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ABSTRACT11

During sleep, the brain undergoes dynamic and structural changes. In Drosophila, such changes have been
observed in the central complex, a brain area important for sleep control and navigation. The connectivity of the
central complex raises the question about how navigation, and specifically the head direction system, can operate
in the face of sleep related plasticity.
To address this question, we develop a model that integrates sleep homeostasis and head direction. We show
that by introducing plasticity, the head direction system can function in a stable way by balancing plasticity
in connected circuits that encode sleep pressure. With increasing sleep pressure, the head direction system
nevertheless becomes unstable and a sleep phase with a different plasticity mechanism is introduced to reset
network connectivity.
The proposed integration of sleep homeostasis and head direction circuits captures features of their neural
dynamics observed in flies and mice.

12

1 Introduction13

Sleep affects many different brain functions such as cognition1 or working memory2 and sleep dysfunction is related14

to a range of diseases3. Sleep is observed across species and different hypotheses have been put forward to explain15

the function of sleep4, for example reverse learning of spurious network states (that were created as a byproduct of16

intended memories)5–7 or weakening of synapses (synaptic homeostasis hypothesis)8.17

The function of sleep is linked to the dynamic and structural changes that it induces in the brain9, which in turn18

are monitored by sleep control or sleep homeostasis circuits10, 11. The circuits that control sleep are distributed over19

many different brain areas and cell types10. Thanks to the genetic tools12, 13 that allow dissecting neural circuits into20

small populations of genetically identified cell types, as well as more recently the fly connectome14, Drosophila has21

emerged as a valuable model for sleep control11, 15–17.22

A generic sleep control circuit has been linked to specific neural populations in the brain of Drosophila in18.23

This circuit has three components and corresponding neural populations in the central complex (Figure 1A). A first24

component encodes sleep pressure. The corresponding neural population has been identified in the so called R5 ring25

neurons which arborize in concentric rings in the ellipsoid body19, a substructure of the central complex. These26

R5 neurons increase both their activity and synaptic strength over waking time and are reset with sleep. A second27

component of the sleep control circuit executes the switch between sleep and wakefulness (depending on the amount28

of sleep pressure). The corresponding neural population has been associated with the the dorsal fan-shaped body29

(dFB) neurons, which promote sleep when active20. A third component triggers locomotion, processes visual input,30

and increases sleep pressure18 and the corresponding neurons are so called helicon cells18, also identified as ExR131

neurons21. The proposed recurrent circuit between these three neural populations18 is illustrated in Figure 1A.32

The same central complex structures involved in sleep have also been shown to be important for navigation.33
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In particular, ring neurons with similar morphology to the sleep-related R5 ring neurons, provide sensory input to34

the head direction system, such as visual features22, 23 or wind direction24. Such input is integrated in so called35

wedge neurons, which arborize in different wedges of the ellipsoid body, where they intersect with ring neurons.36

These wedge neurons encode the head direction of the fly through a bump of activity that moves around the ellipsoid37

body25.38

In the context of navigation, the structure and function of circuits in the central complex are reminiscent of ring39

attractor networks25. Such networks, which are well suited to encode a circular variable, have been suggested to40

underlie the encoding of head direction, originally in mammals26 and more recently in flies25.41

It is currently unknown why the circuits for sleep homeostasis and head direction converge in the central complex.42

The morphological similarity of the ring neurons involved in sleep and head direction and the spatial proximity of43

the circuits as well as the fly connectome14, suggest that they interact. Given the observed activity and structural44

changes in R5 ring neurons after prolonged waking time and after sleep19, 27, 28, this suggests that the head direction45

system in the ellipsoid body needs to operate in the face of substantial synaptic and functional changes in connected46

circuits.47

Motivated by this interaction between navigation and sleep homeostasis circuits as well as their plasticity19, 27, 28,48

we here use theoretical modeling to investigate how these two circuits can be understood as a combined system.49

For this purpose, we first model the circuit proposed in18 and confirm that it generates sleep homeostasis. We then50

extend the model by combining it with a head direction network as suggested by the connectome. In this combined51

model, the sleep pressure encoding R5 neurons balance Hebbian plasticity introduced in the recurrent connections of52

the head direction system. In this way, ring neurons maintain a functioning head direction system and record sleep53

pressure. The system is finally reset through a sleep phase.54

We discuss how this model can integrate several experimental observations on the navigation and sleep home-55

ostasis systems reported in the literature. We further discuss several predictions of the model that can be tested in56

experiments. This analysis contributes to an understanding of the generation and dynamics of sleep drive and links57

the control of sleep to sleep function.58

2 Results59

2.1 Sleep homeostasis model60

The sleep homeostasis model proposed in18 is illustrated in Figure 1A. All connections between populations are
direct18, except the connection between R5 and dFB neurons, which is considered indirect since these neural popula-
tions are not anatomically, but functionally connected19. This circuit is described by the following phenomenological
model:

8
><

>:

tI ṙI(t) =�rI(t)+ rExR1(t)
t ṙExR1(t) =�rExR1(t)+1� rdFB(t)
t ṙdFB(t) =�rdFB(t)+ [G(rI)�d(t)]+

(1)

The variables rI(t), rExR1(t) and rdFB(t) represent population firing rates of R5 neurons, ExR1 neurons and dFB61

neurons, respectively. The time constant tI accounts for the slow dynamics of increasing activity observed during62

waking time in R5 neurons19 on the order of hours. The effective population time constant t accounts for neural63

dynamics in the millisecond range. [·]+ is a threshold-linear function to ensure positive-valued firing rates. For64

simplicity, the model is defined such that population firing rates are between 0 and 1. The variable d(t) , which65

can take values 0 or 1, represents an input to dFB neurons such as a wake-promoting dopaminergic signal29. The66

function G(rI), which depends on the history of activity of R5 neurons and produces the observed switching behavior67

in dFB neurons18, is described with a simple hysteresis (equation (9)).68

Figure 1B shows a simulation of this model with the firing rates of the different populations changing over69

time. The sleep and wake phases are defined in terms of the activity of dFB neurons, which promote sleep while70

active20. During the wake phase, activity in R5 neurons increases, encoding sleep pressure due to sustained constant71

input from ExR1 neurons. After ring neurons reach an upper threshold, r(max)
I , dFB neurons ’switch on’ and inhibit72
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Figure 1. Sleep homeostasis and navigation circuits in the central complex. A Recurrent sleep homeostasis circuit
proposed in18. The three populations are connected via excitatory (green arrows) or inhibitory (red arrows)
connections. B Simulation of the sleep homeostasis model illustrating the dynamics of each population over time. C
Interaction between the fly head direction circuit and populations involved in sleep homeostasis. D Schematic of
connectivity between wedge neurons and R5 and ExR1 neurons in the ellipsoid body. Images are downloaded from
the connectome database14.

activity in ExR1 neurons, which leads to a decrease in activity of R5 neurons. Once R5 activity reaches a lower73

threshold, r(min)
I , dFB neurons switch off, repeating the cycle. Sleep deprivation (by setting d(t) = 1 in the top red74

region) inhibits activity of dFB neurons and activity of ring neurons increases beyond r(max)
I . As expected for a sleep75

homeostasis circuit, after sleep deprivation, more time is required to reset the activity of R5 neurons back to r(min)
I76

(sleep rebound, see Methods 4.3 for details of simulation).77

2.2 Connectivity between head direction and sleep circuits78

While the circuit described above can produce sleep homeostasis, the connectome14 shows that it acts not in isolation79

but interacts with the head direction system. Figure 1A and C show how R5 and ExR1 neurons are connected to80

wedge neurons that encode head direction. The anatomical organization of wedge, R5 and ExR1 neurons is shown81

schematically in Figure 1D, where each wedge neuron arborizes in a different wedge along the ellipsoid body,82

and R5 and ExR1 neurons arborize in concentric rings. The wedge neurons that encode head direction have been83

identified as EPG neurons25, but a similar population of wedge neurons, called EL14, 30 or AMPG-E31, could also84

potentially encode head direction. These neurons have been proposed to contribute to the persistent activity in the85

network by excitatory feedback to EPG neurons31. These neurons can mediate a connection between R5 and EPG86

neurons that is stronger than the direct connection between R5 and EPGs. In the following, wedge neurons refer to87

both EPG or EL populations without distinction. We assume that both encode head direction and are directly or88

indirectly connected to R5 neurons. In Figure S1, we show recurrent connections between wedge neurons (Figure89
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Figure 2. Integration of the sleep homeostasis circuit with a ring attractor network. A Schematic of a model where
wedge neurons are connected to the sleep homeostasis circuit according to the fly connectome (see Figure S1). In
this model, fixed connections are assumed. B Simulation of the model in A (dFB neurons not shown). Top row:
rotating input to the ring attractor with a frequency 0.5 Hz. Second row: bump of activity in wedge neurons
encoding head direction. Third row: activity of the wedge neuron 16 (representative for any other wedge neuron).
fourth row: increasing activity of R5 neurons. C Model with plastic connections indicated by black arrows. D
Dynamics of the model with plasticity: after a wake phase, high connectivity strength in the ring attractor leads to
high sleep drive in R5 neurons, which leads to a switch to the sleep phase. After sleep, connectivity strength in the
ring attractor is reset, producing low sleep drive.

