Kernel Tricks, Means and Ends

Bernhard Schölkopf
Max Planck Institute for Biological Cybernetics
Tübingen, Germany

Empirical Inference Department
http://www.kyb.tuebingen.mpg.de/bs

Learning theory in a nutshell

Learn $\quad f: \mathcal{X} \rightarrow\{ \pm 1\} \quad$ from examples
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in \mathcal{X} \times\{ \pm 1\} \quad$ generated from $\mathrm{P}(x, y)$
Goal: minimize expected error

$$
\left.\left.R[f]=\int \frac{1}{2} \right\rvert\, f(x)-y\right) \mid d \mathrm{P}(x, y)
$$

Problem: P is unknown.
Induction principle: "empirical risk minimization"

$$
R_{\mathrm{emp}}[f]=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left|f\left(x_{i}\right)-y_{i}\right|
$$

Vapnik \& Chervonenkis: this is consistent* iff the "capacity" of the function class is asymptotically well-behaved (e.g., finite VC dim).
Computing the capacity is nontrivial...

Example of a Pattern Recognition Algorithm

Idea: classify points x according to which of the two class means is closer.

$$
\mu_{+}:=\frac{1}{m_{+}} \sum_{y_{i}=1} x_{i}, \quad \mu_{-}:=\frac{1}{m_{-}} \sum_{y_{i}=-1} x_{i}
$$

- Decision function: hyperplane with normal vector $w:=\mu_{+}-\mu_{-}$
- How about problems that are not linearly separable?

Feature Spaces

Preprocess the inputs with

$$
\begin{aligned}
\Phi: \mathcal{X} & \rightarrow \mathcal{H} \\
x & \mapsto \Phi(x)
\end{aligned}
$$

where \mathcal{H} is a dot product space, and learn the mapping from $\Phi(x)$ to y.

Example: All Degree 2 Monomials

The Kernel Trick

$$
\begin{aligned}
\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)\left(x_{1}^{\prime 2}, \sqrt{2} x_{1}^{\prime} x_{2}^{\prime}, x_{2}^{\prime 2}\right)^{\top} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left\langle x, x^{\prime}\right\rangle^{2} \\
& =: k\left(x, x^{\prime}\right)
\end{aligned}
$$

\longrightarrow the dot product in \mathcal{H} can be computed from the dot product in \mathbb{R}^{2}
More generally: for $x, x^{\prime} \in \mathbb{R}^{N}, d \in \mathbb{N}$,
$\left\langle x, x^{\prime}\right\rangle^{d}=\left(\sum_{j=1}^{N} x_{j} \cdot x_{j}^{\prime}\right)^{d}=\sum_{j_{1}, \cdots, j_{d}=1}^{N} x_{j_{1}} \cdots \cdots x_{j_{d}} \cdot x_{j_{1}}^{\prime} \cdots \cdots x_{j_{d}}^{\prime}=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$

More generally: works for positive definite kernels

Positive Definite Kernels

Let \mathcal{X} be a nonempty set. The following two are equivalent:

- k is positive definite ($p d$), i.e., k is symmetric, and for
- any set of training points $x_{1}, \ldots, x_{m} \in \mathcal{X}$ and
- any $a_{1}, \ldots, a_{m} \in \mathbb{R}$
we have

$$
\sum_{i, j} a_{i} a_{j} K_{i j} \geq 0, \text { where } K_{i j}:=k\left(x_{i}, x_{j}\right)
$$

- there exists a map Φ into a dot product space \mathcal{H} such that

$$
k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle
$$

(RKHS)
\mathcal{H} is a so-called reproducing kernel Hilbert space.
If for pairwise distinct points, $\Sigma=0$ iff all $a_{i}=0$, call k strictly p.d.

