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Abstract

If a charge is hit by a superstrong laser pulse, such as those that can be created
with state-of-the-art laser technology, it experiences an extreme acceleration causing
the motion of the charge to be strongly affected by its own emission of radiation.
In classical electrodynamics this effect can be taken into account by adding a new
force term (also called radiation reaction) to the equation of motion of the charge
in addition to the Lorentz force. Here we show how the radiation reaction force can
be used to control the deflection of a relativistic beam of electrons colliding head-
on with a plane-wave laser pulse as well as in the head-on and oblique incidence
collision with a tightly focused laser pulse. In addition, strong-field QED effects are
also considered by correcting the classical radiation reaction force with a quantum
factor, leading to a semiclassical treatment. All of this is done by performing analytic
calculations and by numerical integration with a fourth order Runge-Kutta method,
which is tested against the analytic result of the plane wave case.

Zusammenfassung

Wird eine Ladung von einem hochenergetischem Laserpuls getroffen, wie er mit mod-
ernster Lasertechnik erzeugt werden kann, erfährt sie eine extreme Beschleunigung,
so dass die Bewegung der Ladung durch ihre eigene Strahlungsemission stark beein-
flusst wird. In der klassischen Elektrodynamik kann dieser Effekt berücksichtigt wer-
den, indem zusätzlich zur Lorentz-Kraft ein neuer Kraftterm (auch Strahlungsrück-
wirkung genannt) in die Bewegungsgleichung für die Ladung aufgenommen wird.
Hier wird gezeigt, wie die Strahlungsrückwirkungskraft genutzt werden kann, um
die Ablenkung eines relativistischen Elektronenstrahls zu kontrollieren, der frontal
mit einer ebenen Welle kollidiert, sowie frontal und senkrecht mit einem stark
fokussierten Laserpuls kollidiert. Darüber hinaus werden QED-Effekte berücksichtigt,
indem die klassische Strahlungsrückwirkungskraft mit einem Quantenfaktor kor-
rigiert wird, was zu einer semiklassischen Beschreibung führt. All dies geschieht
durch analytische Berechnungen und durch numerische Integration mit einer Runge-
Kutta-Methode vierter Ordnung, die mit dem analytischen Ergebnis der ebenen
Welle überprüft werden kann.
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1 Introduction

Laser technology has made significant progress in the last decades. Laser pulses with
femtosecond duration (10−15s) have reached a record intensity of 2·1022W/cm2 in the
laser pulse focal area [1]. Further, many facilities around the world are developing
10-PW-class laser systems such as the research infrastructure APOLLON [2] in
France and the Extreme-Light-Infrastructure (ELI) [3] which is designed to reach
an intensity of 1023 − 1024W/cm2. The applications of the experimental research
available at these scales range from testing fundamental physics to life sciences. A
fundamental understanding of the forces that dominate physics in this superstrong
field regime is therefore essential.

An electron hit by this kind of laser pulse experiences extremely high accelerations
and becomes ultrarelativistic within one laser period. As every accelerated charge
emits electromagnetic radiation, one can expect the electron’s motion to be strongly
influenced by energy loss due to radiation, leading the electron to be influenced by
its own radiation. This effect needs to be considered in the equation of motion of
the particle. In classical electrodynamics, this is referred to as the radiation reaction
(RR) force. The typical equation of motion for a non-relativistic particle with charge
q and mass mq considering only the Lorentz force is (in Gaussian units)

dp
dt

= FLorentz = q
(
E +

v
c
×B

)
, (1.1)

where v = p/mq is the particle’s velocity, c ≈ 3 · 108m/s is the speed of light and
E,B are the electromagnetic fields, respectively. The RR force can be introduced
as an additional term resulting in

ṗ = FLorentz + FRR. (1.2)

An intuitive way to understand the additional RR force term has been shown by
Jackson [4]. He derived the RR force term by identifying the energy radiated away
according to Larmor’s formula in a given time interval with the work acting on the
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1.1. The Lorentz-Abraham-Dirac equation

particle due to the RR force during that interval.

Elost =

∫ t1

t0

PLarmor dt =

∫ t1

t0

2

3

q2

c3

(
dv
dt

)2

dt ≡
∫ t1

t0

FRR · v dt. (1.3)

After partial integration and with the condition that v· dv
dt

vanishes at the boundaries
of the chosen time interval one can identify the RR-force by

FRR =
2

3

q2

c3
d2v
dt2

. (1.4)

From the theoretical point of view, the problem of radiation reaction has been
studied long before the access to current high energetic setups, even before the
realisation of lasers. The formula (1.4) shown here has already been derived by
Abraham and Lorentz in 1905 [5]. It is important to note that it depends on the
derivative of the acceleration. This leads to several problems, for example, even with
no external field, the equation (1.2) has a solution that exponentially accelerates the
charge [4] [6].

1.1 The Lorentz-Abraham-Dirac equation

As the RR force only becomes relevant at velocities close to the speed of light, it
is necessary to have a relativistic generalisation of the force (1.4). This has been
achieved by P. Dirac in 1938 [7] and is called the Lorentz-Abraham-Dirac (LAD)
equation

mq
duµ

ds
=
q

c
F µνuν +

2

3

q2

c3

(
d2uµ

ds2
+
duν

ds

duν
ds

uµ
)
, (1.5)

where F µν(x) is the electromagnetic field tensor of the external field (without the
self-induced field), uµ = dxµ/ds = (γ, γv/c) is the four velocity and s is the proper
time. From here on Greek indices denote four vectors with µ, ν, ... = {0, 1, 2, 3} and
the Einstein notation for summation over same indices is used. The first term on
the right hand side of the equation expresses the Lorentz force, while the other one
describes the interaction of the particle with its own radiation. The additional term
in the latter proportional to uµ can be understood intuitively by demanding that
for any four force fµ the condition uµfµ = 0 must be satisfied which is valid for the
following

uµ

(
d2uµ

ds2
− uµuν

d2uν

ds2

)
= uµ

d2uµ

ds2
− uµuµ︸︷︷︸

=1

uν
d2uν

ds2
= 0, (1.6)
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1.2. The Landau-Lifschitz equation

because of the "on the mass shell" condition uµuµ = 1. With the identity

d

ds

(
uν
duν

ds

)
= 0 =

duν

ds

duν
ds

+ uν
d2uν

ds2
, (1.7)

the reason for the structure of (1.5) becomes immediately clear. The problem of non-
physical solutions occurs in the LAD equation as well, and there is much discussion
about its validity [8] [9].

1.2 The Landau-Lifschitz equation

One way to solve the problem of non-physical solutions has been shown by L. Landau
and D. Lifschitz in 1975 by pertubative reduction [6]. They considered the self-force
to be small compared to the Lorentz force in the rest frame of the charge and because
of the Lorentz invariant nature of the LAD equation this assumption also holds true
in other frames of reference. Then one can treat the self-force as a pertubative effect
with the following zero order expression

duµ

ds
=

q

mqc
F µνuν , (1.8)

for the derivative of the four velocity. Since the RR force term will be approximated,
the expression will only be substituted into the right hand side of the LAD equation
(1.5) to get to the Landau-Lifschitz (LL) equation

duµ

ds
=

q

mqc
F µνuν +

2

3

(
q3

m2
qc

3
(∂αF

µν)uαuν +
q4

m3
qc

5
F µνFανu

α (1.9)

+
q4

m3
qc

5
(Fανuν)(Fαβu

β)uµ
)
.

According to Landau and Lifschitz, the case of the RR force being small compared
to the Lorentz force in the rest frame is a condition for the equation of motion
ṗ = FLorentz +FRR to be valid [6]. Using this equation for an electron in the frame
where v = 0 the derivative of the acceleration becomes

v̈ =
e

m
Ė +

e

mc
(v̇×B) =

e

m
Ė +

e2

m2c
(E×B), (1.10)

if the FRR term is neglected. Here e > 0 is defined as the absolute value of the
charge of an electron and m denotes the electron mass. For a periodic motion with
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1.3. Quantum effects

frequency ω = c/λ the temporal derivative of the field gives Ė ∝ ωE and therefore

FRR ∝
2e3

3mc2λ
E +

2e4

3m2c4
(E×B) �︸︷︷︸

condition

FLorentz = eE. (1.11)

Demanding that this force is small compared to the Lorentz force one finds from the
two terms of FRR in equation (1.11) the following two independent conditions:

a) The change in the field amplitude needs to happen on scales much larger than
the classical electron radius re = e2/mc2 ≈ 2.8 · 10−15m.

b) The field strengths involved must not exceed the value of a classical critical
field given by Fc = m2c4/e3 ≈ 1.8 · 1020 V

m
.

1.3 Quantum effects

Both of the two conditions above are satisfied in the classical framework because
of quantum effects becoming relevant before reaching the two limiting conditions
above. Approaching the point limit the Compton wavelength sets an earlier limit
with λC = h̄/mc ≈ 3.9 · 10−13m, while the critical field of quantum electrodynamics
(QED) with Fq = m2c3/eh̄ ≈ 1.3 ·1018 V

m
is smaller than Fc by a factor of α ≈ 1/137.

Quantum effects are observations that cannot be explained by classical electrody-
namics but follow directly from the QED, such as the spin force, pair production
and the stochasticity of photon emission. The theory of QED has been developed
in the 1940s and treats charged point particles as excitations in a field with quan-
tised energy and momentum [10]. The LAD equation and the LL equation both
are purely classical so it is important to have an estimation of their validity with
increasing quantum effects. The quantum nonlinearity parameter

χ ≡ |e|h̄
m3c4

√
|F µνpν |2 =

|e|h̄
m3c4

√
(E · p)2 − (E · γmc+ B× p)2, (1.12)

expresses the strength of quantum effects and one finds the LL equation to be valid
if the condition χ � 1 holds true [11]. Here h̄ = h/2π ≈ 1.055 · 10−34Js is the
reduced Planck constant.