S1A), between wedge and R5 neurons (Figure S1B)), and between wedge and ExR1 neurons (Figure S1C) according90

to the connectome14 .91

2.3 Integration of sleep homeostasis and ring attractor circuits without plasticity92

The interaction of the sleep homeostasis and ring attractor circuits extracted from the fly connectome is shown93

schematically in Figure 2 A. Given that R5 neurons and wedge neurons are bidirectionally connected (see Figure94

S1B), we first asked how increasing activity of R5 neurons during the wake phase (see Figure 1B, first row) affects95

the head direction network. We therefore combined a ring attractor network with the above sleep homeostasis96

model (section 2.1) according to the connectivity in Fig. 2 A. As in previous work32, 33, we identify wedge neurons97

as the excitatory component of a ring attractor network with recurrent excitation, encoding head direction with98
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sustained bump-like activity. On the other hand, we assume that R5 neurons provide increasing inhibition to wedge99

neurons34, in agreement with the majority of ring neurons being inhibitory35, 36. (For simplicity, we assume that100

ExR1 neurons, which are bidirectionally connected to wedge neurons, provide input to the ring attractor similar to101

other ring neurons, and that wedge neurons and not ExR1 neurons, as suggested in18, charge the sleep homeostat.)102

Figure 2B shows the activity of wedge neurons and R5 neurons with a rotating input, representing visual or103

idiothetic cues, (in blue, first row) which as expected moves the bump around the ring attractor (in green, second104

row). Increased activity in R5 neurons, as experimentally observed with increased sleep drive, decreases the bump105

amplitude in the ring attractor until it finally vanishes. Therefore, simply connecting R5 and wedge neurons as106

indicated by the connectome, leads to a decreasing bump of activity over time.107

2.4 Integration of sleep homeostasis and ring attractor circuits with plasticity108

In Figure 2C, we propose an alternative model that can sustain a stable bump amplitude. In order to overcome a109

decreasing bump amplitude (which has not been experimentally observed), we hypothesize that the increase of110

inhibition from R5 neurons, in addition to encoding sleep drive, has the role of compensating for an increase in111

excitation in the head direction circuit. In particular, we hypothesize that excitatory synaptic strength between wedge112

neurons increases during the wake phase. This could be due to Hebbian plasticity between wedge neurons, since113

encoding the head direction in a bump of activity requires several wedge neurons to be active at the same time,114

thus strengthening the recurrent connections. This model is additionally motivated by the experimentally observed115

increase of activity as well as plasticity in R5 neurons19. In agreement with these data, we additionally add Hebbian116

plasticity from wedge neurons to R5 neurons.117

In this model, R5 neurons act as a closed-loop feedback controller that prevents activity in wedge neurons from118

increasing due to hebbian plasticity, by adaptively increasing inhibition. In the context of the sleep homeostasis119

circuit, dFB neurons then detect synaptic growth in R5 neurons. When R5 neural activity reaches an upper threshold,120

dFB neurons switch on sleep. We assume that during sleep, the plastic connections are reset with LTD, decreasing121

activity in R5 neurons (as observed in19) and lowering sleep drive (Figure 2D, left).122

The network shown schematically in Figure 2C is implemented with N = 32 wedge neurons (based on anatomy37).
For simplicity, we model the population of R5 neurons with a single variable rI(t) as in the sleep homeostasis model
(section 2.1). The activities of wedge and R5 neurons are described by the following system of differential equations:

8
<

:
t ṙ(i)E (t) =�r(i)E (t)+

h
ÂN

j w(i j)
EE (t)r

( j)
E (t)�wEIrI(t)+q + I(i)(m, t)

i

+
for i = 1, ...,N

t ṙI(t) =�rI(t)+
h

ÂN
j w( j)

IE (t)r
( j)
E (t)

⇤
+.

(2)

Here, rE(t) and rI(t) are the firing rates at time t of wedge and R5 neurons, respectively, wAB is the synaptic123

weight from population B to population A, q is a constant background input onto wedge neurons, and t is the124

effective population time constant. The matrix w(i j)
EE is initialized with a Gaussian function that depends on the125

distance between wedge neurons along the ring. The Gaussian has two parameters, the maximum amplitude, w(max)
EE ,126

and the standard deviation s (equation (38) in Methods). Figure 3A illustrates the connectivity from all the wedge127

neurons to wedge neuron 16. Additionally, I(i)(m, t) is an input from any modality to each wedge neuron i (for128

example (time-varying) visual or idiothetic input). This input encompasses input from ExR1 neurons, that process129

visual stimuli18, as well as from others populations. We assume that this input can be inhibited by dFB neurons,130

rS(t), as in the sleep homeostasis model (section 2.1), and is defined as a Gaussian function where the peak is located131

at a given wedge neuron m (equation (39) in Methods).132

The inhibition of input to wedge neurons during sleep is motivated by the fact that self-motion inputs are not133

present, since the fly does not move during sleep. On the other hand, ExR1 neurons, which contribute to visual134

processing and locomotion, are inhibited by dFB neurons18. We hypothesize that other neural populations providing135

visual input to the ring attractor23 might require coincident activity from ExR1 neurons to reliably transmit visual136

information. This information might not be transmitted during sleep because of lack of activity from ExR1 neurons.137
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This is consistent with the idea of an increased arousal threshold during sleep, where stronger stimuli are required to138

produce a behavioral response38.139

The plasticity during the wake phase in recurrent connections between wedge neurons, w(i j)
EE , and from wedge to

R5 neurons, w( j)
IE is modeled as follows:

(
tEEẇ(i j)

EE (t) = r(i)E (t)r( j)
E (t) for i, j = 1, ...,N

tIEẇ( j)
IE (t) = rI(t)r

( j)
E (t)

⇣
r( j)

E (t)� r0

⌘
for j = 1, ...,N,

(3)

where tEE and tIE are time constants, and r0 is a positive presynaptic threshold. We assume that the dynamics140

of the plasticity rules are much slower than the dynamics of neural populations, so that tEE ,tIE >> t , producing141

long-term plasticity. The synaptic weight between a presynaptic wedge neuron j and a postsynaptic wedge neuron142

i is represented by the time dependent matrix element w(i j)
EE (t). While the first plasticity rule is a linear Hebbian143

rule, the second is a triplet rule with presynaptic threshold; its behavior is similar to the linear Hebbian rule with144

presynaptic threshold, but it has a quadratic dependency on the presynaptic activity while ensuring no change in wIE145

if neural activity is zero (see derivation in Methods 4.5.1 and in39).146

The plasticity rules are motivated by the assumption that the observed increase in activity and synaptic strength147

in R5 neurons19 balance the long-term potentiation in recurrent connections of wedge neurons, w(i j)
EE . The plasticity148

rules therefore produce the following effects: (i) The recurrent synaptic connections between wedge neurons,149

w(i j)
EE , as well as the connections between wedge and ring neurons, wIE , get stronger during the wake phase. (ii)150

The firing rate of ring neurons rI increases during the wake phase. (iii) The amplitude of the bump in wedge151

neurons (which represents head direction) evolves always towards a constant setpoint, rE �! r0. Note that activity152

is not constrained to the setpoint, but evolves towards it over time, since the setpoint is a stable fixed point for153

wedge neurons. Therefore, the bump amplitude will deviate from the setpoint due to any (for example visual or154

self-motion related) input (see Figure S4), consistent with experimentally observed behavior-related changes in155

bump amplitude40. These plasticity rules avoid the problem of a vanishing bump amplitude, as observed in the156

model with fixed connections (see Figure 2A and B).157

How plasticity can drive the observed increase in R5 neuron activity with sleep pressure19, 27 is currently158

unknown. Since it is the activity of R5 neurons, and not the plasticity, which is hypothesised to trigger sleep18, 19, 27,159

our models assume plasticity that directly modifies the activity of R5 neurons linearly (Figures 3C, 4A and 5A) (a160

possibility that is consistent with the data in19).161

A simplified model consisting of only one excitatory population representing wedge neurons and one inhibitory162

population representing R5 neurons is presented in Methods 4.5. Both populations are connected according to Figure163

2C, including the plastic connections. This model shows overall similar characteristics to the full ring attractor164

network (see also next section).165

2.5 Analysis of model stability during the wake phase166

As shown below, the stability of a bump of activity in wedge neuron i is determined by its total excitatory input,167

w(i,sum)
EE (t) (Figure 3A). Here and in the following, we focus on wedge neuron 16, but the same analysis applies for168

all wedge neurons:169

w(16,sum)
EE (t) =

N

Â
j

w(16, j)
EE (t). (4)

Figure 3B shows the different dynamic regimes of the bump as a function of the parameters w(max)
EE and s that170

determine the values of w(i j)
EE (see Methods (4.7) and Figure S6). The colored lines in Figure 3B are isolines of171

constant w(16,sum)
EE , and correspond to the boundaries of distinct dynamics of the bump of activity in wedge neurons.172

The boundaries are similar to the ones found in the simpler two-population model (Methods 4.5). The bump is173

stable around wedge neuron 16 if 1 < w(16,sum)
EE < 2. As the recurrent weights w(i j)

EE increase due to LTP during the174
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Figure 3. Dynamics of ring attractor network during wake phase. A Left side: representation of excitatory
connections from all wedge neurons to wedge neuron r(16)

E . Right side: Gaussian connectivity from all wedge
neurons to wedge neuron 16, with maximum amplitude w(max)

EE and standard deviation s . B Model dynamics
obtained in the fast-timescale limit (see Methods(4.7)) depend on the parameters of the excitatory connectivity,
w(max)

EE and s . C Left side: dynamics during wake phase of the ring attractor model where the bump is located
around wedge neuron 16. When the total excitatory weight, w(16,sum)

EE , crosses a threshold, the bump starts to
oscillate. Right side, top: initial excitatory connections between wedge neurons. Right side, bottom: final excitatory
connections between wedge neurons; changes are a result of synaptic plasticity.

wake phase, so do s and w(max)
EE . The bump starts to oscillate if recurrent connections are too strong, i.e. w(16,sum)

EE > 2.175

When w(16,sum)
EE > 2(1+

p
q/r0), the bump keeps oscillating with very low activity in wedge neurons (see Methods176

4.7).177

Figure 3C illustrates the dynamics of the system with a bump centered in wedge neuron 16 (first row): as178

w(16,sum)
EE increases (fourth row) due to Hebbian plasticity, the weights w(i)

IE (represented by the mean) also increase179

(fifth row), leading to increased activity of R5 neurons (third row), which in turn maintains the amplitude of the180

bump in wedge neuron 16 constant (second row).181

When w(16,sum)
EE > 2, the bump starts to oscillate, as do R5 neurons (orange region in the last four rows). In182

addition, the plasticity rule in the recurrent connections w(i j)
EE leads to an increase of the synaptic weights around the183
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bump position (Figure 3C, right side, top vs. bottom).184