Construction of Φ

$\Phi(x):=k(x,$.$) \quad (Aronszajn 1950), take linear hull ->$ vector space
$<\Phi(x), \Phi\left(x^{\prime}\right)>:=k\left(x, x^{\prime}\right)$, linear extension, can prove this is a dot product
Point evaluation: $f(x)=\langle f, k(x,)$.$\rangle . "Reproducing kernel Hilbert space"$

The Kernel Trick - Main Points

- any algorithm that only depends on dot products can benefit from the kernel trick
- \mathcal{X} need not be a vector space
- think of the kernel as a (nonlinear) similarity measure
- examples of common kernels:

Polynomial $k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d}$
Gaussian $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} /\left(2 \sigma^{2}\right)\right)$

An Example of a Kernel Algorithm (Schölkopf \& Smola 2002)

Classify points $\mathbf{x}:=\Phi(x)$ in feature space according to which of the two class means is closer.

$$
\mu_{+}:=\frac{1}{m_{+}} \sum_{\left\{i: y_{i}=1\right\}} \Phi\left(x_{i}\right), \quad \mu_{-}:=\frac{1}{m_{-}} \sum_{\left\{i: y_{i}=-1\right\}} \Phi\left(x_{i}\right)
$$

Compute the sign of the dot product between $\mathrm{w}:=\mu_{+}-\mu_{\text {- }}$ and $\mathbf{x}-\mathbf{c}$.

ctd.

$$
\begin{aligned}
f(x) & =\operatorname{sgn}\left(\frac{1}{m_{+}} \sum_{\left\{i: y_{i}=1\right\}}\left\langle\Phi(x), \Phi\left(x_{i}\right)\right\rangle-\frac{1}{m_{-}} \sum_{\left\{i: y_{i}=-1\right\}}\left\langle\Phi(x), \Phi\left(x_{i}\right)\right\rangle+b\right) \\
& =\operatorname{sgn}\left(\frac{1}{m_{+}} \sum_{\left\{i: y_{i}=1\right\}} k\left(x, x_{i}\right)-\frac{1}{m_{-}} \sum_{\left\{i: y_{i}=-1\right\}} k\left(x, x_{i}\right)+b\right)
\end{aligned}
$$

with the constant offset

$$
b=\frac{1}{2}\left(\frac{1}{m_{-}^{2}} \sum_{\left\{(i, j): y_{i}=y_{j}=-1\right\}} k\left(x_{i}, x_{j}\right)-\frac{1}{m_{+}^{2}} \sum_{\left\{(i, j): y_{i}=y_{j}=1\right\}} k\left(x_{i}, x_{j}\right)\right) .
$$

If k is a density, this is a classifier based on Parzen windows plug-in estimates of the two classes.

$$
f(x)=\operatorname{sgn}\left(\sum_{i} \lambda_{i} k\left(x_{i}, x\right)+b\right)
$$

representer theorem (Kimeldorf \& Wahba 1971, Schölkopf et al. 2000)

- unique solution found by convex QP

Kernel PCA

Contains LLE, Laplacian Eigenmap, and (in the limit) Isomap as special cases with data dependent kernels (Ham et al. 2004)

Schölkopf, Smola \& Müller, 1998

Application examples

MNIST Benchmark

handwritten character benchmark (60000 training \& 10000 test examples, 28×28)

5		4			92			1		
3		3	6	1	17	72	24	8		9
4	0	9		1	12	24	43	2	2	
3	8	6	9	0	0	6	60	0	7	6
1	8	1	19	3	3	98	8	9	9	3
3	0	7	4	9	48	80	0.9	94	4	
4	4	6	0	4	45	56	61	1	0	0
1	7	1	6	3	30	02	21	1	,	7
9	0	2	6	7	78	83	39	$9^{\circ} 0$	0	4
6	7	4	6		80	01	78	83		

MNIST Error Rates

Classifier	test error	reference
linear classifier	8.4%	Bottou et al. (1994)
3-nearest-neighbour	2.4%	Bottou et al. (1994)
SVM	1.4%	Burges and Schölkopf (1997)
Tangent distance	1.1%	Simard et al. (1993)
LeNet4	1.1%	LeCun et al. (1998)
Boosted LeNet4	0.7%	LeCun et al. (1998)
Translation invariant SVM	0.56%	DeCoste and Schölkopf (2002)

PET attenuation correction

Visual Impression of PET $_{\text {MRAC }}$ and $\mathrm{PET}_{\text {CTAC }}$ almost identical Quantification Error below 1\%

With M. Hofmann, B. Pichler, Radiologische Klinik, Tübingen Tracer: ${ }^{68} \mathrm{Ga}$ DOTA-TOC
Reconstruction performed on PET/CT Scanner, using Image Size 128×128, OSEM Reconstruction with 4 Iterations, 8 Subsets; Gaussian Filter FWHM 5 mm

Learning of a Motor Primitive (Work in Progress)