The only quantum correction that is considered in this thesis is to account for the
reduced emission of radiation and is implemented by a weighting factor multiplying
the RR term in the LL equation (1.9) (see section 2.33 for more details).
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1.4. Structure of this thesis

1.4 Structure of this thesis

From equation (1.11) it becomes clear that the strength of the RR force depends
mainly on the charge to mass ratio, therefore electrons are most affected by this force.
Their dynamics under the influence of superstrong laser pulses will be investigated.
At first the solution of the LL equation for a plane wave will be derived analytically,
similar to Reference [12]. In addition, this will be done again for a quantum corrected
LL equation. In the next step, the results will be used to test a numerical integrator
and validate its functionality for a plane wave. This will also be done in the case
of a relativistic electron beam instead of a single electron, following the ideas put
forward in Reference [13]. From there, knowing that the integrator works properly,
it will be used to investigate the influence of a tightly focused laser pulse, where an
analytic solution is unavailable.
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2 Plane-wave laser pulse

From here on, natural units h̄ = c = 1 are used, the fine-structure constant is taken
as α = e2/4π ≈ 1/137. The space-time coordinates are denoted as xµ = (ct,x) and
the Minkowski metric with ηµν = diag(1,−1,−1,−1) is used. With this metric, the
square of a four vector is defined as a2 ≡ ηµνa

µaν = aµaµ.

2.1 Classical solution of the LL equation for a plane

wave

In this section the solution of the Landau-Lifschitz equation for a plane wave is
presented similar to Reference [12] but in more detail.

A plane wave that is propagating in n direction can be completely described as a
function depending only on the phase φ = nµx

µ with nµ = (1,n) and n2 = 1. The
aim in the following calculations is to rewrite the LL equation (1.9) in dependence
of the phase as it is easier to solve that way.

Expressing the LL equation by the phase The four-vector potential of a plane
wave with arbitrary polarization is given by

Aµ = aµ1Ψ1(φ) + aµ2Ψ2(φ). (2.1)

with the constant amplitude four-vector aµj that is chosen so that aµi aj,µ = a2i δij and
nµa

µ
i = 0 is satisfied for i, j = {1, 2}. The shape of the pulse will be determined by

the arbitrary scalar functions Ψi(φ) depending only on the phase φ.
The electromagnetic field tensor F µν(φ) = ∂µAν(φ)− ∂νAµ(φ) then is

F µν(φ) = ∂µ(aν1Ψ1(φ) + aν2Ψ2(φ))− ∂ν(aµ1Ψ1(φ) + aµ2Ψ2(φ)) (2.2)

= fµν1 Ψ′1(φ) + fµν2 Ψ′2(φ), (2.3)

where the new amplitude tensor fµνj ≡ nµaνj−nνa
µ
j = constant has been defined and

where a prime denotes derivation by φ. It is clear that nµfµνj = 0 because n2 = 0.
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2.1. Classical solution of the LL equation for a plane wave

The following identity will become important later

fi,µνf
βν
j = (nµai,ν − nνai,µ)(nβaνj − nνa

β
j ) = a2i δijnµn

β, (2.4)

In order to express the LL equation (1.9) in terms of the phase, equation (1.9) is
multiplied by nµ which gives

m
duµ

ds
· nµ = − eF µνuνnµ︸ ︷︷ ︸

=0

−2

3
α

(
e

m
(∂αF

µν)uαuνnµ︸ ︷︷ ︸
=0

+
e2

m2
F µνFανu

αnµ︸ ︷︷ ︸
=0

− e2

m2
(Fανuν)(Fαβu

β)uµnµ

)
(2.5)

=
e2

m2

2

3
α

(
(fαν1 Ψ′1 + fαν2 Ψ′2)uν(f1,αβΨ′1 + f2,αβΨ′2)u

βuµnµ

)
, (2.6)

because of the orthogonality relation nµF
µν = 0. With the identity (2.4) shown

above this expression simplifies to

m
duµ

ds
· nµ =

e2

m2

2

3
α
(
a21 n

νnβ(Ψ′1)
2 + a22 n

νnβ(Ψ′2)
2
)
uνu

βuµnµ (2.7)

= −2

3
α
(
ξ21(Ψ′1)

2 + ξ22(Ψ′2)
2
)(dφ

ds

)3

= m
d2φ

ds2
. (2.8)

Here the ξi have been defined as

ξ2i ≡ −
a2i e

2

m2
, (2.9)

with i = {1, 2}. Multiplying equation (2.8) by d2s/dφ2 and using relation (5.22 in
appendix) one finds a rather simple ordinary equation for the second derivative of
the proper time

m
d2s

dφ2
=

2

3
α
(
ξ21(Ψ′1)

2 + ξ22(Ψ′2)
2
)
. (2.10)

Integrating this equation by φ with the definition of ρ(φ) ≡ nµuµ(φ), also called the
Doppler factor, gives

m

∫ φ

φ0

d2s

dΦ2
dΦ = m

(
1

ρ(φ)
− 1

ρ0

)
=

2

3
α

∫ φ

φ0

(
ξ21(Ψ′1(Φ))2 + ξ22(Ψ′2(Φ))2

)
dΦ. (2.11)

With the initial velocity uµ0 ≡ uµ(φ0) and the corresponding initial Doppler factor
ρ0 ≡ nµu0,µ this equation simplifies to

ρ(φ) =
ρ0
h(φ)

, (2.12)
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2.1. Classical solution of the LL equation for a plane wave

with

h(φ) ≡ 1 +
2

3
α
ρ0
m

∫ φ

φ0

(
ξ21(Ψ′1(Φ))2 + ξ22(Ψ′2(Φ))2

)
dΦ. (2.13)

This h(φ) is used to express the reduced four-velocity as ũµ ≡ h(φ)uµ(φ). Together
with the electromagnetic field tensor of a plane wave the LL equation (1.9) can be
expressed in a more simple way. The left-hand side of the LL equation will be

duµ(φ)

ds
=
dφ

ds

d

dφ

(
ũµ(φ)

h(φ)

)
= ρ(φ)

(
−ũµdh

dφ

1

h2
+

1

h

dũµ

dφ

)
, (2.14)

while the right-hand side will give

m
duµ(φ)

ds
= −eF µν ũν

h(φ)
− 2

3
α

(
e

m

∂φ

∂xα
∂F µν

∂φ
uα

ũν
h(φ)

+
e2

m2
F µνFανu

α

− e2

m2
(Fανuν)(Fαβu

β)
ũµ

h(φ)

)
(2.15)

= −eF µν ũν
h(φ)

− 2

3
α

(
e

m
nαF

′µνuα
ũν
h(φ)

+
e2

m2

(
a21(Ψ

′
1)

2

+ a22(Ψ
′
2)

2
)
nµnαu

α − e2

m2

(
a21(Ψ

′
1)

2 + a22(Ψ
′
2)

2
)
nνnβuνu

β ũµ

h(φ)

)
(2.16)

= −eF µν ũν
h(φ)

− 2

3
α

(
e

m
F ′µνρ(φ)

ũν
h(φ)

−
(
ξ21(Ψ′1)

2 + ξ22(Ψ′2)
2
)
nµρ(φ)

+
(
ξ21(Ψ′1)

2 + ξ22(Ψ′2)
2
)
ρ2(φ)

ũµ

h(φ)

)
. (2.17)

By comparing the first term of equation (2.14) to the last term in (2.17) one can
see that these terms cancel out. Using the relation ρ(φ) = ρ0/h(φ) the LL equation
becomes

m
dũµ(φ)

dφ
= − ũν

ρ0

(
h(φ)eF µν +

2

3
α
e

m
F ′µνρ0

)
+ nµ

2

3
αh(φ)

(
ξ21(Ψ′1)

2 + ξ22(Ψ′2)
2
)
.

(2.18)

Solving the LL equation The differential equation (2.18) with the only parame-
ter being the phase φ can be solved by Picard iteration (see 5.1 in appendix for more
details). The solution obtained by the iteration is for ũµ, so for the four-velocity uµ

one finds instead

uµ(φ) =
1

h(φ)

(
uµ0 −

e

ρ0m
(fµν1 I1(φ) + fµν2 I2(φ))u0,ν +

1

2ρ0
(h2(φ)− 1)nµ

+
1

2ρ0

(
ξ21I

2
1 (φ) + ξ22I

2
2 (φ)

)
nµ
)
. (2.19)
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2.2. Semiclassical solution of the LL equation for a plane wave

The following integral has been defined

Ij(φ) ≡
∫ φ

φ0

(
h(Φ)Ψ′j(Φ) +

2

3
α
ρ0
m

Ψ′′j (Φ)

)
dΦ. (2.20)

The space-time coordinates depending on the phase are then given by

xµ(φ) = xµ0 +
1

ρ0

∫ φ

φ0

h(Φ)uµ(Φ) dΦ, (2.21)

with xµ(φ0) ≡ xµ0 and because of the following relation:

xµ − xµ0 =

∫ τ

τ0

dxµ

ds
ds =

∫ φ

φ0

dxµ

ds

ds

dΦ
dΦ =

∫ φ

φ0

uµ(Φ)
h(Φ)

ρ0
dΦ. (2.22)

By looking at equation (2.19) one notices that the only contribution of the derivative
of the fields term in the LL equation (1.9) happens to be in the integral (2.20). It
can also be seen that it averages out for periodic Ψj as all other factors remain
constant. Later it will be shown that the term can even be neglected completely.