2.6 Resetting the connectivity of the ring attractor during sleep185

To limit synaptic growth as well as to avoid the instability of the bump and oscillations in R5 neurons, we introduce
a sleep phase, as proposed by models of sleep homeostasis18. In this model, dFB neurons detect increased activity
of R5 neurons and implement the switch between sleep and wake phases. In the model, we use a filtered version
of R5 activity, which is motivated by the fact that R5 and dFB are not anatomically but functionally connected19.
Additionally, this filtering prevents uncontrollable switching between phases in the oscillatory regime. The filtered
activity of R5 neurons and the activity dFB neurons are modeled as follows:

8
<

:
t f ṙ

( f )
I (t) =�r( f )

I (t)+ rI(t)

t ṙdFB(t) =�rdFB(t)+
h
G(r( f )

I (t))�d(t)
i

+

(5)

where t f is the time constant of the low-pass filter (order of seconds); r( f )
I , which we refer to as the switching signal,186

is a low-pass filter of activity in R5 neurons; and rdFB(t) is the activity of dFB neurons with its switching behavior187

modeled by equation (9). Finally d(t) is a variable which can produce sleep deprivation.188

During the sleep phase, we assume that dFB neurons inhibit input to the ring attractor, similar to the sleep
homeostasis model (see equation 39). In addition, our model resets the connectivity strength in w(i j)

EE by a change in
the plasticity rules during sleep. A simple way to restore the network connectivity w(i j)

EE (t) is to relax it to its initial
values over the sleep phase:

tEEw(i j)
EE (t) =�w(i j)

EE (t)+w(i j)
EE (0) for i, j = 1, ...,N. (6)

189

Note that we do not change the plasticity rule of w(i)
IE(t), since this rule ensures w(i)

IE(t) to always follow the trend190

(potentiation or depression) of w(i)
EE(t) in order to maintain the bump amplitude at a setpoint. Figure 4A shows a191

simulation of the combined ring attractor and sleep homeostasis models ((section 2.1)) with plasticity. During wake192

phases (top, white region), dFB neurons are inactive (rdFB(t) = 0, not shown), and during sleep phases (grey region)193

dFB neurons are active (rdFB(t) = 1). In the wake phase, a rotating input with a constant frequency of 0.5Hz is194

provided; the input reverses direction between consecutive wake phases (top row). During the wake phase, the bump195

in the ring attractor closely follows the input (second row), while the activity of R5 neurons increases (light red line196

in the fourth row). The second to last row shows the diagonal elements of w(i j)
EE while the last row shows w(i)

IE . When197

the switching signal reaches the upper threshold, r(max)
I , dFB neurons switch the model to the sleep phase, where the198

plasticity rule in w(i)
EE(t) changes and input to wedge neurons is inhibited (Figure 4B). During sleep, the bump in199

wedge neurons stays in place, maintaining the last head direction of the fly before the sleep phase while the activity200

of R5 neurons slowly decreases. As with the two-population model (Methods 4.5), the timescale of sleep and wake201

phases depends on the time constants of the plasticity rules.202

Once the switching signal reaches the lower threshold, the system switches back to wake phase and the input203

is turned on again (Figure 4D). Furthermore, if we prevent dFB from switching to the sleep phase (by setting the204

variable d(t) = 1) and thus extend the wake period (sleep deprivation, upper orange region), w(16,sum)
EE for wedge205

neuron 16 crosses the boundary for stability, w(16,sum)
EE > 2. In this case, the bump in the ring attractor starts to206

oscillate (Figure 4C; see section 2.5). Towards the end of the extended wake phase, the bump stops tracking the207

input. In the subsequent sleep phase, more time is required to reset the excitatory weights and to reach the lower208

threshold r(max)
I , resulting in sleep rebound (Figure 4A).209

2.7 Resetting the ring attractor during sleep using autonomous dynamics210

An alternative mechanism for the network to be reset during sleep is an anti-hebbian plasticity rule in w(i j)
EE (t), such

as the following:

tEEẇ(i j)
EE (t) =�r(i)E (t)r( j)

E (t) for i, j = 1, ...,N. (7)
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Figure 4. Simulation of ring attractor combined with sleep homeostasis model, using an exponentially decaying
plasticity rule during sleep (equation (6)). A Entire simulation over a period of 800 seconds. White and grey regions
indicate the sleep and wake phases, and correspond to dFB neurons switching off and on, respectively. Top row:
input (inhibited during the sleep phase), alternating between clockwise and counter-clockwise rotations at 0.5Hz.
Second row: ring attractor bump activity. Third row: activity of wedge neuron 16. Fourth row, light red: activity of
ring neurons. Dark red: filtered activity. Switching between sleep and wake is carried out by dFB neurons that
switch on and off depending on filtered activity crossing thresholds r(min)

I and r(max)
I . In the third wake epoch, sleep

deprivation is produced by extending the inhibition of dFB neurons (d(t) = 1 during the orange top layout). Fifth
row: diagonal elements of the connectivity matrix w(i j)

EE . The white line is the sum of all excitatory connections to
wedge neuron 16. It passes threshold 2 at around 240 seconds leading to oscillations. The full connectivity matrix
w(i j)

EE at the switch times is shown in Figure S7. Sixth row: connectivity w(i)
IE ; black line is the mean value. B Zoom-in

around 256 seconds: switch from wake to sleep phase. C Zoom-in around 474 seconds: extended wake phase leads
to oscillatory behavior. Circuit switches to sleep. C Zoom-in around 610 seconds: switch from sleep to wake phase.

This rule produces LTD with correlated activity between neighboring wedge neurons. Figure 5A shows a211

simulation of this model. In the wake phase, the behavior is, as expected, the same as in the model without212
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Figure 5. Simulation of ring attractor combined with sleep homeostasis model, using an anti-Hebbian plasticity
rule during sleep (equation (7)). A Entire simulation over a period of 700 seconds, similar to Figure 4A. B Zoom-in
around 184 seconds: switch from wake to sleep phase. C Zoom-in around 370 seconds: extended wake phase leads
to oscillatory behavior. Circuit switches to sleep. D Zoom-in around 518 seconds: switch from sleep to wake phase.

anti-hebbian plasticity (Figure 4A). During sleep, the autonomous bump movement resets synaptic connections and213

the activity of R5 neurons decreases. Heterogeneity in the weights w(i j)
EE (due to synaptic plasticity) makes the bump214

drift across wedge neurons. These autonomous dynamics reset the connectivity in the network7. The amplitude of215

the bump during autonomous dynamics is at setpoint level, that is, below the activity level resulting with input to the216

attractor network.217

Wake phases without continuous input can also show drift (see Figure S8 with intermittent input). This wake218

drift is however different from sleep drift, since it ends once the bump reaches the location of strongest recurrent219

excitation, making the synaptic weights grow in this location until sleep is initiated. Such wake drift can be reduced220

in our model by slowing the plasticity rules and with close to homogeneous coverage of the bump movement across221

all wedge neurons (see Figure S9 and Methods (4.9)).222

To investigate how such autonomous dynamics of the bump during sleep are linked to the dynamics during the223

preceding wake phase, we provided sinusoidal inputs a range of amplitudes A and frequencies f . In Figure 6A,224
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Figure 6. Simulation of the ring attractor network with sinusoidal inputs during wake phase. A In each wake phase,
a sinusoidal input is provided to the ring attractor (top row) with increasing frequencies in consecutive wake phases.
During sleep, an autonomous bump of activity revisits wedge neurons active in the previous wake phase (second
row). The third row shows the activity of wedge neuron 16 and the fourth row shows the activity of the ring neuron
(light red) and its filtered activity (dark red) used to switch between wake and sleep phases. The last two rows
represent the synaptic weights that increase during wakefulness and decrease during sleep. B Normalized
distribution of time that the bump peak is localized in each wedge neuron during wake (blue) and sleep (grey)
phases. The first, second and third plots show the distribution for the first, second and third wake and sleep phases,
respectively. C Top: standard deviation (STD) of the bump path during a total of 15 simulations where different
amplitudes of a sinusoidal inputs are provided during the wake phase. During the wake phase, the STD of the bump
path is proportional to the amplitude (grey). During sleep, the autonomous bump path has a correlated STD (Pearson
correlation coefficient: 0.99 (p = 1.5 ·10�17). Bottom: number of cycles of the bump path during a total of 15
simulations with different frequencies of a sinusoidal input during wake phase. During the wake phase, the number
of cycles is proportional to the input frequency. However, during sleep, the number of cycles does not correlate with
the input frequency: Pearson correlation coefficient: 0.76 (p = 0.0015).

we show a simulation with fixed amplitude, A = N/4 and different frequencies in each wake phase (0.1,0.5, and 1225

Hz). During sleep, the bump revisits wedge neurons that were active in the preceding wake phase, as seen in the226

distributions of the time spent around each wedge neuron during the first (left), second (center) and third (right)227
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wake phase (in blue) and during the following sleep phase (in grey) (Figure 6B). To further probe the amplitude228

dependence, we simulated a wake phase and the subsequent sleep phase, and in each simulation varied the amplitude229

A of a sinusoidal input in the range [0,16], with fixed frequency of f = 1Hz, during the wake phase. The standard230

deviation (STD) of the paths of the bump during the wake (blue) and sleep (grey) phase closely match (Figure 6C).231

Similarly, we investigated the frequency dependence with a stimulus with fixed amplitude, A = N/4, and varying232

frequency in the range [0.1,1.5]Hz. The number of oscillatory cycles grows linearly with the input frequency in the233

wake phase (blue), but remains constant during sleep. Therefore, the dynamics during sleep do not depend on the234

input frequency during the wake phase (Figure 6C). Additionally, the frequency of oscillations of the bump around235

the ring can increase as the bump approaches the lower threshold of the switching signal (before waking up, Figure236

S9A). Such autonomous dynamics are reminiscent of activity observed during sleep in mice41.237

3 Discussion238

In the brain of Drosophila, structurally similar neurons in the center of the brain have been assigned functionally very239

different roles. On the one hand, navigation related ring neurons encode spatial memory or visual features22, 23, 42.240