Kernel Means

Joint work with: K. Borgwardt, K. Fukumizu, A. Gretton, J. Huang, D. Janzing, Q. Le, M. Rasch, A. Smola, L. Song, B. Sriperumbudur, X. Sun

X compact subset of a separable metric space, $m, n \in \mathbb{N}$.
Positive class $X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$
Negative class $Y:=\left\{y_{1}, \ldots, y_{n}\right\} \subset \mathcal{X}$
RKHS means $\mu(X)=\frac{1}{m} \sum_{i=1}^{m} k\left(x_{i}, \cdot\right), \mu(Y)=\frac{1}{n} \sum_{i=1}^{n} k\left(y_{i}, \cdot\right)$.
Get a problem if $\mu(X)=\mu(Y)$.
Schölkopf \& Smola, 2002

When do the means coincide?
$k\left(x, x^{\prime}\right)=\left\langle x, x^{\prime}\right\rangle: \quad$ the means coincide
$k\left(x, x^{\prime}\right)=\left(\left\langle x, x^{\prime}\right\rangle+1\right)^{d}$: all empirical moments up to order d coincide
k strictly pd: $\quad X=Y$.

The mean "remembers" each point that contributed to it.

Proposition 1 Assume that k is strictly pd, and for all i, j, $x_{i} \neq x_{j}$, and $y_{i} \neq y_{j}$. If for some $\alpha_{i}, \beta_{j} \in \mathbb{R}-\{0\}$, we have

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, .\right)=\sum_{j=1}^{n} \beta_{j} k\left(y_{j}, .\right), \tag{1}
\end{equation*}
$$

then $X=Y$.
Proof (by contradiction): W.l.o.g., assume that $x_{1} \notin Y$. Subtract $\sum_{j=1}^{n} \beta_{j} k\left(y_{j},.\right)$ from (1), and make it a sum over distinct points, to get

$$
0=\sum_{i} \gamma_{i} k\left(z_{i}, .\right),
$$

where $z_{1}=x_{1}, \gamma_{1}=\alpha_{1} \neq 0$, and $z_{2}, \cdots \in X \cup Y-\left\{x_{1}\right\}, \gamma_{2}, \cdots \in \mathbb{R}$.
Take the dot product with $\sum_{j} \gamma_{j} k\left(z_{j},.\right)$, using $\left\langle k\left(z_{i},.\right), k\left(z_{j},.\right)\right\rangle=k\left(z_{i}, z_{j}\right)$, to get

$$
0=\sum_{i j} \gamma_{i} \gamma_{j} k\left(z_{i}, z_{j}\right),
$$

with $\gamma \neq 0$, hence k cannot be strictly pd.

The mean map

$$
\mu: X=\left(x_{1}, \ldots, x_{m}\right) \mapsto \frac{1}{m} \sum_{i=1}^{m} k\left(x_{i}, \cdot\right)
$$

satisfies

$$
\langle\mu(X), f\rangle=\left\langle\frac{1}{m} \sum_{i=1}^{m} k\left(x_{i}, \cdot\right), f\right\rangle=\frac{1}{m} \sum_{i=1}^{m} f\left(x_{i}\right)
$$

and
$\|\mu(X)-\mu(Y)\|=\sup _{\|f\| \leq 1}|\langle\mu(X)-\mu(Y), f\rangle|=\sup _{\|f\| \leq 1}\left|\frac{1}{m} \sum_{i=1}^{m} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(y_{i}\right)\right|$.
Large distance \Leftrightarrow can find a function distinguishing the two samples

Witness function

$f=\frac{\mu(X)-\mu(Y)}{\|\mu(X)-\mu(Y)\|}$, thus $\left.f(x) \propto\langle\mu(X)-\mu(Y), k(x,)\rangle.\right):$

This function is in the RKHS of a Gaussian kernel, but not in the RKHS of the linear kernel.

