative (equivalently, they can be set to vanish by combining the
B field variations with an ad-hoc two-form gauge transformation). Using now the fact that the
right-hand side of the expression V(DSB®)V~! still satisfies the section constraint in the form
(3.10), hence traces with negative Virasoro generators vanish, we find that the B field variation
of (4.95) reduces to

T (V(D(SB“))V_lLo) - Tr(VéB“)V_l[LO, Dw—l]) (4.97)

up to total (internal and external) derivatives. We are again using (4.86) to simplify the notation.
Only the loop components of the Maurer—Cartan form contribute. Furthermore, because V € Egy
by (4.84) and 7_1 4 is Eg invariant up to a weight term, one can easily combine (3.35), (4.85)
and (4.90) to find

2064 = napTr(VOBOVTITE, ), 0> -2, (4.98)
where we are restricting to n > —2 so that higher dB® contributions can be removed by
trivial parameters (for smaller n, the V conjugation implies a contribution from Tr(§B®) and
higher, which are not trivial). Opening up the commutator one then quickly deduces that (4.97)
exactly cancels out (4.93). The B field Euler-Lagrange equations vanish upon imposing twisted
self-duality as required.

It is now straightforward to check that the B field variation of the extra term we included
in (4.57) (compared to pX™*) does not vanish, and hence its inclusion in the pseudo-Lagrangian
is essential for the above result to hold.

The scalar field variations

In varying the constrained scalar field (x| (equivalently (x!| or (x1]) we include explicitly the
contribution from the scalar potential. From (4.81) and (4.82) we find the equation

(ox|: (dx] (m +2xp I MTYPY) — & T“M‘l\ja_>> ~0. (4.99)

This result does not rely on any specific solution of the section constraint, but is based on the
gauge-fixing (4.70) in order to display the variation of the scalar potential explicitly. Recall
that (dy| satisfies the section constraint, hence the equation above only arises from the pseudo-
Lagrangian when contracted with a constrained object.

From now on we no longer rely on a gauge-fixing for the Virasoro scalar fields and we do not
commit to a specific solution of the section constraint. We also do not vary the scalar potential
explicitly. Nevertheless, all computations displayed below hold if we impose the gauge-fixing
(4.70), and therefore the complete equations of motion can be derived by varying (4.82) and
combining it with the results in this section.
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The variation of the topological term with respect to o is also straightforward, because it
only appears in (4.69) through Yo = Pk = —Do. Up to twisted self-duality we then get the
equation of motion

D*Dp—l*%zo. (4.100)

2
The extended Virasoro fields ¢,, are pure gauge, hence their equations of motion are redun-
dant and we do not need to compute them. We then focus on the variation of the scalars p,
Ve FEg and Y,{‘, n > 1. We can encode their variation in terms of an Hermitian algebra element
m:
=7 =6VV € ¢. (4.101)

This means that the variation above is a combination of a field variation and a K (Eg) transfor-
mation:

OV = SgelasV + ¢V, ¢ € K(eg), ¢4 =sgn(n)ny . (4.102)

Recall now that at the end of Section 4.4 we noticed that the first line of (4.69) corresponds
to the generalised diffeomorphism and K (FEy) covariant derivative of x1, with Q as composite
connection, except for the substitution ¢y, — 0 which removes a piece of the cocycle (4.68). It
is then convenient to include the composite connection Q in D:

DO =D + Qudf (100 P> (4.103)

where the second term denotes the transformation of a field ® under the local K(eg), extended
by the anti-Hermitian part of vir, where Q takes values.”® With this definition, for instance, the
first of (4.64) reads DP = 0 and the variation of P and Q then reads

SP=Dr=Dr—|[Q, 7], 6Q=I[r 7P|, (4.104)

with Drr = dr — (97|A) — [Al4 [h*, ]. Notice that as usual the compensator h® cancels out
between the covariant derivative and the @ commutator.

It turns out to be convenient to combine the scalar field variations with a special choice
of variation for the y,, forms. Since the latter contribute trivially to the equations of motion
once twisted self-duality is imposed, this choice will not affect our results. We then introduce a
spurious object 7, meant to complete the K component of S,,(7), just like x,,, does for S,,(P):

7 = 8 (m) + TmK. (4.105)
We then choose dy;, = ﬁ%m so that the variations of the shifted P take the simple form

§P™ = Dp™ = Drt™ 4 Qa(sg((ése)nit)ﬂ(m) ’ (4.106)

2 The presence of K (vit) can appear strange since only vit™ are global symmetries of the theory and they
do not require compensating local transformations. This is due to the fact that the ungauged theory is in fact
also invariant under infinitesimal positive vit transformations and the decomposition of the Maurer—Cartan form
into P and Q reflects this. Most objects we use have therefore natural transformation properties under K (vit)
obtained by extension of their K (eg) transformation and standard commutation relations, which simplifies many
manipulations in the following.
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where 5?‘((686)0“)7?(’”) includes a sum over Virasoro shifts just like the last term of the first line in
(4.65). Explicitly,
Qad (tyoiy ™™ = —[Q 7™ +m Y Qe (4.107)
keZ
After several manipulations, we will set 7,, — 0 without loss of generality.
With this setup, in order to compute the variation of the first line in (4.69), we can equiva-
lently compute
5(2pDx1) = 6(20DPV)| (4.108)

and set ¢y — 0 in the cocycle. We then expand to find
5(2pDPYV) = 26pDPY — 2p[6Q, PV + 20 DSPY (4.109)

where we have already used twisted self-duality to remove a series over the vir components of Q.
Let us look at the middle term. Projecting onto K and using (4.104) we find that it vanishes.
For instance, using twisted self-duality the loop components of 7 contribute as follows (recalling
that we are keeping wedge producs as understood)

FABC S (<1l 4 PRPY, — B Y (<1t W PPy = 0. (4110)
n,q n,q

A similar computation applies to the Ly component of 7 and since we set ¢y — 0, that is all
we need.

Let us then look at the last term in (4.109), which is proportional to D27r® . The square of
the covariant differential has the general form

~ 1
D2 = L + (DQ -5le Q]) 5% capoie) (4.111)

and we recognise the last term as the covariant field strength of the composite Q connection. We
can use the Maurer—-Cartan equations (4.64) to further manipulate this expression. In order to
do so, notice that twisted self-duality implies [P, P| = 0. The K component is straightforward.
For the rest, we use Sp(P) = S (S—m(P)) for any m # 0 so that

So([P.P]) = S—m ([P, Sm(P)]) +m Y _ P, S,(P). (4.112)

PEZ

Let us now take m odd. By twisted self-duality, the first term of the right-hand side vanishes.
The second term flips sign under m — —m while the left-hand side does not, hence they both
vanish. We can then substitute into (4.111) the left-hand side of the Maurer—Cartan equation
(4.64) for the curvature of Q, and apply it to 7. We find (setting h* — 0 as usual as it cancels
out anyway)

D2 = — (9| F) 7V + (2(Qu|F) + [F] ) [T — T2, 7V]

+ > (H(QulF) + [FL,) (x0+ — 7). (4.113)

n=1
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Projecting this expression on K and setting to zero the central charge component 71 of 7, we
find that only the middle term contributes and arrive at the result

20 D5PM |, = 20023 ( QL |F) + —u—“‘) AL (4.114)
nez
Notice that the variation of p does not contribute to this expression.
Let us now look at the variation of the second line of (4.69). Using (B.4) one finds that the
p variation of w®(V) vanishes. Furthermore, from the definition (B.11) one easily sees that both

[ﬂn and [F]{™ depend on p only through an overall p~™ factor. Therefore, the p variation of the
second line of (4.69) reads

20p ((x1|1F) + F + (V) [FIS). (4.115)

Looking now at the Eg scalars variation, we must take into account that (x1| transforms under
the K (eg) transformation ¢ we introduced in (4.102) to make m Hermitian, so that

§(alFy =P In| 74 (P51 F), (4.116)
ne”z

while the variation of w®(V) gives
Sw*(V) = [m, VTV . (4.117)

We can now put these results together. The p variation of the topological term is the sum
of the first term in (4.109) and of (4.115). Applying twisted self-duality, we find the equation
of motion

- - 1 %
Dx P+ (ulF) +F | + (V) [FISY = ~ 5 (4.118)

where we need to keep in mind that ¢y, — 0 in the cocycle contained in the first term. We can
in fact further apply twisted self-duality to it, in order to make contact with the second order
equation for o for two-dimensional supergravity (2.18). To do so, we shall temporarily assume
a solution of section of the form (3.10) and write

D+ Pk = D * Pk —nABZnQZ *P5"
nez

= —D Do + P Z In| P «PZ" + 477‘4sz1 *P5!
nez

= —Dx Do + 2 PPY « PY, ( Z(—l)"n) + 417‘4wa1 P%
n=1
1
= -D*Do — §nAB PO x PY +4nBIAIT PY . (with A% — 0) (4.119)

In the second line we have converted Q’} to P’} and we stressed that we set h* — 0 everywhere as
usual, because it would cancel out between Q and the covariant derivative anyway. In the third
line we have used twisted self-duality and in the last step we have regularised the divergent sum
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as y o2 (—1)"n — —3. This is achieved for instance by taking the z — 1 limit of a geometric
series Zzo:l(—z)"p( ) which converges for |z| < 1 and p(n) any polynomial in n. We motivate
this choice of regularisation in Appendices C.3 and C.4. We then see that if we reduce to two-
dimensional supergravity by setting (9] = 0 and B*® = 0, this equation of motion reduces to
(2.18). Notice how this result hinges on the removal of the ¢, dependent terms of the cocycle
in D x Px. Had we not removed the term (4.68) from the pseudo-Lagrangian, it would have
contributed here through a term proportional to (Dp)? (with a regularisation similar to the one
above).
Let us now look at the variation of the loop scalar fields. Using the Maurer—Cartan equation
(4.64) for P combined with twisted self-duality (4.29), we find the convenient identity
DA PG = —(PPYF) — W [T nez, (4.120)

which implies in particular that all the even components of the right-hand side are equal to each
other, and the same holds for the odd ones. Combining this expression with (4.114), (4.116) and
(4.117), the latter contracted with 2p([F]%’ + [F1$ "), writing (Q%| = —sgn(n)(P%| and using
that 7 is Hermitian we then find the equation of motion

OV, 8Yy: QpWOA(ﬁ* PY + 2@;1) —4p Zﬂ_kA(EZ_l - EZH) = %0V . (4.121)
k=1

The 7194 component of this equation still contains infinitely many dual fields within the covariant
derivative. Using twisted self-duality to express it only in terms of physical fields, we are led
to a regularisation analogous to the one used for (4.119). In analogy to that computation we
temporarily choose a section solution of the form (3.10) to simplify the vector field dependence
and write explicitly

DxPY=DxPY— fP4) Qe *Py" + ) n(Qun+Ph — Q4 *P_y) (4.122)
nez ne”Z

=D*PY — fOPAQL+PH —2) n(Qh*Pn+ QuxPL")

+2fP 4([Al — [A]' )P — 2Pg([Al, + [AIT)
=D*PY — fOPAQL + P + 2Py x PG D (-
n=1

+2fP 4 ([Al, — [A1O)PY, — 2Pg ([ALL + [A1' )

= p ' D(p*PY) — FOPAQE + P + 2P (Al — [AI")PY, — 2P ([AL], + (A" ).

We check in Appendix C.4 that the 7794 equation of motion correctly reproduces the equation
of motion of the scalar fields in Eg exceptional field theory. As a further cross-check, we can
reduce to two-dimensional supergravity by setting (9] — 0 and check that the equations of
motion derived so far are then compatible with setting the B® fields to 0 as follows. The vector
fields |A) and (x!| decouple when (8] = 0, and the field equation for p reduces to d x dp = 0.

47



Extending then (4.120) also along the vit components and using the Maurer—Cartan equations
as well as the W% equation above, we find that all vit™ components of [[],, as well as the coset
projection of EZ must vanish. Plugging these results into the rest of equation (4.121), we then
have that all non-trivial components of the B® field strengths must vanish, hence without loss of
generality we can set B™ — 0 as claimed. Together with the fact that (4.23) correctly reduces to
two-dimensional twisted self-duality when (0| = 0 = B®, this guarantees that two-dimensional
supergravity is reproduced from Virasoro-extended Fyg ExFT.

The |A) vector field variation

The starting point is again the pseudo-Lagrangian (4.69), which we will vary with respect to
the vector field |A). We recall that we work in the ungauged-fixed setting where ¢,, # 0 for all
m > 0. We also re-use the notation introduced in (4.85), but this time with

= ([04),0). (4.123)

The variations of P and Q follow directly from their expressions (4.61) and (4.62). They read

6P = —(P|6A) — [6Alo (T + h.c.), (4.124)
6Q = —(Q[6A) — [6A]o (T — h.c.), (with A% — 0), (4.125)
where [0A] = [0A], T takes values in ¢g @ vit™. As explained previously, we consistently ignore

the h® contributions as they ultimately cancel out in the pseudo-Lagrangian.
Let us start by focusing on the variation of the first term of the first and second line in
(4.69). With (4.66) and (4.96), we find

200 (Dx1 + (X1l F)) = 2p ((9z|X1 — D{x1| + Pol{xal) [64) , (4.126)

up to internal and external total derivatives. For the cocycle term of the first line, one computes

_2P77AB5 <ZnQn P n— 1) _2/”7ABZ (QA P n— 1‘ PZn—l(QréD (4'127)

nez nez

+4p7™P N " (n+ 1)(Q+ P 104"
nez

where we used twisted self-duality in writing the last line. For the third term of the first line
n (4.69), the variation of P,, does not contribute since (Xn+1 — Xn—1) vanishes by twisted self-

duality. The only contribution comes from the variation of Yo = Pk, and we then simply
have
2p0 (Z Pn(Xn+1 — Xn—1)> = 2pP1((Pk|6A) + 2[0Alk) - (4.128)
n=1

The variation of the remaining terms in the second line of the pseudo-Lagrangian (4.69)
requires more care. To derive the variation of [} and [, which are defined in (4.42), we use
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the following property which holds exactly for n < 1 and up to a total derivative for n = 1:

61, = (Dok),, = (d — 608k, —n>_ (DITY)_, 54,
q=0
= D3k, — Apdh, —nY (DITY)_g0A, ,, W¥n<1, (4.129)
q=0

where we used (4.96) in the first step. Note that the double object JA transforms with the
extended o product under a gauge variation, and is therefore treated on the same footing as [F.
This allows, in the second step, to extract the differential operator (d — d,) out the combination
(ﬁ% In the process we however generate the last term of the first line, which substracts the
action of the gauge variation on the Virasoro scalars contained in 5]&% This is described in
Appendix C.1. The expression of the latter takes the same form as in (4.42). The non-covariant
part of its gauge variation with respect to A, defined in (4.50) and denoted by Ap, can be
deduced from (C.14). We thus find

S(pFy) = pDOAT, +p 3 (DIT™Y)_y 68"\, + p AL (9al6A) (4.130)
q=0

8(pFl) = pDoAy —p Y (DIT™Y)_y0A1_, + p KL (Op]0A)
q=0
— ((8|BY — Tr(BW)(05])[04) , (4.131)

where A, is again of the same form as (4.42). The second equation holds only up to a total
derivative. To treat the last terms in the pseudo-Lagrangian (4.69) which involve the w®(V)
cocycle, let us first consider [[F]((ln) defined in (4.43). Up to a K component, the latter can be
written as SY([F]),, where in order to simplify the notation in the next few steps, we will write
[F] = [F],T% and similarly for other objects such as [A], their derivatives and their variation.
Taking into account that wX(V) = 0, we then have for n <1,

5(w<v>m§7>) = w(V)S!(IDSA])q (4.132)

— W) (Dsg(wz\])a — ApSL(68)a —n Y (DTT ), sg_q(wz\])a> .
q=0

We used the same arguments as in (4.129) in order to extract the differential operator out of
the shift operator. At this point, observe that according to (B.10), we can write

¥

WX (V)SE(88]) 0 = VSL(SANV Y|, = VISAI ™V — 5A, (4.133)

where [(M](") is, in analogy with (4.43), the K-completed version of S}([0A]) and therefore
transforms with a commutator under rigid ¢g @ vit™. Bearing this in mind we get, after an
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integration by parts,
5(pwt M)IF) =D(pVISAI™V)|, — D3R, + pPo (A, +w*(V)S}(154])
—np3 (DI w (W)L, (108))a — pw™(V)AnSL(A])a

—p[(P+Q),VSi(6a) V]|, (4.134)

where the non-covariant variation of [0A], takes the same form as in (4.51). The first term can
be dropped as it reduces to total internal and external derivatives. Combining this result with
(4.130) and (4.131) we find, after rearranging the sums of the (DI'T~!) terms and using twisted
self-duality,

6(/) ﬂ +p fll + pw*(V) ([[F]g) + [[F]g_l)))

—) Z <N—|—w sg([A])a)<aA|5A>—(<8B|B<“—H(B<”)<OBI)I5A>

=1,—-1

—2pPy (67\3 +w*(V) Sg([&l\])a> —2p Z (P +Q),Sn([6A))] |, - (4.135)

n=1,—1

Using (4.133) and EE) = [0A]k, the parenthesis in the last line can be written as 2[0A]x and
will therefore cancel against the last term in (4.128). Note also that, in writing the last term
of (4.135), we have pulled the conjugation by V inside of the the shift operator and used the
notation (4.90). The loop contribution of this commutator will cancel against the last line of
(4.127), while its Virasoro contribution should vanish by itself since the pseudo-Lagrangian we
vary does not depend on cpi,. This is indeed the case because both the Maurer—Cartan form
(P + Q) and [0A] only take values in ¢g @ vit™.
Adding up all the variations, we then obtain the following final form for the field equation

[8A):]  (OxI% — Dl + Poial + Pa(Pl + 77 > m (@ (P~ = P71 (Q)
nEZ

1 .
_ Y « (n) - (1) o B
! 27_21:_ . (A”ﬂ’ O) 18l ><af*’ <3B‘B t3 Tr(B N OBl =0, (4.136)

where we divided by an overall factor of 2p and removed the projection on |§A). Note that
the terms in the bracket of the second line correspond to the K completion of [A],S,(VT*V~1),
analogously to how X, completes S,,(P) in (4.28). We also emphasise that (Oa| only acts on
the vector fields |A), B* and not on the scalar fields.

While it is not manifest, one can verify that the complete set of field equations is invariant
under rigid Fy. The equation (4.136) is separately invariant and one way of checking this is by
using the invariance of the K-completion of a shifted Maurer-Cartan equation, such as (4.34),
but now with one internal and one external derivative.
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5 Minimal Eg exceptional field theory

In this section, we shall show that there is a formulation of Eg exceptional field theory with
a finite set of fields, i.e. M € Ey, |A), B, x, (x|, even though they are in infinite-dimensional
representations of Fy. As explained in Section 4.5, one can gauge-fix all the Virasoro fields ¢,
to zero. The price to pay is that the truncation to two-dimensional supergravity, with fields not
depending on the internal coordinates, must necessarily involve non-zero constrained fields B®.
This obscures the relation to the linear system in two dimensions. But it has the advantage
that this allows us to eliminate the infinite set of constrained one-forms B™ and one-forms X%
in favour of a single constrained one-form B ~ BuM ~ and a single one-form x ~ x,, (that still
transforms indecomposably with the current) as we shall demonstrate in this section. Moreover,
the twisted self-duality equation for the scalar fields can be written using a Fyg invariant bilinear
form, and the pseudo-Lagrangian takes a form that is more similar to lower-rank ExFTs. In
particular, we relax the conformal gauge and define external diffeomorphisms in this minimal
formulation. We will exhibit that the complete pseudo-Lagrangian is determined by internal and
external diffeomorphism invariance, similar to E,, ExF'T for n < 8. For the appropriate choice of
solution to the section constraint, we will finally show that the Euler-Lagrange equations of the
pseudo-Lagrangian (combined with the duality equation), reproduce the known field equations
of Eg exceptional field theory. All expressions will be finite and we shall not need to resort to
formal geometric series summation as in the Virasoro-extended formulation.