For these ring neurons, ring attractor networks offer a compelling structure-function relationship which can provide241

a rationale for their ring-shaped morphology. On the other hand, sleep related ring neurons serve as homeostatic242

sleep integrator, encoding sleep drive through structural19, 28 and activity changes19, 27. The connectome additionally243

shows multiple interactions between these sleep and navigation related circuits14, 30.244

To elucidate the relationship between these navigation and sleep functionalities of ring neurons, and to address245

how the head direction system can operate in the face of plasticity in connected circuits, we therefore asked what246

role the homeostatic integrator could play in the ring attractor framework.247

To address this question, we used the sleep homeostasis model proposed in18 as a starting point. The connectome248

shows that this circuit is not isolated but interacts with the head direction system (Figure 2A). When connectivity249

in this circuit is fixed, however, the increasing activity of R5 neurons (which encode sleep drive) decreases the250

amplitude of the bump of activity in the ring attractor (Figure 2D). To overcome this problem of vanishing activity, we251

therefore propose a model with plasticity in R5 neurons (which is experimentally observed) and with hypothesized252

recurrent plasticity between wedge neurons. In this model (Figure 2C), sleep drive balances plasticity in wedge253

neurons, which are now able to maintain a bump of activity that evolves towards a constant amplitude setpoint over254

time. The model also allows variability in the bump amplitude with external (for example visual or self-motion255

related) input (Figure S4), consistent with experimentally observed behavior-related changes in bump amplitude40.256

However, prolonged activity during wakefulness ultimately leads to unstable behavior (oscillations in Fig. 3C257

and 5A). Therefore, to restore the connectivity in the head direction system to baseline, we introduced a sleep phase,258

in agreement with models of sleep homeostasis18, where the synaptic connections between wedge neurons are reset259

by LTD. While the time course and dynamics of this reset is not known, we here investigated two alternatives. In260

one case, while dFB neurons inhibit input, the ring attractor resets to its initial state while the bump stays in place.261

In the second case, an anti-Hebbian rule resets the ring attractor with autonomous dynamics. These dynamics are262

linked to the dynamics during wakefulness through their spatial (Figures 6A and 6B) but not through their frequency263

distributions (Figures 6A and 6C). The amplitude of the bump during autonomous dynamics is at setpoint level, that264

is, at the level of activity to which the amplitude settles in the absence of (visual or idiothetic) input.265

In the proposed model, heterogeneities in recurrent connections of wedge neurons can also lead to drift during the266

wake phase with intermittent inputs (see Figure S8). While this is consistent with the heterogenities observed in the267

connectome (Figure S1B), we minimize drift in the model by the slow dynamics of the plasticity rules together with268

assumed homogeneous activation of wedge neurons over time S9). Other solutions to avoid drift in ring attractors269

have however been developed (for example43–45).270

Many aspects of this model can also be captured by a simpler two-population model, which shows similar271

dynamics and related boundaries between the different dynamic regimes (Figures S3B and 3B).272

The introduction of plasticity was motivated by the observation of structural, synaptic and functional changes in273

R5 neurons19, 27, 28 as well as their interaction with the head direction system as suggested by the connectome14, 30, 46.274
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The proposed combined sleep homeostasis and ring attractor model can capture this increase in activity in R5275

neurons during wakefulness19, 28 (Figures 6 and 5). Additionally, in the proposed models, sleep deprivation leads276

to a qualitative change in the behavior of R5 neurons towards oscillatory dynamics which is reminiscent of the277

experimentally observed transition to bursting dynamics19 or increase in oscillatory dynamics27. Whether sleep278

deprivation compromises the head direction system in behaving flies is currently not known, although navigation279

related memories are for example affected by sleep deprivation in bees47, 48.280

The proposed model makes several predictions that could be tested experimentally. First, we assume LTP in the281

recurrent connections of wedge neurons during wakefulness (which could also be achieved through an intermediate282

population34). This plasticity in wEE could be a result of correlated activity between neighboring wedge neurons.283

Second, as a result of this plasticity, the bump width changes with wEE , decreasing over time spent awake due to LTP284

in wedge neurons and therefore increasing spatial resolution (and vice versa during sleep, Figure S6C). Generally,285

there is a range of bump widths that can be sustained by the ring attractor (Figure 3). A third model prediction is that286

extended wakefulness can disrupt the head direction system by producing oscillatory or bursting behavior and will287

lock the bump position in place (independent of external input, Figure 5A, sleep deprivation). Additionally, sleep288

results in autonomous dynamics in the ring attractor model (Figure 5), with the network transitioning towards faster289

dynamics towards the end of the sleep phase (Figure S9). Such autonomous dynamics are reminiscent of activity of290

the head direction system observed in mice during sleep41.291

We further assume that the plasticity rule in the head direction system changes during sleep from LTP to LTD.292

This change of plasticity has been proposed in several models of sleep (for example49; see4 for review). A potential293

mechanism could for example be neuromodulation of an STDP gate50, 51, which has been observed in insects52, 53
294

and could involve the strong innervation of the central complex by neuromodulatory neurons54. For example, ExR1295

neurons described in18 (modeled in Figure 1A and B) could produce the switch in plasticity between sleep and wake296

phases, potentially through neuromodulation (similar to the related serotonergic ExR3 neurons30, 55).297

The resulting weakening of synaptic strength during sleep underlies several hypotheses about sleep function4–6, 8.298

The approach implemented here is based on the idea of reverse learning5–7: during sleep, attractors within the ring299

attractor network generated during wakefulness are removed and the corresponding increased weights are weakened.300

Autonomous dynamics during sleep could be functionally relevant for memory consolidation and organization56.301

For instance, flies could partially replay (in wedge neurons) trajectories during sleep that they performed during302

navigation in the wake phase (see Figure 6A) which could be used by downstream circuits to consolidate navigation303

related memories. Navigation memories are for example consolidated during sleep in bees47, and replay of neural304

activity in the central complex during sleep has been suggested to consolidate courtship memory in flies57.305

While synaptic changes during sleep and wakefulness are observed across the fly brain (for example58), one306

could hypothesize that such activity related changes are stronger in areas where activity is persistent with a possible307

role in working memory, such as the head direction system25, 42. Therefore, inhibitory R5 neurons might increase308

their activity faster and require resetting through sleep sooner than other transiently active neurons, ultimately being309

responsible for signaling sleep drive. We additionally did not differentiate between different ring attractor inputs310

(for example visual or idiothetic) and such different signals could also be integrated in different ring neurons or311

homeostats11 (taking for example into account that visual experience increases sleep need59).312

The connectome shows that both the head direction as well as the sleep homeostasis circuits encompass a large313

number of connected cell types in the central complex30, 60. Nevertheless, strongly simplified models of ring attractor314

networks with only a limited subset of actually involved cell types have proven useful for the description of the head315

direction system. Similarly, for the sleep homeostasis circuit, many more connected cell types could be considered316

and we here only investigated a simplified network that nevertheless can capture several experimental observations.317

Overall, the interaction of the homeostatic integrator and the head direction systems together with mounting318

evidence for a close structure-function relationship in these circuits, suggest that a relationship between the control319

and function of sleep could be established in this network using theoretical modeling and experiments.320
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4 Methods454

4.1 Anatomy based on the fly connectome455

The connectivity of the proposed model is based on the fly connectome14 and incorporates the populations R5 (ER5),456

ExR1, EPG and EL, as described in the Neuprint database. Each population and its innervation in the ellipsoid body457

are shown in Figure S1A. EL and EPG neurons, respectively, have diagonal connectivity matrices within and across458

populations as shown in Figure S1B.459

4.2 Numerical simulation of models460

We numerically solved all models with forward Euler with a time step of dt = 0.0001 seconds. Our code is461

implemented in Python, and we will make it available upon publication.462

4.3 Sleep homeostasis circuit463

In this and the following, we use rate-based models to simulate dynamics of entire neural populations and dynamics
of single wedge neurons. The differential equations used to model the sleep homeostasis circuit are as follows:

8
><

>:

tI ṙI(t) =�rI(t)+ [rH(t)]+
t ṙExR1(t) =�rExR1(t)+ [1� rdFB(t)]+
t ṙdFB(t) =�rdFB(t)+ [G(rI)�d(t)]+

(8)

464

The switch behavior of dFB neurons is modeled by simple hysteresis, according to the following equation:

G(rI) =

8
>>>><

>>>>:

1 if rI(t)< r(max)
I and ṙI(t)> 0

0 if rI(t)� r(max)
I and ṙI(t)> 0

0 if rI(t)> r(min)
I and ṙI(t)< 0

1 if rI(t) r(min)
I and ṙI(t)< 0

(9)

465

Such a switch behavior in dFB neurons could be implemented, for example, by adding an additional wake-466

promoting population, which together with dFB neurons, could mutually inhibit each other to create a flip-flop467

switch, similar to sleep models proposed in mammals61–64. Candidates for the wake-promoting population in the fly468

are dopaminergic neurons in the PPM3 and PPL1 clusters29. Alternatively, this switch behavior could be generated469

by a single-cell mechanism in dFB neurons, which are known to increase excitability with extended wake time29.470

In this model, the wake and sleep time depend on the effective time constant tI and the thresholds r(min)
I and

r(max)
I . The time spent in the sleep phase, tS (sleep time) as a function of the time spent in the wake phase, tW (wake
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time), can be computed by solving the differential equation for R5 neurons, rI , during the sleep phase and wake
phase, respectively:

tS(tW ) = tI log
⇣1+(r(min)

I �1)e�tW /tI

r(min)
I

⌘
(10)

471

Considering that tW is small, we can expand this expression in a Taylor series, taking only first order terms:

tS ⇡
1� r(min)

I

r(min)
I

tW (11)

472

For small waking time periods, the sleep time tS increases linearly, resulting in sleep rebound as required for
homeostasis (increased time spent awake leads to more sleep afterwards). However, for long wake times, the
preceding sleep time saturates at a constant value tsat