2.2 Semiclassical solution of the LL equation for a

plane wave

Classical electrodynamics does not account for the fact that an electron cannot
produce photons exceeding its kinetic energy. It becomes apparent that the classical
solution overestimates the radiation produced by the moving charge, and that the
equations need to be changed to implement this quantum cut-off. Therefore one
introduces a scalar function

g(χ) ≡ Iq
Ic

=
1

Ic

e2m2

3
√

3π

∫ ∞
0

u(4u2 + 5u+ 4)

(1 + u)4
K2/3

(
2u

3χ

)
du, (2.23)

with Iq being the quantum radiation intensity, Ic = 2e2m2χ2/3 the classical radiation
intensity and K2/3(·) the modified Bessel function of order 2/3 [14]. The quantum
parameter χ is defined as

χ =
|e|
m3

√
|F µνpν |2, (2.24)

and represents the strength of quantum effects. For χ � 1 quantum effects can be
neglected in the LL equation while for χ ≈ 1 they become dominant [11]. A good
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2.2. Semiclassical solution of the LL equation for a plane wave

approximation for this expression (2.23) is presented in reference [14] and is

g(χ) ≈
(
1 + 4.8(1 + χ) ln(1.7χ) + 2.44χ2

)− 2
3 , (2.25)

which approximates equation (2.23) with an accuracy of better than 2% for all
quantum parameters [14] [15].

This function will only be relevant for the radiation reaction terms, as these terms
reflect the interaction of the particle with its own radiation. The new LAD equation
will look like this:

m
duµ

ds
= −eF µνuν + g(χ)

2

3
α

(
d2uµ

ds2
+
duν

ds

duν
ds

uµ
)
. (2.26)

The term containing the derivatives of the field in the LL equation (1.9) will be
neglected. The reason for this will be discussed in the section below. The resulting
equation is

m
duµ

ds
= −eF µνuν − g(χ)

2

3
α

(
e2

m2
F µνFανu

α − e2

m2
(Fανuν)(Fαβu

β)uµ
)
. (2.27)

It is important to note that g(φ) = g
(
F µν(φ), pν(φ)

)
is a function of the fields and

the momentum, while both of these quantities depend on the phase as well. However,
assuming the change in momentum to be small, the function can been treated as an
external-known function of φ (like F µν) and can be set constant in the iteration for
small phase steps. Certainly, this leads to expressions that cannot be solved exactly
but can only be iterated. The term containing the g(χ) function is proportional to
F 2, so it can be absorbed into the definition of the electromagnetic field tensor

F̃ µν(φ) ≡ fµν1 Ψ̃′1(φ) + fµν2 Ψ̃′2(φ) ≡ fµν1

√
g(φ)Ψ′1(φ) + fµν2

√
g(φ)Ψ′2(φ). (2.28)

With this definition the calculations can be done equivalently to section 2.1, with
respect to F̃ µν(φ) and Ψ̃′j(φ) instead of F µν(φ) and Ψ′j(φ) up to equation (2.15).
One finds instead

m
duµ(φ)

ds
= −e F̃ µν√

g(φ)

ũν

h̃(φ)
−−2

3
α

((
ξ21 (̃Ψ′1)

2 + ξ22(Ψ̃′2)
2
)
nµρ(φ)

+
(
ξ21(Ψ̃′1)

2 + ξ22(Ψ̃′2)
2
)
ρ2(φ)

ũµ

h̃(φ)

)
, (2.29)
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2.2. Semiclassical solution of the LL equation for a plane wave

with the h̃(φ) in this case being

h̃(φ) = 1 +
2

3
α
ρ0
m

∫ φ

φ0

g(φ)
(
ξ21(Ψ′1(Φ))2 + ξ22(Ψ′2(Φ))2

)
dΦ. (2.30)

It follows a new differential equation for ũµ(φ) = h̃(φ)uµ(φ), namely

m
dũµ(φ)

dφ
= − ũν

ρ0
h̃(φ)e

F̃ µν√
g(φ)

+ nµ
2

3
αh̃(φ)

(
ξ21(Ψ̃′1)

2 + ξ22(Ψ̃′2)
2
)
. (2.31)

Again, the solution will be obtained using the Picard iteration (see 5.2 in appendix
for more details). The following integral has been defined

Ĩj(φ) ≡
∫ φ

φ0

h̃(Φ)
Ψ̃′j(Φ)√
g(φ)

dΦ =

∫ φ

φ0

h̃(Φ)Ψ′j(Φ) dΦ. (2.32)

The solution for the four velocity in the semiclassical case reads

uµ(φ) =
1

h̃(φ)

(
uµ0 −

e

ρ0m
(fµν1 Ĩ1(φ) + fµν2 Ĩ2(φ))u0,ν +

1

2ρ0
(h̃2(φ)− 1)nµ

+
1

2ρ0

(
ξ21 Ĩ

2
1 (φ) + ξ22 Ĩ

2
2 (φ)

)
nµ
)
, (2.33)

and therefore for the space-time coordinates

xµ(φ) = xµ0 +
1

ρ0

∫ φ

φ0

h̃(Φ)uµ(Φ) dΦ. (2.34)

With equations (2.33) and (2.34) one finds the momentum and position given by
the two integrals h and I. Instead of deriving an exact solution of the integrals as
can be done in the classical case they will be solved by iteration. At a small phase
step ∆φ the momentum will be calculated by equation (2.33) while the position can
be calculated by (2.34) but with the momentum in the equations replaced with the
initial momentum. From there, the quantities can be calculated at the next step
with the momentum and the position from the previous step.

The same kind of iteration has been done in the classical case for testing and
agreement has been found to the purely analytic solution from section 2.1. As can
be seen in section 2.7, the analytic values predicted by this iteration match the ones
of the numerical simulation.
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2.3. Physical application

2.3 Physical application

The following sections are closely related to the original idea put forward in Ref-
erence [13]. A plane-wave pulse that is propagating in z-direction with a linear
polarisation in x-direction will be chosen. With these conditions the only non-zero
field components are Ex and By.
The Gaussian unit system introduced above will no longer be used because with

the wavelength λ of the laser everything can be expressed in dimensionless quantities.
Therefore in the following calculations and simulations time is expressed in units of
ω−1 ≡ λ/2πc, length in units of cω−1, momentum in units of mc and fields in units
of mωc/|e|.
With that the LL equation (1.9) gives for the spatial momentum components

expressed in terms of the E- and B-field

dp
dt

=− (E + v×B)− 4πre
3λ

(
γ

[(
∂

∂t
+ v · ∇

)
E + v×

(
∂

∂t
+ v · ∇

)
B
]

−
[
(E + v×B)×B + (v · E)E

]
+ γ2

[
(E + v×B)2 − (v · E)2

]
v

)
, (2.35)

where the constant re = e2/mc2 denotes the classical electron radius.
With a wavelength in the optical regime, the constant factor that multiplies the

RR force is of the order of 10−8 and it becomes clear that intense fields with nor-
malised laser amplitude ξ � 1 and ultrarelativistic particles with γ � 1 are nec-
essary for the RR force to become noticeable. The last term (γ2 term) is roughly
at a scale of γ2ξ2 and is therefore the dominating term in the RR force. Because it
describes a loss of energy that depends mainly on the velocity, it is referred to as
the friction term [16]. Analysing the term containing the derivatives of the fields,
it is approximately γξ smaller than the dominating term. Finding this behaviour in
addition to the discovery in section 2.1, where it has been shown that the derivative
term’s contribution averages out for periodic field pulses, one can therefore neglect
it completely.

It could be argued that the term without any γ can be neglected as well as its
contribution is by a factor of γ2 smaller than the dominating term, but it will be
kept to satisfy the "on the mass shell" condition uµuµ = 1. This can be seen by
multiplying the LL equation (1.9) by uµ and taking into account that F µν is anti-
symmetric under permutation of the indices.
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2.4. Analytics of a single electron

2.4 Analytics of a single electron

For a better physical understanding of the analytic solution it is helpful to express
h(φ) and Ij(φ) in terms of the fields. With the identity

(E×B)i = −1

2
εijkF

0jεklmFlm = ni
(
a21Ψ

′2
1 + a22Ψ

′2
2

)
, (2.36)

it is clear that h(φ) can be rewritten in the classical case as

h(φ) = 1 + rRρ0

∫ φ

φ0

(
E(Φ)×B(Φ)

)
n dΦ, (2.37)

where the constants have been absorbed into the constant rR with

rR ≡
4πe2

3mc2λ
. (2.38)

One can define the vector equation for the integrals derived in section 2.1 as

I(φ) ≡ −
∫ φ

φ0

h(Φ)E(Φ) dΦ. (2.39)

The equation for the momentum can then be found from the three velocity compo-
nents of equation (2.19)

p =
p0 + I
h

+
2I · p0 + (h2 − 1) + I2

2ρ0h
n. (2.40)

After the laser-electron interaction, the electron the momentum will not change
anymore and therefore the change in momentum caused by the laser pulse can be
calculated by only considering the final values of If ≡ I(φf ) and hf ≡ h(φf ).