5.1 Integrating out the auxiliary fields

At vanishing Virasoro fields ¢,,, i.e. for I' = p~20 one can eliminate the constrained fields B®
and the scalar fields XZ in favour of a single constrained field B and a single scalar field x. Notice
that we also gauge-fix ¢1 = p = 0, unlike in Section 4.5. In this case, the coset representative
V in (4.1) and the generalised metric M belong to Ey. In order to obtain the minimal duality
equation from (4.25), it will be convenient to first rewrite (4.23) as

J=pH (MTISIQ)M + pxIK) - (5.1)

To analyse the duality equation (5.1) we decompose the current (4.6) as

o= - Z(n_kaﬁTr[TﬁB(’“)] + ,o_%nkagTr[M_lTﬁTMB(k)]) : (5.2)
k=1
where
T’ = MDD M = M7Hd = (Om|ANYM — 10504 (T™ + MTITI M) AYTH (5.3)

is expressed using a ‘bare’ covariant derivative
D =d— L) (5.4)

that does not contain the B® terms.
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It will be convenient to similarly redefine the fields XL in terms of bare fields XZ by separating
out the B® components according to

XL =p G +pF Z Tr[(Lotihq+p 2 2 ML o M)B] (5.5)
q=0

The field ka is the K-completion of Sk(J I’) and the terms involving B play a similar role for the
B-terms in (5.2). We also recall from the text under (4.25) that for & > 1

Xin =*"x1 (5.6)
The components of (5.1) along the Virasoro generators give that
Tr[BU+9] = pF +F Te[BV], (5.7)

relating the traces of all higher B*® to that of B®. Therefore we can rewrite the current J as

I=T"- U—laﬁTr[Z S_k(Ta)B“W} (TP + MTP M)
k=0

+ 3 o TBY) (Lo + M Ly M) (5.8)
k=0

in which the constrained fields B"** only appear through

Tr [Zs “ﬂ - [TO‘ZS B+ ] . (5.9)

The operation §_k(B(1+’”) is defined implicitly such that the relation (A.41) holds for any
T* € ¢g @ vit~ as explained in Appendix A.4. This implies that one can choose a particular
gauge for the one-form gauge transformations defined in Appendix A.4 such that (5.7) extends
to the whole constrained fields and fixes for all £ > 0

BO+H = pk ik B (5.10)

Note that, although B® = B according to this equation, B does not transform in the same
way as BY under internal diffeomorphisms so they should not be understood as being the
same constrained fields. This is because the fields B® only appear through the combination
Py g_k(B(“’”) above, and the identification (5.10) only holds for this combination traced
with a generator T% € ¢g @ (L_1). To define the gauge transformation of the field B one
identifies the gauge transformation of this combination

o0

Z k(B = Lo Y S_i(BO) = miap 6T ATPA) 04|, (5.11)
k=0
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and defines the gauge transformation of the constrained field B consistently with it, i.e. such
that

o0 o

ST PE AR S (0aB) =D pF ¥ S_i(Lin0)B) — n1as(OAIT|A)TP[A) (O] + ... (5.12)
k=0 k=0

where the ellipses correspond to terms that vanish upon tracing with 7. Inverting the geometric
series, one obtains the gauge transformation of the constrained field B up to a trivial parameter

5B = Liny B+ (1= px81) (m1as OAT2 0T ) (0]) +
= L(r0)B + 010 T|A)T?|A) (04|
— px (13 (OAIT (M) TP A) + (Oa|A) | A) — (Dal N (Oa] . (5:13)

Note that although we inverted the formal geometric series to obtain this formula from the
Virasoro-extended gauge transformation, it is well defined and FEg-covariant. The final line is
the definition of the gauge transformation of B.
Writing x* = x} for short and substituting (5.10) on both sides of the duality equation (5.1),
one obtains
oo
T = (Pkn—l—kaBTr[TaB] + 0 gk aBTT[M_lTaTMBDTB (5.14)
k=0

= p R (MTISUT )M+ K) =D HF (p—knk_laﬁTr[M—lT“TMB] + p’“n_l_kaﬁTr[TaBDTﬁ
k=1

One finds that most of the terms cancel and the remaining equation is
T’ = N1apT[TBIT? = p~1 % (MTLS1(T)IM = 5o T[T“BIM I TFIM + X °K) . (5.15)
This equation can be written as
T =p "t x (MTIS1(T)IM + xK) , (5.16)
for the current J and the field x defined as
J =T =01 DIBIT? . x=x" +Tr[LoB], (5.17)

distributing the B dependence. This provides an alternative formulation of the theory that we
refer to as the minimal formulation and discuss in detail in the remainder of this section.

Because J # ML 7T M, this duality equation does not imply an infinite chain of relations
between J and its shifts S,(J) as in equation (4.25) of the Virasoro-extended formulation.
Rather, (4.25) translates in the minimal formulation into finite linear combinations of the dual-
ity equation (5.16) and its Hermitian conjugate where some of the J' > components cancel out.
We will see that (5.16) is invariant under internal diffeomorphisms with the gauge transforma-
tion (5.13).
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Let us now consider similar consequences for the the pseudo-Lagrangian. The potential
term is not modified so we only need to discuss the topological term at vanishing Virasoro fields
¢n = 0 for n > 1. We will then rearrange the terms in (4.81) in the case M € FEy, i.e. for p = 0.
By the definition (4.42), we have

pﬁf{ = 8}"L1’f ZTI‘ Q(”’“

= —(8p|L1|F) — Zﬁ GOV

+(0) (ﬁmam|q1><wc|Tﬁ|oz}> +lehmicy] - cfien) . (5.18)

where the two-forms (which enter the field strengths as discussed in Appendix A.2) appear
through a total derivative that we will neglect in the following. For M € Eg, one also computes

MTHEY K 4 [FloSY (7)) M
= P(U—1aﬁ(af|Ta|f> +) U—l—kaﬁT‘f[T“g“)DM_leM
k=1

= 7 (maglOF MTTMIF) + 37 07 s M T MG T2, (5.19)
k=1

and because Mﬂ is defined as the K component of this expression according to (4.44), one
obtains

p MY = —(@p|MT LI MIF) = 3 p R T M T Ly MG®) (5.20)
k=1

where the fact that ﬁF\Y_l does not depend on the two-forms was used to replace |F) and G* by
|F) and G™, respectively.

Moreover, one has p~'Dp = —Tr[B™] at p = 0 and one can therefore rearrange the following
terms in (4.81) according to

pdx] — p(Oy|A)XT + 0P D nlAls (5" = pJ5")
neZz
— D (ox]) — S0+ 1) S THTA B + Lo (5.21)
neZ k=0

where we used the bare covariant derivative introduced in (5.4). For M € Ejy it will be convenient
to introduce the shifted cocycles w®, (M) defined in (B.14), that satisfies

ML M= p™ 2L, — p* 720 ks (M)TP (5.22)
such that w§ (M) = w(M). Using (B.15), the expression (4.22) for x* , can be simplified to

XL = X+ PP (M)Ta - (5.23)
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Combining all these terms, one finally obtains the following form of the topological term (4.81)
at p = 0, up to the total derivative in the two-form fields in (5.18) that we do not include for
brevity,

o
Liop =D (px]) = D _(n+1) Y Tr[T BG4 Ik TrBY + 4pAP S “ndg)ph
neZ k=0 n

o o
+3Jooxt + 3D o T FTEBENT L+ 5D (0 R+ w0k (M)Fa) B
k=1 k=0

+ pO|F) = (O (Ly + MTILMIF) = > Tr[(Log + p M Ly pM)GO9] L (5.24)
k=0

With the split (5.2) and (5.5), the above topological term can be written as
Liop = D'X; + 50 Znﬁ"ﬁ T 3 ap(0a|T A D4l (Lo + p 2 M7 Lo M) TP | A')
+ p(X1IF) — <8F’(L1 + MLy M|F)
LT+ S T[T BY] + 3T [(S_1(T7) + p7 2 + w? (M)T]) B
LS TS () 0 + o (M) (B — 2]

k>1

+I3S 0k T[T B T M THT MBY] (5.25)
k>1g>1

where we used the explicit expression of G

G =D B® — 5611 ap(0aIT*|AT|A') (04l + 5 Y 1-qas T[T BT B
k =1
+1> (@ —1—k)T[BV)BO (5.26)

r=1

and the fact that the covariant derivative of x| compensates the one of these field strengths
using

D°( (px1) ZTr Lop+p 22 ML k./\/l)DbB(”k)]
k=0

=D\ + Y Tr[D(p ML M)BP] (5.27)
k=1

The Euler-Lagrange equations of motion of the fields B® and XL do not imply the duality
equation (5.1), so one cannot integrate them out in the usual sense. In fact, integrating them out
naively gives rise to inconsistencies due to formal indefinite sums that appear in the topological
term once one substitutes the solutions to their Euler-Lagrange equations. However, it turns out
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to be consistent to set them to the values in (5.6) and (5.10). In general, one cannot substitute
a solution to a duality equation (like (5.6) and (5.10)) into a pseudo-Lagrangian. In the present
case, the Euler-Lagrange equations of motions for the fields M, |A) and (x| are automatically
preserved, but the Euler-Lagrange equations for B and y] are not. We shall see nonetheless
that the latter are consistent with the duality equation. Indeed, after the substitution of (5.6)
and (5.10) in the pseudo-Lagrangian, the B field and x field Euler-Lagrange equations become
projected components of the duality equation (5.16), which is itself by construction consistent
with the original duality equation (5.1). Therefore we obtain that the two pseudo-Lagrangians
together with their respective duality equations define the same set of equations. Note that the
use of the pseudo-Lagrangian was always to determine the Euler—Lagrange equations of motions
for the fields M, |A) and (x| only, whereas the Euler-Lagrange equations of the constrained
fields B™ and Xz were redundant with the duality equations. So it may not be that surprising
that this manipulation turns out to be consistent.

Because (5.6) and (5.10) involve the Hodge star operator, their substitution in the topological
term (5.25) gives the sum £ + L9 of a kinetic term

L1 = 3T [(So1(T7) + 72 + w0 (M)T2) % B] = §p ™ na Te[T™B] « TiM ™ TP MB]
(5.28)

and a topological term

Ly =DX" 4§02 055 " + Sn1ap(0alT|A) (04l (Lo + p MLy M) TP | A')

+p(IF) = (0p| (L1 + MT Ly MIF) + 370X + $Te[J° B . (5.29)

To obtain this result we have used in particular

%ZZ;} Mak—qapTr[T* B@Te[M TP MB®)

q=1
o0 o0
=3 (0 Fnsk—qas — 1* Fnko1—qap) T[T B Te M TP MBY)

e Tr[T* BOI T M TP MB®]

(e}

=3 0 ke (DT BOITM T T MBY] 4 p 2 (T B M T MB @)
k=1

+ % Z Z p—2km+k_qaBTr[TaB(q)]Tr[M—lTBTM(B(k) _ p—QB(k+2))] . (5.30)
k=1¢q=1

This last equation involves indefinite formal sums that we have regularised using geometric
series regularisation as in (4.119) such that both the second and the last line cancel after the
substitution (5.10).

Now one can easily verify that the Euler-Lagrange equations of B and x” derived from the
pseudo-Lagrangian £ + L5 in (5.28) and (5.29), are proportional to the duality equation (5.16)

5(L1+ L2) = ATr [53( L MTY(SU(T) + xK) M — j)] + 16 (p * TY[B] — Jo) . (5.31)
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This concludes the consistency of the substitution of (5.6) and (5.10) in (5.25). Note that
although the relation between the topological term (5.25) and £ + Lo requires a regularisation,
the two terms (5.28) and (5.29) are well defined and Ey invariant. We shall use them to define
the pseudo-Lagrangian in the next section. In this minimal formulation we will see that the
Euler—Lagrange equations are finite and do not require any regularisation.

5.2 Internal diffeomorphisms invariance and pseudo-Lagrangian

We introduce now the unimodular metric g,, such that detg = —1 and the two-dimensional
metric is g, = 620@“,. Because this formulation of the theory is not manifestly covariant under
Y gauge transformations, it will be useful to use the bare covariant derivative that was defined
in (5.4) as D =d-— L4,y instead of D = d — L4 p). For a non-constant unimodular metric
G, the definition of the current 7’ has to be generalised from (5.3) to

T T = MTIDL M+ 577 (9, — (05140))Guo K - (5.32)

This additional central component is necessary for the covariance of the duality equation under
external diffeomorphisms as we shall see later. It can also be understood by identifying this
central component written in terms of the two-dimensional metric g,

T T = MT'DEM + g7 (Dlguo — Diguo)K (5.33)

as the gravitational flux (see e.g. [47, Eq. 4.13a]), where M does not include the conformal
factor o. According to (5.17), the current J = J,T% involves only the M-independent B term
as

TuaT® = MDY M — -1 o Tr[TP BT + 5 9y — (951 A0)) G0 K (5.34)

and therefore J is not equal to M1 7t M. It does not transform covariantly under generalised
diffeomorphisms either, but the duality equation (5.16), that we reproduce here for convenience

TnaT* = ™ o™ MM S (ToaT®) + X K) M., (5.35)

is invariant under internal diffeomorphisms, as we prove below. The Hodge star operator is

written out with respect to the unimodular metric g,,, with the convention €,, = §,s9,,€°” and

Ml = g9 = 1.

We define the gauge transformations of parameter |A)

OAGuw = <8§W|A> )
SAM = (O] A) M + g (OA|TP|A) (TTM + MT?)
On|Au) = OulA) + (DalA)|A) — Nap(Oa|T|A)T| A — (Ba]A)[Ay) | (5.36)
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and

OaBy = (9BA) By — 1as (OAIT*[A)[T7, By] + (OalA) By + miag (OaITINT?|A)(0a] - (5.37)
~ PGure” (110 (OAIT|A)T?|Ay) + (04| A)[Av) — (O] A4,)|A)) (B4

axp = (OxIA)Xu + (OalA) X + Y (O T AV TG = 0 (OAIT M) (Ol M Ly MTP|A,)

— (OAIA)(OA|MTIL_IMIAL) + (On|A) (Oa| M7 L1 MA)
— PGuce”” (110 (Oa T [ANONLoT? | Ay) + (On|A) (Oal Lol Av) — (9nAv) (D2 |LolA)) -

Note that the gauge transformation of the gauge field is not D,|A) as usual in exceptional
field theory, but it differs by a trivial diffeomorphism as shown in (3.21). In particular, the parts
of the gauge fields transformations which are independent of the Hodge dual match with (3.24)
and (3.25). The Hodge dual terms in the variations of B and x follow directly from (5.13). They
can also be derived from the gauge transformations in [47], in which the Hodge dual terms and
the gauge field transformation (5.36) appear naturally.

To prove that the duality equation (5.35) is invariant under internal diffeomorphisms one
computes the gauge transformation of the current

OnT = (07A)T +1ap(0aT*| AT, T7] (5.38)
+ g (15 (Oa T |A)(OA|TT°|A) + (OalA)(OAIT|A) — (Oa ANOAIT|A) M THTM
+1-1a8p % (1hs(OA T [A)(OAITT|A) + (Oa|A)(Or|T*|A) — (Oa|AN(OAIT|A))T7

and we identify the first line with its covariant transformation, while the two last lines are found
to project out in the duality equation, up to a central element that is compensated by the gauge
transformation of x.

The duality equation (5.35) is a twisted self-duality equation that can be obtained from a
truncation of the Eq; twisted self-duality equation defined in [47]. Twisted self-duality in D = 2p
dimensions can normally be written as an equality between a p-form field strength dressed with
the scalar matrix M € G and its Hodge star contracted with a G-invariant bilinear form. For Fy,
the one-form field strength combines the current J together with the one-form y in the module
(L1)* @D eg D (L_1), where (L1)* @ ¢g is the module conjugate to eg @ (L1) that describes the
indecomposable representation of the field x with the current J. The symmetric Eg-invariant
bilinear form is

p((X,uy ju)7 (Xuy ju)> = Z nABJ,uZJVEn_l - Ju—lJuK - J;,LKJI/—I - J,uOXV - X,uJVO . (5'39)
nez

This bilinear form, together with the action of F9 on the module (L;)* @ e¢g @ (L_1), define the
twisted self-duality equation in (L1)* @ eg @ (L_1).

. J) = (DX 4lT)) (5.40)
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with the involution?*

LI =p s MTSUT) + XKML = pxJk = P02y (M) DTl - (5:41)
The equation x = Z;[x] follows from the central component of (5.35)
Jk=p txx+pw (M) * Ty . (5.42)
One checks indeed that
LT = o~ M (81 (07 M7 5 (S1(T) + XK' M) +xK) Mt 5 < Tk
=J, (5.43)

and Z;[Z; [x]] = x. Although (5.40) is manifestly involutive, it is more convenient to write it as
an equation in the Lie algebra eg @ (L_1) as (5.35).
The pseudo-Lagrangian of the theory for a non-constant unimodular metric g, is defined as

1 A - T
Loin = L1+ L2 + Z,O»S”V»Sapg'i)‘ppganpugp/\ + pT<ag/W|M 1|89uu> -V, (5'44)

where the kinetic term
L1 = 3715 (T [(MTSH(T) M + x) B] + $nag DT BT M (TP)TMB,])  (5.45)

and the topological term?’

Lyda®Ada' = Dx + $Jox + 3Tk + 208D ndRIp T+ PP — w (M) TL|F)  (5.46)
—(OF|(L1 + M Ly M)|F) — Tr[LoG] + L p 72 11ap(0a|T*|A) (04| M L_oMTP| A"y

are the direct generalisations of (5.28) and (5.29) with a unimodular metric g,,. Note that we
wrote explicitly (x}| = p(x — w®;(M)T.| in terms of the field (x| that appears in the potential
term V' [1]. We recall that the (internal) (x| transforms as the central component of

(T 10T =(TJa| @ S_1(T*) + (x| @K, (5.47)

whereas the (external) vector field y instead transforms as the central component of S;(J)+ xK.
In addition to the dependence in the general unimodular metric §,,, (5.45) and (5.46) differ from
(5.28) and (5.29) in that we have included (most of) the dependence in the field B,, in the current
(5.35), the covariant derivative Dx and the field strength G, using similar steps as in passing
from (5.24) to (5.25).