The mean map for measures
p, q Borel probability measures,
$\mathrm{E}_{x, x^{\prime} \sim p}\left[k\left(x, x^{\prime}\right)\right], \mathbf{E}_{x, x^{\prime} \sim q}\left[k\left(x, x^{\prime}\right)\right]<\infty(\|k(x,)\| \leq M<.\infty$ is sufficient $)$
Define

$$
\mu: p \mapsto \mathbf{E}_{x \sim p}[k(x, \cdot)]
$$

Note

$$
\langle\mu(p), f\rangle=\mathbf{E}_{x \sim p}[f(x)]
$$

and

$$
\|\mu(p)-\mu(q)\|=\sup _{\|f\| \leq 1}\left|\mathbf{E}_{x \sim p}[f(x)]-\mathbf{E}_{x \sim q}[f(x)]\right|
$$

Recall that in the finite sample case, for strictly p.d. kernels, μ was injective - how about now?

> Smola et al., ALT'07, Fukumizu et al., NIPS'07

Theorem 2 [Fortet and Mourier (1953); Dudley (2002)]

$$
p=q \Longleftrightarrow \sup _{f \in C(X)}\left|\mathbf{E}_{x \sim p}(f(x))-\mathbf{E}_{x \sim q}(f(x))\right|=0,
$$

where $C(X)$ is the space of continuous bounded functions on x.

Theorem 3 [Gretton et al. (2007)] If k is universal, then

$$
p=q \Longleftrightarrow\|\mu(p)-\mu(q)\|=0 .
$$

Proof Idea: combine Theorem 2 with

$$
\|\mu(p)-\mu(q)\|=\sup _{\|f\| \leq 1}\left|\mathbf{E}_{x \sim p}[f(x)]-\mathbf{E}_{x \sim q}[f(x)]\right|
$$

Replace $C(X)$ by the unit ball in an RKHS that is dense in $C(X)$ — universal kernel [51], e.g., Gaussian.

Discussion: solves a high-dim. optimization problem...

- μ is invertible on its image
$\mathcal{M}=\{\mu(p) \mid p$ is a probability distribution $\}$ (the "marginal polytope", Wainwright and Jordan (2003))
- generalization of the moment generating function of a RV x with distribution p :

$$
M_{p}(.)=\mathbf{E}_{x \sim p}\left[e^{\langle x, \cdot\rangle}\right]
$$

- assume we have densities, the kernel is shift invariant, $k(x, y)=\phi(x-y)$, and all Fourier transforms exist. Note that μ is invertible iff

$$
\begin{aligned}
\int k(x-y) p(y) d x=\int k(x-y) q(y) d x & \Rightarrow p=q \\
\text { i.e., } & \hat{\phi}(\hat{p}-\hat{q})=0
\end{aligned} \begin{aligned}
& \Rightarrow p=q
\end{aligned}
$$

(Sriperumbudur et al., 2008)

Application 1: Two-sample problem (Gretton et al., 2007)

X, Y i.i.d. m-samples from p, q, respectively.

$$
\begin{aligned}
\|\mu(p)-\mu(q)\|^{2} & =\mathrm{E}_{x, x^{\prime} \sim p}\left[k\left(x, x^{\prime}\right)\right]-2 \mathbf{E}_{x \sim p, y \sim q}[k(x, y)]+\mathbf{E}_{y, y^{\prime} \sim q}\left[k\left(y, y^{\prime}\right)\right] \\
& =\mathrm{E}_{x, x^{\prime} \sim p, y, y^{\prime} \sim q}\left[h\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)\right]
\end{aligned}
$$

with

$$
h\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=k\left(x, x^{\prime}\right)-k\left(x, y^{\prime}\right)-k\left(y, x^{\prime}\right)+k\left(y, y^{\prime}\right) .
$$

Define

$$
\begin{aligned}
D(p, q)^{2} & :=\mathbf{E}_{x, x^{\prime} \sim p, y, y^{\prime} \sim q} h\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \\
\hat{D}(X, Y)^{2} & :=\frac{1}{m(m-1)} \sum_{i \neq j} h\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right) .
\end{aligned}
$$

$\hat{D}(X, Y)^{2}$ is an unbiased estimator of $D(p, q)^{2}$.
It's easy to compute, and works on structured data.

