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1 Introduction

Electric-magnetic duality for linearised gravity in Minkowski spacetime has received a re-
newed interest since the original works [1–5]. The dual graviton in space-time dimension
D is given by a gauge field

Ca1...aD−3|b = C[a1...aD−3]|b (1.1)

of GL(D)-irreducible symmetry type [D−3, 1] , that is, obeying the over-antisymmetrisation
constraint

C[a1...aD−3|b] = 0 (1.2)

on top of (1.1). The Bianchi identities of the usual graviton are equivalent to the equations
of motion for the dual graviton field, and vice-versa [3]. We call this type of relation on-
shell duality. In the papers [4, 5], this was extended off-shell: covariant field equations for
the dual graviton around eleven-dimensional Minkowski spacetime were derived from the
Einstein-Hilbert action. The action principle for the [D− 3, 1]-type gauge field Ca1...aD−3|b
obtained by the off-shell dualisation procedure of [4] was subsequently spelled out in [6].
Taken in flat spacetime of dimension D = 5 , that action reproduces the one studied long
ago by Curtright in [7], and in general dimension D , it reproduces the action given in [8].

On-shell duality can be generalised in several different ways. Already for the gravi-
ton, since the Riemann tensor has two pairs of antisymmetric indices, one could consider
dualising twice, once on each pair. This leads to a field Da1...aD−3|b1...bD−3 with GL(D)-
irreducible symmetry type [D − 3, D − 3] , called the double-dual graviton [3]. One could
also dualise on one or more empty set of indices; this leads to an infinite number of equiva-
lent descriptions of linearised gravity with extra sets of D− 2 antisymmetric indices which
were already mentioned by Siegel to the author of [3], in a private communication. Their
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GL(D)-irreducible symmetry types are [D − 2, . . . , D − 2, 1, 1] for the higher duals of the
Fierz-Pauli field hab, [D − 2, . . . , D − 2, D − 3, 1] for the higher duals of the dual graviton
Ca1...aD−3|b and [D − 2, . . . , D − 2, D − 3, D − 3] for the higher duals of the double-dual
graviton Da1...aD−3|b1...bD−3 . In terms of Young tableaux, the GL(D) symmetry types of
these fields are obtained by sticking to the left of the Young tableaux of the three origi-
nal fields an arbitrary number of columns of height D − 2 . Remarkably, it appears that
all the GL(11)-irreducible representations corresponding to the infinite tower of fields as-
sociated with the dual graviton Ca1...a8|b are present in the decomposition of the adjoint
representation of e11 [9].

More generally, consider mixed-symmetry gauge fields of arbitrary symmetry type.
(This includes in particular the case of higher-spin fields, for which each column has one
box). Then, one could dualise on any number of columns of height hi, replacing them with
columns of height D − 2− hi [3, 10–12], or dualise on empty columns to add an arbitrary
number of columns of height D − 2 to the left of the Young diagram [3, 9, 13, 14].

In maximal supergravity theories, this collection of mixed symmetry fields arising from
higher dualisations, also called exotic dualisations, of the usual potentials plays a crucial
role and have been conjectured to couple to the various ‘exotic branes’ of string theory [15–
20]. Notice however that each successive dualisation exchanges the role of Bianchi identities
and equations of motion: therefore, an even number of dualisations does not exchange
them. Indeed, at least at the linear and classical level there are only two types of sources,
electric and magnetic [3], and the potentials for an even number of dualisations are related
locally up to a gauge transformation, as has been recently pointed out in [21, 22] (see
however [23]). This is to be contrasted with the non-local relation between a p-form and
its dual D − p− 2-form, or between the Fierz-Pauli field hab and the first dual Ca1...aD−3|b
(more generally, between potentials related by an odd number of dualisations).

The above discussion concerned various aspects of on-shell duality; instead, this paper
deals with off-shell dualities. Difficulties in finding a manifestly Poincaré-covariant action
principle for the double dual graviton were mentioned already in [3], since the tensorial
structure of the left-hand side of the field equations does not coincide with the one of the
gauge field itself. For example, in dimension D = 5 , the field equations for the double-dual
graviton Dab,cd are the double-trace equations

Kad := ηbeηcfKabc|def = 0 , (1.3)

where
Kabc|

def := 9 ∂[a∂
[dDbc]|

ef ] (1.4)

is the gauge-invariant field strength for the double-dual graviton.
Following these works and motivated by the e11 proposal of West, a manifestly

Poincaré-invariant action was proposed in the paper [13] for the double-dual graviton,
obtained by extending the off-shell dualisation procedure of [4, 6]. In fact, not only was an
algorithm proposed for the double dualisation of the Fierz-Pauli field, but also for all the
actions featuring a member of the three infinite towers of higher duals of the gravitons. A
general procedure to build the parent actions for arbitrary higher-dual fields was later given
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in [24] and applied to several cases including double field theory in [14, 25–27]. For higher
duals, this procedure produces actions that contain some extra fields that are necessary to
reproduce the correct higher trace equations of motion and counting of degrees of freedom.
The main purpose of this paper is to clarify this latest point and the role of the extra fields.

Let also us mention that different actions for the double-dual graviton and other higher
duals have appeared recently in the note [21]. They exploit the local on-shell relation
mentioned above between potentials that arise from an even number of dualisations. In
the example of the double-dual graviton in D = 5 , this on-shell relation reads

Dab|
cd = δ[a

[ch
b]
d] + P[2,2]

(
∂cξ

ab|
d

)
, (1.5)

where ξab|c is the [2, 1]-gauge parameter of the double-dual graviton and P[2,2] denotes the
projector onto the [2, 2] Young symmetry (so that the second term is just the usual gauge
transformation of Dab|cd). This relation can be inverted to obtain hab = Hab(D, ∂ξ) as a
function of D and ξ . Then, plugging this expression into the usual Fierz-Pauli Lagrangian
gives an action S[D, ξ] = SFP[H(D, ∂ξ)] which reproduces the correct double trace equation
of motion for D by construction. The traceless part of D does not appear in that action and
ξ can be gauged away by a shift symmetry; doing so reproduces the Fierz-Pauli action in
its standard form. This is in sharp contrast from what happens in the actions considered
in [13] and the present paper: in particular, while they both contain some extra fields,
here these fields cannot be gauged away and the action for the double dual graviton is not
a rewriting of the Fierz-Pauli action. The mechanism leading to the propagation of the
correct degrees of freedom is different, as we clarify in the present paper.

This paper is organized as follows:

• In section 2, we first consider representative cases of gauge fields associated with
Young tableaux with at most two columns. The actions then only involve the higher
dual field and the original field, both with their usual gauge symmetries. There is no
other extra field off-shell. Both fields appear with the standard kinetic terms, one of
which carries the wrong sign, along with a gauge-invariant cross-term. The action
reproduces the duality relation between the two fields, which enforces the correct
counting of degrees of freedom and the higher trace equations of motion. This is
done through the following examples, which are sufficient to convince oneself of the
general case:

1. scalar – graviton in D = 3;
2. vector – Curtright in D = 4; and
3. graviton – ‘window’ in D = 5.

Here and in the rest of the paper, a Curtright (or ‘hook’) field refers to a [2, 1] ∼

mixed symmetry field and ‘window’ to a field of type [2, 2] ∼ .

• In section three, we consider two cases with three columns:

1. graviton – spin three in D = 3; and
2. vector – spin three in D = 3.
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The first example studied is topological, while the second one leads to an interesting
action containing a spin three field propagating one degree of freedom. Here, the
result of the two-column case cannot hold: indeed, it is not possible to write down a
two-derivative, gauge-invariant cross-terms between those fields with the usual gauge
transformations. Instead, we find that the action also involves more fields with less
columns and their own gauge invariances. Furthermore, the gauge variations of the
various fields cannot be disentangled, i.e., every given field will also transform with the
gauge parameters of the other fields, whenever Lorentz covariance makes it possible.
As a consequence, when computing the Euler-Lagrange equations of motion we find
that the method of parent actions gives a version of the on-shell duality relations that
is invariant under these entangled gauge symmetries. These features are expected to
hold in more general cases.

Conventions. Square brackets denote complete antisymmetrisation and parentheses
complete symmetrisation, both with strength one. We are in flat Minkowski space through-
out, with mostly plus signature, and use Latin indices. Traces of tensors are denoted by
a bar except when no confusion can arise, in which case it is only indicated by the lower
number of indices.