24The conjugation by M uses the K(FEy) invariant bilinear form defined at M = 1 as

((Xunjli)v (XV7\7V)) = Z 5ABJ;LZJV% - J/,LOJVK - JM,KJI./O - J/,L71Xu — Xu Ju-1.

nez
25n this expression we extracted the top-form factor on the left, with the convention that AB = £"* A, B, dxz°A
dz! and Ax B = g‘“’AuByd:cO/\dx1 for one-forms in the two-dimensional external space.
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In (5.44), the first two terms £1+Ls together, the two terms involving the derivative of the
unimodular metric and the potential V are individually invariant under internal diffeomorphisms
up to a total derivative. We shall see that their relative coefficients are determined by external
diffeomorphisms.

In order to study the invariances of the proposed pseudo-Lagrangian (5.44), we recall a few
definitions. The field strength F' and G are defined as in (3.29), while the covariant derivative

Dx = dx— (Oy|A)x — (0alA)x— > n(0a|THA) T3 = " (n+1)Tx[T' Bl J; — Tr[BlJk , (5.48)

n n

follows from the indecomposable representation of the field x under eg @ (L_1).2° One derives
the Bianchi identity for J

DI + T* + (T|F) 4+ 0apOp|(T™ + MTIT VM) F)TP + 11 0 Te[T*G) TP
= 511-1ap1175(0a| T [ANOATT°|AY M TP M . (5.49)

The non-covariance of the right-hand-side follows from the property that J does not include the
term in —n_laﬁTr[TaB]M_lT Bt M in its definition. One can also derive the rigid Ey invariant
topological term using the same construction as in (4.46). One can indeed write a Bianchi
identity for the shifted current that transforms under eg by a commutator with the eg generators
T<. This Bianchi identity is satisfied up to a central element that is equal to the topological
term Lo

D(S1(T) + xK) + 2o (S1(T) + xK) + 3T1T + 2T (S1(T) + xK) + 2(S1(T) + xK)T
+ (TalS1T)|F) + (p*(x — w*  (M)T)|F) + m1ap0p| (T + M TIM) |F)T?
+ s T [TGIT? = Lp7200 0511 4604 TV |A)(OA| M TTMT? | ANTP = LK., (5.50)

which implies that Lo is rigid Eg invariant. The term £ is manifestly invariant under rigid
FEy and can be determined such that the Fuler—Lagrange equation for B is a projection of the
duality equation.

Let us now show that £14+L, transforms as a density under internal generalised diffeomor-
phisms. The non-covariant variation of £ gives

ANL1 = 395" (nys (OA|T[AY(OAT T |AL) + (OalA) (04T Ay)
— (OA1AL)(OAIT|N)) (Tvar + T1[Tral) (5.51)

To vary Lo we must first derive the transformation of the field strengths. To avoid a cumbersome
computation one first observes that the gauge transformation of G is mostly determined from the
gauge transformation of the field strength F' by the Dorfman product (3.15) according to (3.30).
Therefore writing x| F') as L(x 0)|F") plus an explicit trivial parameter allows to determine the
gauge transformation of G, up to doubly constrained trivial parameters (A.5d)—(A.5f) that only
affects G and the non-covariant piece of the B field gauge transformation (i.e. the second line

26Note that Dy differs from Dx! in Section 4, because x| is invariant under Lo and L_1, while x transforms
respectively into itself and Jk under these two generators.
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in (5.37)) that must be computed separately. But because the terms in the doubly constrained
parameters leave invariant Tr[LoG] in the pseudo-Lagrangian (see Appendix A.1), we do not
need to compute them. One computes in this way

SAIF) = Liao)| F) + 3 (Lany|A)—L14)d[A)) + 30-100145(Oa|T7|AY (O |T*T°|A)TP|A) (5.52)
0AG = L(7,0)G + 1M ap(On|T*|A)TP|F)(04|
+ 37108 (OA|T*[A)TPA|A)(Or] — 3m10p(0a|T*|A)T d|A) (4]
— 3175 (OA|TV[A) (napT*| A)(OAIT T |A) (O] — |AYO|T°|A)(Oa| + T°|A) (D] A)(Da])
+D(p* (s OATIATIIA) + (02| A)|A) = (OaIN)|A)) Onl) +... . (553)

where the first line in J5G directly follows from the Dorfman product (3.15), the second and
third lines keep track on the trivial parameter with one constrained index in the transformation
of |F), the last line is computed directly and the ellipses stand for a trivial parameter with two
constrained indices.

With this we can now study the gauge transformation of the topological term (5.46). When
varying (Op|L1|F) + Tr[LoG], one obtains that all the contributions cancel up to a total deriva-
tive, except for the one obtained by commuting (9| with L5y on d5|F) and the last term
(involving the Hodge star) in the variation of 4G. To understand this cancellation, one notes
that (Op|L1|F) + Tr[LoG] is invariant under all one-form gauge transformations up to a total in-
ternal derivative (A.14), and therefore, the trivial parameter components of the variations (5.52)
and (5.53) cancel up to a total derivative in the variation of (Op|L;|F) + Tr[LoG]. Eventually
one obtains

AN (=2(0F|L1|F) — 2Tx[LoG])
= 2005 (OA|T*[A)(ON LA TP | F) + 2(0aA) (O L1 F) + 27105 (DA T|F) (Oa|LoT?|A)
—2D [xp((Oa|Ta| A) (Oa| LoT*|A) + (Oa A} (O] Lol A) — (OaA)(Oa|Lo| A))]
= 2(OA|L1|A)(OA|F)
—2(d — (9] A)) [*p ((Oa|TalA)(On| LoT*|A) + (Oa|A)(On|LolA) — (Oa|A)(Da|Lo|A))]
~2p((0al[Lo, Ta]|A) + 1-10yTr[[Lo, T7] B))
*((ON|T5|A)(OAITTP|A) + (Oa]A)(OA|T*| A) — (D4l A) (OA|T(A)) (5.54)

where the second line is a total derivative. We also have after some algebra

AN (=2(0p|MTI Ly MIF) + p21103(04, | T A1) (D, M Lo MTP| Ay)) (5.55)
= 2O [Tl AY(OA| MLy MT|F)+2(05 | A)(OA | M T Ly M|F)42(05 | A) (Op| M Ly M|dA)

+ 2(Op|dAY(OA|MTEL_ M| A) + 2(0p | To| AN (OA|MTEL_y MT|dA)

+ (OA|Ta|A) ((OA|T5T*| A1) (Oay | M Ly MTP| Ag) — (04, |T5T| A1) (Oa|M ™ Loy MT*|Az))

— (OA|T™|A) ((On|A1) (208 +0a, +20 4, M Ly MTP| Ag) + (D, | A1) (Oa|M T L1 MT?| A3))

+ (04, | A) (On|Ta| A1) (OA|MTTL_y MT*| Ag) + (9r|A) (O, | A1) (Or| M L_1 M| Ay)

+ (D4, | A) (D7 | AL) (O | MTEL_ M| Ag) — 2(Op|A) (O A1) (OA+Da, +0 4y | MTEL_1 M| Ag)
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where we have written T, = naBTB for the eg generators and one should not forget that the
transport term in the Lie derivative of |A) does contribute to the non-covariant variation of the
second term when two derivatives act on the parameter |A). One also computes

AN (2(p% (x — w2 (M) Q)| F)) = =20 l(Ly + MLy M)|A)(Oa|F) (5.56)
and finally that
AN (2Dx + Jox + T dk + 0B ndipt ) (5.57)

= (OA|Tal A) (OAIMTISI(I) T MT|A) + (84 A) (0| MTIS1(T)T MIA)

+(OA| AY(OAIM T S1 ()T M| A)+2(0A | To| F) (06| MLy MT*|A)+2(07 | F) (0| M L1 M|A)
—2(07|A)(OA MLy M|F)=2(0 | To | A) (O IM ™ Ly MTd|A)

—2(OA[AY(OA| M Loy MA|A)+2(Dr|dA) (Dr| M L_1 M| A))

—(OA|Tul A) ((OA|TT*| A1) (Oay M Loy MTP| Ag) —(0a, |T5T* | A1) (OA| MLy MTP| Az))
+(OA|To|A) ((On| A1) (20A+04, +20 4, | MLy MT*| A2)+(0a, | A1) (Oa M T L1 MT®| As))

— (04| A (A Tal A1) (OAIMTT Ly MT | Ag)—(O4]A) (D, | A1) (Oa| M T L1 M| Ag)

— (04, |A) (07| A1) (OA|MTEL_y M| Ag)+2(0p | A (Op| A1) (Op+0a, +0 4, M L_1 M| As) .

Combining all terms one gets eventually
AN(L1+L2) =0, (5.58)

such that £14L5 is indeed invariant under internal diffeomorphisms. Moreover, one checks that
in £1+L5 is invariant under the ¥ and 1-form gauge transformations defined in Appendix A.5.

The potential V' was shown to be invariant under internal diffeomorphisms in [1], and the
two additional terms in g,, are manifestly invariant under internal diffeomorphisms up to a total
derivative. Therefore the pseudo-Lagrangian (5.44) consists of three pieces that are separately
invariant under internal diffeomorphisms.

We shall see in the next section, that external diffeomorphism invariance also requires to
introduce one additional duality equation in the theory. Just like the B field Euler—Lagrange
equation, obtained by varying the pseudo-Lagrangian with respect B, gives a projection of
the duality equation (5.35), the Euler-Lagrange equation for the constrained field (x| gives a

projection of the duality equation®’

|\ Fiw) = =p" e TOMTITL) (5.59)
where

|[F) = |F)+{0c|TalCa )T |Coy) + (7| Ta| Cpu) T*|Cop) +2(mc| Cpp) |Cop) 4110 TH [T CH TP |CF )
(5.60)

2TThis equation follows from the duality equations in [47] upon branching to F.
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where we use the same notation as in (A.5a), (A.5b) and (A.5c) and the shifted internal current
(J, | is defined in (5.47). These two-forms can be written in components

1C) ® |Coy) & CMN) 1 |Cy) @ |Cy)) @ (o] & CMNp 10 @ CF < CHMNp | (5.61)

where CMN) is symmetric, CIMNp antisymmetric in M N, and CIMNlp and C+MiN 5 are both
constrained on their index P. Note in particular that |C}) ® |Cs) represents a unique field that
does not factorise, so (Jc| ® |C1) ® |Co) & dpCMN is a total derivative. As trivial parameters,
they are defined such that they drop out when |F) is contracted with a constrained bra, as in the
equation of motion of (x| for example. One checks using (5.52) that this duality equation (5.59)
is indeed invariant under internal diffeomorphisms provided one defines the (inhomogeneous)

transformation of the two-form potentials as®

~ 1
Ap[C1) @ [Cop) = 5(%IA> ® [Ay) — [Ap) @ 0410)) (5.62)

~ 1
AnICp) @ [Copy) @ (ol = 5 (0ulA) @ [A) + [A) © 8y)|A) @ (O = Dal,

AN|CF,) @ CF = —p~ e M7 On) © |A)(Oa] — map(Oa|T|Ap) | Auy) @ TP|A) (O] -

Note that the two-form indices can be placed on any C; since they are representing the same field
according to our notation (5.61). The first term in the non-covariant variation of \Cf;u) ® C2+
does not follow from the Dorfman structure and does not appear in (A.30), but is defined to
compensate the non-covariant transformation of the shifted current [1, Eq. (4.30)]

ANTM NI ) = (OalT|A) (n-1as T M™HOA) + p~*mi agM ™ T7T|04))
= 1-1as{OA|T*[A)T M~ 184) (5.63)
where we used that the second term vanishes according to the section constraint. Therefore
the field strength does not transform covariantly as in (3.30), but includes moreover the same
non-covariant variation as the internal current.
We shall see in the next subsection that we need to include (at least a projection of) this

duality equation in order to obtain a system of equations invariant under external diffeomor-
phisms.

5.3 External diffeomorphisms invariance
Similarly as in [22], we define the external diffeomorphisms as
§eM = DM — Dt M.,

6&.&#1/ = SU,DUS?;W + 2D(/J,§U§l/)0' - g/w,DJéﬂ )
Sel 4y = p e TOMNTL) + p 2 M 10EY) (5.64)

where

D& = 0,8" — (0" |Ay) . (5.65)

28Here the inhomogeneous transformation AA is defined in (A.29). It is the C-independent component of AC.
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Note that we do not use the full covariant derivative D, M because ¥ gauge invariance is not
manifest and we have gauge fixed the L_; gauge symmetry by setting p = 0. Writing the duality
equation (5.59) as |€,,) = 0 with

Ew) = |Fuw) + p e TMYTLY (5.66)

one finds that this transformation of the vector potential indeed corresponds to a covariant
diffeomorphism modulo the duality equation (5.59), i.e.

55’Au> = fV’]:Vu> + P_2§WM_1’(9§V> + gy‘g;w> : (5’67)

This is the same argument that is used to define [22, Eq. (3.40)].
We will determine the transformation of the fields x, and B, such that the twisted self-
duality equation (5.35)

Eu =Ty~ p "M% (S1(T,) + x,.K)TM (5.68)

transforms into itself and other equations of motion under external generalised diffeomorphisms.
We will show below that these transformations can be defined such that

0eE, = EYDLE, + DyueE, + 5”( ML

()

M+ p G P MTLS, (M—lz(gpu,o)M)TM) ,
(5.69)

so that we find that external diffeomorphism invariance requires to consider
Nas <88|Tﬁ|g,uu> =0 (5.70)

as an equation of motion. This equation is more constraining than the Euler—-Lagrange equation
(0x|€uw) = 0.

One may be used to the property that exceptional field theories can usually be defined
without being forced to introduce the duality equations for the non-propagating higher form
fields, as is the case e.g. in [20-22]. For Fy one may expect that the Euler-Lagrange equation
for the coset scalar fields would imply an equation of the form

ULY: <85‘T6‘5;w> +N-1 aﬁTr[Tﬁg;w] ; 0 (571)

for a £,, involving the two-form field strength G,, such that this equation would not depend
explicitly in the two-form potential C. However, the scalar fields Euler-Lagrange equations only
give a projection of the &; shift of such an equation to eg © K (eg), which does not imply that it
holds.

To compute the variation of (5.68) under external diffeomorphisms, it will be convenient to
define the non-covariant component of an external diffeomorphism as

55 = gg + Ag (5.72)
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such that

LTy =D, +Dut" Ty (5.73)
and similarly for any vector field. Using this definition, one computes that
AcTy = €1 ap 6 (0| TV [A] )OI TT| A (TP + MTITPIM) (5.74)
- £V(<~7a|E;w> + 77a6<8E|(TB + M_lTﬁTM)|EW>)Ta - 5V§0p<6§ua|EpV>K
— 240 M T T = p~ e (0 T TP MTH TG ) (T + MTIT M)
— 072050 M OE" YK + (DyDUE” = 2DuDuE” + 503" D Dot? )K
= P NG O[T M 4+ MTITIN|OE) T — p2 5,087 [T, TP LM T) T
where (0| in the last line indicates that this term is a total internal derivative and
| Buw) = |Fpw) +p e TOMTHIL) (5.75)

is the component of equation (5.59) that does not include the two-form gauge fields. The first
term (Jo|Euw) = (Jal€uw), but to get the two-form dependence in the second term, we need
to define A¢B and Agx to depend explicitly on the two-forms. One computes that (5.69) is
satisfied if one defines the variations

A¢Byy = m1ap€” (04T AL)TP|Ayp) (04l
— PG € (e (04T | AL YT | Ay} + (DAl Al )| Auy) + (04l A} AL)) (0
0 e (267 MTH0) (O] + 3 M (1067) (0G| +105,0) (067 )
—TOMT(0E) (Tl + T (0E"]) + M0E") (o))
+ Gy (MO T |+ TOM T OE]) + €00, B
Agxy = =& (naﬁ<8A‘TQ‘A,LU,><8A‘M_1L—1MTB’AV}> + (04l ALY (OaIMTI L M| A,)
(0] A) (04 M T L M| A)) )
— & G (1 (OaIT*| AL, ) (94| LoT? | A,) + (4] AL, ) (9a| Lol A1) + (4] App) (9a| Lol A} )
— Peup§ (097 | Egv) + pe1upd°? (DDl — 2D DyEY) + pen 3 DoDpE”
072G (DN LAM ™ + MO L0)IOE) + (0" |[La, T2I M )
(O (LT M+ TOM Lo)|T) + (08" | M7 ST 7))
+ 07 Gupe”” (DGon| (LoM ™ + M Ly — MTH)|0¢¥)
072 (0 + Opl (M7 Lo + LoMTI0E") + (96" | M LolJo) + (96" [T°M7|7)
+ (08 |(L1 + M7 L MYT*MTID) ) + €700, X (5.76)
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where £Y0¢c,, is the one-form gauge transformation of parameter C,, where o is the index of

the vector parameter whereas v is contracted with £, i.e.?”

£"6¢,, B = —21emapT®|Cp) ((mc| TP |Co) (0c| + (0c|TP|Cy ) () (5.77)
+ 1enap T[T CFIT |CF) (D] — 1l CF WO+ O + 160+ CFHYCF
+ p* g (1T |C) (| TP | Cop) + 2| Cpa Y (me | Cop) ) (D] — px ten—1ap T[T CHITP|CF ) (D
€60, X = —temap(mo| T |C ) (00| M Ly MT?P|Co) — 2u¢ (mo|Cry ) (0| M ™ Ly M| Cay)
— pt¢ (1ag (M| T |C) (D0 | LoT?|C) + 2(mel Ca) e | Lol Ca)
~ N-1apte T[T CF O+ M T Ly MTP|CF) = px 1gn-1ap T[T C5 [0+ LT |CF ) -

Because we consider \SW> = 0 as an equation of motion, invariance of the system also requires
to compute its own transformation under external diffeomorphisms. On computes that |£,,)

varies into
6§‘5;w> = _p_2€uV§oAE)\pgpM_1’a€U> ’ (578)
with the definitions

5 (x| = —(0¢"] (p—lgwsWJyo + 2 (X + TH M LoMB,] + B, — Tx[B,]) + wil(M)jW>

SR OAIT | A (3] + €0l (Lt + ML M)A (D] (5.79)
and
AC) ©10u) = 3 (el ) @ Ay} — |4} © 6l ) (5.50)
AelCl) @ [Co) @ (] = 5 (5l Ad @ |4y} + |A) @ 5l 4,))) © Bsea — Oal
DO © CF = p M (104) © €140 0a] — 07 0= 10E) @ B)

The duality equations (5.35) and (5.59) therefore transform into themselves under external
diffeomorphisms. The minimal set of duality equations transforming into each others under
external diffeomorphisms is

Eha =0,  1ap{0e|TP|Ew) =0. (5.81)

One may be worried that the external diffeomorphisms variations of the ancillary fields B and
x depend on the two-form potentials while the pseudo-Lagrangian does not. The resolution is
that the pseudo-Lagrangian is only invariant under external diffeomorphisms up to bilinear terms
in the duality equations, including equation (5.59) that depends on the two-form potentials. To
see this we observe that varying B and x only in the pseudo-Lagrangian one obtains that the
dependence in the two-form potentials can be absorbed into field strengths terms, i.e. that

TY[€6,.0B] + Eobrcox’ + (OF] <Sl(5) — &Ly — EGM L M — 5p*> e F) (5.82)

Bwhere tedzt = .
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does not depend on the two-form potential and so we expect the non-covariant variation of the
pseudo-Lagrangian to give

AeL = _%<a‘g>y(sl(5) — &Ly — Eo ML M — Sp*) 1el€) + dBe — (9|Be) (5.83)

for some specific boundary terms B¢ and |B¢). We stress here that it is enough for the pseudo-
Lagrangian to be invariant under a symmetry up to terms quadratic in the duality equations for
its Euler—Lagrange equations to transform into themselves and the duality equations under that
symmetry. On the contrary, it would not be sufficient for the pseudo-Lagrangian to be invariant
up to terms linear in the duality equations. A symmetry of the equations of motion only require
that they transform into themselves under the symmetry variations. If the Euler-Lagrange
equations of a pseudo-Lagrangian transform under the symmetry into duality equations, then one
finds that the pseudo-Lagrangian is only invariant under that symmetry up to terms quadratic
in the duality equations. This is discussed in detail in Appendix E.