Theorem 4 Assume k is bounded.
$\hat{D}(X, Y)^{2}$ converges to $D(p, q)^{2}$ in probability with rate $\mathcal{O}\left(m^{-\frac{1}{2}}\right)$.
This could be used as a basis for a test, but uniform convergence bounds are often loose..
Theorem 5 We assume $\mathbf{E}\left(h^{2}\right)<\infty$. When $p \neq q$, then $\sqrt{m}\left(\hat{D}(X, Y)^{2}-D(p, q)^{2}\right)$ converges in distribution to a zero mean Gaussian with variance

$$
\sigma_{u}^{2}=4\left(\mathbf{E}_{z}\left[\left(\mathbf{E}_{z} h\left(z, z^{\prime}\right)\right)^{2}\right]-\left[\mathbf{E}_{z, z}\left(h\left(z, z^{\prime}\right)\right)\right]^{2}\right)
$$

When $p=q$, then $m\left(\hat{D}(X, Y)^{2}-D(p, q)^{2}\right)=m \hat{D}(X, Y)^{2}$ converges in distribution to

$$
\begin{equation*}
\sum_{l=1}^{\infty} \lambda_{l}\left[q_{l}^{2}-2\right] \tag{2}
\end{equation*}
$$

where $q_{l} \sim \mathcal{N}(0,2)$ i.i.d., λ_{i} are the solutions to the eigenvalue equation

$$
\int_{x} \tilde{k}\left(x, x^{\prime}\right) \psi_{i}(x) d p(x)=\lambda_{i} \psi_{i}\left(x^{\prime}\right)
$$

and $\tilde{k}\left(x_{i}, x_{j}\right):=k\left(x_{i}, x_{j}\right)-\mathbf{E}_{x} k\left(x_{i}, x\right)-\mathbf{E}_{x} k\left(x, x_{j}\right)+\mathbf{E}_{x, x^{\prime}} k\left(x, x^{\prime}\right)$ is the centred RKHS kernel.

Application 2: Dependence Measures

Assume that (x, y) are drawn from $p_{x y}$, with marginals p_{x}, p_{y}. Want to know whether $p_{x y}$ factorizes into its marginals.

Bach and Jordan (2002); Fukumizu et al. (2004): kernel generalized variance
Gretton et al. (2005a,b): kernel constrained covariance, HSIC
Main idea (Rényi, 1959; Jacod and Protter, 2000):
x and y independent \Longleftrightarrow

$$
\sup _{f, g \text { bounded \& continuous }} \operatorname{Cov}(f(x), g(y))=0
$$

Kernel version:

$$
\sup \quad \operatorname{Cov}(f(x), g(y))=0
$$

$f, g \in$ unit balls in RKHS

$$
\operatorname{cov}(\mathrm{x}, \mathrm{y}):=\mathbf{E}_{\mathrm{x}, \mathrm{y}}[\mathrm{xy}]-\mathbf{E}_{\mathrm{x}}[\mathrm{x}] \mathbf{E}_{\mathrm{y}}[\mathrm{y}]
$$

k kernel on $x \times y$.

$$
\begin{aligned}
\mu\left(p_{x y}\right) & :=\mathbf{E}_{(x, y) \sim p_{x y}}[k((x, y), \cdot)] \\
\mu\left(p_{x} \times p_{y}\right) & :=\mathbf{E}_{x \sim p_{x}, y \sim p_{y}}[k((x, y), \cdot)] .
\end{aligned}
$$

Use $\Delta:=\left\|\mu\left(p_{x y}\right)-\mu\left(p_{x} \times p_{y}\right)\right\|$ as a measure of dependence.
For $k\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k_{x}\left(x, x^{\prime}\right) k_{y}\left(y, y^{\prime}\right)$:
Δ^{2} equals the Hilbert-Schmidt norm of the covariance operator between the two RKHSs (HSIC), with empirical estimate $m^{-2} \operatorname{tr} H K_{x} H K_{y}$, where $H=I-1 / m$

Gretton et al. (2005a); Smola et al. (2007).

Witness function of the equivalent optimisation problem:

Application: learning causal structures (Sun, Janzing, Schölkopf, Fukumizu, ICML 2007; Fukumizu, Gretton, Sun, Schölkopf, NIPS 2007))

Causal Inference

Forward model: $y=f(x)+n$ with x, n independent. Question: when is there a corresponding backward model?