For an electron that is counter propagating to a plane-wave pulse, the transverse
momentum gain will be happening in the x-direction as the only non zero compo-
nents of the electric field are Ex = By. With an initial momentum of p0 = ez · pz,0,
where pz,0 < 0, it can be expressed by

px,f =
Ix,f
hf

=
−rRρ0∆
hf

with ∆ ≡
∫ φf

φ0

dφEx(φ)

∫ φ

φ0

dΦE2
x(Φ). (2.41)

For the momentum in z-direction one finds

pz,f =
pz,0
hf

+
h2f − 1 + r2Rρ

2
0∆

2

2ρ0hf
. (2.42)
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2.4. Analytics of a single electron

An approximate expression for ρ0 is

ρ0 = nµu
µ
0 = γ0 − px,0 =

√
1 + |p0|2 − px,0 ≈ 2 · |p0|, (2.43)

where −px,0 = |p0| � 1 has been used. Neglecting the h2f − 1 term in equation
(2.42), because ρ0 � hf , the final deflection angle ζ in x-direction relative to the
z-axis is

tan(ζ) = −px,f
pz,f
≈ rRρ0∆

pz,0 + r2Rρ0∆
2/2
≈ −2rR∆

1− r2R∆2
, (2.44)

for pz,f < 0. It can be noticed that the deflection does not depend on the initial
momentum, giving this counter-propagating configuration a mirror-like behaviour.

Quasi-monochromatic pulse For a quasi-monochromatic pulse with finite length
the x-component of the electric field becomes

E1(φ) = G(φ)ξ1 sin(φ+ θ1) = sin2

(
φ

2N

)
ξ1 sin(φ+ θ1) (2.45)

= −ξ1
1

4

(
e
iφ
N + e

−iφ
N − 2

) 1

2i

(
ei(φ+θ1) − e−i(φ+θ1)

)
, (2.46)

with the amplitude ξ1, the initial phase θ1 and the pulse shape envelope defined by
G(φ) = sin2

(
φ
2N

)
in the range (0, φf ) and G(φ) = 0 otherwise. N is the number of

cycles of the pulse with N = φf/2π. Representations of these kinds of pulses can be
seen in the figures 2.1a and 2.1c along with their Fourier transforms 2.1b and 2.1d.

The integral ∆N as defined by equation (2.41) then will be

∆N =

∫ 2πN

0

E1(φ) dφ

∫ φ

0

E2
1(ϑ) dϑ. (2.47)

Beginning with the inner integration term one finds that

E2
1(ϑ) = ξ21 sin4(

ϑ

2N
) sin2(ϑ+ θ1) (2.48)

= − ξ
2
1

64

(
e

2iϑ
N + e

−2iϑ
N + 6− 4e

iϑ
N − 4e

−iϑ
N

)
·
(
e2i(ϑ+θ1) + e−2i(ϑ+θ1) − 2

)
.

Integrating the exponential terms in this expression for E2(ϑ) adds a multiplication
with a constant factor and some additive constants. With equation (5.25 in ap-
pendix) many of these terms cancel out after the second integration over full cycles.
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(d) Fourier transform for N = 2

Figure 2.1: Pulse shape and Fourier transform of the finite monochromatic laser
field E1(φ). The parameters have been set to ξ1 = 1 and θ1 = 0.

For N ≥ 4 the resulting integral can be solved by partial integration

∆N = ξ31

∫ 2πN

0

sin2(
φ

2N
) sin(φ+ θ1) dφ

∫ φ

0

3

16
dϑ (2.49)

=
3

16
ξ31π cos(θ1)

N

N2 − 1
. (2.50)

The transverse momentum gain is shown to be sensitive regarding the laser ampli-
tude and the initial phase but will approach zero for increasing N .
For short pulses of a monochromatic wave, meaning N = {2, 3}, the integral can

be solved exactly and ∆ will not vanish. In a few-cycle pulse many frequencies are
present, as one can see in the Fourier transform of the pulses, and that the wave
is not purely monochromatic (therefore the name quasi-monochromatic). For N
approaching infinity the Fourier transform sharpens and converges to a Dirac delta
distribution. For short N the numerical values of the integral are

∆2 =
35

96
πξ31 cos(θ1), ∆3 =

9

512
πξ31 cos(θ1), (2.51)
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2.4. Analytics of a single electron

and therefore the highest deflection can be expected for N = 2 cycles.
N = 1 is physically meaningless because the pulse would have a non-propagating

component. This becomes apparent in the integral over the field:∫ 2πN

0

E1(φ,N) dφ = 0, (2.52)

which only holds true for N > 1.

Two-frequency pulse Now a second harmonic frequency with amplitude ξ2 and
initial phase θ2 will be added by linear superposition. The field will change to

E2(φ) = G(φ) (ξ1 sin(φ+ θ1) + ξ2 sin(2φ+ θ2)) , (2.53)

with the same envelope function as before. Again, the pulse shape can be seen
qualitatively for N = 10 cycles in figure 2.2a and the Fourier transform in figure
2.2b.
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Figure 2.2: Pulse shape and fourier transform of the laser field with second har-
monic frequency. The parameters have been set to ξi = 1 and θi = 0.

Expressed as exponential functions, similar to above, the integrand of the inner
integral with equation (5.26 in appendix) will become

E2
2(φ) =− 1

16

(
e

2iϑ
N + e

−2iϑ
N + 6− 4e

iϑ
N − 4e

−iϑ
N

)
(2.54)

· 1

4

[
ξ21
(
e2i(ϑ+θ1) + e−2i(ϑ+θ1) − 2

)
+ ξ22

(
e2i(2ϑ+θ2) + e−2i(2ϑ+θ2) − 2

)
+ 2ξ1ξ2

(
ei(3ϑ+θ1+θ2) + e−i(3ϑ+θ1+θ2) − ei(ϑ−θ1+θ2) − e−i(ϑ−θ1+θ2)

) ]
.

Terms that multiply to constants in E2
2 will be neglected because they contribute
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2.4. Analytics of a single electron

with a factor of 1
N

for large N after integration. With equation (5.25 in appendix)
the terms that will go to zero can easily be identified.

Therefore, for two frequencies the integral ∆ after transforming back to the
trigonometric functions reads

∆N ≈ −
∫ 2πN

0

sin2(
φ

2N
)

[
ξ1 sin(φ+ θ1) ·

∫ φ

0

sin4(
ϑ

2N
) (−ξ1ξ2 cos(ϑ− θ1 + θ2)) dϑ

+ ξ2 sin(2φ+ θ2)

∫ φ

0

dϑ sin4(
ϑ

2N
)
1

2

(
ξ21 cos(2ϑ+ 2θ1)

) ]
dφ. (2.55)

These integrals can be solved analytically with equation (5.27 in appendix) and the
following sum for large N remains:

∆N ≈
5

16
ξ21ξ2πN cos(2θ1 − θ2)−

5

16
· 1

4
ξ21ξ2πN cos(2θ1 − θ2) (2.56)

≈ 15

64
Nπξ21ξ2 cos(2θ1 − θ2). (2.57)

It can be noticed that the value of ∆N increases linearly with N while for the one
frequency case it averages out for increasing N . It appears to have a resonant initial
phase relation as one can see in the cosine term in ∆N .

Many-frequency pulse For z ≥ 2 harmonic frequencies the square of the electric
field will be

E2
z (φ) = sin4(

φ

2N
)

[ z∑
i=1

ξ2i sin2(iφ+ θi) +

j=z∑
i<j

2ξiξj sin(iφ+ θi) sin(jφ+ θj)

]
,

(2.58)

with i, j being positive integer values.
By switching to the exponential from of the sine functions it becomes apparent

that the terms that will not become zero or contribute with a factor of 1
N

after being
integrated in ∆ can, after changing back to trigonometric functions, be expressed
by

E2
z (φ) ≈

[
−

i≤ z
2∑

i=1

1

2
ξ2i cos

(
2(iφ+ θi)

)
−

j+i≤z∑
i<j

ξiξjξj+i cos ((j + i)φ+ θi + θj)

+

j=z∑
i<j

ξiξjξj−i cos
(
(j − i)φ+ θj − θi

)]
sin4(

φ

2N
). (2.59)

With equation (5.27 in appendix) the solution of the entire integral for ∆ is easy
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2.5. The numerical integrator

to obtain. Further, for z ≥ 3 there will always be three terms with the same ξ
combination and the same constant cosine argument. This leads to the following
equation, assuming N to be large:

∆N ≈
i≤ z

2∑
i=1

ξ2i ξ2iNπ cos
(
2θi − θ2i)

)15

64
· 1

i
(2.60)

+

j+i≤z∑
i<j

ξiξjξj+iNπ cos
(
θi + θj − θi+j

) 5

16

(
i2 + j2 + ij

ij(i+ j)

)
.

The value is linearly increasing with N but has differently weighted terms with
different resonance conditions to the initial phase configuration. As both sums in
∆N are with positive sign, a maximum resonant configuration is given by θi = 0.
In the following it will be focused on the two frequency case mentioned above, as
the qualitative behaviour of the transverse momentum gain is the same as for many
harmonic frequencies.