2 The two column case

2.1 Scalar – graviton in D = 3

We first consider the simplest case of a massless scalar field φ in three dimensions. Seen as a
degenerate two-column Young tableau with empty columns, its double dual is a symmetric
field hab .

On-shell dualisation and equations of motion. In this context, the ‘curvature’ of
the scalar field φ is the symmetric tensor

Kmn[φ] := ∂m∂nφ ∼ . (2.1)

The equation of motion for φ is the Klein-Gordon equation ∂m∂
mφ = 0, which in this

language is the tracelessness of the curvature,

K[φ] := Km
m [φ] = 0 . (2.2)

Dualising twice (once on each column), we then define the tensor

Rab
cd := εabmεcdnK

n
m = 4 δ[a

[cK
b]
d] − δ

ab
cdK ∼ , (2.3)

with inverse relation

Kmn = 1
4 εmabεncdR

abcd = Rmn −
1
2ηmnR . (2.4)

On-shell, we have ∂mKmn = 0, which implies the Bianchi identity ∂[mRnp]qr = 0 . This
then guarantees the existence of a symmetric tensor hab such that R is the (linearized)
Riemann tensor of hab,

Rab
cd = 4 ∂[a∂[ch

b]
d] , (2.5)
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and where we stress that the equality only holds when the massless Klein-Gordon equation
is satisfied. The field hab is the double dual of φ [3]. Its equation of motion is the double
trace equation

R[h] := Rab
ab [h] = 0 , (2.6)

as follows from the duality relations (2.3). Notice that this is invariant under the usual
gauge transformations of linearised gravity,

δhab = 2 ∂(aεb) . (2.7)

Nevertheless, hab propagates one degree of freedom and not zero in three dimensions, since
its equation of motion (2.6) is weaker than the (linearised) vacuum Einstein equations
Rab = 0.

On-shell, this duality relation becomes Rab = Kab ≡ ∂a∂bφ or, equivalently,

Rab
cd = 4 ∂[a∂[ch

b]
d] = 4 ∂[a∂[cδ

b]
d]φ . (2.8)

This implies that φ and hmn are related locally and algebraically (up to a gauge transfor-
mation) as

hmn = ηmn φ+ 2 ∂(mξn) . (2.9)

This is a general phenomenon when there are an even number of dualisations [21, 22].

Action principle. The above relations follow from the action

S[φ, hab] =
∫
d3x

(
LFP + 1

2 ∂aφ∂
aφ+ 1

2R[h]φ
)

(2.10)

=
∫
d3x

[
LFP + 1

2 ∂aφ∂
aφ+ ∂aφ

(
∂bh

ab − ∂ah
)]

, (2.11)

(with h = haa) where LFP is the usual Fierz-Pauli Lagrangian for hab,

LFP = −1
2 ∂ahbc ∂

ahbc + 1
2 ∂ah ∂

ah − ∂ahab ∂bh+ ∂ah
ab ∂chcb . (2.12)

Note the wrong sign kinetic term for φ. The action is invariant under the usual gauge
symmetries

δhab = 2 ∂(aεb) δφ = 0 . (2.13)

This is the main result of this section; it is derived from the action principles of [13, 14]
after a few field redefinitions and extra dualisations that are explained below.

The equations of motions coming from this Lagrangian are

−�φ+ 1
2R[h] = 0 (2.14)

Rmn[h]− 1
2ηmnR[h]− (∂m∂nφ− ηmn�φ) = 0 . (2.15)

– 5 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
1

Taking the trace of the second one, we get +2�φ− 1
2R[h] = 0; linear combinations of this

with the first equation gives

�φ = 0 (2.16)

R[h] = 0 . (2.17)

In particular, the double trace equation for hab comes naturally out of this Lagrangian.
Moreover, using these relations in the tensor equation (2.15) gives the duality relation

Rmn[h] = ∂m∂nφ (2.18)

between hmn and φ, which ensures that there is no extra degree of freedom.
In order to obtain this action, we start from the action (2.3.5) of [14],

S[Y ab|
c] =

∫
dDx

(1
2 ∂cY

ca|
b∂
dYda|

b − 1
2(D − 1) ∂cY

ca|
a∂

bYbd|
d
)

(2.19)

that features the field Y
ab|
c antisymmetric in its two upper indices but with no extra

conditions otherwise. That action was obtained [14] by dualising Maxwell’s action, which
is itself the dual of a scalar in 3D , so this is indeed what we should look at if one wants
to double dualise the massless scalar. In order to be self-contained, let us recall from [14]
how this procedure works. Up to integration by parts, the Maxwell action can be written
in the form

S[Aa] = 1
2

∫
dDx

(
−∂aAb ∂aAb + ∂aA

a ∂bA
b
)

(2.20)

= 1
2

∫
dDx

(
−Pab[A]P ab[A] + P a

a [A]P b
b [A]

)
, Pab[A] := ∂aAb , (2.21)

where Pab[A] contains both a symmetric and an antisymmetric part, unlike the usual
Fab[A] = 2∂[aAb]. One then introduces the parent action

S[Pab, Y ab|
c ] =

∫
dDx

(
−1

2Pab P
ab + 1

2P
a

a P b
b + P b

a ∂cY
ca|
b

)
. (2.22)

The equation of motion for the Y ab|
c field is ∂[aP

c
b] = 0, which implies (using the Poincaré

lemma) that Pab = ∂aAb for some vector field Aa. Plugging this solution back into (2.22) re-
produces the Maxwell action (2.20). On the other hand, Pab is an auxiliary field in (2.22):
its equation of motion, which reads −Pab + ηabP

c
c + ∂cYca|b = 0, can be solved alge-

braically as
Pab = ∂cYca|b −

1
(D − 1) ηab∂cY

cd|
d . (2.23)

Plugging this expression into (2.22) leads to the dual action (2.19).
The field Y ab|

c is decomposed as

Y ab|
c = Xab|

c + 2 δ[a
c Z

b] , Xab
b = 0 , (2.24)

– 6 –
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where the three-index tensor Xab|
c is traceless [14]. In dimension D = 3 , one can trade a

pair of antisymmetric indices for a single one: the field Y ab|
c then decomposes according to

Y ab|
c = εabdhdc + 2 δ[a

c Z
b] , hab = hba , (2.25)

where hab is symmetric so that the first piece in the decomposition of Y ab|
c is traceless.

This decomposition gives the following action

S[hab,Za] =
∫
d3x

(
−1

2 ∂ahbc∂
ahbc+ 1

2 ∂ahbc∂
bhac+ 1

2 ε
bcd∂ahabFcd[Z]+ 1

4 F
ab[Z]Fab[Z]

)
,

(2.26)

where Fab(Z) = 2 ∂[aZb] . This action is invariant under

δhab = 2 ∂(aεb) , δZa = ∂aλ+ εabc ∂
bεc . (2.27)

Notice the mixing of gauge symmetries: in particular, the pure hmn part of the Lagrangian
is not Fierz-Pauli, but its non gauge invariance is compensated by the cross-term between
h and Z .

Crucially, because of the λ gauge invariance, this action depends (up to boundary
terms) on Za only through its field strength Fab = 2 ∂[aZb] . This makes it possible to
dualise Za to a scalar ϕ through the usual procedure, i.e., by adding the term −ϕεabc∂[aFbc]
to the Lagrangian (2.26) where F = F [Z] is not imposed. Extremising the resulting action
with respect to ϕ reproduces F = F [Z] and the previous Lagrangian, while eliminating the
auxiliary field F produces the dual action

S[ϕ, hab] =
∫
d3x

[
− 1

2 ∂ahbc ∂
ahbc + ∂ah

ab ∂chbc + 2 ∂aϕ (∂aϕ+ ∂bh
ab)
]

(2.28)

that is invariant under
δhab = 2 ∂(aεb) , δϕ = −∂aεa . (2.29)

This gauge transformation suggests the simple change of variable φ := 2ϕ+ηabhab in terms
of a gauge-invariant scalar field φ . This gives the dual action S[φ, hab] introduced at the
start of the section:

S[φ, hab] =
∫
d3x

[
− 1

2 ∂ahbc ∂
ahbc + 1

2 ∂ah ∂
ah− ∂ah ∂bhab + ∂ah

ab ∂chbc

+ 1
2 ∂aφ∂

aφ+ ∂aφ (∂bhab − ∂ah)
]
. (2.30)

2.2 Vector – hook in D = 4

In a similar way, the double dual of a Maxwell field Aa (seen as a two-column, [1, 0] tensor)
in four spacetime dimensions is a [2, 1] Curtright field Tab|c, i.e. satisfying

Tab|c = −Tba|c , T[ab|c] = 0 . (2.31)

Equivalently, this can be seen as a single ‘exotic dualisation’, adding a column of height
D − 2 = 2, of the field Ãa which is the conventional dual of Aa.