As a consistency check, one can verify that the relation between the quadratic terms in
the duality equation in (5.83) are consistently related to the terms proportional to the duality
equations in the external diffeomorphism variation of the B fields according to the general
discussion of Appendix E. This can easily be verified, because the equation of motion £ = 0 of
the constrained field B is simply the projection of (5.68) upon tracing with dB, so its variation

under external diffeomorphisms follows directly from (5.69) as *°

Tt[6B6:Ep] = — 5 Tr[0BSE] (5.84)
= —ATv[0BLE] — LTe[T6Blie(Tu|E) + AT M TSI T MEBp™ % 16(TulE)
— 5{06)|0Be|E) + §Te[0Blie(96)|E) — §Te[MT L1 MIBlp™ % 1¢()y|E)

+ e T M T MO B0 (07 5 (S1(T™) = 8L+ MT L M) = T%)€)

where the two first lines are proportional to Euler—Lagrange equations whereas the last line is
proportional to the duality equation (5.59). Assuming (5.83) we can vary the right-hand side
with respect to B to obtain

BACL = §(D)e) 3Biel€) — YTrOBlug Dl6)|€) + ATr{LodBlie (D I€) (5.85)
+ e T M TP MOBY g | (575 (S1(T?) = 6§ (Ly + ML M)) = T )€

where again the first line is proportional to Euler-Lagrange equations whereas the second
matches precisely the term above in Tr[0Bd:Ep] proportional to the duality equation (5.59),
consistently with (E.5) in Appendix E.

We have not fully derived the invariance of the pseudo-Lagrangian up to quadratic terms in
the duality equations. We shall only check that external diffeomorphism invariance fixes all free
coefficients in the pseudo-Lagrangian.

We check this in steps. Let us start with external diffeomorphisms that do not depend on
the internal coordinates and with |A) = 0 for simplicity. We denote the corresponding transfor-
mation by 5?). To check the invariance of the pseudo-Lagrangian under such diffeomorphisms,

30We vary 0B at dx’ = 0, not §x = 0.
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we only need to consider the terms involving J,k and x in L1 + L2, as well as the third term
in (5.44). The terms linear in the field Tr[B,] transform together covariantly by construction
since they are proportional to the duality equation (5.42). The term that remains is Dy + %Jox
in £5. One computes that

0¢" (L1 + L2) = 30u(6" (L1 + L2)) + pe (0 — (01 A40) (€7 9200, 05€”) - (5.86)

To compute the variation of the third term we found useful to use

1 - - - e arln ~
2" G 0uGorOu G = O (" 501 G D) (5.87)
and vary instead

5?@11 = &F9ug11 + G11 (€' — DE®) + 2§01 €

60 I0 = g1, TN 1 gpet + L (90 — ar€") + TV, (5.88)
a1 g11 ag11 g11

from which one computes that
(0) @ ~ e gﬂ ~ v v f]ﬂ ~ Vo P
Og <§11 ugn) § 81/<§11 u911> +&70,¢ <§11 1/911) €7 §op0u0,&
- - 2
+ 0, (gllaofl + (goo + E>81§0> , (5.89)

where the total derivative in the second line will drop out in the variation of the pseudo-
Lagrangian. Using this formula one obtains

1 _ . _ 1 - - - -
5?) (Zp Euugapg’i)\auganaugp)\) = 819 (fﬁzl) Euugapg’i)\auganaugp)\) - pguuau(EUAgApauaagp) .
(5.90)

Thus, the pseudo-Lagrangian is invariant under purely external diffecomorphisms, i.e. at |[A) =0

for £H(x).
Now if we take the second order derivative terms in the unimodular metric and the vector
field £#(x,y), we obtain from £y + Lo

(L1 + La) = -+ = (0l M 10E) " Dudivr — (050l M 107V D" )
=+ 0l(p~ MTHOET) 3" Dudvo) — Ou(p™ (090l M OET) )
+ 57 (0900 |MTDLIOET)G™ — 5050l M7 OE)Dog™ ) (5.91)

which cancels the non-covariant variation of %(8@““ IM™H0G,).
The variation of the potential gives the terms

AV = —3p” O (T" T, + T, T*) M| )
+ 50~ O (TS1(T) + S (TNT)MTHITL) + ... (5.92)
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which are compensated by the terms

Aely = 5p7 N (TS1(T)) + MTESU(T) T MT)MHTT) + ... (5.93)
Aely = —Lp7 10" (TT) + T T*) M )
+ 50~ HOE"|(S1(T) — MTISUITDNTM) T M T ) + ..

in the variation of £1 and Lo, fixing in this way their relative coefficients in Ljp.

We conclude therefore that the invariance of the pseudo-Lagrangian (5.44) under external
diffeomorphisms, up to total derivatives and terms quadratic in the duality equations, fixes the
relative coefficients of all the terms in (5.44). In this section we have proved that the duality
equations (5.35) and (5.59) transforms into each others under external diffeomorphisms, and
verified several consistency checks for the invariance of the Euler—Lagrange equations. The
complete invariance under external diffeomorphisms will be confirmed in the next section, by
showing that upon partially solving the section constrained one obtains the Fg exceptional field
theory [22]. Because the latter is invariant under three-dimensional external diffeomorphisms,
we conclude that the Egy exceptional field theory pseudo-Lagrangian (5.44) must indeed satisfy
(5.83).

5.4 Embedding of Eg exceptional field theory

The most convenient way to prove that the Fg exceptional field theory does describe supergravity
solution is to show that it reproduces Fg exceptional field theory upon choosing the partial
section solution

(0] = (019 + T*0a) , (5.94)

where 04 is the internal Eg derivative that still satisfies itself the Eg exceptional field theory
section condition [11,22]

04 @05 + 05 @04+ far® fPPp0c®0p =0. (5.95)

In (5.94) and below we use ¢ to denote the circle coordinate in the Kaluza—Klein ansatz, which
is an internal coordinate (5.94) in Eg exceptional field theory and an external S' coordinate
in Fg exceptional field theory with three-dimensional external space-time involving a local S*
fibration, see (2.12).

Semi-flat current and Kaluza—Klein ansatz
We use the Eg parabolic gauge
V= (p e XvyU (5.96)

with V € Egand U = HZ"Zl exp(Yy ATfk) the negative mode component in Eg. Then one defines
the semi-flat current [47]

U'\PU=g", U'JU=7, x=x-0(0)J0a=x+w"1(U ") a. (5.97)
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This gives rise to well-defined finite expressions, because the action of U~! on a constrained bra
is finite

BIU = (018, — n*BY1408 + T{'94) . (5.98)
The duality equation (5.16) then reduces to
T =px (MTS1(T) Mo +X) (5.99)

where we define M, = e 2°p72lo M € R, x Ry x Fg, the mode 0 component of M (i.e.
commuting with Lg), not to be confused with M that denotes the Eg matrix (written M4p in
the adjoint representation of Eg). Since

U-MYM- U= MM, +dU - U + M7 AU - UM, (5.100)
we have similarly
JoT = M;H(d = (O, [A)) M, + (d = (D] AU - U™+ M (d = (au|A)U - UM,
— NapOa|UTLTPU AN (T + M7ITYIM,) — 1_ 10 Te[TPUBU YT . (5.101)

The semi-flat current components are then finite by construction and we have in particular the
components along Ly and K

Jo=—2p""(dp — (94 + 8p|A)p) = —2p"'Dp,

Jk = —2(do — (95| A)) + 2(0a|U T LoU|A) + §°° (Ovduo — (0G| Av))dat
= —2Do + 3" D, gueda* . (5.102)

Because the pseudo-Lagrangian involves infinitely many dual fields, we will need to eliminate
them in order to reproduce the Eg exceptional field theory Lagrangian. For this we shall add
terms to the pseudo-Lagrangian quadratic in the duality equations, which by construction do not
modify the equations of motion since their variation vanishes upon using the duality equation.
The duality equation along the loop algebra generators from (5.16) are

Jim=p T HE T (5.103)

where we introduced the Fg matrix HP 4 = UBCMC 4 that defines the conjugation H ApT ({3 =
M~YT{HTM and

I = HB AT, (5.104)

We also need the explicit form of the ancillary and constrained field B in the Eg solu-
tion (5.94) of the Fy section constraint. As a constrained derivative decomposes as (5.94), one
can write the general ansatz for B

B = |b){(0]| + |ba)(0|T , (5.105)
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with |ba) constrained on its A index according to the Eg section constraint (5.95). Writing out
the various ways in which B occurs in the pseudo-Lagrangian, this gives the components

Tr[B] = (0[b) + (0|1 |ba) = bk
Tr[LoB] = (0| ba) = CA 4
Tr[L_,B]=0 Vk>1
Te[T4, + Bl=0 Vk>1
napTe[T B] = (0]ba) = —Ba
napTr[Ty B] = fap®(0|T|be) = fap“CPe
napTr[TPB] = nap(O|T2 |b) + napO|TE T be) = B ™" Yk > 1 (5.106)

where By and CP 4 are constrained on their A indices while bx and le_k are arbitrary. We
shall see that B4 is the vector field in the Kaluza—Klein ansatz of the contrained field in three
dimensions, while C” 4 is the component of a two-form potential in three dimensions. For the
vector field |A) we use the similar ansatz

|Au) = (wp + UABAAT L+ UAanDC'A BreTh +..0))0), (5.107)

where w,, is the Kaluza—Klein vector of the three-dimensional external metric (2.12). The vector
A/’j in (5.107) is the Kaluza—Klein component of the three-dimensional vector (in the adjoint of
Fy), and C4B valued in 3875 @ 1 @ 248 with

(OITATP|A) = 20WB) 4 fogP FAE L,COP (5.108)

comes from the two-forms in three dimensions [22].%! To describe the Kaluza—Klein ansatz for
the vectors we note from [1] that Y = Aé , while the constrained field

(x| = p x|+ WU (ol = p7H01(Xp + p~ ' Bpa) + (U (Jal - (5.109)
The Kaluza—Klein ansatz is defined such that the three-dimensional vector fields take the form

AP = Al (dp + w) + Ajlda* | BY = Bua(de +w) + Buada" + pguec” 0qw,dz’ .
(5.110)

The additional term in the Kaluza-Klein Ansatz of the constrained vector B? is consistent with
the Eg section constraint, and can be ascribed to the non-covariant transformation of the field
under external diffeomorphisms [22]. The three-dimensional covariant derivatives

D = da" Dy, + dpDy = d” = L{ua g (5.111)

of the metric components are defined in form notations as

DPg = d®g — A:zDAaAO, _ 8AA:1DA , D:sz — d:sz o 8A(A3DAP) 7
Dng/,u/ — dngﬂV _ AgDA@A?]W , DsDw“ — ngwu _ AgDAﬁAw“ ’ (5‘112)
31The antisymmetric 248 component C[415] = —S—%fABEfCDECC;D was not considered in [22] because it could

be absorbed in a redefinition of constrained two-form CZ 4 in the Fs theory.
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and the Fy covariant derivative decomposes as
D, =D, —w,D, (5.113)
on o, gy, and w,, whereas there is an additional term for p
Dup = D,p—w,Dyp— pDyw, . (5.114)

Since the field B appears in the pseudo-Lagrangian through Tr[T*UBU~!], we shall also
introduce the shorthand notation napTr[TPUBU1| = l’;’;l_k for the loop components with
k > 1. For example, [5’22 expands as

B3? =By + fap” fec AJC D+ napAZbk — 548" fec” AJAZBp — fap“Yy’ Be . (5.115)
We also have for the (mode 0) Eg component
napTr[TPUBU ™ = fap®CPc = fap®(CPc — ALBc) . (5.116)
The duality equations (5.103) for n > 2 give
Byt =03 = T HE o S (5.117)

and since the fields [;’Z" are arbitrary, one can integrate them out in the pseudo-Lagrangian by
setting them to this value.

Expansion of the pseudo-Lagrangian

We are now ready to analyse the pseudo-Lagrangian (5.44). We will first show that £1 + Lo
can be written as a finite set of terms plus an infinite sum of terms quadratic in the duality
equations (5.103). For this purpose one computes that £, decomposes as
—1 _ N _ B
L= %gﬂ” (Tr [B.M(S1(2) + %K) TM,] — %naﬁTr[TO‘BM]Tr[MO_ITBTMOB,,]) (5.118)
~ ~ ~ i ~ ~ -1 ~ ~
= EMA g (— RS Bys + T e PO b+ Y o B ) + Lo (R + it )b

n=2

o0
- EMABQW (B/JABI/B +p 2 fac”Cl pfeE" ClF + Z P_znlgpjnﬁ’u};")

n=2

= LM Ny (Lt = o T HE A ) (T — o T H (D))
n=2
p—l - ~
+ TNMV()ZM — p(*J)uK)(buK - p(*J)VO)

1
p - ~ _ ~ ~ ~
- TMABQW(J;LAl - PHCA(*J)M%) (JuBl - PHDB(*J)VOD)
— gUAngj (T + MA°B,c) (nPP 1Y + MBPB,p) + pg" Tk Juo

o
L ABN Fnj—-l-n_ 1 wi 7 L i oo
+ 3 B T T T = 5 k-1 — 3" T X

n=0
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where we have used in particular that
" xS = =g T80 . BB, =0. (5.119)

For the topological term L9, we note in the first place that a rigid Ey transformation g (not
to be confused with the metric g, ) in the centrally extended loop group Fg, i.e. with p(g) =1,
gives

Dx = Dx + w197 ) (DT )a - (5.120)

One computes that

Dx = dy — (9|(|A)X) — w* (U)(DT)a +n*B Y 0 "I = TrUBU )k

n=1
+ (AU TAUAYT % + (04U MTUT) T MUAVTG (5.121)
where we used
dw® (U) = RUH)300” (AU - U™Y) WP (exp(X)) = 6’ [ (X) + O(X?),  (5.122)

and the property that (04|U'T4, = 0 for n > 2 in the Fg partial section solution.
The first line of (5.121) gives together with the other terms of Lo

— 2 (U)(DT o + 2028 > "I — 2T [UBU ] Jk
n=1
+Jox + T Jk + P nd R I 4 2(0% (x — w® (M) TW) | F)
—2(0F|(Ly + M_IL_;[M)’F> — 2Tr[LoG] + ,0_2771 ag(E?A\TO‘]A’> <8A’M_1L_2MT6‘A>

= Jox — Tr[BlJk — 0P Y JRJ5" " + 2p(X|F) — 2Tx[LoUGU ]

n=0
—200p| UYLy + MLy M,)U|F) (5.123)
+ 07201 6p{0A|UTITOU|A Y04 U ML oM, TPU|A) (5.124)

where we used the rigid Fg-invariance of L£5. Note that the last line and the second term of the
next-to-last vanish when using the partial solution to the section constraint (5.94) associated to
FEg. We therefore have in total

Ly =dx — (U MA)R) + 3JoX — §Te[BlIk — 302 Y T4J5" " + p(XIF) — Tr[LeUGU ]
n=0

—(Op|UT L U|F) + (04|U ' TA U AT 72 + (04U M7UT MUA TS . (5.125)
Combining this with £; from (5.118), we have

L1+ Lo=2Z— BnABg‘W(T]ACjM% + MACBuc) (T]BDJ,,% + MBDB,,D) + %,OEZMVJHKJ,,O

4
+ p(X|F) = Te[LoUGU ™Y + (8 [U T L U|F) + (0a|U 1 TA U A)J ;2
+(0a|U MHT MU LAY TG (5.126)
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where

z — _gMAB Zp—zn (j;n o p2n—1HcA « jré—l) « (jén o p2n—1HDB « j%—l)
n=2
+ 307 (X —px Jk) * (b — px Jo) +dx — (OI(UA)X + U ' LU|F))
1

- %MAB(JNZl — pHY g% JE) * (J 5+ — pHP p J%) (5.127)

does not contribute to the equations of motion, as it is composed out of bilinear terms in the
components of the duality equations (5.103) and total derivatives.
The before to last term in the pseudo-Lagrangian (5.44) becomes
p_l ~ LV —119~ 10_1 20 ~ v ~ 1 20 3 sAB ~ LV ~
T(@g“ |IM™0guw) = ¢ Dyg" Dy + 17¢ M*P 046" 0BG - (5.128)
We recall from [1] that the E9 potential decomposes as

L1 ~ 3 3 _
—V =—eV*® — ZpezoMABﬁAg“’j@BgW + %MABQ“”(‘)AwMGBw,,

Lo ~ 277 D oD o
_ - 2
—1p 3e20 (PXp — AéBwA + 04V + %fABCAéﬁcAf) (5.129)
where the derivative of the three-dimensional metric in the first line does not appear in the Fy
potential,®® but is part of the Eg potential in [22], so must be subtracted. We also recall that

(X = (01X + p~ " BoaTt") . (5.130)

To analyse the pseudo-Lagrangian we recombine the various terms coming from the five compo-
nents of (5.44) into the new five components

Linin = 2 + Ly, + Ly + L& + Lige —eV™ (5.131)
with
- = = 1 _ A
Lh = —gmsg’” ("l + MA“Buc) (1P 1 + MPPByp) — 207 € 14,
_ 3
+ QAU M T MU A TG + %MABQ‘“’@AwuﬁBwV : (5.132a)
L = 13" JukJuo — 2p7 '€ DyoDyo — 2p°\/=gg" 9" fru fop — PG Oaw, i
1 y s s -1 y y
+ Zpe”"z—:"pg“)‘l?ugm{@,,gﬂ + %620D¢g”"D¢guy , (5.132b)
LE = p(RIF) = Tr[LUGU ] + (9u|U ™ LaU|F) + (04U T4 U|A) Ty
— (pXp — AQBpa + 0aYs" + 2 fapCAR0cAL) f + pgt Oaw, F* (5.132¢)

Lo = —%,0_3620 (,0)2@ — AéBgoA + aAYéA + %fABCA£60A5)2
+ (pXp — AGBpa + 04Y5" + 5 fa“ AS0cAL) for + 10°V=99"7 9" fuvfop . (5.132d)

32Note that [1, Eq. (5.34)] is written in the conformal gauge ds2, = €**n . da*dz” + p?dp? and the internal

derivatives of g, and w, do not appear in the Fy potential as defined in [1].
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Here, we have added by hand the last lines in £ and £ and subtracted the same terms from
the first line in £};. We have also introduced the Kaluza—Klein field strength

f=dw— AYsw — wd,w = (0|F) = dz"D,w — wDyw . (5.133)
Let us start with £;7 . One checks that the combination

nACj,LLOC + MACB,U,C — ];j _ pguoeau(,’,}AB + MAB)anV
= JiPA — wujs — piuce” (' + MAP)ogw, . (5.134)

where
74 = i (de + w) + jidat (5.135)
is the covariant Fg current [22]. One computes moreover that
(OA|U MY T MUIA) = p MABogw (5.136)

so that (5.132a) gives indeed the scalar field kinetic term of the Eg exceptional field theory
L 1

Ly = —§nAB§“” U = wud) @7 = wid) = 3o~ € nasijig - (5.137)
For the Einstein—Hilbert term we first use that
[Dy, Dplwy, = —F2 04w, — Dyw, Dywy, (5.138)
and then compute that?3
£ = (0T DudorDuiipr + 37757 Doion D) (5139)
+ 7" Dup(2Dyo — §7°Dogup) + p3"" D, Dulwy + pg* Dpwy Dpwy

—1_20
1 2% - ple L
=29~ €* Do Do — 30°V=99"7 9" fuufop + = D" DooGw

= Dso(pgwjp,uwu) - 'Du(pg‘uVway)
1. . . - | ~ -
+ p<—Zguungg’i)\,D,ugcmlDugp)\ + §gMPgVagﬁ)\'Dugcm'Dygp)\> - %103\/ _gguagupfuufcrp

+ (D, —wuDy)p(25" Dyo + Dyg""') — 2pg"" Dyw, Dyo — pD,w, Dy g
—1_20

+ " (Dpw,(Dy — w,Dy)p — Dyw, Dyp) — 2p™ e* DyoDyo + L

— /_g3DR3D o DM (pgapguu (Dagpu _ Dygo'p)> ,
33We used here the following formula for the Einstein-Hilbert term in D dimensions
VIR = V=g(~ 19" 979 Dugox Dugon + 399" Dugon Dugor + 19" 979" Doy D gicx

- %g“ag”pg”ADungugap) + Dy, (v =997 9" (Do gpv — Dugap))

Dcpgwj Dcpg;u/

with Do-gp,y = ngw — A?@Ag;w - %guuaAA? .