2.5 The numerical integrator

The LL equation (1.9) is a differential equation of second order and therefore it can
be solved by numerical integration. For the LL equation without the derivative term
and in the unit system introduced above, one finds

duµ

ds
= −F µνuν − rR

(
F µνFανu

α − (Fανuν)(Fαβu
β)uµ

)
. (2.61)

With the wavelength of a Ti:sapphire laser λ = 0.8µm the numerical value for the
constant rR is approximately

rR =
4πe2

3mc2λ
≈ 1.47 · 10−8. (2.62)

Together with the differential equation for the position

dxµ

ds
=

pµ

mγ
with γ =

√
1 + p2, (2.63)

the system of equations can be used by a fourth order Runge-Kutta integrator to get
numerical results for the momentum and position coordinates. Only the three spatial
components (referred to by Latin letters) of equations (2.61) and (2.63) need to be
considered. The two sets of equations are coupled; the derivative of the momenta
pi(t) can be calculated by equation (2.61) in the form of ṗi = fi(p,x, t) but depends
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2.6. Numerical analysis of a single electron

on the position xi(t) while the derivative of the position coordinates ẋi = gi(p, t)
depends on the momenta. The two sets of equations can be written with the help
of the 6-dimensional vector a as follows

a(t) ≡

(
p(t)

x(t)

)
and therefore ȧ(t) =

(
(fi)

(gi)

)
≡ B(a(t), t). (2.64)

With the 7 initial values tini and a(tini) the time evolution can be calculated dis-
cretely for time steps with size ∆t and is approximated by the recursive equation

a(t0 + ∆t) = a0 + ∆t ·m ≡ a0 + ∆t · m1 + 2m2 + 2m3 + m4

6
, (2.65)

where t0 denotes the current time step and a0 ≡ a(t0) the vector at that time step.
The values mi depend on each other as follows:

m1 ≡B(a0, t0), (2.66)

m2 ≡B(a0 + m1
∆t

2
, t0 +

∆t

2
), (2.67)

m3 ≡B(a0 + m2
∆t

2
, t0 +

∆t

2
), (2.68)

m4 ≡B(a0 + m3∆t, t0 + ∆t). (2.69)

With the Runge-Kutta integrator the momentum and the position coordinates are
calculated simultaneously and are stored at every timestep. The figures that will be
shown in the following such as 2.3 and 2.4 can be interpreted as the trajectory that
the particle describes in the chosen frame.

This kind of algorithm is more precise than a forward Euler scheme because it
averages four slopes of different points near the current time step instead of taking
just one. To decrease the runtime of the simulation a balanced time step size ∆t

needs to be chosen. It has been found that the integrator gives precise results for
∆t = 0.03 (in the unit system introduced above) and this value will be used for all
iterations in the following.

2.6 Numerical analysis of a single electron

Infinite laser pulse To investigate the influence of the radiation reaction (RR)
force, a purely monochromatic pulse with infinite length is considered. The x-
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2.6. Numerical analysis of a single electron

component of the electric field is chosen as

Einf (φ) = a0 cos(φ), (2.70)

where a0 ≡ |e| · |E|/mωc is the normalised laser amplitude.
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Figure 2.3: Iterated position of an electron in the average rest frame under influence
of a purely monochromatic laser field with a0 = 100 and initial electron momentum
of p0 = −ez · 35.35180406mc

In figure 2.3 one can see the position of a counter-propagating electron with an
initial momentum of p0 ≈ −ez · 35.4mc in z-direction interacting with a monochro-
matic laser field with a0 = 100. This represents the so called average rest frame,
meaning the frame where the electron stays in the figure of eight if there was no RR
force.
With RR force included, the eight slowly opens and the electron receives acceler-

ation in the direction of the laser pulse propagation. This results in an energy loss
and is one reason why the RR force is often referred to as a damping or friction
force.
At this point it may be mentioned that the chosen value for a0 corresponds to a

very high field strength. For a plane wave with linear polarisation the intensity I
of the field follows the proportionality I ∝ E2. Therefore with the normalised laser
amplitude a0 = 100 and the wavelength of a Ti:sapphire laser λ = 0.8µm the peak
intensity is I ≈ 2.16 · 1022W/cm2.

Finite laser pulse Infinite laser pulses are a non physical assumption so to get
closer to reality the pulse will be limited to a phase interval (φ0, φf ) with Ei(φ) = 0
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2.6. Numerical analysis of a single electron

outside the interval. For the finite pulse shapes used in section 2.4,

E1(φ) = sin2

(
φ

2N

)
ξ1 sin(φ+ θ1) (2.71)

E2(φ) = sin2

(
φ

2N

)(
ξ1 sin(φ+ θ1) + ξ2 sin(2φ+ θ2)

)
(2.72)

the evolution of the x,z-position and time-momentum frame give insight into the
behaviour of the electron. The result can be seen in the figures 2.4a-2.4d for the one
and two frequency pulses.
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Figure 2.4: Iterated quantities of equations (2.61 and 2.63) by the integrator for
the parameters N = 10, p0 = −ez · 150mc and θi = 0.

Without the radiation reaction force it becomes clear that in the position frames
2.4a and 2.4c the electron oscillates with the frequency of the electromagnetic field
and after the pulse continues to travel in the same direction as before. This is
validated by the transverse-momentum gain seen in figure 2.4b; it averages out.

With the RR force the transverse momentum does not average out and the
counter-propagating electron gets deflected. As N = 10 is a rather long pulse,
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2.6. Numerical analysis of a single electron

the x-momentum gain is low for the one frequency pulse and barely visible in 2.4a.
For the two frequency pulse, in comparison, the direction change is quite large and
can be seen in figure 2.4c. In figure 2.4d it can be recognised that with RR force
included the electron experiences net acceleration into the propagation direction of
the laser pulse.

The y-component of the momentum and the position does not provide interesting
information as it stays constant and will therefore be ignored in the following.

Testing the numerical integrator In order to test the numerical integrator the
final value of the momentum components iterated by the simulation are compared
to the analytic values that can be calculated with equations (2.41 and 2.42).
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(c) Final x-momentum with pulse E2
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Figure 2.5: Comparison of numeric to analytic value of momentum change for
different N ≥ 4 with an initial momentum of p0 = −ez · 150mc. The upper two
figures treat a one frequency pulse where the analytic equation is exact, the lower
ones treat the two frequency pulse where the analytic equation is asymptotic.

In the figures 2.5a and 2.5b one can see the result of that comparison for the
one frequency laser pulse (2.45). The prediction of the equations (2.41) and (2.42)
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2.7. Simulation of an electron beam

match the numerical iterated values exactly.
In figure 2.5c the comparison for the two frequency laser pulse (2.53) shows devi-

ations for small N . This is reasonable because the analytic formula for the momen-
tum gain in the two frequency case (2.57) is an approximate one for large N . In the
derivation some additive terms that evolve like 1/N have been neglected, resulting
in an underestimation of the absolute value by the analytic solution. As can be seen
in the figure, for rising N the analytical values become more accurate.

Figure 2.5d shows that the z-momentum does not deviate visibly from the predic-
tion. The term containing ∆ in equation (2.42) appears to be so small that it does
not matter that ∆ is an approximate value, it gets dominated by the other terms,
which are exact.

This behaviour has been predicted by the analytic calculations: For a one fre-
quency pulse the transverse momentum gain tends to zero for large N , while for the
two frequency pulse it increases with N .

2.7 Simulation of an electron beam

One-frequency pulse A beam of electrons that is counter-propagating to the
direction of the laser pulse is being considered. The interaction of the electrons with
each other will be neglected.

The initial momentum of the beam follows a Gaussian distribution centering
around p0 = −ez · 150mc with a standard deviation of σPz = 10mc and σPT = 1mc

in the transverse direction. Figure 2.6a shows a representation of this beam in
the x,z-momentum frame. The position follows a Gaussian distribution as well but
around zero with σ = 0.4µm in all directions.
Figure 2.6b shows the momentum distribution after a N = 2 cycle pulse where the

simulation considers only the Lorentz force induced by the laser pulse. As expected
no net change in momentum can be seen. The mean momentum in the simulation
can be calculated by

p =
1

n

n∑
k=1

(p)k, (2.73)

where n is the number of simulated electrons and (p)k is the momentum of a single
electron k.
In figure 2.6b the final momenta in z- and x-direction are pz ≈ −150mc and

px ≈ 0mc just as for the initial values where the index f denotes quantities after
being hit by the pulse. This has been done for varying numbers of cycles N and
initial phase configurations but the resulting plots look the same and the final mean

27



2.7. Simulation of an electron beam
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(a) Initial electron distribution in the
x,z-momentum frame

pz = −150, px = 0.0, ζ = 0.0mrad
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(b) final momentum after N = 2 cycles
with cos(θ1) = 1, Lorentz force

pz = −150, px = −0.01, ζ = −0.1mrad
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(c) final momentum after N = 2 cycles
with cos(θ1) = 1, RR force

pz = −136, px = −4.6, ζ = −33.8mrad
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(d) final momentum after N = 2 cycles
with cos(θ1) = 0, RR force

pz = −136, px = 0.0, ζ = 0.0mrad
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(e) final momentum after N = 2 cycles
with cos(θ1) = −1, RR force

pz = −136, px = 4.6, ζ = 33.8mrad
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(f) final momentum after N = 10 cycles
with cos(θ1) = 1, RR force

pz = −99, px = −0.17, ζ = −1.7mrad

Figure 2.6: Distribution of 50000 simulated electrons in the x,z-momentum frame
initially and after being hit by the one-frequency plane-wave laser pulse (2.45) with
amplitude ξ1 = 100 (see text for details). The bar on the right-hand side indicates
the electron density. The mean momentum values are in units of [mc].
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2.7. Simulation of an electron beam

momentum values match the initial ones if solely the Lorentz force is considered.
The figures 2.6c, 2.6d and 2.6e show the beam hit by a laser pulse with N = 2

cycles for different initial phases if the RR force is considered in a classical way,
according to equation (2.61). A common property is the loss of momentum in z-
direction; it stays almost the same for all three of the figures with a mean value
of pz ≈ −136mc. That matches the value from the plane-wave result calculated
by equation (2.42) with the corresponding value for ∆ of the quasi-monochromatic
pulse for a single electron with starting conditions in the center of the distributions.
As seen earlier in (2.42) the ∆ appears in the analytic equation for the x-momentum
but its value appears to be too small to affect the change in z-direction.