– 7 –
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The equations of motion and duality relations are obtained from the action

S[Tab|c, Aa] =
∫
d4x

(
LC + 1

4 Fmn[A]Fmn[A]− 1√
2
AaK

a[T ]
)
. (2.32)

Here, LC is the Curtright Lagrangian [7] for the mixed symmetry field Tab|c,

LC = −1
6
(
F abc|d[T ]Fabc|d[T ]− 3F abc|c[T ]Fabd|d[T ]

)
(2.33)

where
F abc|d[T ] = 3 ∂[aT bc]|d . (2.34)

The field strength of Aa is the usual Fmn[A] = 2∂[mAn], the curvature of Tab|c is defined as

Kabc|
mn[T ] = 6 ∂[a∂[mT

bc]|
n] (2.35)

and its traces as Kab|
c = K

abd|
cd , Ka = K

abc|
bc . All in all, the action (2.32) has the same

structure as the action (2.10) of the last section: it is the sum of the Curtright action,
a wrong-sign Maxwell action, and a gauge-invariant cross-term. The action is invariant
under the usual independent gauge symmetries of each field,

δAa = ∂aλ , (2.36)
δTabc = 2 ∂[aab]c + 2 ∂[asb]c − 2 ∂caab (aab = −aba , sab = sba) . (2.37)

The cross-term is invariant by virtue of the contracted Bianchi identity

∂aK
a[T ] = 0 (2.38)

and the invariance of Kabc|
mn[T ] itself under the gauge symmetries of Tab|c. (Note that

F abc|d[T ] is by itself only invariant under the sab gauge symmetry; however, the combina-
tion (2.33) is also invariant under the aab gauge symmetry [7].)

The equations of motion are then

∂bF
ab + 1√

2
Ka = 0 (2.39)

−Kab|
c − δ[a

c K
b] + 1√

2
∂cF

ab + 1√
2
δ[a
c ∂dF

b]d = 0 . (2.40)

Taking the trace of the second one and combining it with the first, one finds the required
equations of motion

∂aF
ab = 0 (2.41)

Ka = 0 . (2.42)

Using these in (2.40), this yields the duality relation between the two fields,

Kab|
c = 1√

2
∂cF

ab . (2.43)

– 8 –
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Indeed, the duality relation can be written as (with a choice of normalisation)

1√
2
∂mF

ab = − 1
12 εmpqr ε

abcdK
pqr|

cd (2.44)

= Kab|
m + δ[a

mK
b] , (2.45)

which reduces to (2.43) on-shell using (2.42).
This action is obtained from [14] using the same reasoning: we start from the ac-

tion (2.19) in D = 4. Here, the decomposition of Y ab
c analogous to (2.25) reads

Y ab|
c = 1√

2
εabmnTmn|c + 2 δ[a

c Z
b] , (2.46)

with the first term being traceless because of the symmetries of Tab|c. The resulting action
is invariant under the gauge symmetries

δTab|c = 2 ∂[aab]c + 2 ∂[asb]c − 2 ∂caab , δZa = ∂aξ − 2
√

2 εabcd∂bacd . (2.47)

Because of its ξ gauge symmetry, Za only appears in the action through its field strength
Fab[Z]. It can therefore be dualised in the usual way into another vector field Ba, which
however still transforms with the gauge parameters of Tab|c,

δBa = ∂aλ−
√

2 ∂b (3 aab + sab) . (2.48)

The last step is to disentangle the gauge transformations by the field redefinition

Aa = Ba −
√

2T b
ab . (2.49)

This gives the Lagrangian (2.32), with independent gauge transformations (2.36) and (2.37).

2.3 Double-dual graviton in D = 5

We finish this section with the example of the double dual graviton in five spacetime
dimensions. It is a [2, 2] mixed symmetry field ‘window’ Cab|cd, i.e.

Cab|cd = −Cba|cd = −Cab|dc , C[ab|c]d = 0 (2.50)

(algebraic symmetries of the Riemann tensor). Its gauge transformation law is

δCab|cd = 2 ∂[amcd|
b] + 2 ∂[cm

ab|
d] , (2.51)

where mab|c is a [2, 1] ‘hook’ mixed symmetry tensor, obeying

mab|c = −mba|c m[ab|c] = 0 . (2.52)

The equation of motion of the double-dual graviton is the double-trace condition

Kmn[C] = 0 (2.53)

– 9 –
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on its gauge-invariant curvature tensor

Kabc|
mnp[C] = 9 ∂[a∂[mC

bc]
np] . (2.54)

This follows from the double-duality relation with the linearized Riemann tensor of the
usual graviton hmn, which can be written as

Rab
cd[h] = − κ

36ε
abm1m2m3εcdn1n2n3K

n1n2n3
m1m2m3| [C] (2.55)

= κ

(
K
ab|
cd − 2 δ[a

[cK
b]
d] + 1

3δ
ab
cdK

)
(2.56)

up to a conventional factor κ. From this equation, it then follows that Rmn[h] = 0 is
equivalent to Kmn[C] = 0. Given the result of the previous examples, one can guess the
structure of an action giving these equations: the difference of the conventional Lagrangian
for the C-field and the Fierz-Pauli action, accompanied by a gauge-invariant cross-term,

S[Cab|cd, hab] =
∫
d5x

[
α
(
L[2,2] −LFP

)
+ βLcross

]
(2.57)

with α = ±1 and β 6= 0. The Lagrangian for the [2, 2] field reads [28]

L[2,2] = 1
16 ∂cCab|

ij ∂kCde|
lm εabcde εijklm (2.58)

and was first written down in this explicit form in [29] by generalising an observation done
in a topological case in [7]. The cross-term (with two derivatives) is uniquely determined
by the gauge transformations (2.51) and δhab = 2∂(aεb) up to integration by parts, and can
be written as

Lcross = hab

(
Kab − 1

3η
abK

)
, (2.59)

where the quantity in parentheses is divergenceless because of the Bianchi identity satisfied
by Kabc

mnp [C]. Indeed, this reproduces the required equations of motion and duality
relations

Kab[C] = 0 = Rab[h] , Rab
cd [h] = κK

ab|
cd[C] , (2.60)

with κ = α/β, as long as β does not take the values 0 or ±3/(4
√

2) (the sign α could in
principle be determined by a Hamiltonian analysis of (2.57)).

We show now that it is indeed this structure that comes out of the off-shell duality
procedure of [13] for the double-dual graviton, with the result α = −1 and β = −

√
3/2.

It provides a dual action in terms of a gauge potential Dabc|
de which is antisymmetric in

both groups of indices, but satisfying no other condition. The action reads

S[Dabc|
de] = 1

4

∫
d5x

(
− ∂aDabc|de ∂fDfbc|de + ∂aD

abc|de ∂fDfde|bc − 2∂aDabc|de ∂fDfda|ec

+ 3 ∂aDab|
c ∂

dD c
db| − ∂aD

ab|
c ∂dD

dc|
b −

1
3∂aD

a ∂bD
b
)
, (2.61)

where the traces are defined as Dab|
c = D

abd|
cd, Da = D

abc|
bc. Let us review briefly how

this action arises by dualising the Curtright action [13] (which itself arises from dualising
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the Fierz-Pauli action in D = 5 [6], so this is indeed the case relevant for the double-dual
graviton). The first step is to rewrite the Curtright action (see (2.33)), up to integration
by parts, as

SC [Tab|c] =
∫
d5x

(1
2Hab|cd[T ]Hab|cd[T ]+Hab|cd[T ]Hac|bd[T ]−3H c

ac|b [T ]Had|b
d [T ] (2.62)

−H c
ac|b [T ]Hbd|a

d [T ]+H ab
ab| [T ]H cd

cd| [T ]
)

H
ab|
cd [T ] := 2∂[cT

ab|
d] . (2.63)

Here, the field Tab|c can be assumed to also contain a totally antisymmetric part which is
pure gauge; this action is then invariant under δTab|c = ∂[aξb]c + 1

2Λabc, where Λ is totally
antisymmetric and ξ has no particular symmetry. Then, the parent action is