(0]



where on all individual terms the Ey covariant derivative D, gives D, — w, D, except when it

acts as a total covariant derivative, in which case it is a true total derivative.**

The identification of the Chern—Simons term requires more work and we shall first simplify
some of the expressions appearing in (5.132¢). Using (5.98) and (0|L; = 0 one gets

OIU LU = (0T U04 = (O|(T5* + fecYPTE + 2504
@UTAU = n*B(0]05 , (5.140)
so that

(Ou|UT LyU|F) + (04|U ' TAUIA)T > = 204Y5" f + fec04AZOITC |F) + n*Poaw ;> .
(5.141)
One computes moreover

(OIT|F) = A% — JAB0p A% — L 10 fophop AP AP — Lo AP A%
— w(0,A" + 05CUP) + § fop™ P popCUP) + 0pw(CP) + § for® AP 0P
napTe[T5 G] = —dB4 + AB0pBs + 0pAP B, — Bpos AP + % foepPACD,405AP
+ w(0pBa — %fCDBaAaBCC;D) + (bk — CPR)oaw + dpwC® 4 + %fCDBCC;DaAan ;
Tr[LoG] = dC4 4 — Oa(A2CP ) — 0, (wC?4) — 0, A B4 — % fec? AB9,0,A°
+ BB 205w + Swfop?8,04CP + 10,04wfoptCP (5.142)

where we recognise the components of the three-dimensional field strengths [22]

. 1 . 1 . 1 . .
FzDA dA,zDA 5 AzDB o A,zDA 5 fEC f A aC AzDDA,zDB 5 o A,zDBA,zDA ,
(;34D == stqD - ASDBaBBZD - aBASDBngD + BSBD84A3DB - _2 fCl )BA'3D0848BA3DD . (5143)

In particular, we have

OUITAUIF) = FA —wdp(CHP) 1 L fop? fBE ,CCP)
+ 0pw(CWB) + ALAB) 1+ LB fAE L (P + AZAP)) | (5.144)

where F4 is the Kaluza-Klein component of the three-dimensional field strength
FoA = pAB P2l (dp 4+ w) + FA (5.145)
We also need the expression

8w i (5.146)
= POy ? — n*PoswBy? + AL ((bk — CPp)oaw + 9pwCP 4) + AZAL Badpuw

34For total derivatives Dy (pX") = 9u(pX*") — Oy (wupX*) — a(AflpX*) using (5.114).
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where the bare current expands as

nAB Ty ? = (d —wdy, — APop — 205AP — 20,0)Y5' — fop FPEp(Ys 0 AP + ASYP opw)
+ 3 fec AD(d —wd, — APOp)AS — L P9 b for” fea® AS AD 0p AP
— e AD0,AC — LfFC e for fraP ASAD AL opw
— [Bc0,0%C — 2fcpt ACopC P — (YO, fopt fpa ASop O
—(0|TPTo|A) + FAP Y E dpw . (5.147)

The last term with the degree 3 fields simplify to a total derivative when contracted with d w
as

— 0aw(0| T T5' 9p| A) = —8p (04w(0|T T3 A)) (5.148)

using that the Ly degree 3 component of the basic representation does not contain a generic
symmetric representation.

We can now recombine all these terms in (5.132¢). We first observe that the dependence in
B;?% and bk cancels between —Tr[LoUGU '] and (94|U T4 U|A)J ;2. With more work one
obtains that the dependence in the three-dimensional two-form components also combine to a
total derivative. We compute (where A4, F*»4 and B are the forms in two dimensions)

L (5.149)
= (Bpa + f3c 02 AD)F™C + 0,AP BY, + § fpc* APP 0,04 A

+ A2 (aBY - A"PopBY — 05 AP BY + BE0aA™® — L fopP AC0,054P)

— LFFC ot oy Poa <%A$A£Afw83w n wAgaB(AgAE)>

+ % fep® (—a[ A(wAS 0 ADAP) + 04 (AL AS 0y (wAP)) + 0 (AfaAAgwAD)>

—dC 4+ 0a(ACP B) + 0,(wC™ ) — $0a(wfep?0,CP) — 10, (daw fopr* COP)

—(fF for fre® + 2fcp[A5§])8A (2wASOBC(D?E) + waBASC(DE’)

+ 3 fepAoa(ADop(wCP)) + (2 - 1)04Y5 (dw — A?9pw — wd,w)

+ aAw<(d — wd, — ABg — 20547 — 20,w) Y5 — fop fPE (VL OpAP + AgYQDﬁgw)>
= BoaFP" + BY(dA) — 0,4 + AJ0opA™* — APPopAY)

— 3 fec? (AAPPOLAS — dAB04A™C + 9,A7P 0, A™)

— 2 fop ™ (AZAC9,05 AP — APP AT 9,05 AP + APPAPC0,405AL)

— /% frp fap® (AS0A AP O A™E — 2A7C 0, AL AP ) + 04(..) +d(..)

7



where we have used repeatedly the section constrained and identity [22, Eq. (A.1)] to get for
example

1
5f " Cetpp® fap® AC0A AT Op A"
= —LfFCfrp? fap® (AS04AP O AP — 2404 A0 0 AF)
+3 fop™ (AB AC0105 AP + 24P AC0,0p AP + AP AC0,05AL)
+3fop P04 (A%0p(ADAP)) — 95 ACAD AP)) (5.150)

(DiE) . We recognise there-

35

and to cancel the terms symmetric the derivatives indices involving C'
fore Ly as the Chern—Simons term obtained in [22] up to total derivative terms.
Finally, we compute for the Kaluza—Klein term (5.132d) that

L = —3p73€% (o — ALBoa + 04Y5" + 3 fapCAROCAE — pPe 2 fir)? . (5.151)

This last term does not appear in [22], but one can integrate out the auxiliary field X, to
eliminate it. By construction this term is quadratic in the contraction with (0| of the duality
equation (5.59)

UlFuw) =—p e T MU T . (5.152)
We have therefore identified
LP = L0 + Lo+ Ly — eV (5.153)

as the Fg exceptional field theory Lagrangian of [22] up to total derivative terms. The Ey excep-
tional field theory pseudo-Lagrangian (5.44) on the partial section (5.94) decomposes according
to (5.131) as the Eg exceptional field theory Lagrangian plus an infinite sum of terms quadratic
in the components of the duality equations (5.35) and (5.59).

Additional duality equations

The Eg decomposition of the duality equation (5.35) does not only give the Fg Euler-Lagrange
equations, but also an infinite set of duality equations. The duality equations (5.103) for n > 2
determine the auxiliary fields léz", and do not give any non-trivial new equation. The n =1
component of (5.103) gives however the non-trivial equation

Fit = pgusc™ 0P (i — Big — wy(jon — Byn)) (5.154)
with
e ) (2C£A?B) + for® fPEpCSP + AP AD + L fop™ fB>EDA§Af,3)
+ fABc(C,?B - %wufEFcAgaBAi)

= F;?OA + 05 (2C;1::0(A;B) 4 fCEAfBEDCZIZDC;D) + fABCCZJZDCB ) (5'155)

35 And up to a sign misprint in the third term in [22].
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One recognises therefore a component of the three-dimensional duality equation
FPA L pAB S (j% -~ BB)=0. (5.156)
This equation is consistent with the three-dimensional equation Euler—Lagrange equation
SBA(FPA + 028wy i) =0 (5.157)

since the last term in Bp vanishes using the section constraint.

Note that in the equivalent equation in the Virasoro-extended formulation (4.23), the com-
ponent J;! of the current J includes an additional term in napTr[T5 B®] with respect to J*
in (5.34). The component of B? can be used to eliminate the term in B} in (5.156). This term
can also be reabsorbed in a redefinition of C’fﬁoc B in the minimal formulation of the theory, but
only if one breaks explicitly the covariance of the Ansatz to e.g. GL(1) x E7. So we may define

instead of (5.156), the three-dimensional duality equation
FPA LB s j5 =0 (5.158)

Similarly, one can compute the component of the duality equation (5.59) coming from
(0|TAU|E) = 0 to get

‘FZ?/A + 2w[u]:u}<p = _p—le2a,’7AB(ij - B@B) (5.159)
with

Foust = Ept + 0p (20;(;};3) + fop PP OGP - w[u(2C£}A;B) + fCEAfBEDCVC};D)

+ wp (AL AD) + L fop fB>EDACAg>

V]
+ [P0 (Cyp + 1 1erC AL AL 08w, + 20, CF B + p~'€*7 e, 0p AT)
— FPA 4+ 0 (20;3“%3) + fop? fBP DC;DVC%D) + fABoCnCy (5.160)

where C[?JB and CEV A come from the Fy two-forms. Since external and internal diffeomorphisms
in Fg both contain the Eg external diffeomorphisms, it is to be expected that these two equations
transform into each other, so that we need to consider (5.59). This is in fact the only non-trivial
component of equation (5.70), because all other components can be solved trivially by fixing an
unconstrained two-form.

The duality equation (5.59) includes one more duality equation that can be interpreted as
the three-dimensional three-form field strength equation. It gives

OITATPUE W) = (0557 + L fer? FPEp) (~GSD + 2p e, MOT IR P) (5.161)

for a three-form field strength G4 in Fg exceptional field theory. The antisymmetric component
<O\T2A]]-"W> includes an unconstrained two-form Cs?uw so this equation can be solved by fixing
C’;‘W. The only non-trivial component of (5.161) is therefore in the 3875 @ 1 of Ejg, as expected

from the tensor hierarchy. The field strength (0|T{*TPTC|F,,) also includes an unconstrained
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two-form in the same Fjg representation, and similarly does (0|T lAlT 1A2 - T 1‘4”|]~'W> for any
number n of generators 7' greater than three, so all the other components of (5.59) can be
solved by fixing the corresponding two-form components.

We conclude therefore that the duality equations (5.35) and (5.59) on section give all the
duality equations expected from the FEg tensor hierarchy, and all other components are tauto-
logical equations that can be solved by fixing unconstrained auxiliary fields in function of the
other fields.

6 Conclusion

In this paper, we have constructed the complete dynamics of Fg exceptional field theory in two
different formulations.

The Virasoro-extended formulation in Section 4 is based on the E‘g X Vir~ symmetry, where
the Virasoro generators L,, for m < 0 originate in the extended linear system for D = 2
supergravity [37,38] discussed in Section 2.3. Indeed, this formulation of Fy exceptional field
theory allows us to naturally reproduce D = 2 supergravity and its linear system by setting to
zero the internal derivative (9| as well as all constrained fields B® and (x]|. In this formulation,
a proper gauge connection for generalised diffeomorphisms can be defined, allowing for instance
the construction of covariant external currents for the scalar fields, and the vector fields and
their field strengths transform in a manner familiar from lower-rank ExFTs. This also makes
the construction of the topological term more intuitive. The field content of the Virasoro-
extended formulation includes the field p ~ ¢; dual to the D = 2 dilaton p. This field plays an
important role when using Weyl coordinates for studying D = 2 solutions, and the gauging of
its shift symmetry is central to the construction of D = 2 gauged supergravities in [39]. The
formulation that we have presented is only phrased in the conformal gauge g,, = 7., of the
D = 2 external metric. This gauge can be imposed for any higher-dimensional solution that
one may want to describe in ExFT, but it would nonetheless be interesting to generalise the
Virasoro-extended formulation to arbitrary external metrics. Even keeping conformal gauge,
one should be able to define conformal external diffeomorphisms and we expect that they will
fix all relative coefficients in the pseudo-Lagrangian. Furthermore, we have only presented a
manifestly Eg x Vir~ invariant formulation of the topological term, while the expression for
the scalar potential we have constructed in previous work [1] is based on internal currents
gauge-fixed to ¢, = 0 for n > 2. Because these fields are pure gauge, we do not lose any
information on the dynamics by this gauge choice, but it would also be interesting to construct
the manifest Vir~ extension of the scalar potential. Since we know the transformation properties
of all fields under ¢g @ vir™ extended generalised diffeomorphisms, one can achieve this goal by
appropriately acting with local L_, transformations on the known expression for the potential.
We have derived all the equations of motion implied by our pseudo-Lagrangian. One may verify
that these are compatible with the Fg ExFT equations and we have shown this explicitly for
the scalar equation in Appendix C.4.

The second, minimal, formulation of Fg exceptional field theory was given in Section 5. It
involves finitely many fields (in infinite-dimensional representations of Ey) and can be obtained
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from the Virasoro-extended formulation by gauge-fixing all the negative Virasoro fields to zero,
including the field p associated to L_;. The pseudo-Lagrangian takes a slightly more conven-
tional form, as the sum of a kinetic, a topological and a potential term and is defined for an
arbitrary unimodular metric g,,,. We have defined the external diffeomorphisms and have shown
that they leave the duality equations (5.35) and (5.59) invariant, and fix all free coefficients in
the pseudo-Lagrangian in a way familiar from FE, ExFT for n < 8. We have verified that Fg
exceptional field theory, including the Einstein equation, follows correctly from the minimal for-
mulation. In particular one obtains the Fg exceptional field theory Lagrangian from the minimal
pseudo-Lagrangian up to terms quadratic in the duality equations. All the expressions are finite
in the minimal formulation, and no infinite series regularisation is involved. It is noteworthy
that the field content and the duality equations in the minimal formulation are consistent with
Eq; exceptional field theory [48,47], and could in principle be derived from it upon branching
F11 under its SL(2) x Eg subgroup.’® Even though the field j is gauged-fixed to zero in the
minimal Eg ExFT of Section 5, it seems plausible that an intermediate formulation including
p exists. First investigations show that one can write the duality equation at p # 0 provided
one introduces one additional constrained vector field B® in such a ‘next-to-minimal’ formu-
lation. The field p will be crucial for supersymmetrising Eg9 ExFT, see [28, 54, 55] for work on
supersymmetry in ungauged D = 2 supergravity and fermionic representations of K (eg).

Both the minimal and the Virasoro-extended formulation are based on pseudo-Lagrangians
that are supplemented by a set of first-order self-duality equations for the scalar fields. In
order to render the model accessible to canonical tools, it may be useful to further extend this
framework into a genuine Lagrangian formulation presumably upon sacrificing manifest two-
dimensional Lorentz invariance, along the lines of [56], see also [57,58] for earlier work on chiral
scalars.

It should be stressed that the formalisms developed in this paper can be directly applied to
construct extended field theories based on duality groups G that are the affine extensions of any
finite-dimensional, simple Lie group G. This is simply achieved by exchanging Fg in this paper
by G, since we have not used detailed information about the structure constants f485 in (2.1)
anywhere. The fact that the structure of generalised diffeomorphisms and the section constraint
is the same for any simple Lie group G was proved in [17, Sec. 6]. For appropriate choices of
G, our results define “half-maximal” exceptional field theories along the lines of [59,46], as well
as extended field theories based on any symmetric space in three space-time dimensions that
lifts at least to four dimensions, irrespective of supersymmetry [60,61]. For instance, taking
G = SL(2) we expect that the matching to Eg ExFT discussed in Section 5 would instead
provide a matching to the SL(2)-covariant theory of [16]. Our results then provide a description
of D = 4 general relativity formally covariant under the Geroch group.

There are a number of potential applications of Fg exceptional field theory. As with other
ExFTs, one use of Fy exceptional field theory is to study in more detail gauged supergravity

36The E1; ExFT duality equations were given in [48,47], and a pseudo-Lagrangian, sharing some features with
the F9 minimal formulation, will be presented in [49]. A concrete conjecture for F11 and an associated extended
space-time in the context of maximal supergravity was first made in [50,51] and further developed in [52,53].
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in D = 2. Gaugings of Eg have been investigated in [39], but the general scalar potential is
not known. It will be very interesting to construct this in an Fg covariant form from Fy ExFT
using a generalised Scherk—Schwarz reduction similar to [62-64]. This would lead for instance
to theories with AdSy vacua, generalising [65], and that could be of interest in the AdSy/CFT;
correspondence. The gaugings defined in [39] always involve, beyond some subalgebra of ¢g,
the L_; generator,’” and possible non-Lagrangian gaugings involving the Ly generator were
discussed in [17]. The Virasoro-extended formulation of Eg exceptional field theory suggests
the existence of D = 2 supergravities that gauge more general subalgebras of vit™ involving
arbitrarily negative Virasoro generators. It would certainly be interesting to study this possibility
via a generalised Scherk—Schwarz ansatz. It would moreover be interesting to study generalised
Scherk—Schwarz reductions with mild violations of the section constraint to describe for example
massive type ITA consistent truncations. This would require to check the invariance under
generalised diffeomorphisms in the presence of such a mild violation, or to define a deformed
version of Eg EXFT as in [66] (see also [67]).

Supergravity in D = 2 is the natural habitat of exotic branes that are characterised by
having co-dimension at most two and thus sufficiently many isometries to be describable in two
dimensions [68,69]. The truly exotic branes (with tension scaling like g;® for a > 2 in terms
of the string coupling) are related by discrete duality transformations to (smeared versions of)
the more conventional D- and NS-branes [70,71]. Ey9 ExFT can then provide a framework for
studying uplifts of these exotic objects and a unified description of their duality orbits [72,73].