S , given by the following expression:

tsat
S = tI log

⇣ 1

r(min)
I

⌘
(12)

473

This saturation time prevents very large sleep times after large preceding wake times, and it is also a feature474

observed experimentally65.475

4.4 Sleep homeostasis and ring attractor with fixed connections476

We asked how increasing activity in R5 neurons affects the head direction circuit in the absence of plasticity. Given
the fact that R5 and wedge neurons are connected, we modeled a ring attractor network where wedge neurons
encode head direction and R5 neurons provide increasing inhibitory input to wedge neurons. The model is shown
schematically in Figure 2A and described by the following system of equations:

8
<

:
t ṙ(i)E (t) =�r(i)E (t)+

h
ÂN

j w(i j)
EE r( j)

E (t)�wEIrI +q + I(i)(m, t)
i

+
for i = 1, ...,N

tI ṙI(t) =�rI(t)+
h

ÂN
j w( j)

IE r( j)
E (t)+wIHrH(t)

⇤
+,

(13)

where rE(t)(i) represents the activity of a wedge neuron i (in total, N = 32) and and rI(t) is the population activity477

of R5 neurons and tI accounts for slow dynamics as in the phenomenological sleep homeostasis model (section478

2.1). We only model the wake phase for simplicity, where dFB neurons are assumed to have zero activity and479

activity in ExR1 neurons is defined as rH(t) = 1, similar to the sleep homeostasis model. We neglect the connection480

from wedge to ExR1 neurons for simplicity, since we focus on the interaction between wedge and R5 neurons.481

The weights wAB represent the connectivity from population B to population A. The recurrent connectivity w(i j)
EE is482

a matrix, in which for a given presynaptic wedge neuron, i, the element (i j) is given by a gaussian function that483

depends on the distance to the postsynaptic wedge neuron j along the ring, given by equation (38) (see for example484

Figure 3C, left top). In this model, the values of the synaptic weights wIE and wIH were chosen such that the activity485

of ring neurons increases19.486

Figure 2B shows a simulation of the model, where a rotating input I(m, t) is provided to wedge neurons at 0.5487

Hz (top row, blue). The activity of R5 neurons increases, as imposed by our parameter choice (third row, red). The488

wedge neurons, (second row, green) follow the rotating input while receiving this increasing inhibition, such that the489

bump amplitude decreases over time until inhibition gets strong enough so that the bump vanishes.490

4.5 Two-population model with plasticity for R5 and wedge neurons491

To simplify the analysis and build intuitions about the complete ring attractor model combined with the sleep
homeostasis circuit, we first developed a simpler model. This model is a population model based on an excitatory-
inhibitory network66 (Figure S3A) and describes the interaction between wedge and R5 neurons. The dynamics of
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(excitatory) wedge and (inhibitory) ring neurons are described by the following system of differential equations:
8
<

:
t ṙE(t) =�rE(t)+

h
wEE(t)rE(t)�wEIrI(t)+q

i

+

t ṙI(t) =�rI(t)+
h
wIE(t)rE(t)

i

+
,

(14)

where rE(t) and rI(t) are the firing rates at time t of wedge neurons and ring neurons, respectively, wAB is the492

synaptic weight from population B to population A, q is a constant background input onto wedge neurons, [·]+ is a493

threshold-linear function to ensure positive-valued firing rates, and t is the effective population time constant.494

4.5.1 Plasticity rules495

We additionally introduce plasticity rules for the excitatory weights wEE and wIE during the wake phase (which we
motivate below):

(
tEEẇEE(t) = rE(t)rE(t)

tIEẇIE(t) = rI(t)rE(t)
⇣

rE(t)� r0

⌘
,

(15)

During the sleep phase we change the plasticity rule in wEE , while leaving unchanged the plasticity rule in wIE :496

(
tEEẇEE(t) =�rE(t)rE(t)

tIEẇIE(t) = rI(t)rE(t)
⇣

rE(t)� r0

⌘
,

(16)

where tEE and tIE are time constants, and r0 is a positive presynaptic threshold. While the first plasticity rule is
a linear Hebbian rule, the second is a triplet rule with presynaptic threshold. These plasticity rules can be extracted
from a general form of Hebbian plasticity. A general hebbian plasticity rule for a synaptic weight wi j can be defined
as follows:

ti jẇi j = F(wi j,ri,r j), (17)

where ti j is the time constant of the rule, and F(·) is a function that depends on the synaptic weight, wi j, and on pre-
and postsynaptic activities, r j and ri, respectively39. The function F(·) needs to fulfill Hebb’s condition: to produce
a change in the synaptic weight wi j, the pre- and postsynaptic neurons must be active: ri > 0, r j > 0. In principle,
this function is unknown, but we can expand it in a Taylor series39 around rI = rE = 0:

ti jẇi j ⇡ c00 + c10ri + c11r j + c20r2
i + c21rir j + c22r2

j + c30r3
i + c31r2

i r j + c32rir2
j + c33r3

j +O(r4), (18)

where each coefficient depends on the connection strength cmn = cmn(wi j). The values of these coefficients determine497

the plasticity rule. For instance, Hebbian plasticity rules that are linear in the neural activities can be obtained498

by setting second or higher order coefficients to zero39. Keeping higher order coefficients leads to rules with499

non-linearities.500

We assume that the plasticity rule in wEE(t) during the wake phase is linear, obtained by setting c21 = 1 and all
other coefficients to zero, while the plasticity rule in wIE is non linear on the presynaptic neural activity, obtained
by setting c21 = �r0, c32 = 1 and the other coefficients to zero (equation (16)). To ensure that synapses remain
excitatory or inhibitory throughout the system’s dynamics at any time, the plasticity rules are threshold-rectified at
zero if the synaptic weights are zero:

8
<

:
ẇEE(t) =

h
ẇEE(t)

i

+
if wEE(t) = 0

ẇIE(t) =
h
ẇIE(t)

i

+
if wIE(t) = 0.

(19)

These plasticity rules are motivated by the fact that R5 neurons produce sleep drive by increasing activity and501

synaptic strength19 for balancing LTP in wedge neurons. The plasticity rules in equation (16) produce the following502
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t t f tEE tIE wEI q r0 r(min)
I r(max)

I

0.01 2 10000 10000 0.5 10 10 20 35

Table S1. Parameter values used in the two-population model. Time constants t , t f , tEE and tIE are measured in
seconds. We consider the rest dimensionless quantities.

effects: (i) The synaptic connection between wedge neurons, wEE and between wedge and ring neurons, wIE , get503

stronger during the wake phase. (ii) The firing rate of ring neurons rI increases during the wake phase. iii) The504

firing rate of the entire population of wedge neurons evolves always to a constant setpoint, rE �! r0.505

Finally, we note that the dynamics of the plasticity rules are much slower than the dynamics of neural populations,506

so that tEE ,tIE >> t . The parameters for the two-population model used for simulations are shown in Table S1, but507

the following stability analysis is performed without any assumption on the parameter values.508

4.5.2 Stability of the two-population model509

Fast-timescale limit In the fast-timescale limit, we can assume that tEE ,tIE �! •, meaning that synaptic
plasticity is sufficiently slow compared to the dynamics of the neural populations so that it can be assumed to be
constant. This offers the advantage of treating the synaptic weight wEE as a free parameter with a fixed value,
assuming that wIE has already evolved through its plasticity rule to its equilibrium value, rE �! r0. Therefore, for a
given value of wEE , we set the value of wEI such that the fixed point for the wedge neurons is r0. In this way, the
value of wIE is coupled to the value of wEE . The stability of the 2-dimensional system given by equations in (14) is
then analyzed with respect to the value of wEE . Since the system is piecewise linear due to the threshold function
[·]+, we perform a linear analysis assuming that the inputs to the neurons are positive. Under these conditions, the
fixed point of the system, (r⇤E ,r

⇤
I ), is given by the following expressions:

(
r⇤E = wEEr⇤E �wEIr⇤I +q = r0

r⇤I = wIEr0.
(20)

Since we force the fixed point of wedge neurons to be r0, we can extract the equilibrium value of wIE as a
function of wEE :

wIE =
q

wEIr0
+

wEE �1
wEI

. (21)

The fixed point of the system can be described with respect to wEE as:
(

r⇤E = r0

r⇤I =
q

wEI
+ r0

wEE�1
wEI

(22)

Both the fixed point of ring neuron activity, r⇤I , and the equilibrium value of the connectivity, wIE , depend
linearly on wEE , implying that if wEE increases, both wIE and r⇤I increase as well as long as the fixed point is stable.
We analyze the stability of the system by calculating the eigenvalues:

l± =
1

2t

 
(wEE �2)±

s

(wEE �2)2 � 4q
r0

!
. (23)

Both eigenvalues are shown in Figure S2A with respect to different values of wEE . This leads to four different
cases:

8
>>>>><

>>>>>:

(1) wEE 2
h
1, 2�2

p
q/r0

i

(2) wEE 2
⇣

2�2
p

q/r0, 2
i

(3) wEE 2
⇣

2, 2+2
p

q/r0

i

(4) wEE > 2+2
p

q/r0

(24)
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In case (1), both eigenvalues are real and negative: the fixed point is stable (equation (22)). In case (2), the real510

part of the eigenvalues is negative and the imaginary part is non-zero: the system evolves towards the fixed point511

with damped oscillations. In case (3), the real part of the eigenvalues is positive and the imaginary part is non-zero:512

the system diverges towards infinity, oscillating with amplitudes which increase exponentially. In case (4), the513

eigenvalues are real and positive: the fixed point is unstable. This analysis predicts a bifurcation in the stability of514

the fixed point when wEE = 2. This behavior is shown in Figure S3C.515

The non-linearity of the linear threshold function changes the behavior of the model slightly. While the behavior516

stays the same for the cases (1), (2) and (4), because the model is mostly in the linear regime, case (3) differs and the517

non-linearity produces stable cycles around the fixed point. This behavior is found empirically from simulating the518

non-linear model, and is summarized in Figure S3B.519

Slow-timescale limit In the slow-timescale limit we consider that the firing rates change sufficiently fast compared
with the synaptic weights so that these changes can be considered instantaneous (t �! 0). We therefore analyze the
conditions under which the synaptic rules in equations (15) and (16) stabilize the model. We again first consider the
linear range of the function [·]+ where the inputs to the neurons are positive. We approximate the instantaneous
value of the firing rates in equation (14) as follows:

(
rE = wEE(t)rE �wEIrI +q
rI = wIE(t)rE

(25)

This linear system allows extracting the values of rE and rI in terms of the synaptic weights as:
(

rE = q
1�wEE+wEIwIE

rI =
wIE q

1�wEE+wEIwIE

(26)

We can now compute the vector field for wedge and ring neuron activity as a consequence of the slow dynamics
of synaptic plasticity:

(
ṙE = ∂ rE

∂wEE
ẇEE + ∂ rE

∂wIE
ẇIE

ṙI =
∂ rI

∂wEE
ẇEE + ∂ rI

∂wIE
ẇIE

(27)

4.5.3 Two-population dynamics during wakefulness520

Considering the plasticity rules during the wake phase (15), equation (27) leads to the following system of differential
equations:

8
<

:
ṙE = wEIrItEE�tIE

tEE tIE

r3
E
q

⇣
� rE +

⇣
1+ tIE

wEIrItEE�tIE

⌘
r0

⌘

ṙI =
r3

I rE
q

⇣
1

tEE
+ 1�wEE

tIE
(rE � r0)

⌘ (28)

The second equation gives the dynamics of ring neurons, which increase activity with 1/tEE . The first equation
gives the dynamics of the population of wedge neurons approaching a setpoint only when the effective decay time
constant (the first factor in the right hand side) is positive, otherwise the equation diverges to infinity and the system
is unstable. This gives the following criterion for tEE and tIE :

tEE

tIE
>

1
wEIrI

(29)

This relationship supports the idea that plasticity in wIE has to be fast enough with respect to the LTP in wEE ;
otherwise, if wEE increases faster than wIE , the model diverges. Let us compute the upper limit of inequality (29),
which corresponds to the minimum of rI . For that, we approximate the firing rate of wedge neurons by rE = r0, and
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rI = wIEr0. Then, we can write wIE as a function of wEE as in equation (21). The upper limit of inequality (29) will
therefore happen at the minimum of wEE . As the minimum is wEE = 1, the upper limit of the stability condition is:

tEE

tIE
>

1
q
. (30)

When this condition holds, the setpoint of wedge neurons in equation (28), which is not r0 as approximated
previously, is given by

r⇤E =
⇣

1+
1

wEIrI
tEE
tIE

�1

⌘
r0, (31)

which is generally different from r0 due to the inertia of the dynamics of wEE . In the limit tEE �! • (no plasticity521

in wEE), the fixed point is r0, as expected from the fast-timescale analysis.522

Figure S2B shows the vector field for the system of equations (28). The green line shows the trajectory of the523

setpoint in wedge neurons as the activity of ring neurons increase. As rI increases due to increasing wEE , the setpoint524

in rE approaches r0.525

During wakefulness, the fixed point for wedge neurons r⇤E remains mostly constant, and the fixed point for ring526

neurons r⇤I changes with wEE (Figure S3B). If wEE  2 (light green region), the fixed point (r⇤E ,r
⇤
I ) is stable, and both527

neural populations evolve towards these values. With increasing wEE , the fixed point of ring neurons r⇤I also increases528

while the fixed point of wedge neurons r⇤E remains constant. If wEE increases further to 2 < wEE  2(1+
p

q/r0),529

the model enters a regime of stable oscillations (light orange region of Figure S3B). In this regime, both neural530

populations oscillate around the fixed point with a frequency that changes with wEE (see Figure S2A, as explained531

in the fast-timescale limit. In addition, ring neurons increase their amplitude of oscillations as wEE increases.532

Finally, when wEE � 2(1+
p

q/r0) (light red region), the fixed point is unstable and the activity of both populations533

diverges.534

Figure S3C illustrates the dynamics of the full system, i.e. the activity of wedge and ring neurons, rE(t) and535

rI(t), as well as synaptic weights, wEE(t) and wIE(t). In the beginning (light green region), the fixed point of ring536

and wedge neurons is stable because wEE < 2. When this boundary is crossed, the system enters the regime of537

stable oscillations (light orange region). Also, in the stable region of the simulation in Figure S3C, wEE , wIE and538

ring neuron activity rI increase, while the activity of wedge neurons rE remains constant as imposed by conditions539

(i)-(iii). wEE , wIE and rI constitute therefore a measure of how far the network has moved from its initial state.540

4.5.4 Two-population model dynamics during sleep541

In order to reset the system back to its stable state (wEE < 2) after prolonged activity (wakefulness), we introduce542

a sleep phase with inverted plasticity5–7. For this we assume that during sleep the recurrent connection between543

wedge neurons, wEE , gets weaker through LTD4, 7 while the plasticity rule for wIE is the same as in the wake phase544

(equation (16)).545

We can perform the same analysis during sleep by considering the plasticity rule in equation (16) during sleep so
that the equations (27) lead to the following system of differential equations:

8
<

:
ṙE = wEIrItEE+tIE

tEE tIE

r3
E
q

⇣
� rE +

⇣
1� tIE

wEIrItEE+tIE

⌘
r0

⌘

ṙI =
r3

I rE
q

⇣
� 1

tEE
+ 1�wEE

tIE
(rE � r0)

⌘
.

(32)

The second equation shows how ring neurons decrease their activity with 1/tEE , at the same rate as in the
wake phase. The first equation shows a fixed point for wedge neurons that is lower than r0, due to the inertia of a
decreasing wEE during sleep, given by:

r⇤E =
⇣

1� 1
wEIrI

tEE
tIE

+1

⌘
r0. (33)
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Figure S2C shows the vector field given by equation (32) during the sleep phase, where the trajectory of the546

setpoint of wedge neurons (the green line) diverges from r0 as the activity of ring neurons decreases.547

The impact of LTD on the model during sleep can be understood by inspecting Figure S3B: with decreasing
value of wEE , the fixed points become stable (light green) and the activity of ring neurons decreases (as shown in the
fast-timescale limit). The switch between the wake and sleep phases is performed by dFB neurons that sense activity
of R5 neurons19. Since R5 and dFB are not anatomically but funcionally connected19, we apply a low-pass filter to
the activities of R5 neurons, which act as an input to dFB neurons and remove possible oscillations. We refer to this
filtered activity as the switching signal, and it is modeled, together with dFB neurons as follows:

8
<

:
t f ṙ

( f )
I (t) =�r( f )

I (t)+ rI(t)

t ṙS(t) =�rS(t)+
h
G(r( f )

I (t))�d(t)
i

+

(34)

where t f is the time constant of the low-pass filter r( f )
I and rS(t) is the activity of dFB neurons with a switching548

behavior modeled by equation (9). The variable d(t) is a variable intended to produce sleep deprivation.549

Figure S3D shows a simulation of the model combining subsequent wake (white regions), where dFB neurons550

are inactive, and sleep phases (grey), where dFB are active. During wakefulness, wEE and wIE undergo LTP and551

the activity of R5 neurons increases (light red line in second row in Figure S3D) and rE is constant. When the552

switching signal (dark red line in second row) crosses an upper threshold, r(max)
I , dFB neurons switch the model to553

sleep. During sleep, wEE undergoes LTD due to the switch in plasticity, while the activity of R5 neurons decreases.554

wIE also undergoes LTD (note that the plasticity rule does not change) since it follows the trend of wEE to impose555

the set-point r0 to the wedge neurons.556

Therefore, sleep resets synaptic plasticity and activity of R5 neurons. Once the switching signal reaches a557

lower threshold, r(min)
I , the model is switched back to the wake phase. In the third wake phase, we simulated sleep558

deprivation by setting d(t) = 1 (top orange region). Here, wEE crosses the bifurcation boundary, wEE > 2, and the559

model enters the domain of stable oscillations.560

During the following sleep phase, the system needs more time to fully reset and reach the lower threshold. Such561

sleep rebound after sleep deprivation is an experimentally described feature of sleep homeostasis circuits17, 18.562

The time that the system spends in the sleep and wake phases is determined by the time constants of the plasticity563

rules, tEE and tIE , and the upper and lower thresholds of the switching signal, r(min)
I and r(max)

I . In our simulations,564

we set tEE and tIE to yield dynamics in the timescale of seconds (for ease of visualization), but larger values lead to565

similar behavior on longer timescales (minutes or hours, see Figure S8).566

4.6 Ring attractor network with plasticity567

We expand the two-population model to a ring attractor network. A total of N = 32 individual wedge neurons are
modeled by r(i)E (t). For simplicity, ring neurons are modeled as a population, rI(t). The model is schematically
shown in Figure 2D. The dynamics of the ring attractor network are given by the following equations:

8
<

:
t ṙ(i)E (t) =�r(i)E (t)+

h
ÂN

j w(i j)
EE (t)r

( j)
E (t)�wEIrI(t)+q + I(i)(m)

i

+
for i = 1, ...,N

t ṙI(t) =�rI(t)+
h

ÂN
j w( j)

IE (t)r
( j)
E (t)

⇤
+.

(35)

The synaptic plasticity rules are also extended from the two-population model during the wake phase:
(

tEEẇ(i j)
EE (t) = r(i)E (t)r( j)

E (t) for i, j = 1, ...,N

tIEẇ(i)
IE(t) = rI(t)r

(i)
E (t)

⇣
r(i)E (t)� r0

⌘
for i = 1, ...,N,

(36)

and during the sleep phase:
(

tEEẇ(i j)
EE (t) =�r(i)E (t)r( j)

E (t) for i, j = 1, ...,N

tIEẇ(i)
IE(t) = rI(t)r

(i)
E (t)

⇣
r(i)E (t)� r0

⌘
for i = 1, ...,N.