S[Hab|
cd , D

abc|
de] =

∫
d5x

(
L (H)−Hab|

cd∂eD
cde|

ab

)
, (2.64)

where Hab|
cd is here an independent field with two groups of antisymmetric indices, and

LH can be read from (2.62) but without imposing H = H[T ]. As usual, one can then
choose which field to eliminate from this parent action. On the one hand, the equation of
motion for D gives the relation H = H[T ] using the Poincaré lemma: this then gives back
the original Curtright action (2.62). On the other hand, the equations of motion for H can
be solved algebraically as

H cd
ab| = 1

2
(
∂eD

cde|
ab−∂

eD cd
abe|

)
+∂eDe[c d]

[a| b]−
3
2∂eD

e[c
[a|δ

d]
b] + 1

2∂
eD

[c
e[a| δ

d]
b] + 1

6δ
cd
ab∂eD

e

(2.65)
(we correct a typo in the last coefficient with respect to [13]). Plugging this back in the
parent action leads to the action (2.61). That action is invariant under

δD
abc|

de = ∂fψ
abcf |

de − 3 δ[a
[dΛbc]e] (2.66)

− 6
(
3 δ[a

[d∂e]ξ
bc] − δ[a

[d∂
bξ
c]
e] − 3 δ[a

[d∂
bξ

c]
e] + 2 δ[a

[dδ
b
e]∂fξ

c]f − 2 δ[a
[dδ

b
e]∂

c]ξ f
f

)
,

where Λ and ξ come from the invariances of the original action (2.62), and the new pa-
rameter ψ (antisymmetric in both groups of indices) arises because Dabc|

de only appears
through its divergence.

As in the previous sections, we now decompose Dabc|
de into traceless and traceful parts,

D
abc|

de = −1
2 ε

abcij Cde|ij + 6 δ[a
[dZ

bc]|
e] . (2.67)

Here, Cab|cd is the [2, 2] double dual graviton field, and the gauge field Zab|c obeys Zab|c =
−Zba|c but no other condition.1 Using this decomposition in (2.61) yields an action

S[Cab|cd, Zab|c ] =
∫
d5x [L (∂C) + L (∂Z) + L cross(∂C, ∂Z)] (2.68)

1In the notation of [13], Cab|cd is the Hodge dual of Xijk
cd on its first three indices, and Z

ab|
c is the

traceful combination Z(1)ab
c + δ

[a
c Z

(2)b].
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that contains all the components of Cab|cd. Without loss of generality, it is also useful to
write the gauge parameter ψabcd|ef as

ψ
abcd|

ef = εabcdg
(
−2mef |g + εefgij a

ij
)

(2.69)

in terms of a [2, 1] gauge parameter mab|c obeying (2.52), and an antisymmetric gauge
parameter aij . The latter can be absorbed by a redefinition of Λabc and (the antisymmetric
part of) ξab, so that ψabcdef is fully replaced by mab|c. The resulting gauge transformations
can then be written as

δCab|cd = 2 ∂[a|mcd|b] + 2 ∂[c|mab|d] , (2.70)

δZab|c = Λabc + ∂[aξb]c −
1
2 δ

[a
c ∂dξ

b]d + 1
2ε

ab
pqr∂

pmqr
c . (2.71)

In particular, one finds the expected gauge transformations (2.51) for the double dual
graviton field. However, since the gauge parameter mab|c also appears in the transformation
of Zabc , the term L (∂C) appearing in (2.68) is not the usual Lagrangian (2.58) for a [2, 2]
mixed symmetry field. To make contact with (2.58), one must (following the logic of the
previous sections) first dualise the field Zab|c . To do this, we use the field variable

Y ab|
c := Zab|c + δ[a

c Z
b] (2.72)

that transforms as

δY ab|
c = Λabc + ∂[a

(
ξb]c −

1
2δ

b]
c ξ

d
d

)
+ 1

2 ε
ab
pqr∂

pmqr|
c . (2.73)

Indeed, the invariance under ξab gauge transformations then implies that the Lagrangian
depends on Y only through the quantity F abc|d(Y ) := 3 ∂[aY bc]|

d :

L (∂C, ∂Y ) = − 1
6 F

abc|d(Y )Fabc|d(Y )− 1
4 F

abc|d(Y )Fdab|c(Y ) + 3
4 F

abc|
c(Y )Fabd|d(Y )

+ L (∂C) + 1
2 εmnpqr ∂

pCqr|ab

[
Fmna|b(Y )− 1

2 F
abm|n(Y )

]
. (2.74)

Note that, using the Λabc gauge transformation, the totally antisymmetric part of Y ab|
c

could be gauged away and Y ab|
c taken to be an irreducible [2, 1] (Curtright) field. The first

line of (2.74) would then reduce to the Curtright Lagrangian (2.33).
Now, by the standard procedure one can trade the field Y ab|

c , — i.e., Zab|c — for the
Fierz-Pauli symmetric rank-two potential hmn by introducing the parent Lagrangian

L (∂C, ∂f, F ) = − 1
6 F

abc|d Fabc|d −
1
4 F

abc|d Fdab|c + 3
4 F

abc|
c Fabd|

d + L (∂C)

+ 1
2 εmnpqr ∂

pCqr|ab

(
Fmna|b − 1

2 F
abm|n

)
+ εabcpq ∂

pf qd F
abc|d , (2.75)

where F abc|d is viewed as an independent field and where fmn contains also an antisymmet-
ric component. The equations of motion for fmn imply that F = F (Y ) , which correctly
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reproduces (2.74). On the other hand, the field F is an auxiliary field inside the action
S[C, f, F ] =

∫
d5xL (∂C, ∂f, F ) . Its field equations can be solved algebraically to yield

Fabc|d = εabcmn (∂mfnd + ∂mfd
n − ∂dfmn) + 2 εabcdm(∂mfnn − ∂nfmn)

+ 1
2 εabcmn (∂pCmn|pd − 2 ∂mCnd) + 1

2 εabcdm (2 ∂nCmn − ∂mC) . (2.76)

Upon substituting this expression for Fµνρ|σ inside the action S[C, f, F ] , we find the action

S[C, f ] =
∫
d5x

[
L[1,1](∂f)−L[2,2](∂C)− 3

2 f
abGac|b

c[C]
]
, (2.77)

where

L[1,1](∂f) = −3
2
(
Ωab|cΩab|c + 2 Ωab|cΩac|b − 4 Ωab|

bΩac|
c

)
, Ωab|c := 2 ∂[afb]c , (2.78)

L[2,2](∂C) = 1
16 ∂cCab|

ij ∂kCde|
lm εabcde εijklm , (2.79)

Gab|
ij [C] = εabcde ε

ijklm ∂e∂mC
cd|
kl = 1

9εabcde ε
ijklmK cde

klm| [C] . (2.80)

The antisymmetric part of fab does not appear in this action, and L[1,1](∂f) is the usual
Fierz-Pauli action up to a total derivative (and the rescaling fab = hab/2

√
3 needed to

reproduce the normalisation of (2.12)). The Lagrangian L[2,2] is indeed (2.58). Finally,
due to the trace identity

Gac|b
c = 2

(
Kab −

1
3ηabK

)
, (2.81)

we have indeed recovered the structure (2.57) with the special value β = −
√

3/2.

3 Three-columns in three dimensions

3.1 Topological case: spin 2 – spin 3

In this section, we consider the dualisation of a spin two field hab in three space-time
dimensions on an empty column, which leads to a spin three gauge field φabc. The off-
shell dualisation procedure, starting from the topological linearised gravity action for hab,
yields a novel topological action in D = 3 involving both fields. (This is to be contrasted
with the dualisation of hab on a non-empty column, which gives the topological Lagrangian
L = 0 [6].)

Relation between curvatures. Seen as a degenerate [1, 1, 0] field, the natural curvature
of hab is the five-index object

Kab|cd|e[h] = 4 ∂e∂[a∂[chd]b] = ∂eRab cd[h] ∼ , (3.1)

where R is the linearized Riemann tensor of h. Taking the Hodge dual on its last index,
we obtain the duality relation with a spin three field φabc,

Kab|cd|ef [φ] := 8 ∂[a∂[c∂[eφf ]d]b] = Kab|cd|p[h] εpef ∼ , (3.2)
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where K[φ] is the natural higher-spin curvature of φabc. This duality relation alone implies
the equations of motion for the fields. In the case of three dimensions, the fields are
topological: the equations of motion are equivalent to the vanishing of the curvatures
themselves, which then implies that the fields are pure gauge and carry no local degrees
of freedom.