Another interesting avenue of research might be to explore the fate of the known integrable
structure of D = 2 ungauged maximal supergravity [28,74] within ExFT. The integrable struc-
ture arises when the trivial solution (9| = 0 to the section constraint is chosen, which corresponds
to the toroidal reduction. Whether or not there are any remnants of this integrable structure
for more general backgrounds with a non-trivial dependence in the internal coordinates is an
open problem, and one may hope that EF9 ExFT could shed some light on this question.
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A On trivial parameters and generalised diffeomorphisms

In this appendix, we collect some details on trivial parameters for the Fg generalised Lie deriva-
tive (3.1) and its Virasoro extension (3.34). These are by definition the non-vanishing pairs
A = (|A), %), respectively the non-vanishing A = (|A), X*)), that satisfy

LAlV)=0 for any |V). (A1)

37This is denoted L41 in [39)].
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The existence of such trivial parameters is possible due to the section constraint (3.8) as usual
in exceptional geometry. We first define the (non-extended) trivial parameters in Appendix A.1,
show the closure of the algebra of generalised diffeomorphisms (3.21) on the one-form gauge
fields and describe the two-form gauge fields and their gauge transformations in Appendix A.2.
Closure of the Virasoro-extended generalised diffeomorphims (3.34) is explicitly checked in Ap-
pendix (A.3). Finally, in Appendix A.4, we discuss the trivial parameters of these extended
diffeomorphisms, which include the previous ones and an infinite set of additional trivial param-
eters.

A.1 Trivial parameters

The commutator of two generalised Lie derivatives gives a generalised Lie derivative according
to (3.11), but the commutator of two generalised diffeomorphisms acting on the Dorfman pair
of gauge fields A produces an additional one-form gauge transformation dgrA, which is a trivial
parameter for the Lie derivative, i.e.

LsealV) =0 (A.2)

for any |V). It is standard in gauged supergravity that the gauge algebra only closes on the
one-form gauge field up to a one-form gauge transformation of the two-form gauge field in the
tensor hierarchy [33]. The F,, gauged supergravity two-forms are valued in the symmetric tensor
product of the one-form gauge field representation that we denote R(A;,) (in Bourbaki labelling
for n < 8), in the orthogonal complement of the generic irreducible representation R(2A,).
Continuing this structure to Eg, this gives a two-form gauge field C/%N valued in®®

|C1) ®[Cy)) € R(Aog)-1VR(Ao)-1© R(2A0) -2 , (A.3)

and the corresponding one-form gauge parameter Rﬂ/[ N In exceptional field theory in dimension
D < 4, the gauge invariance of the theory requires also the inclusion of an additional two-form

field with one constrained index in R(A,,), and the others in the antisymmetric tensor product
AP R(A,) [21,22]. For Ey, this gives a two-form gauge field C’EI,QM valued in

|C[1> & |02}><7Tc| S R(Ao)_l/\R(Ao)_l ® R(Ao)_l , (A4)

and the corresponding one-form gauge parameter REQM. In Ey exceptional field theory, there
is moreover an additional one-form gauge parameter with one constrained index and one-form
gauge parameters with two constrained indices. We expect that D-forms with two constrained
indices should similarly appear in the field strength of the constrained (D — 1)-form in lower
rank exceptional field theories.

38This also follows from a level decomposition of E1; (T. Nutma, unpublished).
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One computes that the following Dorfman pairs of parameters JgA = (dr|A),drB) are
trivial when acting on any |V') according to (A.2)

(10 (ORIT* | R)T?|Ry)). 0) (A.52)
(e (RIT* | R) TP Roy) + 2(el R ) | Ry ),

51T Ry} [(mal TP Bey) (O] + (0OnIT|Roy) (] ) (A.5b)
(1105 BT REVTO|RT),

— g T[T RS | TP\ R ) (O | + | R ) O+ | RY — (O |RDRT ) (A.5¢)
(0. 1o e PP YU QT Uiy + 1 s TP U QT W) . (A50)
(0, T]aﬁTI‘[TaX(l] TBXQ) + TI‘[X(l] XQ) - X(1X2)> s (A5e)
(0,71 06 DT W TOW3) ). (A.5)
The notation here for one-form parameters is such that
|R1) ® |Ry) <= R"? = RV, (A.6a)
IRpy) ® |Ryy)(mg| <= R"9y = RIPQly constrained in N, (A.6Db)
IR7) ® Rf <= RYV%y  constrained in N, (A.6¢)
U ) (7, | @ UMy, | <= UP 09N = U(P(MQ)N) constrained in both M and N, (A.6d)
X1 0 Xy < X% = XNy constrained in both M and N | (A.6e)
Wi @ Wy < WP,y =Wy  constrained in both M and N (A.6f)

and in (A.5e) the notation X;X5 is the product of operators, which corresponds to the trace
XMpP . The notation |R(;) ® |Ry)) denotes a single one-form, so that |0g) acts on all of it,
and similarly for |R1) ® |Ry))(mg| and |R{) ® Ry . The semi-colon for RfQ N is used to separate
the two tensor factors.

Because the parameter (A.5a) vanishes when |[R(;) ® |Ry)) € R(2Ag)-2, we can indeed
interpret it as the one-form gauge parameter expected from the tensor hierarchy, consistently
with (A.3). For simplicity we never write the projection to the orthogonal complement of
R(2Ag)—_2, but this component will always be projected out in the relevant expressions.

In order to show that these parameters are trivial one has to use the section constraints as
well as the invariance of the bilinear forms 7, g under the action of ¢g and

TIn o [Lma Ta] & TB + nnaﬁTa & [Lm7 TB] = (m_n)nn—l—maﬁTa ® TB
- %m(mz—l)ém_nK ®K. (A.7)
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To illustrate this, we look at the example where dgA is the second parameter (A.5b). The
transport and weight terms can be shown to vanish easily using (3.8), so that we are left with

LsalV) = =nagins (mr| T |Ru)(OrIT T | Ry ) T7|V) — 2105 (mr|Ry) (ORI T Ro) TP |V)
+ 371 108M 46 ((ORIT7 |R ) (mR| T*T°|Ryy) + (wr|T7 | R )(OR|T*T° | Ry)) T7|V)
= —31as1hs ((TRIT7 | R )(ORI[T®, T°]| Ryy) — (mr|[T, TRy ) (ORI T° | Roy)) T7|V)
— Nag (TR R ) (ORI T Ryy) + (Or| Rpy) (mr|T | Ray)) T7|V)
301 a5 (ORIT B (gl [T, T Ry + (T B (O, T\ Ry)) TP V)

=0, (A.8)
where in the second step we have used (3.8) and (3.9) to write commutators as well as invariance
of 7,5 to split the first term into two. In the last step we have used the following identity [17,
Eq. (2.26)] for any two operators X and Y

"InaBlm—n 'y(STr[TPYX]Tr [[Ta7 T5]Y] Tﬁ — MpaBlm—p ,y(;TI‘[Tﬁ/X]TI‘ [[Ta7 T6]Y] Tﬁ

= (n—p)map(Tr[T*X]Tr[Y] — Tr[X]Tr[TO‘Y])TB — (0 = D) ap T[T X TH[TPY K

+%(n(n2 — 1) = p(p? = 1)) o Tr[X|TH[Y]K | (A.9)

with m=n=0and p=—1.

We will now show that these trivial parameters are all the ones we need to close the algebra
of generalised diffeomorphisms and define the field strength. In particular we can use these
trivial parameters to verify (3.17). For this purpose we define the sextuplet of one-form gauge
parameters R, as

R = (IRy) @ |Ry) , |Ry) @ |Ry)imal , |RF) @ RY
U)o | @ U)o, |, X ® Xay, W ®W2)) . (A.10)

The trivial parameters (A.5) can be written with the linear map w that maps a sextuplet of
parameters R to a Dorfman doublet as follows

wR = (ﬂaﬁ<3R’Ta’R(1>TB’R2)> + 77aﬁ<7TR’Ta’R[1>TB’R2]> + 2<7TR’R[1>’R2]> (A.11)
+1-1as Te[T*RS]T7|RY)
I apT|Ry) |(nRITP|Ry))(Or| + (Or|T"| Ry) (7R
—1as T[T RS TP |RT)(Op+ | + |RY ) (Or+ RS — (Op+|RY )RS
+3M a8 (70, TP U T [Uz) (70, | + 311 0 (T, | TP | U )T |Un) ) (0, |
10 TE[T X (1] TP Xy + Te[X 1] Xay — X1 Xa) + 11 g T W] T5W2)> .

By definition we have that £,gr vanishes on any field, and one checks moreover that

wRoA=0 (A.12)
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for any parameter A. One also computes that

L,|A Tr|L,,_1B
n n
= Ennaﬁ@R!Ta\R(ﬁ<3R\T6\Rz)> + §nnaﬁ<7TR!Ta\R[1><3R\T6\R2}>
n—2
+ Np—1ap(Op+ [T RY)TY[TP RY ] + T%aﬁ(ﬂl\TQ\U(1><7T2\TB\U2)>

n—1

T3

n
Mn—1ag T[T X Te[T7 Xo)] + 57771—2aBTr[TaW(l]Tr[TBWm] ; (A.13)
which does not vanish for n > 1. For n = 1 this term simplifies to

(@AILa14) + Tr{LoB)) | = b (mnl T [ Ru) ORIT Rey) + s O | T° | RE)THT? R3]
(A.14)

and is a total derivative. For n > 2 it is not a total derivative. This implies for example that

FY, in (4.46) depends exlicitly on the two-form fields for m > 2, so that only X defines an

appropriate topological term.

A=wR

Since the map (A.11) acts only on the internal indices, it applies regardless of whether R
are space-time p-forms or scalars. To prove (3.17) we now define the bilinear map 1 that gives
for any two Dorfman doublets A; and Ay the sextuplet of parameters

W) = (=31A0) ®@1A)) , —3[Au) @ |Ag) (On, — Oaal s —IA2) @ %1,
[A@)(Ons | ® [Ag)) (Oar | s =21 @ |[A2) (O, ] — [A2) (On,| @ X1, =2 @ E2)) . (A15)
With this definition one checks that
Moy — [M, o] p = (A, Ag) | (A.16)

which proves (3.17) by taking respectively the antisymmetric and the symmetric components in
A and Ag. More generally, one can show

(A ohg))ohs =0, (A.17)
21 0 (Mg o A3) = [A,Aa]p o A3, (A.18)
where the first equation follows in fact directly from (A.12) and (A.16). These relations cor-
respond respectively to the triviality of the symmetric bracket {A1, A2} = A o Ay) and to the
closure of the Dorfman product according to the antisymmetric bracket [Ay, As]p = N1 o Dy

As argued in Section 3.1, they together imply the Leibniz identity (3.16).
Using the Leibniz identity and (A.16), one then computes that the gauge transformation

OpA =dA+ Ao A (A.19)
closes as

5%25A1A — 5A15A2A = 5[A1,A2}EA + w(l(/\l, d/\g) — 1(/\2, d/\l)) . (A.ZO)
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In summary, we write the one-form gauge transformation of the gauge fields as

Srh = wR (A.21)
such that
5/\25/\1A - 6A16A2A = 5%1’/\2]‘5% + (5R12A R (A.22)
with
R12 = l(/\l, d/\g) — l(/\g, d/\l) . (A23)

Note that the Leibniz property is only satisfied up to a trivial parameter in the Virasoro-
extended formulation introduced in Section 3.3. This is nonetheless sufficient for the algebra of
generalised diffeomorphisms to close on the gauge field A. In this case the same construction
applies, but R12 is modified by the corresponding violation of the Leibniz identity.

A.2 Covariant field strengths and two-forms

The Ey field strength (3.28) depends on a sextuplet of two-form fields C defined as in (A.10) as

C=(ICa) ®1Cy) . [Cp) @ ICy(mel . ICHY @ CF

with the same symmetries as for R in (A.6). The two-form CM" is the one expected in the

tensor hierarchy according to (A.3). The two-forms CM¥p and CJ]:/[;NP carry one constrained
index, and are similar to the two-forms introduced in [21,22] that extend the tensor hierarchy in
exceptional field theory. The two-forms CM pN Q> CMpN o and C’f‘f’ PN @ carry two constrained
indices P and @, and appear in the field strength G of the one-form B, but not in |F).

Using (A.16), one can write the field strength (3.28) as

F=dA—1[AAL+wC=dA—JAcA+w(C+ 3AA)), (A.25)

which is convenient to prove (3.30). Using Leibniz (3.16) and (A.16) one computes the gauge
transformation of the field strength
IWF=NAoF
—|—w<5AC—|—1(dA,A)+%1(AoA,A)—i—%t(A,/\oA)—t(/\,w(C—i—%t(A,A)))—1(w(C+%1(A,A)),/\)> .
(A.26)

Therefore there exists a gauge transformation of C such that (3.30) is satisfied. This gauge
transformation is only defined up to an element in the kernel of w. It is convenient to chose a
particular element in the kernel to simplify the gauge transformation, so we define

5AC =1(A, @(C + 31(A, A))) +1(w(C + 51(A, A)), A)
—UdA,A) — Fu (Ao AJA) — LA Ao A) — Lk(A AL, (A27)
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where wk (A, A, A) = 0 and we choose
K(h A, B) = ( IA) © 71 o T[T BIT? | A) + 11 g T[T B]T?|4) @ |A) |

(18 © 11 s T[T BIT?|A) = -1 0y TH{T° BIT?|A) @A) ) (9 — 04 — O] .
~[8) @ (Tx[ToBIT®|A) (05| + |A) (05| B ~ (05| 4)B
H(OAITa| AYT* B + B|A)(04] — Tr{B]|4)(0a] )
~LA(14) ® B) +n-10gTT*BIT?|4) © ¥ — TH[S]|A') @ |4) (0|
—518) @ 110 (04T | AYT? | A') (D] — (04T A)T?| 4)(04]) ,

> (A.28)

where we have not computed the expression of the three doubly constrained parameters because
they are not needed anywhere.

The homogeneous part in C is not the Lie derivative of C, but mixes the various components
of C. We define the inhomogeneous variation of C

ApC = 3pC — (A, @wC) — (wC, A7) , (A.29)
that defines the piece depending explicitly on the vector fields A. One finds

AplCq) ® \02 = 1(dlA) ®14) —14) ® d/A)) (A.30)
ApCp) ® |Cop) @ = 1(d[A) ® |A) +]A4) @ d|A)) ® (Or — Dal
AA!CT>®02 = —5Map(0aT|A)|A) © T7|A) (0|

— 4) ® A% = e Tr[TE]|A) © T7| A) (9|

+3l4) ® [A)(0s| + 5 Tr[E]|A') © |A)(0a -

Note nonetheless that this is not the gauge transformation that is relevant in minimal Fg excep-
tional field theory, because the invariance of the duality equation (5.59) requires | F) to transform
as the internal current, and the gauge transformation of ]Cf ) ® C2 in exceptional field theory
includes an additional term (5.62).%"

A.3 Closure of extended generalised diffeomorphisms

The Virasoro-extended generalised diffeomorphisms (3.34) close according to the extended E-
bracket (3.38). In order to show this, we only need to consider the commutators [£ 4, o), £(0,x 2(1c))]
and [L(o,x [N Lox 2(k))], where E(lp ) and E(;) denote two complete sets of extended gauge param-
eters. Closure of the |A)-diffeomorphisms onto themselves follows directly from the closure of
the unextended generalised diffeomorphisms according to (3.13).

39We only introduced this equation in the minimal formulation, but invariance under conformal diffeomorphisms
would require to include this equation in the Virasoro-extended formulation as well.
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Evaluating the first commutator on a generalised vector |V') in R(Ag)o, we find using (3.36)
and the section constraints,

[£A1,0)s Lo, V)
=-> U—ka5ﬂ<TQ(<3E|A1>E§k) — s (OAIT7| AL [T?, 257] + k(5A|A1>E(2k)))Tﬁ|V>
ps

= L0, £0a,.0240 V) - (A.31)

This confirms the first term in the expression (3.38) of ¥j2. Let us now consider the second
commutator

[5(0,21(1’)), 5(0,220@))] V)

= D kas g TE ST TSP TY) (17, 17| V)

k,q=1

= Z ( — N—kaB—q~s Tr(z(lk)Ta)Tr(E(;)TéTﬁ) + (k - Q)n—k—q avﬁ(zgk))ﬁ(zéq)Ta)>T7|V>
k,q=1

= - Z"?—Q’Y(STY(E(BTé) TPY|V> = £(07§5%))|V> ) (A'32)

q=1
where in the second line we used (A.7), and with

50 = > kas TEPT) TR — 3 (2k— ISRy Y. (A.33)

k=1 0<k<q

In writing the above expression, we used the antisymmetry of the commutator in E(lp ) and E(;).
This reproduces correctly the ¥ terms of B3 in (3.38).

A.4 Extended trivial parameters

The Virasoro-extended generalised diffeomorphisms (3.34) include by construction the trivial
parameters (0g|A), dr B™") defined in (A.5), as well as an infinite sequence of parameters, with
dr|A) =0,

o
OrBY = > (o kas(ma T |US VTP [UL) ()| + s T[T X T X (Y
k=2

+77—ka5TT[T“W§k)]TBWfk)) + (| USHU ) ()| = (@ [UF) U5 ) (|, (A.34)
and for k£ > 2

SRB® =11 o5 (1| T U )T |US?) ()| + k(o [Us™ O)UL) (g | = Fe(mn [UL ) U5 (|
+ Tr[To X V1T X — (b — 2)Tr[ X)X + (b — DT XX — XPXH (A35)
+ (k= 2)Te[W OIW D — (k — 2)Te[W P IWa Y 4y ap Te[TW R TP WP
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As in (A.6), all bra covectors are constrained, but no additional symmetry is assumed

|U1(k)><7r(1| ® |U2(k>><772)| — UMP, @y = U(’“)P(MQN) constrained in both M and N,
XP X = X®OP @y constrained in both M and N |
Wl(k) ® Wz(k) <— W“”PMQN constrained in both M and N . (A.36)

These constrained parameters are very redundant, and it is in principle sufficient to only consider
the parameters Wl(k) ® Wék) and X{z) ® Xéz) to obtain a complete basis of trivial parameters.
One can in particular eliminate the traceless component of all g B® with k& > 3 using trivial
parameters W* " @ Wy = |0)(0] ® W®*V. By construction the traces Tr[égr B*] cannot be
eliminated, since they appear independently multiplying the Virasoro generator L_j_j in the
Lie derivative (3.34). For any k > 3 one can indeed always find W such that

SRB® = —(k — 2)W* 4 (k — 2)Te[W D] 10)(0] — Ly W® + Te[S™]|0y(0] . (A.37)

One can also eliminate the traceless component of ég B® using an appropriate trivial parameter
X f) ® Xéz), but not with an Eg invariant ansatz as above for k > 3. If one uses the Eg solution
to the section constraint (3.10), there is a gauge parameter

X7 @ X3 = |0)(0] @ X® + X p.aT 10/0) (01T} @ [0H0[TY (A.38)
with X p.4 satisfying (5.95) for its indices A and B, such that*’

SRB® = —LoX® — X®10)(0| + Tr[X®]]0)(0| — XBB;A]0><O\T1A — Ly W® + Tr[£®]10)(0] .