In contrary, the x-momentum reacts sensibly to the initial phase. For figure
2.6c one finds agreement for the plane-wave result and simulation mean, both are
px ≈ px,f ≈ −4.6mc. The same goes for figure 2.6e with a positive sign, respectively,
while in figure 2.6d the mean y-momentum is px ≈ 0mc, just as for the analytic
solution with px,f = 0. It can be seen that by changing the initial phase the whole
beam can be deflected into a different direction.

The range of the axes in the figures have the same size, 60mc in z-direction and
20mc in x-direction, so that another effect can be seen qualitatively: the momentum
distribution narrows with higher N in the classical case. It has been shown [17]
that under the assumption that σPz � pz where pz is the average momentum in
z-direction, the change in standard deviation can be calculated by

σPz,f ≈
σPz,0
h2f

. (2.74)

As derived by Reference [17], this equation is only valid for the classical RR force;
if one considers quantum effects the distribution narrows less or broadens.

The standard deviation of momentum in z-direction in the simulation can be
calculated with the help of the mean momentum in the following way:

σPz,f =

√√√√ 1

n

n∑
k=1

[
(pz,f )k − pz,f

]2
, (2.75)

where (pz,f )k is the final momentum in z-direction of a single electron k. Table
(2.1) shows the result of the comparison. One can see that the values calculated
for the different pulses match the standard deviations obtained by the simulation
accurately.

The last thing to mention is that the final momentum distribution underlies a
tilt depending on the absolute value of the transverse momentum. As the deflection
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2.7. Simulation of an electron beam

Figure 2.6a 2.6b 2.6c 2.6d 2.6e 2.6f
Numeric 10.04 10.16 8.19 8.22 8.19 4.35
Analytic 10.00 - 8.21 8.21 8.21 4.33

Table 2.1: Value of the standard deviation of the momentum in z-direction after
the pulse in [mc] for the parameters used in the figures (numeric) compared to the
prediction by equation (2.74) (analytic).

angle is expected to be independent of the initial momentum, to be seen in the
approximate equation (2.44), it becomes apparent that a low initial momentum
results in a low transverse momentum gain and vice versa.

Two-frequency pulse In the following the interaction of the plane-wave laser
pulse containing the second harmonic frequency

E2(φ) = sin2

(
φ

2N

)
(ξ1 sin(φ+ θ1) + ξ2 sin(2φ+ θ2)) (2.76)

with the electron beam is simulated. The electron beam has the same initial distri-
bution as in section 2.7 so a representation is given in the same figure (2.6a).

The quantum correction is applied according to the semiclassical LL equation
(2.27) with the g(χ) function. One would expect the effect of the corrected RR
force to be weaker than in the classical case. In figure 2.7 one can see the simulated
momentum distribution after the pulse for two sets of parameters with the classical
RR force (2.7a and 2.7c) and with the quantum corrected RR force (2.7b and 2.7d).

Comparing the upper two figures 2.7a and 2.7b qualitatively one finds the de-
flection to be smaller and the distribution to be broader in the quantum corrected
case. Further, the momentum loss in x-direction is smaller as well. The mean values
calculated from the simulation can be taken from table 2.2 and they validate this
observation.

The same behaviour can be found for the lower two figures 2.7c and 2.7d. Here
the initial phase has been chosen so that the deflection will happen in the positive
y-direction in order to proof that the general properties stay the same. Again the
numerical values can be drawn from table 2.2.

Table 2.2 additionally shows the analytic final values for the same laser pulse for
a single electron which is initially at the center of the distributions for position and
momentum. As the mean value in the simulation underlies statistical fluctuations
the values are expected to not be exactly equal. Compared to the results of the
simulation mean value one finds a maximum deviation of ≈ 1.1% to the analytic
value.
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2.7. Simulation of an electron beam
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(a) Pulse with N = 10 cycles and
cos(2θ1 − θ2) = 1, classical RR force
pz = −119, px = −3.3, ζ = −28mrad
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(b) Pulse with N = 10 cycles and
cos(2θ1 − θ2) = 1, quantum corrected
pz = −124, px = −2.7, ζ = −22mrad
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(c) Pulse with N = 15 cycles and
cos(2θ1 − θ2) = −1, classical RR force
pz = −108, px = 4.4, ζ = 41mrad
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(d) Pulse with N = 15 cycles and
cos(2θ1 − θ2) = −1, quantum corrected
pz = −114, px = 3.6, ζ = 32mrad

Figure 2.7: Distribution of 50000 simulated electrons in the x,z-momentum frame
after being hit by a two-frequency plane-wave laser pulse (2.76) with amplitudes
ξi = 50 with and without the quantum correction. The electrons have the same
initial distribution as in the one frequency case above (figure 2.6). The bar on the
right-hand side indicates the electron density, the mean momentum is in units of
[mc].

Figure 2.7a 2.7b 2.7c 2.7d
Numeric
pz [mc] -119.0 -124.2 -107.8 -114.2
px [mc] -3.29 -2.66 4.38 3.62
Analytic
pz [mc] -119.0 -124.3 -107.9 -114.2
px [mc] -3.30 -2.66 4.43 3.65

Table 2.2: Values of the final momentum in figures above (2.7). The upper values
represent the numerical mean value, the lower ones are the analytic values for a
single electron with initial values p0 = −ez · 150mc and x0 = 0.
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2.7. Simulation of an electron beam

In order to keep track of the magnitude of the quantum parameter χ, its time
evolution is drawn in figure 2.8a. As expected, χ vanishes outside of the pulse but
has oscillating values during the interaction. For N = 10 and ξi = 50 the maximum
value is at ≈ 0.073 which is small enough for assuming that the LL equation is valid.
In figure 2.8b one can see that the function g(χ) decreases steadily for rising χ. The
correction function weights the RR term in the LL equation by a factor < 1 in order
to account for the overestimated radiation intensity of the classical solution.
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(a) Quantum parameter χ as function of
time.
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(b) Correction function g as function of χ.

Figure 2.8: Values of χ(φ) and g(χ) during the two frequency pulse E2 for N = 10
cycles with amplitudes ξi = 50 and initial phase θi = 0.
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3 Tightly focused laser pulse

3.1 Field components and geometry

In the facilities where it is possible to reach the extremely high intensities that
are necessary to observe the influence of the RR force, the laser pulse shape can
be described as tightly focused. The model of the pulse that will be used here is
taken from Reference [18] and is accurate to the fifth order in the diffraction angle
ε = w0/zR, which is necessary, because small waist radii w0 are needed. The pulse
has a Gaussian transverse profile and a circular cross section along the propagation
direction with a waist radius w0 at the focus x = 0. Figure 3.1 shows the geometry
of the laser pulse in the x,z-frame where the positive z-direction was chosen as the
propagation direction. with the same normalised unit system as above, the radius

R(z)

zr

z r

w0ε −z

x

0

w(z)

Figure 3.1: Geometry of the laser pulse. The figure is taken from Reference [18]
but some parts have been erased.

of the cross section at any point on the z-axis is

w(z) = w0

√
1 +

(
z

zR

)2

, (3.1)

where zR ≡ w2
0/2 is the Rayleigh lengthe. With radius the point is meant where the

intensity has decreased to 1/e2 of its maximum value. With linear polarisation in
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3.1. Field components and geometry

x-direction the electric field components are given by

Ex = E

[
S0 + ε2

(
ξ2S2 −

ρ4S3

4

)
+ ε4

(
S2

8
− ρ2S3

4

− ρ2(ρ2 − 16ξ2)S4

16
− ρ4(ρ2 + 2ξ2)S5

8
+
ρ8S6

32

)]
, (3.2)

Ey = Eξv

[
ε2S2 + ε4

(
ρ2S4 −

ρ4S5

4

)]
, (3.3)

Ez = Eξ

[
εC0 + ε3

(
− C2

2
+ ρ2C3 −

ρ4C4

4

)
+ ε5

(
− 3C3

8
− 3ρ2C4

8
− 17ρ4C5

16
− 3ρ6C6

8
+
ρ8C7

32

)]
, (3.4)

while the magnetic field components are

Bx = 0, (3.5)

By = E

[
S0 + ε2

(
ρ2S2

2
− ρ4S3

4

)
+ ε4

(
− S2

8
+
ρ2S3

4
+

5ρ2S4

16
− ρ6S5

4
+
ρ8S6

32

)]
, (3.6)

Bz = Ev

[
εC1 + ε3

(
C2

2
+
ρ2C3

2
− ρ4C4

4

)
+ ε5

(
3C3

8
+

3ρ2C4

8
+

3ρ4C5

16
− ρ6C6

4
+
ρ8C7

32

)]
. (3.7)

Here ξ ≡ x/w0, v ≡ y/w0 and the diffraction angle is defined as ε ≡ w0/zR. The
amplitude function E describes the transverse decrease with a Gaussian function

E = E0
w0

w
exp

(
− r2

w2

)
·G(φp), (3.8)

with r2 ≡ x2 + y2 ≡ ρ2w2
0, the laser amplitude E0 and where G(φp) is the temporal

envelope function. The two functions in the field components are

Sn ≡
(
w0

w

)n
sin(φ+ nφG), (3.9)

Cn ≡
(
w0

w

)n
cos(φ+ nφG), (3.10)
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3.2. Head-on collision

for integer values of n. The phase φ splits into 4 summands where every term is
defined as it appears in the following sequence

φ ≡ φ0 + φp − φR + φG ≡ φ0 + (t− z)− r2

2R
+ arctan

(
z

zR

)
, (3.11)

Here φ0 is a constant initial phase and the curvature radius is R(z) ≡ z + z2R/z.