Dual action and gauge invariances. We start from the Fierz-Pauli action, under
the form

SFP[hab] =
∫
d3x

[
−1

2 ∂ahbc ∂
ahbc + 1

2 ∂ah ∂
ah − ∂ahab ∂bh+ ∂ah

ab ∂chcb

]
. (3.3)

Following [13], we define the parent action

S[Ga|bc,Dab|
cd] =

∫
d3x

[
− 1

2Ga|bcG
a|bc+ 1

2Ga|c
cGa|bb−Ga|abGb|cc+Ga|abGc|cb

+Gd|bc∂
aD bc

ad|

]
(3.4)

that contains the fields Ga|bc and Dab|
cd, with index symmetries

Ga|bc = +Ga|cb (3.5)
Dab|

cd = −Dba|
cd = +Dab|

dc . (3.6)

This action is invariant under the gauge transformations

δG
a|
bc = 2 ∂a∂(bεc) , (3.7)

δD cd
ab| = εabp ∂

pυcd + 2 ηcd∂[aεb] + 4 δ(c
[a∂b]ε

d) , (3.8)

where υcd is symmetric and εa is a vector parameter.
The equation of motion of D gives ∂[aG

b]|
cd = 0, which can be solved as Ga|bc = ∂ahbc

for some symmetric tensor hab. Plugging this solution back into the parent action then
brings us back to the original Fierz-Pauli action. On the other hand, the equation of motion
for Ga|bc, which reads

−Ga|bc + ηbcG
d

a| d − ηa(bG
d

c)| d − ηbcG
a|
bd + 2ηa(bG

d|
c)d + ∂dDda|bc = 0 , (3.9)

can be solved algebraically for Gabc as

Ga|bc = ∂dDda|bc − ηbc∂dD e
da|e − ηa(b|∂dD

de|
c)e . (3.10)

Plugging this back into the parent action gives the dual action

S[Dab|cd] = 1
2

∫
d3x

(
∂aDab|cd ∂eD

eb|cd − ∂aD b
ab|c ∂dD

de|c
e − ∂aD c

ab|c ∂eD
eb|d

d

)
(3.11)

Since we are in three dimensions, the εabc tensor can be used to trade a pair of anti-
symmetric indices for a single index; accordingly, we will also use the three-index tensor

D̃a|ij := −1
2ε

abcD ij
bc| ⇔ D ij

ab| = εabcD̃
c|ij (3.12)
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instead of D . One also introduces

Dab|
ij = Xab|

ij + 4 δ(i
[a Zb]

j) , Xab|
ib ≡ 0 ≡ Zaa , (3.13)

with inverse formulas

X ij
ab| = D ij

ab| + 4
3δ

(i
[aD

j)k
b]k| , Z i

a = −1
3D

ik
ak| . (3.14)

In terms of the symmetric rank-3 field

ϕ̃abc := −1
2 ε

aij Xij|
bc ⇔ Xab|

ij = εabc ϕ̃
ijc , (3.15)

one has

D̃a|ij = ϕ̃aij + 2 εab(i Zbj) ⇔ ϕ̃aij = D̃(a|ij) , Zm
j = 1

3 εabm D̃
a|bj . (3.16)

The gauge transformation laws then read

δD̃a|bc = ∂aυbc + 2 εap(b∂pεc) − ηbc εapq∂pεq , (3.17)

δZa
i = 1

3
(
εabc∂

bυci + 2 ∂aεi + ∂iεa − δia ∂bεb
)
. (3.18)

Change of variables. We define a symmetric field φabc , a traceless symmetric field fab
and a vector Aa as follows:

φabc := D̃(a|bc) − η(abD̃
i

c)|i = ϕ̃abc − η(ab ϕ̃c) − 2 η(ab εc)ij Z
ij , (3.19)

fab := εpq(aD̃
p|q
b) ⇔ fab = 3Z(ab) , (3.20)

Aa := −D̃ b
a|b ⇔ Aa = −ϕ̃a − 2 εabc Zbc = 3

2 φ
a + 3 εabc Zbc . (3.21)

The inverse formula, expressing D̃ as a function of (φabc, fab, Aa), is

D̃a|bc = φabc −
2
3 εa(b

m fc)m + 1
2 ηa(b φc) −

1
2 ηbc φa − ηa(bAc) . (3.22)

In terms of these fields, we get an action invariant under

δφabc = ∂(aξbc) , (3.23)
δfab = 3 ∂(aεb) − ηab∂cεc + εmn(a∂

mξnb) , (3.24)

δAa = 1
2 ∂aξ + εapq∂

pεq , (3.25)

where we redefined the gauge parameter υab as

ξab := υab − ηab υ ⇒ ξ = −2 υ . (3.26)

In the formulae (3.23), the transformation of φabc is the usual one for a spin three massless
field, except for the fact that the trace of the gauge parameter ξab is not identically zero.
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The trace ξ := ξaa appears also in the transformation law of the vector field, in (3.25).
Upon changing variables from φabc to

ϕabc := φabc −
2
3 η(abAc) , (3.27)

we have that this field transforms according to

δϕabc = ∂(aξ̂bc) −
2
3 ε(a

pq ηbc)∂pεq , (3.28)

where ξ̂ab := ξab − 1
3 ηab ξ is the traceless part of ξab . After trading φabc for ϕabc, the only

field that transforms with the trace of ξab is the vector Aa that must therefore appear in
the action only through its field strength Fab[A] = 2 ∂[aAb] . We can then dualise the vector
Aa into a scalar σ . For this we add the term εabcF

ab∂cσ to the Lagrangian where F ab[A]
is replaced by the independent antisymmetric tensor field F ab . Extremising with respect
to the auxiliary field F ab enables one to eliminate it in terms of the other fields, giving an
action S[ϕabc, fab, σ] that is invariant under

δϕabc = ∂(aξ̂bc) −
2
3 ε(a

pq ηbc)∂pεq , (3.29)

δfab = 3 ∂(aεb) − ηab∂cεc + εmn(a∂
mξnb) , (3.30)

δσ = −2
3 ∂aε

a . (3.31)

One can then combine the two fields fab and σ into a traceful tensor hab := 2
3 fab − ηab σ ,

giving the following action:

S[ϕabc, hab] = 1
2

∫
d3x

[
− ∂aϕbcd ∂aϕbcd + ∂aϕb ∂cϕabc + ∂aϕ

abc ∂dϕbcd

− 1
7 ∂aϕb ∂

aϕb − 31
28 ∂aϕ

a ∂bϕb

+ 1
2 ∂ahbc ∂

ahbc + 1
14 ∂ah ∂

ah− 3
7 ∂

ahab ∂ch
bc − 1

7 ∂
ah ∂cha

c

+ 10
7 εapq ∂

bhb
a ∂pϕq − 2 εapq ∂bhac ∂pϕqbc

]
(3.32)

that is invariant under

δϕabc = 3 ∂(aξ̂bc) −
2
3 ε(a

pq ηbc)∂pεq , (3.33)

δhab = 2 ∂(aεb) + 2 εpq(a∂pξ̂qb) . (3.34)

A general result from [30] states that the above action should be expressible in a Chern-
Simons form, although this is not straightforward from the entangled form of the gauge
transformations. We hope to report about this point in the near future [31].

Analysis of the degrees of freedom. In this subsection, we prove that the theory
described here is topological. Of course, this is a consequence of the construction since it
is equivalent off-shell to the Fierz-Pauli theory. However, it is not an obvious fact when
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looking only at the final form of the action and gauge transformations; for completeness, in
what follows we present an alternative proof of this fact. In order to understand the nature
of the physical degrees of freedom of a free theory, the strategy we will follow is to list
all the gauge-invariant quantities that do not vanish on shell and identify the differential
equations they satisfy. If it happens that all the gauge-invariant quantities vanish on shell,
the theory is topological: there is not propagating degree of freedom.

The classification of gauge-invariant quantities boils down to a purely algebraic problem
in the jet space of the fields, the gauge parameters and all their derivatives. From the
very structure of the gauge transformations at hand, (3.23)–(3.25), it appears that one
must decompose into so(3)-irreps the nth derivatives of the gauge fields and compare the
resulting set of irreps with the so(3)-irreducible decomposition of the space of (n + 1)th
derivatives of the gauge parametres.