(37)
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t t f tEE tIE wEI q r0 r(min)
I r(max)

I w(max)
EE s Imax Is

0.01 2 10000 10000 0.5 10 10 22 30 0.3 1.5 5 2

Table S2. Parameter values used in the ring attractor network. As in the previous model, time constants t , t f , tEE
and tIE are measured in seconds. We consider the rest dimensionless quantities.

We initialize the synaptic weights w(i j)
EE with a Gaussian function with amplitude w(max)

EE and standard deviation
s :

w(i j)
EE = w(max)

EE exp

 
�

⇣
min
h
|i� j|, N � |i� j|

i⌘2

2s2

!
. (38)

Additionally we provide a Gaussian input to the ring attractor around a given wedge neuron m with amplitude
Imax and standard deviation Is :

I(i)(m, t) = Imax

"
exp

 
�

⇣
min
h
|i�m(t)|, N � |i�m(t)|

i⌘2

2I2
s

!
� rS(t)

�
. (39)

This input allows changing the position of the bump in the simulations, and can represent visual or idiothetic568

input to update the head direction of the animal.569

We use the low-pass filtered activity of ring neurons to switch between sleep and wake phases, as in equation (5).570

The values of the parameters in Table S2 are used in all simulations unless stated otherwise.571

Synaptic plasticity in ring and wedge neurons has been discussed in several studies19, 27, 28, 67, 68. Note that we572

here focus on plasticity in the connections from wedge to ring neurons, while leaving the connectivity in the opposite573

direction constant. This is opposite from67, 68, where plasticity from ring to wedge neurons is assumed, while the574

other direction is left constant. This choice is motivated by the increasing activity in R5 neurons during the wake575

phase19, which could be explained by the growth of dendritic synaptic sites (pre-synaptic plasticity), for instance576

from wedge to R5 neurons – consistent with the data and interpretation in19 –, but not by the growth of axonal577

synaptic sites (post-synaptic plasticity).578

4.7 Ring attractor network: bump stability analysis579

To analyze to stability of the ring attractor model, we use an approach similar to the one in the fast-timescales
analysis of the two-population model. First, we assume no plasticity in the recurrent connections w(i j)

EE but only in
w(i j)

IE ,

(
tEEẇ(i j)

EE (t) = 0

tIEẇ(i)
IE(t) = rI(t)r

(i)
E (t)

⇣
r(i)E (t)� r0

⌘
for i = 1, ...,N.

(40)

We analyze the stability and behavior of the network while gradually changing w(i j)
EE . We nitialize the ring

attractor network with a bump profile, where neuron number 16 has maximum activity r(16)
E > r( j)

E ,8 j 6= 16. Given
that only the connections w(i)

IE are plastic, the activity of ring neurons converges to a stable value given by

rI �! w(16)
IE r0. (41)

This can be understood by looking at the plasticity rule for w(i)
IE (40). First, all the synaptic weights evolve so that580

wedge neuron 16 approaches the activity r0. As all wedge neurons receive the same global inhibition, and wedge581

neuron 16 has maximum activity, the activity of the other wedge neurons is lower than r0. At this point, the weights582
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w(k)
IE for wedge neurons k 6= 16 with non-zero activity, decrease over time until reaching zero. On the other hand, if583

a wedge neuron q 6= 16 has zero activity, it does not provide any input to the ring neurons. As for wedge neuron584

16, the synaptic plasticity rule changes the value of w(16)
IE such that its activity approaches r0. An example of this585

behavior can be seen in Figure S5A, where we initialize the system with an input such that the peak of the bump586

is at wedge neuron 16. The synaptic weights w(k)
IE for wedge neurons k 6= 16 which have non-zero activity evolve587

towards zero.588

The value of w(16)
IE is determined by the bump profile, because r(16)

E is receiving input from any wedge neuron589

with non-zero activity. Thus w(16)
IE has to balance the total excitation to set the activity of the wedge neuron 16 to r0.590

Furthermore, the bump profile is determined by the parameters of the recurrent connectivity profile w(i j)
EE , i.e. w(max)

EE591

and s (equation (38)). If we fix the amplitude w(max)
EE and increase the standard deviation s , the width of the bump,592

that is the number of active wedge neurons, decreases. This is because more wedge neurons are providing input593

to wedge neuron 16 as s increases, and the value of w(16)
IE increases to set r(16)

E = r0, which in turn provides more594

inhibition through ring neurons to all the wedge neurons and lowers their activities, reducing at the same time the595

bump width. This behavior is seen in Figure S5A and S5B.596

The bump also shows oscillatory behavior (Figure S5C) depending on the value of s . In general, the state of597

the ring attractor network and its stability can be described in terms of the recurrent connectivity distribution, w(i j)
EE ,598

consistent with the fast-timescale limit analysis in the two-population model.599

To investigate how the behavior and stability of the ring attractor network depend on the recurrent connections
w(i j)

EE , we simulated the ring attractor model for a grid of values for the parameters w(max)
EE and s :

(
w(max)

EE 2 [0.1,0.6) with step 0.005
s 2 [1,6) with step 0.05.

(42)

In total, we performed 10000 simulations where we initialize the bump peak in wedge neuron 16 with a600

predefined input of 0.5 seconds, and let the network evolve for 10 seconds. We then analyzed the stability and601

behavior of the system in the last second of each simulation, therefore assuming that the state of the network does602

not change. Figure S5 shows an example of 3 simulations with different s values; the light orange band across all603

simulations highlights the region used for analysis.604

In this region we computed for each simulation the following:605

• Oscillation frequency: the frequency at which wedge neuron 16 oscillates. For this, we computed the606

Discrete Fourier Transform, and the resulting peak value corresponds to the oscillation frequency.607

• Mean bump FWHM: the mean value over time of the full width at half maximum of the bump, a proxy for608

the width of the bump.609

• Maximum bump peak: the maximum value of the wedge neuron 16 over time.610

• Mean bump peak: the mean value over time of the wedge neuron 16. If the bump does not oscillate, this611

value is equivalent to the maximum bump peak value.612

• Mean ring neuron activity: the mean of ring neuron activity over time.613

These measures are displayed in Figure S6B,S6C,S6D, S6E and S6F, as a function of the recurrent connectivity614

parameters w(max)
EE and s . Figure S6B shows how the network starts oscillating with increasing w(max)

EE and s . On the615

other hand, the FWHM in Figure S6B and S6C shows how at low w(max)
EE and s values, the bump disappears and all616

wedge neurons have constant activity at r0. As the parameter values increase, a bump of activity appears and the617

FWHM decreases, as observed in Figure3C and S5A and B. Finally, the activity of ring neurons increases as w(max)
EE618

and s increase.619
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We further characterise the behavior and stability of the bump in the network with the total excitatory connectivity
to the wedge neuron with maximal activity, i.e. wedge neuron 16, w(16,sum)

EE :

w(16,sum)
EE =

N

Â
j

w(16, j)
EE . (43)

Figure S6A highlights the isolines where w(16,sum)
EE is constant for different values of w(max)

EE and s . Note how620

the constant values of w(16,sum)
EE = 2 and w(16,sum)

EE = 2(1+
p

q/r0) coincide with the boundaries of the different621

dynamic regimes. Therefore, the quantity w(16,sum)
EE has in the ring attractor model a similar role as does the622

recurrent connection wEE in the two-population model. For w(16,sum)
EE < 1, the bump disappears, similar to the623

two-population network model when wEE < 1. However, unlike in the two-population model, which is unstable for624

wEE > 2(1+
p

q/r0), in the ring attractor network, for w(16,sum)
EE > 2(1+

p
q/r0) the wedge neurons are strongly625

inhibited by high activity in ring neurons.626

From the above analysis we extracted regions of stability that are shown in Figure 3B. Constant lines of w(16,sum)
EE

are computed as follows: in the continuous limit, i.e. N �! •, the total excitatory connectivity is given by the
following integral:

w(16,sum)
EE =

Z
w(max)

EE e
x2

2s2 dx = w(max)
EE s

p
2p. (44)

Therefore, the isolines of constant w(16,sum)
EE are given by w(max)

EE = w(16,sum)
EE /s

p
2p . For the discrete case, we

empirically found w(16,sum)
EE to be well approximated by:

w(max)
EE =

w(16,sum)
EE
Cs

, (45)

for any constant line w(16,sum)
EE , where C ⇡ 2.697.627

4.8 Ring attractor network: autonomous bump path analysis628

To simulate how the bump in the ring attractor changes position to update the head direction during the wake phase,
we use a simple clockwise or counter-clockwise rotating input with frequency f defined by:

m(t) =± f Nt. (46)

m(t) is the wedge neuron where the ring attractor receives the Gaussian input I(i)(m(t)) (equation (39)), and it is a
cyclic variable, so that:

(
if m(t) = N +1 �! m(t) = 1
if m(t) = 0 �! m(t) = N.