$$
f(x)=x
$$

Theorem 1 Let the joint probability density of x and y be given by

$$
\begin{equation*}
p(x, y)=p_{n}(y-f(x)) p_{x}(x) \tag{2}
\end{equation*}
$$

where p_{n}, p_{x} are probability densities on \mathbb{R}. If there is a backward model of the same form, i.e.,

$$
\begin{equation*}
p(x, y)=p_{n}(x-g(y)) p_{y}(y), \tag{3}
\end{equation*}
$$

then, denoting $\nu:=\log p_{n}$ and $\xi:=\log p_{z}$, the triple $\left(f, p_{x}, p_{n}\right)$ must satisfy the following differential equation for all x, y with $\nu^{\prime \prime}(y-f(x)) f^{\prime}(x) \neq 0$:

$$
\begin{equation*}
\xi^{\prime \prime \prime}=\xi^{\prime \prime}\left(-\frac{\nu^{\prime \prime \prime} f^{\prime}}{\nu^{\prime \prime}}+\frac{f^{\prime \prime}}{f^{\prime}}\right)-2 \nu^{\prime \prime} f^{\prime \prime} f^{\prime}+\nu f^{\prime \prime \prime}+\frac{\nu^{\prime} \nu^{\prime \prime \prime} f^{\prime \prime} f^{\prime}}{\nu^{\prime \prime}}-\frac{\nu\left(f^{\prime \prime}\right)^{2}}{f^{\prime}}, \tag{4}
\end{equation*}
$$

where we have skipped the arguments $y-f(x), x$, and x for v, ξ, and f, respectively. Moreover, if for a fuxed pair (f, ν) there exists $y \in \mathbb{R}$ such that $\nu^{\prime \prime}(y-f(x)) f^{\prime}(x) \neq 0$ for almost all $x \in \mathbb{R}$, the set of all p_{2} for which p has a backward model is contained in a 3-dimensional affine space.

A simple corollary is that if both the marginal density $p_{x}(x)$ and the noise density $p_{n}(y-f(x))$ are Gaussian then the existence of a backward model implies linearity of f :

Corollary 1 Assume that $\nu^{\prime \prime \prime}=\xi^{\prime \prime \prime}=0$ everywhere. If a backward model exists, then f is linear.
(Hoyer, Janzing, Mooij, Peters, Schölkopf, 2008)

Application 3: Covariate Shift Correction and Local Learning

training set $X=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ drawn from p,
test set $X^{\prime}=\left\{\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \ldots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right\}$ from $p^{\prime} \neq p$.
Assume $p_{y \mid x}=p_{y \mid x}^{\prime}$.
Shimodaira (2000): reweight training set

Minimize

$$
\left\|\sum_{i=1}^{m} \beta_{i} k\left(x_{i}, \cdot\right)-\mu\left(X^{\prime}\right)\right\|^{2}+\lambda\|\beta\|_{2}^{2} \text { subject to } \beta_{i} \geq 0, \sum_{i} \beta_{i}=1 .
$$

Equivalent QP:

$$
\begin{aligned}
& \underset{\beta}{\operatorname{minimize}} \frac{1}{2} \beta^{\top}(K+\lambda \mathbf{1}) \beta-\beta^{\top} l \\
& \text { subject to } \beta_{i} \geq 0 \text { and } \sum_{i} \beta_{i}=1,
\end{aligned}
$$

where $K_{i j}:=k\left(x_{i}, x_{j}\right), l_{i}=\left\langle k\left(x_{i}, \cdot\right), \mu\left(X^{\prime}\right)\right\rangle$.
Experiments show that in underspecified situations (e.g., large kernel widths), this helps (Huang et al., 2007b).
$X^{\prime}=\left\{x^{\prime}\right\}$ leads to a local sample weighting scheme.

Application 4: Measure estimation and dataset squashing

Given a sample X, minimize

$$
\|\mu(X)-\mu(p)\|^{2}
$$

over a convex combination of measures p_{i},

$$
p=\sum_{i} \alpha_{i} p_{i}, \quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i}=1
$$

This can be written as a convex QP with objective function

$$
\|\mu(X)-\mu(p)\|^{2}=\alpha^{\top} Q \alpha+1_{m}^{\top} K 1_{m}-2 \alpha^{\top} L 1_{m}
$$

where

$$
\begin{aligned}
L_{i j} & :=\mathbf{E}_{x \sim p_{i}}\left[k\left(x, x_{j}\right)\right] \\
Q_{i j} & :=\mathbf{E}_{x \sim p_{i}, x^{\prime} \sim p_{j}}\left[k\left(x, x^{\prime}\right)\right] \\
K_{i j} & =k\left(x_{i}, x_{j}\right) \\
1_{m} & :=(1 / m, \ldots, 1 / m)^{\top} \in \mathbb{R}^{m} .
\end{aligned}
$$