If some irreps appear in the first list that have no equivalent in the second list, these
irreps indicate the existence of the gauge-invariant combinations built out of the nth deriva-
tives of the gauge fields. If some so(3)-irreps appear on the second list that have no
equivalent counterpart in the first one, these so(3)-irreps indicate the existence of linear
combinations of the (n+ 1)th derivatives of the gauge parameters that cannot be written
as the gauge variation of a linear combination of the nth derivatives of the gauge fields.

Clearly, we already know that, at second order in the derivatives of the fields, some
gauge-invariant quantity will appear: these are the left-hand-side of the Euler-Lagrange
field equations. However, by definition these gauge invariant linear combinations of the
second derivatives of the fields vanish on shell. What we will show is that all the gauge-
invariant quantities in the theory at hand are of this type. They all vanish on shell, so
that the theory is topological indeed. In the proof that follows, we will denote by [s] the
spin-s irrep of so(3) (of dimension 2s+ 1 ) and will systematically use the well-known rule
[j]⊗ [j′] ∼⊕j+j′

s=|j−j′|[s] for the addition of angular momenta in 3D.
• There are no linear combinations of the undifferentiated gauge parameters Ξ =
{ξab, εa} that can be written as the gauge variation of the fields, since the latter brings
one derivative of the gauge parameters. The collection S

(0)
Ξ := {[2], [1], [0]} repre-

sents the gauge parameters, where the singlet [0] accounts for the trace ξ = ηab ξab ;

• At zeroth order in the derivatives of the gauge fields Φ = {φabc, fab, Aa} ∼ {[3] ⊕
[1], [2], [1]} we have the collection of so(3)-irreps S

(0)
Φ := {[3], [2], 2 × [1]} . As for

the decomposition of the first derivative ∂ Ξ of the gauge parameters Ξ = {ξab, εa}
∼ {[2] ⊕ [0], [1]} , we find that the collection generated by the tensor product ∂ Ξ ∼
[1]⊗

(
[2]⊕[0]⊕[1]

)
, is given by S

(1)
Ξ := {[3], 2×[2], 3×[1], [0]} . Comparing S

(0)
Φ with

S
(1)
Ξ we see that there are three linearly independent combinations of first derivatives

of the gauge parameters that cannot be written as the gauge variation of linear
combinations of the gauge fields. These three linear combinations transforms in the
so(3)-irreps in the collection {[2], [1], [0]} . Although they are not needed for our proof,
they can be taken to be {3 ∂(aεb) − ηab∂cεc − εmn(a∂

mξnb) , ∂
bξab + εamn∂

mεn , ∂aεa} ;

• Computing the two collections of so(3)-irreps generated by ∂Φ and ∂2 Ξ , respectively,
we see that they coincide. This means (i) that there is no gauge-invariant quantity
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built out of the first derivatives of the gauge fields, and (ii) that there are no quantities
built out of the second derivatives of the gauge parameters that cannot be expressed
as the gauge variation of some linear combinations of first-order derivatives of the
gauge fields;

• Computing the two collections of so(3)-irreps generated by ∂2Φ and ∂3 Ξ , respec-
tively, we see that the first one contains extra so(3)-irreps compared to the second
one, indicating the existence of gauge-invariant quantities at second order in the
derivatives of the gauge fields. These extra so(3)-irreps are given by {[3], [2], 2× [1]}
and represent the left-hand sides of the Euler-Lagrange field equations E φ

abc := δL
δφabc ,

E f
ab := δL

δfab and E A
a := δL

δAa . These gauge-invariant quantities vanish on shell, by
definition, so that they cannot account for propagating degrees of freedom;

• Computing the collection of so(3)-irreps generated by the third-order derivatives of
the fields, ∂3Φ , we know for sure that there will be so(3)-irreps representing gauge-
invariant quantities given by the first-order derivatives ∂E of the left-hand sides of
the Euler-Lagrange field equations, plus, perhaps, extra gauge-invariant quantities
that do not vanish on shell. A subtlety that appears at this order is that the left-
hand sides of the Euler-Lagrange field equations are not linearly independent, due to
the Noether identities. The latter ensures that there are three linear combinations of
the field equations that are identically zero, these linear combinations transforming
in the so(3)-irreps contained in the collection S

(0)
Noether = {[2], [1], [0]} ≡ S

(0)
Ξ . This

is simply the content of Noether’s second theorem. Then, if one uses the symbols ⊕
and 	 for the addition and subtraction of collections of so(3)-irreps, respectively,2
direct computation yields ∂3Φ = ∂E + ∂4Ξ , or S

(3)
Φ = S

(1)
Φ 	 S

(0)
Noether ⊕ S

(4)
Ξ =

S
(1)
Φ 	S

(0)
Ξ ⊕S

(4)
Ξ , where we used that the collection of so(3)-irreps appearing in

the decomposition of ∂E can be obtained by taking E to be naively represented by
the collection S

(0)
Φ , provided one subtracts to the resulting collection the collection

of so(3)-irreps S
(0)
Noether ≡ S

(0)
Ξ . The equality S

(3)
Φ = S

(1)
Φ 	S

(0)
Ξ ⊕S

(4)
Ξ or equiva-

lently S
(3)
Φ ⊕S

(0)
Ξ = S

(1)
Φ ⊕S

(4)
Ξ shows that, at this (third) order in the derivatives

of the fields, all the gauge-invariant quantities vanish on shell.

In general, one can readily decompose the so(3)-irreps corresponding to the nth derivatives
∂nE (n > 0) of the left-hand sides of the Euler-Lagrange field equations E by taking the
latter to be represented by the collection S

(0)
Φ provided one subtracts to the resulting

collection the collection of so(3)-irreps S
(n−1)
Noether obtained by computing the collection of

irreps generated by the n− 1th derivatives ∂n−1 Ξ .
In order to complete the proof that the theory at hand is topological, we only need to

show that the relation ∂n+2Φ = ∂n+2E + ∂n+3Ξ is true, or equivalently, that the following

2Note that a collection is not the same as a set, in the mathematical sense. The mathematical notion of
“set” does not account for repetitions of objects.
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relations between collections is true:

S
(n+2)
Φ ⊕S

(n−1)
Ξ = S

(n)
Φ ⊕S

(n+3)
Ξ

⇔ S
(n+2)
Φ 	S

(n)
Φ = S

(n+3)
Ξ 	S

(n−1)
Ξ . (3.35)

Indeed, that would imply that all the gauge-invariant quantities that the theory admits
vanish on shell. The left-hand side of (3.35) gives [n + 2] ⊗

(
[3] ⊕ [2] ⊕ 2 × [1]

)
while the

right-hand side of (3.35) produces
(
[n+3]⊕[n+1]

)
⊗
(
[2]⊕[1]⊕[0]

)
. A direct decomposition

of both sides shows that they are identical, which finishes the proof.

3.2 Dynamical case: spin 1 – spin 3

In three dimensions, dualizing a vector field Aa twice on empty columns gives a spin three
field φabc. Equivalently, this field also arises by dualising a scalar three times on empty
columns. The difference with the previous section is that this field now carries one degree
of freedom.

Equations of motion and duality relations. We consider a free Maxwell field Aa
in three spacetime dimensions, with the usual equation of motion ∂aFab = 0 and gauge
symmetry δAa = ∂aλ. Seen as a [1, 0, 0] mixed symmetry field with three columns (two of
which are empty), its curvature is the four-index tensor

Kab|c|d[A] = 2 ∂d∂c∂[aAb] = ∂d∂cFab[A] ∼ , (3.36)

or K[A] = d3A = d2d3F [A] in the index-free notation of [10, 32]. It is traceless on-shell.
Hodge duality on the last two columns produces the six-index tensor

(?2 ?3 K[A])ab|cd|ef := εcdp εefqK
p|q

ab| [A] ∼ . (3.37)

This tensor satisfies the Bianchi identities implying the existence of a spin-3 field φabc
such that

?2 ?3K[A] = K[φ] , (3.38)

where K[φ] = d3φ = d1d2d3φ is the usual higher-spin curvature of φ. In components,

Kab|cd|ef [φ] := 8 ∂[a∂[c∂[eφf ]d]b] = εcdp εefq ∂
p∂qFab[A] . (3.39)

This is the double-duality equation defining the field φabc; notice that this relation is
invariant under the gauge transformations

δφabc = 3 ∂(aξbc) , δAa = ∂aλ , (3.40)

with a symmetric and traceful parameter ξab. Now, the Maxwell equations for Aa imply
that the double trace of K[φ] vanishes, K[φ] ≈ 0, in components

K cd
ab|cd| [φ] = 0 . (3.41)
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This is why the field φabc propagates one degree of freedom instead of zero;3 in fact, this
equation and the duality relation together imply that the fields are related algebraically
up to a gauge transformation by φabc = η(abAc) + 3 ∂(aΞbc).