3.2 Head-on collision

Two-frequency pulse The laser pulse will contain two frequencies with wave-
lengths λ1 = 0.8µm and λ2 = 0.4µm which can mathematically be realised by linear
superposition. The two frequency components have normalised laser amplitudes of
E0,1 = 40 and E0,2 = 28 and the initial phases φ0,1 = 0 and φ0,2 = {0, ..., 2π}. The
waist radius at the focus is w0 = 5µm.

The laser pulse will have a temporal envelope following a hyperbolic secant func-
tion

G(φp) = sec(ϕ) =
2

eϕ + e−ϕ
, with ϕ ≡ 2φp

τ0
· arccosh

√
2. (3.12)

with the full width at the half maximum (FWHM) τ0 of the intensity, chosen to be
τ0 = 70fs ≈ 26cycles for this simulation. This satisfies the condition that

dG(φp)

dφp
� G(φp), (3.13)

which is necessary for the field model to be valid, as pointed out by Reference [19].
The electron beam will have an initial momentum in the negative z-direction

which follows a Gaussian distribution centering at p0 = −ez · 165mc with a spread
of σPz = 12mc and σPT = 1mc in transverse direction. Further, the position follows
a Gaussian distribution with a spread in z-direction of σz = 0.5µm and in transverse
direction σT = 0.25µm.
In the figures 3.2a and 3.2b one can see the x- and z-momentum distribution

after the pulse for different initial phases when only the Lorentz force is considered.
Similar to the plane-wave case the electrons are not able to gain momentum in any
direction and the change in initial phase has no effect.

When considering the RR force, as shown in figures 3.2c and 3.2d, the electrons
lose a large part of their initial z-momentum, but the same amount for both ini-
tial phases with pz ≈ 81mc. For comparison the plane wave predicts the final
z-momentum to be at pz,f ≈ −79mc. The x-momentum gain appears to be sensitive
to the phase configuration with px ≈ −6.9mc for figure 3.2c and px ≈ 0.1mc for
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3.2. Head-on collision
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(a) Lorentz force, cos(φ0,2) = 1
pz = −165, px = 0.0, ζ = 0mrad
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(b) Lorentz force, cos(φ0,2) = 0
pz = −165, px = −0.03, ζ = −0.2mrad
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(c) Classical RR force, cos(φ0,2) = 1
pz = −81, px = −6.7, ζ = −83mrad
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(d) Classical RR force, cos(φ0,2) = 0
pz = −81, px = −0.07, ζ = −0.9mrad
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(e) Quantum corrected RR force,
cos(φ0,2) = 1

pz = −86, px = −6.1, ζ = −71mrad
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(f) Quantum corrected RR force,
cos(φ0,2) = 0

pz = −86, px = −0.06, ζ = −0.7mrad

Figure 3.2: Momentum of 5000 electrons in the x,z-frame after the head-on collision
with a tightly focused laser pulse containing two frequencies (details in text). The
bar on the right-hand side indicates the electron density. The mean momentum is
in units of [mc].
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3.2. Head-on collision

figure 3.2d in qualitative agreement to the plane wave values with px,f ≈ −5.8mc

for figure 3.2c and px,f ≈ 0mc for figure 3.2d, respectively.
The influence of the quantum correction from section 2.2 applied to the LL equa-

tion that calculates the position and momentum coordinates also is in accordance
with the plane-wave result; the effect of the RR force becomes weaker with the
quantum correction. The z-momentum in the figures 3.2e and 3.2f is pz ≈ −86mc

while for the plane wave it is pz,f ≈ −85mc. Furthermore, the transverse momen-
tum becomes px ≈ −6.1mc in figure 3.2e and px ≈ −0.1mc in figure 3.2f. This is in
agreement with the plane-wave values of px,f ≈ −5.3mc and px,f ≈ 0mc.

One-frequency pulse In order to see the effect of the radiation reaction force in
the quasi-monochromatic case, the pulse needs to be short. The temporal envelope
function G(φp) follows a Gaussian function with

G(φp) = exp

(
−
φ2
p

τ 20
· 2 ln(2)

)
, (3.14)

where τ0 determines the FWHM of the intensity. Here, condition 3.13 is violated
in the case of |φp| � τ0 according to Reference [19], but for small φp the model is
expected to describe the fields well. In contrast to the sin2 envelope used in the
analytic solution, the Gaussian envelope cannot be set to an exact number of cycles.
For one frequency the highest deflection is expected at N = 2 cycles, so the value
of the FWHM is chosen to be τ0 = λ = 0.8µm. In order to keep the pulse shape
anti-symmetric in the center, the only initial phases used are φ0 = {0, π}, inducing
a sine function in equation (3.9).
In the simulations the initial energy of the electrons follows a Gaussian distribution

centering around W = γmc = 200mc with a spread of 0.1% in the transverse
direction and an angular aperture of 0.01 mrad. The Gaussian position distribution
has a transverse spread of σT = 1µm and a length of σz = 0.1µm while the waist
radius of the beam is w0 = 10µm.
In the plots in the left column of figure 3.3 the momentum after the interaction of

the beam with a laser pulse with E0 = 70 can be seen for the three different forces:
the Lorentz force, the classical RR force and the quantum corrected RR force. With
the Lorentz force (3.3a) the beam expands in the momentum frame but does not
change its central position. In the RR force case (3.3c) the electrons hit in the center
of the pulse experience the most energy loss and the distribution forms a half-moon
shape at a lower mean momentum. Integrating the ∆-integral (2.41) numerically
and using equation 2.44, the expected deflection is ≈ 3.5mrad and matches the
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3.2. Head-on collision
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(a) Lorentz force, 1 pulse with E0 = 70
pz = −200, px = −0.01, ζ = −0.05mrad

208 206 204 202 200 198 196 194 192
Pz [mc]

3

2

1

0

1

2

3

Px
[m

c]

0
2
4
6
8
10
12
14
16

(b) Lorentz force, 100 pulses with E0 = 15
pz = −200, px = −0.03, ζ = −0.15mrad
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(c) Classical RR force, 1 pulse
with E0 = 70

pz = −183, px = −0.60, ζ = −3.3mrad
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(d) Classical RR force, 100 pulses
with E0 = 15

pz = −141, px = −0.58, ζ = −4.1mrad

190 185 180 175
Pz [mc]

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Px
[m

c]

0

5

10

15

20

(e) Quantum corrected RR force,
1 pulse with E0 = 70

pz = −187, px = −0.43, ζ = −2.3mrad
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(f) Quantum corrected RR force,
100 pulses with E0 = 15

pz = −144, px = −0.55, ζ = −3.8mrad

Figure 3.3: Momentum of 1000 electrons in the x,z-frame after the head-on collision
with a quasi-monochromatic tightly focused laser pulse for one pulse and for a train
of 100 pulses (see text for details). The bar on the right-hand side indicates the
electron density.
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3.3. Oblique incidence collision

deflection calculated from the mean in figure 3.3c with ≈ −3.3mrad. The quantum
correction weakens the effect of the RR force and a deflection of ≈ −2.3mrad is
found in figure 3.3e along with more final energy compared to the classical RR
force.

As high intensity pulses with a large waist radius are hard to achieve, the interac-
tion of a less intense train of 100 pulses is simulated, to be seen in the right column
of figure 3.3. It is assumed that the electrons hit all pulses at their focus. The total
interaction length in the simulation is 0.50mm which is similar to 2zR ≈ 0.79mm.
The Rayleigh length gives a scale for the decreasing intensity in the z-direction, so
the assumption can be made but the result has to be taken with care. The sim-
ulation could be made more realistic with a focus that increases with the number
of pulses. Comparing figure 3.3d to the single pulse interaction in figure 3.3c, the
spread in the momentum is larger due to the longer interaction time, even for the
Lorentz force (3.3b). With classical RR force, the deflection according to the ∆-
integral is 3.4mrad and in figure 3.3d it is at ≈ −4.1mrad while in the quantum
corrected RR force it is ≈ −3.8mrad. The spread is large so the mean value is not
that informative and probably a reason why the deflection deviates from the expec-
tation. Another reason could be, that the electron beam hits the incoming pulses
eccentrically after some interactions and the final deflection is changed by that. The
effect of the quantum correction in figure 3.3f is less than for the single pulse case,
because its strength depends mainly on the momentum and the field amplitude, the
latter being smaller for the train of pulses.

3.3 Oblique incidence collision

As seen in the plane wave result for a quasi-monochromatic pulse, the momentum
gain of the electrons in the direction transverse to the initial propagation direction
decreases with rising pulse length. In order to make the pulse extremely short for the
electron beam, the beam can enter the focus in a right angle to the laser propagation
direction.

The same model for the tightly focused laser pulse from Reference [18] is used.
The waist radius w0 determines the transverse profile of the pulse and therefore
the length of the laser pulse experienced by the electron. The temporal envelope
can be considered long and can for simplicity be set to G(φp) = 1, thus satisfying
condition 3.13. The laser pulse has a wavelength of λ = 0.8µm and a normalised
laser amplitude of E0 = 100.
In the simulation for figures 3.4, 3.5 and 3.6 the electrons are entering the focus
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3.3. Oblique incidence collision
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Figure 3.4: Interaction of a single electron with initial conditions p0 = −ey ·500mc
and x0 = ey ·100λ/2π with a tightly focused laser pulse in the oblique incidence case.
The laser pulse has the amplitude E0 = 100 and no temporal envelope.

from the positive y-direction with a kinetic energy of γmc = 500mc with a spread
in y-direction of σPy = 0.1% and an angular aperture of 0.01 mrad. Because of
the small waist radius, the spatial shape of the electron beam needs to be narrow in
transverse direction but can be long in y-direction. It follows a Gaussian distribution
with σT = 0.1µm in transverse direction and a length of σy = 1µm in y-direction.