In practice, use

$$
\alpha^{\top}[Q+\lambda I] \alpha-2 \alpha^{\top} L 1_{m}
$$

Some cases where Q and L can be computed in closed form (Smola et al., 2007):

- Gaussian p_{i} and k (cf. Balakrishnan and Schonfeld (2006); Walder et al. (2007))
- X training set, Dirac measures $p_{i}=\delta_{x_{i}}$: dataset squashing, DuMouchel et al. (1999)
- X test set, Dirac measures $p_{i}=\delta_{y_{i}}$ centered on the training points Y : covariate shift correction Huang et al. (2007a)

Implicit Surface Fitting

Given a sampling of a surface

$$
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{m} \subset \mathbb{R}^{d}
$$

possibly with corresponding surface normals

$$
\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots \boldsymbol{n}_{m} \subset \mathbb{R}^{d}
$$

Construct a function f whose zero level approximates the surface

SVM Implicit Surface Approximation

Large Scale Example (Walder et al. 2006)

Left: Rendered model of Lucy, constructed from 14 million points with normals.
Middle: Each of the 364,982 basis function centres
Right: A planar slice that cuts the nose.

More Examples

"

Dragon 1: 440K points - decreasing regularisation

Interpolation in 4D

4D implicit. No data during red interval.

The Morphing Problem

Correspondence

Given a dense correspondence field (or warp), we can interpolate (and extrapolate) images, almost as in a linear space
(cf. Blanz \& Vetter, 1999)

Correspondence via Machine Learning (Schölkopf, Steinke, Blanz, 2005)

- Objects $\boldsymbol{O}_{\boldsymbol{1}}$ and \boldsymbol{O}_{2} living in X. The warp is a mapping

$$
\tau: X->X .
$$

- Given surface points x_{i} of the O_{1} and z_{i} of \boldsymbol{O}_{2}.
- If they are in correspondence, we have a training set $\left(x_{1}, z_{1}\right), \ldots$, $\left(x_{m}, z_{m}\right)$ of "landmark points" and can do regression.
- What if they are not in correspondence?
- Main idea: τ should be such that

O_{1} relative to x "looks like" O_{2} relative to $\tau(x)$

- Formalize this as a locational cost

$$
c\left(O_{1}, x, O_{2}, \tau(x)\right)
$$

Locational Cost Functions

feature functions $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ think of f_{1}, f_{2} as the signed distance functions of O_{1}, O_{2}.

1. $d\left(f_{1}(x), f_{2}(\tau(x))\right)^{2}$
2. $\sum_{i=0}^{\infty} \alpha_{i} d\left(\nabla^{i} f_{1}(x), \nabla^{i} f_{2}(\tau(x))\right)^{2}$
3. If Ψ is the feature map associated with a p.d. kernel on $(\mathcal{O} \times \mathcal{X}) \times(\mathcal{O} \times \mathcal{X})$.

$$
\left\|\Psi\left(O_{1}, x\right)-\Psi\left(O_{2}, \tau(x)\right)\right\|^{2}
$$

Optimization Problem

- Component functions: for $d=1, \ldots, D$,

$$
\tau_{d}(x)=x_{d}+\left\langle\mathbf{w}_{d}, \Phi(x)\right\rangle
$$

- Minimize

$$
\begin{aligned}
\frac{1}{2} \sum_{d=1}^{D}\left\|\mathbf{w}_{d}\right\|^{2} & +\lambda_{p} \sum_{i=1}^{m}\left\|\tau\left(x_{i}\right)-z_{i}\right\|^{2} \\
& +\lambda_{l o c} \int_{\mathcal{X}} c_{l o c}\left(O_{1}, x, O_{2}, \tau(x)\right) d \mu(x)
\end{aligned}
$$

- For $\lambda_{l o c}=0: D$ SVR problems with quadratic loss
- in the generic case, nonconvex

Toy Example

Signed distance

Object Morphing

(signed distance and normals, no landmark points, no color information)

Head Morphing

Steinke et al., NIPS 2006

with Dept. of Physiology, MPI for Biological Cybernetics

Bernhard Schölkopf, September 11, 2008

Walder et al., 2008

thank you for your attention