All these relations are of third order in derivatives: we will show how they — or, rather,
an adapted version of them containing the extra fields — come out of a two-derivative
Lagragian, which is obtained below by dualising the Maxwell action twice.

Parent action. We start from the action of section 2.1 describing the off-shell duality
between a massless spin-2 field hab and a massless scalar φ , through the action (2.30).
Actually, we will use instead the dual action (2.26) that we recall here for convenience:

S[hab,Aa] =
∫
d3x

[
−1

2 ∂ahbc∂
ahbc + 1

2 ∂ah
ab∂chcb+

1
4FabF

ab+ 1
2 ε

bcd(∂ahab)Fcd
]
, (3.42)

where Fab = 2∂[aAb], in which φ has been dualised to Aa (note that the Fierz-Pauli action
does not appear anymore). This action is invariant under the gauge transformations

δhab = 2 ∂(aεb) (3.43)
δAa = ∂aλ+ εabc ∂

bεc . (3.44)

We now dualize it once more to make a spin-3 appear. So, we define the parent action

S[Ga|bc, Dab|
cd, Aa] =

∫
d3x

[
− 1

2 Ga|bcG
a|bc + 1

2 Ga|
abGc|cb + 1

4 FabF
ab + 1

2 G
a|
ab ε

bcdFcd

− 1
2 ε

bcdG a
b|a Fcd +G

d|
bc ∂

aD bc
ad|

]
, (3.45)

with gauge invariances

δAa = ∂aλ+ εabc ∂
bεc ,

δGa|bc = 2 ∂a∂(bεc) ,

δDab|
cd = εabe ∂

eυcd + 2 ηcd∂[aεb] + 4 δ(c
[a∂b]ε

d) . (3.46)

As before, solving the equation of motion for D cd
ab| gives Ga|bc = ∂ahbc , and we recover

the original action (3.42). Note that we are therefore free to add the term −1
2ε
bcdG a

b|a Fcd
to the action, since this replacement then gives a total derivative.4 On the other hand,
solving the equation of motion of G will give an action depending on D and the vector A ;
decomposing D following section 3.1 will make a spin-3 field appear.

The equation of motion for G coming from (3.45) is

0 = −Ga|bc + ηa(bG
d

c)|d − ∂dD
d|
a bc + 1

2 ηa(bεc)pqF
pq − 1

2 ηbc εapq F
pq (3.47)

3The equation of motion of a conventional spin-3 in three dimensions is the single-trace equation K[φ] =
0, which was shown in [12] to be equivalent to the usual, second-order equations of motion of Fronsdal [33].
But in three dimensions, the full curvature is determined by its trace, so K[φ] = 0 is equivalent to K[φ] = 0
and does not propagate any degree of freedom.

4This term could of course come with an arbitrary coefficient. Here, we chose − 1
2 in order to simplify

some intermediary formulas below; however, we checked that keeping it arbitrary does not alter the final
dual action.
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and can be solved algebraically for Gabc :

Ga|bc = −∂dD d|
a bc + ηa(b|∂dD

ed
|c)e −

1
2 ηbcεapqF

pq. (3.48)

Substituting this in (3.45) yields the action

S[D,A] =
∫
d3x

[
− 1

4FabF
ab − 1

2 ∂bD
ba|c

c εapq F
pq + 1

2 ∂
aDab|cd ∂eD

eb|cd

− 1
2 ∂

bDba|c
a ∂eDed|

cd
]
, (3.49)

which is invariant under

δAa = ∂aλ+ εabc ∂
bεc ,

δDab|
cd = εabe ∂

eυcd + 2 ηcd∂[aεb] + 4 δ(c
[a∂b]ε

d) , (3.50)

as expected. We define the three-index tensor

D̃a|ij := −1
2ε

abcDbc|
ij ⇔ Dab|

ij = εabcD̃
c|ij (3.51)

as before. Its gauge transformation is

δD̃a|ij = ∂aυij + 2 εab(i∂bεj) − ηijεabc ∂bεc . (3.52)

Field redefinitions. We now perform the following field redefinitions:

• We first define the vector field Ua such that

Ua := D̃a|b
b +Aa ,

δUa = ∂aυ + ∂aλ , υ := ηab υab . (3.53)

• We then define the totally symmetric tensor

φabc :=D̃(a|bc) −
1
3 η(ab D̃c)|i

i + 2
3 η(abAc) , (3.54)

It transforms according to

δφabc = ∂(aυ̂bc) + 2
3 η(ab ∂c)λ , (3.55)

where υ̂ab := υab − 1
3 ηab υ is the traceless part of υab . Note that the trace φa =

10
9 Aa −

2
9 D̃a|

b
b + 2

3 D̃
b|
ab , together with Ua and Aa , gives access to the trace D̃b|

ab ,
while the other trace D̃a|

b
b is obtainable from Ua and Aa alone.

• One then defines the symmetric and traceless tensor

fab := εmn(a D̃
m|n

b) (3.56)

that transforms like

δfab = 3 ∂(aεb) − ηab ∂cεc + εpq(a ∂
pυ̂qb) . (3.57)
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• Finally, in order to complete the field spectrum, we have to count the gauge field Aa
that transforms like

δAa = ∂aλ+ εabc ∂
bεc . (3.58)

The inverse field redefinition is

D̃a|bc = φabc −
2
3 εa(b

p fc)p + 1
3 ηbc Ua −

1
2 ηbc φa + 1

2 ηa(b φc) − ηa(bAc) . (3.59)

Dual action. Via the above decomposition (3.59), the action (3.49) can now be expressed
in terms of the fields {φabc, fab, Aa, Ua}. In the gauge transformations, the only place where
the trace υaa appears is in the transformation law for Ua , meaning that this field appears
in the action (modulo boundary terms) only through its field strength. Indeed, the action
depends on Ua only through the following terms:

LU = − 1
18 F

ab(U)Fab(U)− 1
4 F

ab(U)
[
Fab(A) + ∂[aφb] + 2

3 εabc ∂
dfd

c
]
. (3.60)

This enables us to dualise Ua into a scalar σ. So, we replace F ab(U) everywhere by an inde-
pendent field F ab and add to the resulting Lagrangian the term εabc F

ab∂cσ . Variation of
the resulting parent Lagrangian with respect to σ reproduces the original Lagrangian, while
F ab is an auxiliary field. Substituting its on-shell expression in terms of the other fields,

Fab ≈ 9 εabc ∂cσ −
9
4

(
Fab(A) + ∂[aφb] + 2

3 εabc ∂df
cd
)

(3.61)

into the parent Lagrangian gives a dual action S[φabc, fab, Aa, σ] invariant under the fol-
lowing gauge transformations

δφabc = ∂(aυ̂bc) + 2
3 η(ab ∂c)λ , (3.62)

δfab = 3 ∂(aεb) − ηab ∂cεc + εpq(a ∂
pυ̂qb) , (3.63)

δAa = ∂aλ+ εabc ∂
bεc , (3.64)

δσ = 1
3 ∂aε

a . (3.65)

As expected, since the only field transforming with the trace υaa was the vector Ua that
we dualised into the scalar σ , after dualisation no field transforms with the trace υaa .
Notice also that the quantity on the right-hand side of (3.61), made out of first derivative
of the various fields, is gauge invariant since the left-hand side is gauge invariant. Upon
defining ξab := υ̂ab + 2

3 ηab λ , hence λ = 1
2 ξ , the gauge transformation laws (3.62)–(3.64)

are exactly those for the topological gauge system in (3.23)–(3.25). The difference is that,
in the present case, we have the extra scalar field σ in the game, with its transformation
law (3.65).
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Analysis of the degrees of freedom. We now explicitly prove that the theory un-
der consideration correctly describes one degree of freedom per spacetime point, i.e., is
equivalent on-shell to the theory for a scalar field or its dual vector field in 3D.