(A.39)
This proves, as noted in Section 3.3, that any loop transformation generated by X*) can be
reabsorbed into . To write this systematically, we use (2.9) to rewrite (3.35) as

(Mo = 1as OAT?IN) + 3 (1108 T [BOS4(T7)] = 65 Tr(29) ) | (A.40)
k=1

The first term only contributes to the gauging of eg generators. The fact that any loop transfor-
mation generated by ¥ can be reabsorbed into ¥ then means that we can implicitly define
shift operators S_j acting on any Y parameter rather than on algebra-valued objects, with

Tr (§_k(2) T") - Tr(E S_k(TO‘)> . VYkeN, T°ciduvir . (A.41)

For instance, (3.35) may be rewritten as

(No = 1ap{Or|TP|A) + Z <?7_1agTr (S k(TP - 55*’“Tr(z<k>)) : (A.42)
k=1

*The only traceless 0r B that cannot be obtained from X are such that Lo [fr B®’] = 0 and 6g B®’|0) = 0,
which gives dr B® = 6r B |0)(0|Tf*. To prove that all constrained vector dr B can be written as XZ g4 for
a doubly constrained tensor XCB;A7 one can use the E7 solution to the constraint (5.95).
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The operators §_k do not admit an explicit Fg covariant expression. They are defined only up
to the addition of trivial parameters of the types U, X and W in (A.5d)—(A.5f) and (A.36) and
we have used this freedom to make (A.41) valid also for T = L.

Using these formal shift operators, a basis for the extra trivial parameters appearing in the
Virasoro-extended formalism is implicitly given by traceless dg B*) parameters satisfying for
fixed p > 2

Tr(0rB”) =0, 0rBY = -8, ,(0rB™), 6rB™ =0 forn ¢ {p,1}. (A.43)

A.5 One-form gauge transformations in the minimal formulation

In the minimal formulation the gauge transformations of the field B are not (3.25) and wR,
but must instead be modified for the duality equation (5.35) to be invariant. The X gauge
transformations of the fields that leave (5.35) invariant are

00,2)9mw =0, (A.44)
S yM = N-1asTX[T7S] (TQTM + MT?)
50,5y A4) = — n_1asTr[T*S|TP| A)

8(0,5)B = AZ + 1ag Te[T*S|TP|A)(Bs| — |A)(05[S + 11 T[T )T B

= p xS (A + nag T [TOSITY) A) (5] — | A) (05])
d0,z)X = Z(n + DTY[TS]T% — 20 % -1 0pTr[TS] (05 |T7| A)

n

— T[(p Ly + p2M T Lo M) (AS + s T[TEIT?A) (9| — |A) (9s15)] |
where §_1 is defined implicitly from (A.41). The ambiguity in the definition of 3‘_1 can be
absorbed in a redefinition of the one-form gauge parameters U, X and W. The one-form gauge
transformations of |A), B and x are defined as

Sr|A) = (Or|Ta|R1 )T Ryy) + (mr|Tua|Ru)T|Ry) + 2(mr|Ry)|Ry) + n-1asTr[T*RI )T |Ry)
ORB = $mn os T Rs) [ (7R|T?|Roy} Ol + (Or|T7 | Ray) (sl (A.45)
— g T[T B TP\ R ) O+ | + | B ) Or+ |RS — (Op+|RY) RS
— px (Tal Ry (ma| T Ray) + 2| Ry )l By)) (O] + p # 11 og T RETT R (O
+ 5 ap (70 [T |UQ) T |Uz) (0| + 51 a7, [T [U) T |Us)) (e, |
+ 10 Te[T X 1] TP Xoy 4+ Tr[X (1] Xoy — X1 X2y + 110 Tr[T W | TP Wy
SRX = Nap(mR|IT*| Ry ) (Or|M ™' Ly MTP|Ry)) + 2(wg|Rp1 ) (Or| M ™' L1 M|Ry))
+ px (Mo (| T Byy) (Or| LT | Rey) + 2| By ) (Ol Lol By
+ 116 T [T RF O MT Ly MTP|Ry) + p+ 16T [T RS |(Op+|LoT’ | Ry)
where the only modification of dgr B with respect to wR are the terms involving x. These
additional terms are defined such that the duality equation (5.35) is invariant under these one-

form gauge transformations. One moreover checks that the pseudo-Lagrangian (5.44) is invariant
under ¥ and R gauge transformations, up to a total derivative.
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B Shift operators and cocycles

We summarise here some details on the shift operators and cocycles encountered in the text
and on their transformation properties. First, we stress that our definition of Sy in this paper
projects out K, contrary to Sy in [1] which acts as the identity:

SRl —o Sy M=k, s —gMvi+o. (B.1)

For generic algebra elements X, Z € ¢g @ vit, the shift operator S,, defined in (2.8) has the
commutation property

Sn(lX, Z]) =X, Sm(Z)]+m > X1, Smin(Z) + 0¥ Xo (Sm(2))
A

5K, (B.2)

where

« AB n rr—n Coir 3
wX,Z5 = —[X, Z]|, = -1 EE:ZnXAZB -4 EZ(n —n)XpnZ_y (B.3)

is the Lie algebra cocycle in any highest /lowest weight representation of ¢g. Notice that w®? =
—wP?. For a finite Eg x Vir~ element g we define

w(g)K = gSO(TO‘)g_1 — So(gTo‘g_l), g e Eg X Vir™ | (B.4)

which we may also write as w*(g) = g7 O‘g_l‘K — 0gK. This identity can also be used to define
a cocycle for the generalised metric (4.2):

W M)K = MSy(T)YM™L = Sy(MT M™Y. (B.5)

Using KT = K, one can easily show

W M)MTEXTM), = —w*(M) X, (B.6)
which implies for instance wa(./\/l)fj&m) = —wo‘(./\/l)fjg[_m) and w*(M)J, = 0. It is also useful to
note that

w =0=uwK(). (B.7)

Any finite Eg X Vir~ element can be decomposed as follows:
g=Fl, FeVir, (€ Es. (B.8)

Recall that S, in the spectral parameter representation acts as multiplication by w™. Then,
taking into account F~'w = f(w) as in (2.36), it is natural to define a shift operator Sf, that
acts as multiplication by f(w)™. This is obtained by conjugating S,, with F', then projecting
out any K component generated by vir cocycles by means of Sp:

Sr];(X) = SO(F_ISm(FXF_l)F) = So (g_lsm(ng_l)g) : (B9)
Then, we can write the finite transformation properties of the standard shift operator as

97! SulgXg™) g = SHX) = w(9) (S5(0) K. (B.10)

«
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The p and ¢, dependent shift operator S, is defined as in (B.9):
SH(X) =S (I 'Su(C XTI =S (VIS (VX VYY), (B.11)
which reproduces (4.8). We can commute S, with an ¢g @ vir element to get

SL(IX, 2)) = [X, S5(2)] +m 3 (OXT ™), 84 (2) + 0P X, (S4(2), K. (B12)
nez

This is used for instance in computing the shifted Maurer—Cartan equation (4.34).
There are several other useful definitions and properties of the cocycles introduced in [1] that
are only valid for g € Ey. In this case the decomposition (B.8) is rewritten as

g=rp(g)*"¢, (B.13)

where p(g) is a constant element of the monoparametric subgroup generated by Ly and is not
to be confused with the scalar field p. We can generalise (B.4) to Si and define shifted cocycles

W (9)K = p(g) 2 gSK(T*)g™" — Sk(gT*¢"), g€ Ey, (B.14)

and we write w((g) = w*(g) for simplicity. The shift can be moved from the cocycle to the
object it contracts:

w1(9)Xa = p(g) ™ (9) (Sk(X)),, X €es@vir, g€ Ey. (B.15)

This shows that expressions like w®(g) (S} (X)), can be expanded as series of shifted cocycles if
g € Ey. These shifted cocycles also appear in the conjugation of a Virasoro generator by a loop
transformation:

9 'Lig = p(9)"* Li, — w4 (9)nasT” = p(g) % (Lk — w*(9)kasT”), g€ Ey. (B.16)

In the second equality we moved the shift from the cocycle to 7,5 and used (2.9). All the

definitions and properties of the shifted cocycles also apply when we substitute ¢ — M (and

p(M) = p) provided we gauge-fix ¢,, = 0 (including ¢1 = p = 0) so that (formally) M € Ejy.
In [1] we also defined a generalisation of w{(M) to p # 0, using the fact that in this case

M € Eg x SL(2) and the SL(2) component acts on w as fractional linear transformations:*!
QUMK = M1 <p2 > 5" ST + ﬁso(TaT)> M =S (MITTM). (B.17)
n=0

We will now prove that

Q¥ (M) (Jal = P? (M) (T |- (B.18)

“Recall that we are using So(K) = 0 as in the rest of this paper, which differs from [1] where we were defining
So to be the identity. This slightly affects how we are writing Q% (M) here.
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To show this, we use (B.5) on the Sy term so that we can use the first of (4.74), and bring
Hermitian conjugation out of the shift operators in the p series so that we can also use the
second of (4.74). This gives us

S MM T M) + gwaw) K= M (81,(1) M - %QQ(M) K. (B.19)

Contracting with (J,| and using (Jo|@ M~ HT*) M = (J,|@T?, we find that the cocycle on the
left-hand side does not contribute. On the other hand, we already know from the computation
in (4.44) that
.I>
SIMIXTM) = M1 (sz 1(X)) M = (M)(ST,(X)), K, (B.20)

for any X € ¢g @ vir. Substituting X, — (7,|, we find that the K components of the last two
expressions must coincide and using the definition (4.75) we conclude.

C Details on the Virasoro-extended formalism

This appendix contains additional details for some of the calculations and aspects of the Virasoro-
extended formulation of Ey ExFT presented in Section 4.

C.1 Field strength variations

The variation of the field strengths under generalised diffeomorphisms was stated in (4.51)—
(4.53) that we prove here, beginning with the first equation. The field strength F = (F, G*®)
transforms with the extended o product (3.40) under generalised diffeomorphisms. This means
that their non-covariant variation (4.50) reads ApF = AoF — LAF and in particular A, |F) = 0.
In order to substitute into (4.37), we then compute

ANDE|TNF) = — (7| AN OA|TAF) — [No(0n | T AT F), (C.1)
ApTE(GPTA) = 671 ap(Oal[T, T F)OA|TPIA) + nasTe(SOT)(0x|[T, T]|F)
— ETe(Z™)(0x| T F) + (k — )Te(Z®TA) (9| F), (C.2)

where in the second equation we used the section constraint (3.8) to introduce the commutators
in the first line. Substituting into (4.37), the first equation is contracted with 1537° and the
second one with n_y anT? and summed over k. It is then useful to rewrite such expressions in
terms of the (rescaled) level 2 coset generators acting on triple tensor products [17]

12 o 3 13 o s 23 3 5
Cm = —Nmag T*RT K, Cp = —Nmas TQKRT®, Cp = —mps KOT” @T°, (C.3)

which satisfy several useful relations given in equations (2.24)—(2.26) of [17]. We can then write,
using the notation X* = |X®) (x| even if ¥* is not a tensor product

23 12 23 12
Nk AANTH(GPTM QT = (0| @(0a|[C—1, C1]|A)®|F) + (x|@(0s|[C—k, Co]|Z®)®|F)

+ (w0l (kCo + (1~ O )5} |F) (C.4)
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and we now use equations (2.24) and (2.26) of [17] (which can can be proved using (A.7)) to

write
23 12 13 12 23 23 12
[0_1, 01] =Cyg—Cy—Cp+ [Co, C(]] (05)
23 12 12 23 23 12
[C_k, Co]z—kCO—kCO—i-kCo—l-[Co, C_]. (CG)

It is then straightforward to arrive at (4.51) by expanding back the coset generators, repeatedly
using the section constraints and adding up all variations into (4.37).

Let us now look at the non-covariant variation of [ﬂn for generic m € Z. We will use the
fact that S, can be expanded in a p and ¢, dependent series of constant S,, operators with
n < m. Thus, we compute the non-covariant variation of each term in such a series (using
Sn(Lp) = Lp—i—n)

Frn=—(0F|Ln|F) — ZTr (GW L, (C.7)

and add them up at the end. We can still use (C.1) and (C.2) by setting T* — L,, for the former
and T* — L,_;, for the latter. Looking at the first term of the latter for k = 1, we can first
focus at the commutator term when 7% is along the loop components. We use the identity

Lot T = [y ST~ Saa (1) (©8)
which, combined with (2.9), gives us
1 ag (Oa|T?|A)(Or][Ln—1, T°]|F)
= 1o (O T |ANOA|[Ln, T7)|F) = 1 g (O T*|A) (Oa|T7| F)
+ (OA[A)(OA|Ln| F) — (On|Ln|A)(On|F) (C.9)
where we added and subtracted the K& vit components of each bilinear form to make the identity
hold along all components. This is the only contribution of order (<8A|)2 coming from A G™, as

the only other ones with two derivatives acting on |A) come from (C.1). Then, putting together
2
all components of order ((x])” we find

ANF = (0aISn(L0)| AY(OAIF) + 1 s (06T |A) (O T7| F) + O((0)) (C.10)

where in the first term we have highlighted the shift operator coming from writing S, as a
series. With similar steps this expression is completed with the 3 dependent terms

O((0s) = Y Te(SMS(L_g)) (0| F) + 1Y 0ok apTr(SHT) (0| T7|F) . (C.11)
k=1 k=1

We have again highlighted the shift operator S,,. The second terms of the last two expressions
vanish by the section constraints (3.9) if n < 1. When n = 1, only terms proportional to L
contribute, and using the section constraint we simplify them to

M0asTr(EDT) (05 |TP|F) = (0s|SD|F) — Tr (D) (95| F) . (C.12)
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Recalling that we are really interested in the non-covariant variation of ﬂn, which is a series in
the objects we just varied, for n < m, we find

ApFY, = (0alS](Lo)|A)(Oa|F) + D Tr(EWSL(Ly)) (B2l F),  m <1, (C.13)
k=1

and we recognise the definition (4.42) for Al,. When m = 1, from (4.9) we see that (C.12)
contributes with an overall p~! factor. In total we have

AAﬂn =N Y (O x| F) + 07 p ! ((Ox]Z = Te(ZM)(0x]) | F) m<1. (C.14)

This reproduces (4.52) in particular. Combining this result with (4.51) and (4.45), (4.53) is also
readily found. Finally, notice that for m > 1 (C.14) is modified by the second terms in (C.10)
and (C.11) which contribute in forms that cannot be simplified by the section constraints.
As a result, the expression contracting |F) in A/,\[l?zn is not anymore directly subject to the
section constraint. This means that such non-covariant variations appear in the transformation
properties of X™ for m > 1 and that they cannot be reabsorbed by (re)defining the variation
of the term (x1|F).

Let us now prove (4.129). The idea is that DOA = (d — J)dA where J, is the transformation
under generalised diffeomorphisms of JA, with A as parameter. Using the definition (4.42) of
the operator (/\)Zn we then write

(DOA),, = — (9 + 5| Sk (Lo) |(d — 5a)5A) - ZTr ((d—8)8BD) SL(L-)] . (C.15)

We have included here the variation of the B® fields to be more general, as it does not complicate
the proof. The operator d; 0, commutes with the partial derivatives in the first term so that,
in order to bring it out of ( )1”, we just need to add and remove its action on the shift operators.
Using (4.8) and covariance under generalised diffeomorphisms of the coset representative we are
led to compute

— (95| (DS}, (Lo)) [0 A) — ZTr sBPDSY, (L)) | (C.16)
k=1

which must be subtracted from (d — 5A)C§%Zn- Each derivative of the shift operators reads (with
k = 0 for the first term)

DS, (r—lsm(rL_kr—l)r)

~- S <r—15m([z>rr—1, FL_kF_l])F) ~ S (r—l[Drr—l, Sm(FL_kF‘l)]F)

= mi(prr—l)_p S (L), (C.17)
p=0

where we used (B.2) in the last step. Plugging this back into (C.16) we reproduce (4.129).
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C.2 Some details on vivr™ gauge fixing

The gauge-fixing of vit™ in the Virasoro-extended formulation was considered in Section 4.5.
We here give some additional details.

Cpir dependent couplings

We first reconsider the ¢y, dependent terms in (4.57) and show explicitly that after we gauge-
fix ¢, — 0, m > 2 they cancel out. We begin with the term coming from wO‘BJaJ(ﬁl). This is
(minus) the contribution of the vit components of J to the central charge term in the commutator
[J, J (1)]. The latter can be rewritten as

1. . i
503, 30 = —2(P, PO — 20 (VTP uPPy) (C.18)

We are interested in the terms quadratic in the viv components of P, in which case the cocycle
term does not contribute because conjugation by p™ and e?~1 does not generate central terms.
The former term then reads
Co
- 2[P7 P(l)HK o Z(’I’L3 - n)PnPn+1 +o, (C.19)

6
nez

where the dots denote terms dependent on the loop components of P. Using (4.61) and the fact
that P,, only contributes for |n| > 2, we then arrive at

1 Ci
2y g = 23
2[ » J HK 24(n n)JnJ—n—1+---
= —% (A [TL_pn D™ + hee, PO]| .. (C.20)
m=0

Adding to this expression also the term proportional to [A],J_,_1 coming from the cocycle in
(4.58), we arrive at the identity

% (TL3 _ n)(Jn + 2[A]n) J—n—l = —% [A]_m [I‘L_mr—l — h.c. 7 ’]D(l)] |
nez 0

- (C21)

Using (4.62) it is then straightforward to show that this expression matches the left-hand side
of (4.68) and hence cancels out with the last term in the first line of (4.57), removing all cyi,
dependent couplings from the pseudo-Lagrangian.

Matching (x| transformation

We now proceed to proving that (4.79) agrees with the transformation of (x| in [1]. The eg
invariant bilinear forms (2.7) are not invariant under generic vir transformations. This means
in particular that in an expression like

Mo M™HTY)IM @ TP (C.22)
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we cannot simply bring the M conjugation through to the other factor. Formally writing
M=TTgrm,  gm € Es, (C.23)

we see that the problem lies in I''T" which involves exponentials of all vit generators. When
we gauge fix ¢, — 0, m > 2, however, only exponentials of Ly, L_1 and L; are left, and
parameterise a well-defined SL(2) element

I'T — me SL(2), (C.24)

which acts on w by fractional linear transformations. In this case it is possible to bring the M
conjugation through in (C.25) and this was done in the appendix of [1]. We summarise here
some results:

_ 1 ) 3 _
Nt MTITTMe TP = 2 (M ap — 2070 + P> 11-1ap) T* @ M7 TPTM, (C.25)
_ 1, _ _ _ _
Mo MTITTM @ TP = e (Pmias + (0* = 27°) Nap + (7° — P°P) N-1a8) T* @ M~ TPT M,

_ 1, - _ _
Mag MTIT Mo T = p (7 Mmap +20°5 = ) ap + (0* = 7°)* N-1ap) T* @ MTTPT M.

Let us then prove that (4.79) matches the non-covariant variation of <X| derived in [ |, when
gauge fixed to ¢,, = 0, m > 2 and ¢; = p. To do so, we must expand A ; and MN . The
former is expanded as in equation (4.42). The latter is defined as in (4.45), with F — /\.