(47)

During the sleep phase, the bump in the ring attractor shows autonomous dynamics (Figure 5A). To investigate
the relationship between the path of the bump during sleep and in the preceding wake phase, we use a sinusoidal
input during the wake phase, defined by the amplitude A, frequency f , and the center C:

m(t) =C+Asin(2p f t). (48)

An example of this input with different frequencies f and centers C is shown in Figure 6A. We can obtain the
position of the bump during wake and sleep phases as:

Pbump(t) = argmaxi

h
r(i)E (t)

i
, (49)
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so that the position of the bump corresponds to the wedge neuron with maximum activity. We can now compute
the distribution of times that the bump is localized around each wedge neuron i during sleep and wake phases,
respectively, as:

8
<

:
t(i)wake =

R
wake d

⇣
Pbump(t)� i

⌘
dt

t(i)sleep =
R

sleep d
⇣

Pbump(t)� i
⌘

dt,
(50)

where d (·) is the Dirac delta function and integrals extend over the wake and sleep phases. Figure 6B shows these629

distributions normalized for the three wake phases in Figure 6A and their following sleep phases. The distributions630

are very similar, meaning that during the sleep phase, the bump revisits the same wedge neurons that were active631

during the wake phase.632

We further asked how the autonomous bump path changes during sleep with respect to the amplitude of the
sine-shaped input, A, and frequency, f , during sleep. We first fixed the frequency of the input at f = 1Hz and the
center at C = 16 while varying the amplitude in the range of [0,15] with an increment of 1. This resulted in 15
simulations where we computed the standard deviation of the bump path during sleep and wake:

8
>><

>>:

STDwake =

r
1

Twake

R
wake

⇣
Pbump(t)�16

⌘2
dt

STDsleep =

r
1

Tsleep

R
sleep

⇣
Pbump(t)�16

⌘2
dt,

(51)

where Twake and Tsleep are the duration of wake and sleep phases, respectively. Figure 6C shows the standard633

deviation in both phases with respect to the amplitude A. Note the similarity between both phases.634

Secondly, we fixed the value of the amplitude at A = 8 and the center at C = 16 while varying the frequency, f ,635

in the range [0.1,1.5] at increments of 0.1Hz, resulting in 15 simulations. We quantify the number of cycles during636

both the sleep and wake phase. During the wake phase, the number of cycles is proportional to the input frequency637

f . Therefore a linear relationship between the number of cycles during sleep and the frequency of the input would638

give correlation between the frequency and the autonomously rotating bump path. However, Figure 6C, bottom,639

shows how the number of cycles during sleep does not change as the input frequency increases. An example of this640

can be seen in Figure 6A where we increase the frequency in consecutive wake phases and the path of the bump641

during sleep does not increase the rotation frequency.642

4.9 Ring attractor network: bump drift during wake phase643

In the simulations and analyses above, we provided input during the wake phase and the ring attractor network644

closely followed the input with a bump of activity. However, a ring attractor network should be able to sustain645

the bump of activity in the absence of input. It is known that small changes in the synaptic connections of wedge646

neurons w(i j)
EE can cause drifts of the bump in the absence of input43–45.647

To test for drift during the wake phase, we used a flashing rotating input that turns on and off. The input around648

a wedge neuron m is on for 0.2 sec (equation (39)), and then is turned off for 0.3 sec. Therefore, for N neurons the649

rotating input frequency is 1/(0.5N). Figure S8A shows such a simulation with three wake and sleep phases and650

S8B, C and D show zoom-ins around different times. Note how the bump drifts from the provided visual input, due651

to the synaptic changes in w(i j)
EE .652

This drift depends on the plasticity time constants. For instance, Figure S9 shows a simulation with 100 times653

larger time constants, tEE , tIE = 106. The duration of wake and sleep phases are now in the order of hours, compared654

to the simulation in Figure S9. Note in the zoom-ins of Figures S9B, C and D that the bump of activity is sustained655

during the off time of the visual input without drifting. Since there are many more rotations during the wake656

phase and the synaptic changes in w(i j)
EE are very small in each rotation, the weights increase all together very657

homogeneously.658
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Figure S1. Connectivity between the navigation-related populations (EPG and EL) and sleep-related populations
(R5 and ExR1). A On the left, neural projections of EPG and EL, referred as wedge neurons (green). On the right,
neural projections of R5 (red) and ExR1 (blue). B Recurrent connectivity between wedge neurons. The matrix in
each figure represents the number of synaptic sites between presynaptic neurons (horizontal axis) and postsynaptic
neurons (vertical axis)14. C Connectivity between wedge neurons and R5 neurons in both directions. D Connectivity
between wedge neurons and ExR1 neurons in both directions. Data and neurons are reproduced from14.
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Figure S2. Analysis of the two population model in the fast and slow-timescale limits. A Eigenvalues in the
two-population model in the fast-timescales limit. The real (in blue) and imaginary (in orange) parts of the
eigenvalues are plotted as a function of wEE . B Vector field of wedge and ring neurons dependent on synaptic
plasticity during the wake phase in the slow-timescale limit. The green line represents the set point trajectory of
wedge neurons. C Vector field of wedge and ring neurons due to plasticity in the sleep phase in the slow-timescale
limit. The green line is the trajectory of the set point in wedge neurons.
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Figure S3. Two-population model. A Model describing the dynamics of the activities of excitatory wedge neurons
and inhibitory ring neurons, rE and rI respectively, and the plasticity of the synaptic weights within the wedge
population wEE and from the wedge population to the ring population wIE . Green connections are excitatory, red
connections inhibitory. B Stability conditions with respect to wEE (fast-timescale limit, see Methods). C Dynamics
during wake phase. As wEE grows, the system undergoes a Hopf bifurcation (a critical point where the system starts
to oscillate) and both populations start to oscillate around a fixed point. D Dynamics with alternating sleep and wake
phases. Wake phase produces LTP in wEE and wIE and increases the activity of ring neurons. Sleep produces LTD
and reduces the activity of ring neurons. Extending the wake period produces sleep deprivation and results in stable
oscillations. The subsequently required sleep period for resetting is longer (sleep rebound).
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Figure S4. Bump profile in the ring attractor network in response to inputs of different amplitudes Imax and
standard deviations Is . When input (first row) is provided to the ring attractor the plasticity rule for w(i)

IE brings the
activity of the wedge neuron r(16)

E (where the bump peak is located, second row) back to r0 (third row). The bump is
not constrained to have constant activity (third row), but always relaxes towards r0 over time in the absence of
changing input. For ease of visualization, we used a slower time constant for the plasticity of w(i j)

EE (tEE = 1000000),
thus avoiding oscillations in the bump throughout the simulation.
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Figure S5. Ring attractor network with no plasticity in w(i j)
EE and different initial distributions of weights. A Left:

initial w(i j)
EE values; right: 10 seconds of simulated dynamics. First row: input positioning the bump around wedge

neuron 16. Second row: bump profile over time. Third row: activity of wedge neuron 16 evolving towards r0 due to
plasticity in w(i)

IE . Fourth row: activity of ring neurons. Fifth row: the synaptic weights w(i)
IE . The orange band at the

end of the simulations represents the period in which the stability of the bump is analyzed. B Same as A but with
larger s . C Same as A, B but again increasing s . In this simulation, the bump shows stable oscillations.
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Figure S6. Stability analysis of the bump in the ring attractor network. All subfigures are plots of different
measures as a function of the grid of values of s and w(max)

EE that define the fixed synaptic weights w(i j)
EE in the bump

stability analysis (Methods (4.7)). All variables in B, C, D, E, and F are calculated in a time slot of 1 sec at the end
of each simulation (orange area in Figure S3). A Isolines of w(16,sum)

EE . These isolines are overlaid in white in the
other subfigures and represent approximate boundaries of stability. B Frequency of the oscillations in the bump
across the analysis time slot. Above the isoline w(16,sum)

EE = 2, the bump oscillates. C Mean FWHM over the analysis
time slot. Below the isoline w(16,sum)

EE = 1 and above the isoline w(16,sum)
EE = 2(1+

p
q/r0) there is no bump because

the FWHM is equal to the number of neurons, N. D Maximum peak of the bump in the analysis time slot (maximum
activity of wedge neuron 16, max(r(16)

E (t))). Below the isoline w(16,sum)
EE = 2, the maximum is r0 as forced by the

plasticity rule in w(i)
IE . Between the isolines w(16,sum)

EE = 2 and w(16,sum)
EE = 2(1+

p
q/r0), the bump oscillates and the

amplitude is given by the maximum, in this case 2r0. Above w(16,sum)
EE = 2(1+

p
q/r0), there is close-to-zero

activity in wedge neurons, since the maximum is near zero. E Mean of the bump peak over the analysis slot time
(mean activity of the wedge neuron 16, < r(16)

E (t)>). In case of no oscillations, this value should be equivalent to
the maximum bump peak in panel D. During oscillations, the value closely represents the center of oscillations.
Note that between isolines w(16,sum)

EE = 2 and w(16,sum)
EE = 2(1+

p
q/r0) this value is lower than r0. F Mean activity

over the analysis time slot of ring neurons, < rI(t)>. Below the isoline w(16,sum)
EE = 2(1+

p
q/r0) the activity of

ring neurons increases. Above the isoline, the activity of ring neurons first decreases and then rapidly increases. We
clipped the values of the mean activity above 100 to facilitate visualization, but the increment of activity in this area
reached values over 1000.
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Figure S7. Values of the synaptic weights w(i j)
EE in the simulation of Figure 3. From left to right and from top to

bottom: each plot shows the values each time there is a switch between wake and sleep phase and vice versa. Top,
left: initial values of the weights set by the initial values of w(max)

EE and s in Table S2. Top, center left: weights at the
end of the first wake phase. Top, center right: after the subsequent sleep phase. Top, right: after the second wake
phase. Bottom, left: weights after the second sleep phase. Bottom, center left: after sleep deprivation. Bottom,
center right: after sleep rebound. Bottom, right: weights after the third wake phase. Note how the weights after each
wake phase are increased (specially after sleep deprivation in the sixth plot) and how the sleep phase resets the
weights to close to the initial conditions.
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Figure S8. Simulation of the ring attractor network with flashing input during the wake phase (details in
Methods(4.9)). A Simulation with three wake phases and three sleep phases. A flashing input that turns on and off is
provided during the wake phase. During the off period, the ring attractor sustains a bump of activity that drifts due to
changes in the synaptic weights w(i j)

EE . B Zoom-in around 15 seconds in the first wake phase of the simulation. C
Zoom-in around 50 seconds in the second wake phase. D Zoom-in around 110 seconds in the third wake phase.
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Figure S9. Simulation of the ring attractor network with flashing input during the wake phase with slow plasticity
time constants (details in Methods(4.9)). The time constants in this simulation are 100 times larger than in the
previous ring attractor simulations. A Full simulation with three wake phases and three sleep phases. We used the
same input rotation frequency as in Figure S7. As in Figure S7, we provide a flashing input that turns on and off
during the wake phase. B Zoom-in around 2000 seconds in the first wake phase of the simulation. C Zoom-in
around 4480 seconds in the second wake phase. D Zoom-in around 7040 seconds in the third wake phase. Note how
the duration of sleep and wake phases are now in the order of hours due to the increased time constants in the
plasticity rules. Note also how the bump of activity is sustained in place without drifting after the input switches off.
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