For this, one starts from (the dual of) the gauge-invariant quantity obtainable
from (3.61),

Ic := ∂cσ − 1
6 ∂bf

bc + 1
8 ε

abc [Fab(A) + ∂aφb
]
. (3.66)

It is easy to see that

∂aIa ≈ 0 , (3.67)

by virtue of the field equation for the scalar field σ . The antisymmetrised derivatives ∂[aIb]
kills the scalar field and must therefore vanish on-shell, since it is a gauge-invariant quantity
independent of the scalar field. Indeed, the study of the topological system in section 3.1
showed that all the gauge-invariant quantities built out of the fields {φabc, fab, Ua} vanish
on-shell (the appearance of σ in their equations of motion does not upset the counting
argument). As a check, one readily verifies that, as expected,

εabc ∂bIc ≡ −
1
9

(
E a

(A) + 2
3 E ab

(φ) b

)
≈ 0 , (3.68)

where E a
(A) and E abc

(φ) denote the left-hand sides of the field equations for Aa and φabc ,
respectively. Similarly, E ab

(f) and E(σ) denote the left-hand sides of the field equations for
fab and σ . We then have the symmetrised derivative ∂(aIb) , whose traceless part Îab does
not vanish on shell and that constitutes part of the set of gauge invariant quantities that
are non-vanishing on shell. At the next order in the derivatives of Ia , we decompose ∂a∂bIc
into irreducible representations of so(3) and find that only the spin-3 representation, i.e.,
the traceless component Îabc of the symmetrised derivatives ∂(a∂bIc) is not vanishing on
shell. In order to see this, we used that ∂aIa ≈ 0 ≈ ∂[aIb] and that �Ia ≈ 0 . It is indeed
direct to see that

�Ia ≡ −
1
9 εabc

(
∂bE c

(A) + 2
3 ∂

bE cd
(φ)d

)
+ 1

18 ∂aE(σ) ≈ 0 . (3.69)

From then on, it is straightforward to conclude that the only gauge-invariant quantities that
are not vanishing on shell are the traceless parts Îa1a2...an+1 of the symmetrised derivatives
∂(a1 . . . ∂anIan+1) :

T = {Îa1...an+1 , n ∈ N} , Îa := Ia . (3.70)

This infinite set of gauge-invariant tensors that are not vanishing on shell indeed charac-
terises a theory for a propagating masseless scalar field, see e.g. the review [34].

Equations of motion and duality relations. From the expressions (3.63) and (3.65),
one observes that it is possible to absorb the traceless field fab and the scalar field σ into
a traceful field hab via the redefinition

hab := 2
3 fab + 2 ηab σ , σ = 1

6 h
a
a . (3.71)
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The resulting action S[φabc, hab, Aa] is then invariant under

δφabc = ∂(aξbc) , (3.72)

δhab = 2 ∂(aεb) + 2
3 εpq(a ∂

pξqb) , (3.73)

δAa = 1
2 ∂aξ + εabc ∂

bεc , (3.74)

where the traceless symmetric tensor υ̂ab and the scalar λ have been combined into a traceful
symmetric parameter ξab. As in section 3.1 and unlike the two-column case, the gauge
transformations cannot be disentangled. If one wishes, upon redefining the spin-3 field φabc
by adding pure-trace contributions involving the spin-1 field Aa , one can make appear the
symmetric gradient ∂(aξ̂bc) of the traceless parameter ξ̂ab in the gauge transformation law
of the newly defined spin-3 field ϕabc , thereby producing the correct gauge-transformation
law for a massless spin-3 gauge field. This, however, is done at the expense of extra terms
in the gauge transformation law, terms that depend on the spin-2 gauge parameter εa , as
in section 3.1.

Now, we show how we recover the equations of motion for the various fields. Notice
first that the spin-3 field strength

Kab|cd|ef [φ] := 8 ∂[a∂[c∂[eφf ]d]b] (3.75)

is a gauge invariant quantity of the theory. Therefore, on-shell, it must either vanish or be
proportional to a derivative of the invariant Ia defined in (3.66) that is not vanishing on
shell. It turns out that it is the second possibility that is actually realised:

Kabc ≈ −6 ∂(a∂bIc) (3.76)

where
K mnp[φ] := 1

8ε
mabεncdεpef Kab|cd|ef [φ] . (3.77)

Therefore, using the trace identity Kab = 2 εabcK
c and the result — obtained above (3.69)

— that the trace of ∂(α∂βIγ) vanishes on shell, we find indeed the required double-trace
equation for the spin three field,

Kab[φ] ≈ 0 . (3.78)

For the spin one field, from (3.68) we have

∂aF̃
ab ≈ 0 , (3.79)

i.e. the usual equations but where

F̃ab := −4 εabcIc = Fab[A] + ∂[aφb]c
c + εabc

(
∂dh

cd − ∂chdd
)

(3.80)

is the field strength Fab[A], with correction terms involving the other fields in order to make
it gauge-invariant. Similarly for the spin 2 field, the gauge-invariant tensor that corrects
the linearised Riemann tensor is

R̃ab|
cd = Rab

cd[h]− 2
(
εabm∂

[cΨd]m + εcdm∂[aΨb]m
)
, Ψa

b := ∂bφ
ac
c − ∂cφabc . (3.81)
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On-shell, we have
G̃ab ≈ −7 ∂(aIb) , G̃ab := 1

4εamnεbpqR̃
mn|pq . (3.82)

On account of ∂aIa ≈ 0 and the trace identity G̃aa = −1
2R̃

ab|
ab, this implies the correct

double-trace equation
R̃ab|ab ≈ 0 (3.83)

for a propagating field hab in D = 3 (as explained in section 2.1), suitably modified to
make it gauge-invariant.

We also recover the duality relations between those three fields: they are exactly
equations (3.76) and (3.82). Indeed, with some ε-tensor manipulations, (3.76) can be
written as

Kab|cd|ef [φ] ≈ −2
3 εcdp εefq ∂

p∂qF̃ab . (3.84)

This is the version of the duality equation (3.39) that is invariant under (3.62)—(3.74).
Similarly, equation (3.82) is the same as

R̃ab|cd ≈
7
4 εcdm∂

mF̃ ab. (3.85)

which is the invariant version of the duality relation between hab and Aa, obtained by
dualising Aa on an empty column. To close the loop, one can also use (3.85) in (3.84) to
get the expected duality relation between φabc and hab,

Kab|cd|ef [φ] ≈ − 8
21 εefq ∂

qR̃ab|cd . (3.86)

So, all the duality relations and equations of motion come out of the action. The price to
pay is that the gauge transformations are not the usual, independent ones for each field:
therefore, one actually gets a suitably gauge-invariant version of those equations.

4 Conclusions

In this paper, we have revisited the problem of writing down actions for higher (or exotic)
dual gauge fields, whose equations of motion take the form of multiple traces of the gauge-
invariant field strength. Examples of such fields include the double-dual graviton of [3],
or the exotic duals of supergravity p-form fields with extra sets of D − 2 antisymmetric
indices [9, 15–20]. Actions for those fields were first derived in [13, 14, 24] from those for
the original (non-dualised) fields using the method of parent actions, therefore realising the
duality off-shell and in manifestly covariant form. A common feature of these actions is that
they include a number of extra fields that cannot be eliminated from the action. We started
from those actions and performed some change of variables/dualisations of the additional
fields, clarifying their role and the counting of degrees of freedom. In particular, for the
higher spin case where the Young diagram of the field contains more than two columns,
these action produce a version of the duality relations corrected by the additional fields.

Of course, these considerations apply only to the linear theory; extending them to a
putative interacting theory is still an outstanding challenge. In this context, the coupling
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to external sources is of particular interest and could give some insight into the exotic
branes of string theory which are charged under the mixed symmetry potentials considered
here [17, 18]. A precise link between these branes and the additional fields that appear
from the off-shell dualisation is however still missing (see also [26] for comments on this
point in the context of Double Field Theory). Contact should also be made with the work
of [35], in which classical sources for mixed symmetry fields are defined using the idea of a
‘brane within a brane’.

In 3D, one can in principle keep going, performing more and more dualisations. In
the topological case, it is natural to conjecture that this off-shell dualisation procedure will
lead to an action with a spectrum of gauge fields given by {ha1a2 , ϕa1a2a3 , . . . , ϕa1...as },
while in the non-topological case, one will obtain an action featuring the gauge fields
{Aa, ha1a2 , ϕa1a2a3 , . . . , ϕa1...as }. In both cases, the gauge transformations of the all the
fields are intermingled in the sense that all the gauge parameters that can appear in a
transformation law of a field will effectively appear. In both cases, one may speculate
that the action could be presented in a Chern-Simons form, which would facilitate the
introduction of interactions [31]. Of course, it would also be very interesting to take the
limit where the highest spin of the spectrum goes to infinity.
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