MR = B+ ot (M) (10S1T) (C.26)

Again, the expansion of the first term on the right-hand side follows (4.42). Let us now look at
the cocycle term. We expand the shift operator as in (4.74) and write [A]g explicitly using (3.5)
(recall that 3™ = 0 for m > 2 because we are gauge-fixed):

w (M) ([NSY(TP)) = wa(M% <(771a5 — $10p) (OAITP|A) + (1105 — ﬁn_la/a)Tr(E(”Tﬁ)) :
(C.27)
where we also used (2.9) and wK(M) = 0. We must now expand the contraction of the cocycle
with the invariant bilinears. First, we open the cocycle and write

W M) N apK @ TP = 1k ap (M—lso(TaT)M — SO(M—lTaTM)) ®Th
= e (MTITUM = SMTITUIM)) @ T + K@ I (C.28)

Using then (C.25) on this expression for £ = —1, 0, 1, we see that the first term becomes a
sum of terms of the form n,kg for k = —1, 0, 1. The last term instead stays as it is. Adding
everything up we then find

W (M) (INSI(T?)),, = (OalST(Lo)IA) — %<8A|M_1(5L0 +(p* = F*)L1) M|A)

+Tr (B0S](L1)) - %T‘r(E“)M_l(LO —pL)M). (C.29)
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Combining this expression with m and W_l, expanding the shift operators and plugging every-
thing into (4.79) we arrive at

n=0

o0 ~ ~2 ~
Anfxl = — (0] (Z FL gt M (gLo n <1 - Z‘)L )M) A)(0n] = Zy(0a1) @l

= . (1 1
— Tr[E(l)<Zp Loy 4+ M! <FL0 - p—’;m)Mﬂ (Os| — ?<8g|2(1) . (C.30)

n=0

which reproduces equations (4.67) and (4.92) of [1].

C.3 Series regularisation and integrability conditions

In computing the equations of motion in the extended formalism of Section 4.6, we have found
that for some of them, using twisted self-duality to eliminate all dual fields leads to divergent
sums that need to be regularised. This necessity is essentially due to the fact that commutators
of P and Q cannot be reduced to a finite expression using only the Fg commutation relations,
especially when S,,, operators are involved, because P and Q are infinitely extended over both the
positive and negative loop and vit levels. We give more details on this in Appendix F. To motivate
the regularisation procedure we adopt in this paper, we can look at the integrability condition
for twisted self-duality (2.46) in purely two-dimensional (super)gravity, which we proved in
Section 2.3, but formulated now only in terms of P and @ as defined in (2.45) and their Maurer—
Cartan equation. The matching of integrability conditions of (2.46) we give in Section 2.3
does not involve any regularisation because it is based on the Maurer-Cartan form dVy—!
which takes values only along non-positive loop and vir levels. Then, the only commutators
one encounters are those needed to apply the Maurer—Cartan equation to the linear system
(2.22) (more precisely, its w expansion with generic y(w)) and they are all finite. Writing
the integrability conditions in terms of P and () instead, we encounter commutators that are
not finite per se, and we will see that in order to reproduce the result based on dVV~! the
regularisations employed in Section 4 become necessary.

The Maurer—Cartan equation for P reads dP — [@, P] = 0. Applying an S; operator to this
expression, using (B.2) and then (2.47), we arrive at

So(d*P—[Q,~P]) =0. (C.31)

The eg component of this equation was already computed, in ExF'T, in Section 4.6. Let us check
that up to a regularisation, (C.31) reproduces (2.15), (2.16) and nothing else. We will need that
in the triangular gauge (2.30) and by twisted self-duality

PR =+"Py{, QU = —sgn(m) x™ P4, m#0, (C.32)
P, = x™(dI'T™ 1), Qm = —sgn(m) +™ (dIT Yy, Qo =0. (C.33)

99



Let us take the L_,, p > 0 component of this equation which, using twisted self-duality, reads

2dxP T (D)o + (AT )T, %(d0T )|, (C.34)

= 2P THATT Yo + Y (2m + p) (ATT )y 5 (AT 1) iy
n>0

= 2dxPTH(dTT1)g + (LT~ V)g #P+ (dTT 1) <2p +83 (-1 m+ap Y (—1)7”)
m=1 m=1

= 2dxPTH(AIT 1)y — 2(dATT 1) «PT1 (AT 1),

= —p tdxdp if p even, 0 otherwise,

which recovers the free equation of motion for p. We have resummed the divergent series
Yoo (=1)™m — —1/4 and > 7 _;(—1)" — —1/2 using the z — 1 limit of a geometric series

m=1

>0 1 (=2)"p(n) for p(n) a polynomial in n. Now for the loop part,
S (©.39)

T 0 S Qe P S 0@y P 0 P
nez nez

We redefine n — p — n in the second-to-last term. Using that, by twisted self-duality, Q" and
Q., are n-odd, while the P are n-even, we find that several terms cancel out and we are left with

— d*p+1P8 - fABCQ?Lx e P% -2 Z n(QrCL‘ * Py +Qp *Pg_n) (C.36)

n=1

= PG — FABCQY %P PR 4+ 4G (@rr Yo w2 T PY Y (1)
n=1

B { dPY — fABoQYPY =0 p odd,
p~td(p* Pg) — fABCQE)4 * P]g p even,

which reproduces (2.16) given P = ]5,4 and QOA = Q A, which is valid because of the triangular
K(Eg) gauge. We have again regularised » 7 ,(—1)"n — —1/4.

C.4 Matching of scalar equations of motion to Eg ExFT

As a further motivation for the regularisations employed in Section 4.6 and studied in the
previous section, we provide here the matching of the V scalar field equations of motion derived
there to those of Eg exceptional field theory. A full matching of the Eg theory to the Eg one
has been given at the level of the pseudo-Lagrangians in the minimal formalism of Section 5.

We begin with the 794 component of equation (4.121), looking only at the left-hand side
since the scalar potential has already been matched to Eg exceptional field theory in [1]. We
will rewrite the relevant term as

p(DxPY + 21 )yvriv—1, (C.37)
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where we have conjugated the expression by the Eg/Spin(16) coset representative V and rescaled

by a factor of 2. This means that this expression should be traced with 27TOB(TO/T BTO/_l) =

M~16M, which is the natural expression for the variation of the Fg generalised metric M4p.
We will now choose the solution of the section constraint (3.10). With this, we can expand

T4 = 2 p (@) VTV (C.38)
AT = %( fapC0cAB — By + fapCYPocw)VTAV !, (C.39)

where T4 € Eg and w = (0|A) (not to be confused with the spectral parameter). In analogy
with (5.107) and (5.106), we have defined AY = (0|T'¢;|A) and —Ba = Tr(BVT_1 4).
Looking at the first two terms in the expansion (4.122) of D PY, we write

(D(p*PY) — p P 4Q%  PY)VITAV
= d(pVtx POTAV) — (9|(|A)pV 1 % PYTAY)
+ 0 (fapC00AP — Ba + fapCYPocw)[T4, VL« PLTEV]. (C.40)

We now implement the field redefinitions

AC = APC —w AT,

C41
BC = BSDC—wac—p*acw ( )

where AZDC and Bch are the 20 and z!' components of the Fg vector fields, while Ag and B, ¢
are their components along the third space-time direction denoted by ¢. We do not need a suffix
3D for the latter, but we identify them with

Afi = cha Byc =2pnep <>21’T—D1’0> : (C.42)
This was already established in [1]. Using (4.61), we then have that
2VIPYTAV = %0 —wj, — pOaw (TA + M~ITAM) (C.43)

where j°° = jiP

dz* is eg valued and
i = (P, dp) = M~ DgM (C.44)
is the Fg scalar field current and Dy the Eg ExFT covariant derivative:
M7 DM = M™'0;M — A2PC M~ 0o M + (fap© 00 AZP — B ) (T + M~ (T*)TM) . (C.45)
We then have that (C.40) becomes, after the field redefinitions,

(D —wDy, — (Dyw) ) (p x5 — pxw jp — p? *0aw (T* + M~ T4 M))

DO =

1
— §p2aAw (T4, 5°° —wj, — p* x0pw (TP + M~ TpM)] . (C.46)
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The dqw *Opw[T#, TP] term vanishes by the section constraint.
We must now add to the above expression the @}4 dependent terms of (4.122) as well as
the last one in (C.37). For the latter we compute, applying (C.41),

2(F1L VTV = paa((0|F) T4 = p (D — wDy)(daw) T* + p Dyw daw T (C.47)

where w transforms as a scalar (weight 0) under Eg generalised diffeomorphisms. For the last
two terms of (4.122) we also need Dp after the refinitions (C.41):

Dp= (D —wD, — (Dyw) )p (C.48)
so that

20 P 4([AL — [A]' PRV ITAV 4 2Dp [\ V-1 (TA + Ta)V

1
= §p28Aw[TA — M7'TuM | §°° — wj, — p*Opw (TP + M~ TpM)]

+p(D —wDy, — (Dyw) )p daw(TH + M~ T4 M)
~ p?0qw[T?, §°° — wj, — p*Opw (TP + M TpM)]
+p(D —wDy, — (Dyw) )p daw(TA + M TAM), (C.49)
where in the last step we are using that the whole expression appears traced with M ~15M.

Again, the dqw xOpw[T4, TP] term vanishes by the section constraint. Putting everything
together we find

1 . .
—(M~Y6M)A [(D —wDy, — (Dyw) )(px5% — pxw jy a) + p° fap MPPocw x0pw| +...=0

2
(C.50)
where the dots correspond to the contribution from the Eg scalar potential.

Comparing with the Fg ExFT equations of motion, we have that the variation of the kinetic
term reads (up to total derivatives, denoting by e the determinant of the 3d vielbein)

1 - 3D - 1 _ oD
5 (—Zeg’“‘ nABJ%iJ%%> = S (M1 M) Dy (eg™ i) (C.51)
_ 1 M_I(SM A D D D -3D . D —1 20\
=5 )4 (D —wDy, — (Dyw) )(p %54 — p*w jpa) + Dp(p™ ' €*7)jpal ,

where the last term is purely internal (only internal derivatives and no 2d vector fields) and
hence is reproduced by the Fy scalar potential contributions in the ‘...” above. Finally, the Fg
scalar potential contains one term dependent on the Kaluza—Klein vector w,,:

1 s 1
—eVgy =...+ ZeMAB(?AgW(‘)Bgﬁg =...— 5/)3 MAB(?AwM opwt . (C.52)

Again the dots represent purely internal terms. Variation of this term reproduces exactly the
last term in (C.50), proving the claim.
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D The Eg Virasoro constraint

In order to match the Virasoro constraint (4.83) in the Virasoro-extended formulation of the
theory with the Euler-Lagrange equation for g,, in its minimal formulation, one must assume
that the section constraint is solved consistently with the Eg parabolic gauge (5.96) such that
B takes the form (5.105). This is always possible since all solutions to the section constraint are
FEy conjugate to this one. Although matching these two equations in this way requires to break
FEy symmetry, both equations are Eg invariant and they therefore must be equivalent.

The terms in the pseudo-Lagrangian (5.44) that contribute to the Euler-Lagrange equation
for g, are

1 1 _ N N -t iian
L1+ §E“VJM_1J,,K + §p€“”€”pg“’\Duga,{D,,gp,\ + %(89“”]]% 1\89,“) ) (D.1)

By construction, the variation of £ involves infinitely many terms, with
1en _ 1t
5Ly =1p~l6g" (Tr[(M LSUT) M +x}) By] — $1asTx[T* By Tr[M TP MB,,]) . (D.2)

But if we assume (5.105) and therefore (5.106), one can use the semi-flat formulation introduced
in Section 5.4 with the same steps to show that the variation of the pseudo-Lagrangien (5.44)
with respect to g, reduces to the variation of

zZ_ gnABgW ("9 7.2% + MA°B,c) (n®P 7% + MPPB,p) + 2§ D,pD,o + DyupD, 3"

1 . . 5 -1 e
+ 50 e GV DuGor D + F (08" M TM0G) . (D-3)

where Z is the term (5.127) that vanishes upon using the duality equation (5.35). One can
therefore ignore Z in deriving the Euler—Lagrange equation for g"” to get a manifestly finite
result.

Using the same solution to the section constraint for the fields B in the extended formu-
lation and setting all the Virasoro fields to zero, one obtains that

2P 4VITY = (7.9 + nacMPOB,p) T3, (D.4)

where By = —Tr(BWT_1 4). Substituting this result in the Euler-Lagrange equation (D.3) for
Guv evaluated at §,, = 1y, gives precisely (4.83) at vanishing Virasoro fields.

E On symmetries of pseudo-Lagrangians

In this appendix, we consider in some generality the definition of symmetries of a pseudo-
Lagrangian. This discussion is relevant to the invariance of the theory under external diffeo-
morphisms as discussed in Section 5.3. Denote the fields of a theory collectively as ¢!, with a
pseudo-action S = [ L, its associated Euler-Lagrange equations &5 = % = 0, and assume a
separate set of duality equations £4 = 0.
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Having a symmetry with parameter £ means that the equations of motion transform into
each other according to

51 = A1’ (€, )€1+ B2 (£, 0)Ep 0eEa = Ca” (&, 0)E5 + DAP(€,90)Ep . (E.1)

This is certainly the case if both the duality equations and the pseudo-action are invariant under
that symmetry, in which case B/ = C4”/ = 0. But we want to define a minimal requirement.
To this purpose consider

0 9 J
oS = 51 | 60’5
500 08 [’ 58
=[5 s+ | i

§6¢p”
= 0¢€ ——E&5. E.2
gl + 5¢[ J ( )
One re-obtains that the Euler-Lagrange equations transform into themselves if 6¢S = 0. HOW—
ever, having a symmetry as defined by (E.1), only requires the weaker condition that 3 ¢>I 0¢S

must be proportional to the equations of motion £; and the duality equations £4. For this to
be the case it is sufficient for ¢S to be quadratic in the duality equations

%S=/@”m@&&+5wm@&&+vw@¢mw@. (E:3)

One can always redefine the symmetry such that the two first terms vanish, with

50" = 6:0" — o’ (6, 0)Es — B'B(E, 0)En (E4)
but the last term cannot be eliminated in general. One has then
B [ (0E (€ 9) AB
P60 = [ (Tpren+ 1%(6.0)55764) (E)

and we get that y48 £ 0 if B;P(¢, ¢) does not vanish. So if the Euler-Lagrange equations do not
transform into each other under a symmetry, but also mix with the duality equations, then the
pseudo-Lagrangian is only invariant up to terms quadratic in the duality equations. However,
it is not sufficient that the action is invariant up to terms linear in the duality equations.

F On Kac—Moody groups

For a given Kac-Moody Lie algebra there are different definitions of an associated Kac—Moody
group and representations, see [75,76]. In the case of centrally extended loop groups, the two
standard notions of a minimal group and maximal (or completed) group can be described as
follows.
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The minimal group, denoted E‘én consists of maps from the complex plane into the group Eg,
where the maps are restricted to Laurent polynomials around infinity (or the origin). In terms
of the spectral w € C, one starts with elements ¢™(w) that can be written as

Lo
g (w) = w g (F.1)

{=0y

with ¢; < ¢y (finite integers) and such that for each value of w one has g™ (w) € Eg (for a chosen
matrix representation). This space of maps forms a group (under pointwise multiplication) and
can be centrally extended [77]. The resulting group is Eén

The completed group Eg_ replaces Laurent polynomials by formal Laurent series around
infinity. In terms of an expansion in powers of w, this means that we are allowing arbitrarily
negative powers of w

g (w) =Y wlg. (F.2)

{=0

The — indicates both that the powers are arbitrarily negative and that this corresponds to a
completion in the positive Borel direction, which is consistent with our choice of letting T,ﬁ >
w™TA correspond to negative (positive) roots for m > 0 (m < 0), respectively. We also require
9" (w) € Eg as a group element in the field of formal Laurent series in w. As the conditions
for being in the group are algebraic conditions on the matrix entries (such as det(g°~ (w)) = 1),
these are also expressible in terms of formal Laurent series and can be imposed without requiring
the series to converge. Since formal Laurent series form a field, elements of this type form a
group and can again be centrally extended.*? The logarithmic derivative dg¢~ (w) (g~ (w))_1
is an element of the completed Lie algebra e~ that consists of eg-valued Laurent series around
infinity with central extension. From the point of view of the root space, we allow for an infinite
linear combination of negative root generators in e  but only a finite linear combination of
positive root generators. It possible to define a Lie bracket on e§ .

The explicit coset representative that is given in (2.30) clearly belongs to this completed
group and thus we take for the scalar fields the group Eg_. Elements of this group can act

on highest weight modules R(A)y, since the exponentials of positivehighest generators all are
finite sums (rather than series) due to the existence of a highest weight. When we try to act
on a lowest weight modules R(A);, the exponentials do not terminate but the computation for
any given weight space is a finite sum so that one could consider infinite linear combinations
in the space R(A)p, which is sometimes called the completed module [76] and which we denote
by R(A);~. The (algebraic) dual of highest weight module R(A)j is a completed lowest weight
module R(A);~ and the pairing is invariant under Eg_.

The Chevalley involution maps the (negatively) completed Lie algebra e~ to the (positively)
completed Lie algebra E§+ since it interchanges negative and positive roots. If ¢ are Laurent

42We note that, when using the Geroch group for generating solutions of the Einstein equations [78], an
intermediate version of the loop group is used that is given by meromorphic functions on (covers of) Riemann
surfaces.
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series around infinity, then ¢5" are Laurent series around the origin. Therefore, the projections

P(w) = % [dVC_ (w) (VC_(w))_l + <dVC_(w) (VC_ (w))_l)q ,

L e c -1 - = -1
Qo) = [av*H ) (V) = (v ) (@) )] (F3)
of the Mauer—Cartan form lie in the doubly completed space ¢§ ™~ = ¢ +¢§ for Vo~ (w) € Eg_.

There is no Lie bracket on E§+_ that can be defined by a finite number of operations from the
one on eg since this would require multiplying Laurent series around infinity with Laurent series
around zero which is not a well-defined operation. The completed group Eg_ does not act
on ?§+_ for the same reason, only Eg‘ does. Therefore, strictly speaking, the current J(w) =
2(Ve™(w)) ' P(w)Ve (w) is ill-defined. There is a well-defined action of K(Eén) = K(Ey)
on the components P and @ of the Maurer—Cartan form. This is sufficient for defining the
action of generalised diffeomorphisms since the derivative is a constrained object. Besides using
the Unendlichbein approach to avoid the problem of the ill-defined current, one can consider
FEy exceptional field theory in a level decomposition with respect to a finite-dimensional Levi
subgroup, such as Fg. This semi-flat formulation was used in Section 5.4 and yields a current
J that is in E§+_ since the conjugation of the symmetrised Maurer—Cartan form is reduced
to elements of the Levi subgroup and all other objects in the theory are conjugated by the
remaining unipotent elements of E‘g_ appropriately.

Because the coset representative is an element of Eg‘,“ the representations it acts on must
be of the right type: either completed lowest weight modules (such as |A)) or minimal highest
modules (such as (9]). For instance, typical expressions we encounter are (9|V ~1... V11| A)
with V1T ¢ E§+ that can act on completed lowest weight modules (while V! has finite action

on (d]).
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