In figures 3.4b and 3.4d the x-component of the electric field experienced by a
single electron that is initially travelling along the negative y-axis with x = z = 0.
is shown. In figure 3.4b for w0 = λ only a few-cycle pulse can be seen and deflection
in x-direction can be expected according to the head-on plane wave solution with
RR force. In figure 3.4d the effective pulse has many cycles, corresponding to a low
deflection for the head-on plane wave solution. This is validated in figures 3.4a and
3.4c where the Lorentz force does not induce deflection in x-direction, while the RR
force does.

The figures 3.5 and 3.6 show the influence of the RR effect for many electrons for
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pz = 1.86mc, px = −0.13mc
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Figure 3.5: Final momentum after the interaction of 1000 electrons with a tightly
focused laser pulse in the oblique incidence case. The laser pulse has a waist radius
of w0 = λ, the amplitude E0 = 100 and no temporal envelope. The bar on the
right-hand side indicates the electron density.
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(e) corrected RR force, x,y-momentum
py = −247mc, ζ = −0.02mrad
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Figure 3.6: Final momentum after the interaction of 1000 electrons with a tightly
focused laser pulse in the oblique incidence case. The laser pulse has a waist radius
of w0 = 5 · λ, the amplitude E0 = 100 and no temporal envelope. The bar on the
right-hand side indicates the electron density.
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3.3. Oblique incidence collision

a waist radius of w0 = λ and w0 = 5λ, respectively. The Lorentz force in figures
3.5a, 3.5b and 3.6a, 3.6b does not alter the mean momentum after the interaction
with the laser pulse for both waist radii.

With RR included the electrons experience deflection in x-direction. This can be
seen in the momentum in the figures 3.5c and 3.5d for a pulse with waist radius
w0 = λ. The mean deflection angle in x-direction with respect to the y-axis is
ζ = −0.33mrad, which is small compared to the values in the head-on interactions.
As the intensity of the field decreases for electrons with |z| > 0, the overestimated
deflection by the single electron in figure 3.4a with ζRR = −0.98mrad is reasonable.
This is also the reason for the parabolic shape of the distributions: The strength of
the RR effect increases with the intensity and is stronger for electrons that hit the
pulse closer to the center of the focus.

In the case where w0 = 5λ the x-momentum in figures 3.6c and 3.6d leads to a
deflection of ζ = −0.04mrad when considering the RR force. This follows the expec-
tation, as the deflection for the single electron in figure 3.6e is ζRR = −0.02mrad and
is also in accordance with the qualitative prediction that only a short one-frequency
pulse shows noticeable deflection in x-direction.
Besides the deflection in x-direction with the RR force, the electrons lose a signifi-

cant amount of their initial momentum (see figures 3.5c and 3.6c) and are accelerated
into the direction of laser propagation (see figures 3.5d and 3.6d). Both of these ef-
fects are stronger for the field with larger waist radius, because the interaction time
is longer.
All three effects are reduced when the quantum correction is applied. This is

shown in figures 3.5e and 3.5f for w0 = λ where the deflection in x-direction decreases
to ζ = −0.09mrad, the final absolute value of the y-momentum is higher with
py = −419mc and the momentum gain in z-direction is smaller with pz = 1.27mc.
In the case where w0 = 5 · λ in figures 3.6e and 3.6f the deflection decreases to
ζ = −0.02mrad, less y-momentum is lost with py = −247mc and the momentum in
propagation direction of the laser pulse is smaller with pz = 5.49mc.
Summarising it can be stated out that the deflection behaviour in x-direction is

qualitatively the same as in the head-on collision and the RR typical effects, such
as loss of energy and acceleration into z-direction, appear as well.
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4 Conclusion

In this thesis the interaction of relativistic electrons with superstrong laser pulses
under the effect of the radiation reaction (RR) force from classical electrodynamics
is studied in a theoretical way by numerical integration. At first, given a differential
equation for the position and momentum of the electron, an exact solution is derived
analytically for the case of a plane-wave pulse. The solution obtained is used to
validate the proper functionality of the numerical integrator and agreement is found
by comparison of the iterated quantities. While the Lorentz force is not able to
change the momentum of the electron after closed cycles of the plane-wave pulse,
the RR force accelerates the charge into the laser pulse propagation direction and can
induce a transverse momentum, mainly depending on the initial phase and the field
amplitude. The simulation of a beam of electrons shows to follow the expectation
that the deflection behaviour of the beam caused by a head-on collision with the
laser pulse can be controlled by changing the initial phase configuration and that
the deflection angle is independent of the initial electron momentum. The head-
on collision with a tightly focused laser pulse with two frequencies does not differ
significantly from the plane wave case. The one-frequency head-on interaction also
shows to follow the expectation of the plane wave but the momentum distribution
changes shape because of the focused structure. A train of quasi-monochromatic
pulses with less intensity appears to be an alternative way to see the effect of the
RR force experimentally, as lower intensities are easier to achieve. Furthermore it is
found that when injecting electrons into the focus of the tightly focused laser pulse
at a right angle to the propagation direction, the same RR effects can be observed
as in the head-on collision. The quantum correction is applied to account for the
overestimation of the emitted radiation by the electron considering that the electron
can not produce photons exceeding its own kinetic energy. This results in the effect
of the RR force to be weaker than in the classical case, meaning that the deflection
angle and the momentum loss in propagation direction is smaller. Since the emission
of radiation is a stochastic effect, the resulting altered spectrum could be taken into
account to make the simulation more realistic.
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5 Mathematical appendix

5.1 Picard iteration for the classical solution

Theorem of Picard [20]:
For a given differential function dũµ/dφ = fµ(φ, ũα(φ)) and a starting value ũµ(φ0) =

h(φ0)u
µ(φ0) = uµ0 , the solution can be approximated by

γ[k+1]µ(φ) = γ[0]µ +

∫ φ

φ0

fµ(Φ, γ[k]α(Φ)) dΦ with γ[0]µ = ũµ0 , (5.1)

and converges to the solution for increasing k. Applying this formalism to the new
LL equation (2.18) yields for k = 1

γ[1]µ(φ) = ũµ0 −
∫ φ

φ0

γ[0]αηαν
mρ0

(
h(Φ)eF µν(Φ) +

2

3
α
e

m
F ′µν(Φ)ρ0

)
dΦ

+

∫ φ

φ0

nµ
2

3

α

m
h(Φ)

(
ξ21(Ψ′1(Φ))2 + ξ22(Ψ′2(Φ))2

)
dΦ (5.2)

= ũµ0 −
∫ φ

φ0

ũ0,ν
ρ0m

(
h(Φ)e (fµν1 Ψ′1(Φ) + fµν2 Ψ′2(Φ))

+
2

3
α
e

m
ρ0 (fµν1 Ψ′′1(Φ) + fµν2 Ψ′′2(Φ))

)
dΦ +

∫ φ

φ0

nµ

ρ0
h(Φ)h′(Φ) dΦ (5.3)

= ũµ0 −
1

ρ0

e

m

(
fµν1 I1(φ) + fµν2 I2(φ)

)
ũ0,ν +

1

2ρ0
(h2(φ)− 1)nµ, (5.4)

where Ij(φ) is defined as

Ij(φ) ≡
∫ φ

φ0

(
h(Φ)Ψ′j(Φ) +

2

3
α
ρ0
m

Ψ′′j (Φ)

)
dΦ, (5.5)

and the identity for the following integral that can be acquired by partial integration
and the relation h(φ0) = 1∫ φ

φ0

hh′ dΦ = −
∫ φ

φ0

hh′ dΦ + h2(φ)− h2(φ0) =
1

2
(h2(φ)− 1). (5.6)
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5.1. Picard iteration for the classical solution

For the next step k = 2 one finds

γ[2]µ(φ) = ũµ0 −
∫ φ

φ0

1

ρ0m

(
h(Φ)eF µν(Φ) +

2

3
α
e

m
F ′µν(Φ)ρ0

)
ηανγ

[1]α(Φ) dΦ

+

∫ φ

φ0

nµ
2

3

α

m
h(Φ)

(
ξ21(Ψ′1(Φ))2 + ξ22(Ψ′2(Φ))2

)
dΦ (5.7)

= ũµ0 −
∫ φ

φ0

1

ρ0m

(
h(Φ)eF µν(Φ) +

2

3
α
e

m
F ′µν(Φ)ρ0

)
ηαν

(
ũα0

− 1

ρ0

e

m

(
fαγ1 I1(φ) + fαγ2 I2(φ)

)
ũ0,γ +

1

2ρ0
(h2(φ)− 1)nα︸ ︷︷ ︸

mtlp. with Fµν gives =0

)
dΦ

+
1

2ρ0
(h2 − 1)nµ (5.8)

= ũµ0 −
ũ0,ν
ρ0m

∫ φ

φ0

(
hefµνj Ψ′j +

2

3
α
e

m
fµνj Ψ′′jρ0

)
dΦ +

1

2ρ0
(h2 − 1)nµ

+
ηαν
ρ0m

∫ φ

φ0

(
hefµνj Ψ′j +

2

3
α
e

m
fµνj Ψ′′jρ0

)
1

ρ0

e

m

(
fαγi Ii(Φ)

)
ũ0,γ dΦ (5.9)

= ũµ0 −
ũ0,ν
ρ0m

efµνj

∫ φ

φ0

I ′j dΦ +
1

2ρ0
(h2 − 1)nµ

+
e2

m2

1

ρ20
ηανf

µν
j fαγi ũ0,γ︸ ︷︷ ︸

=−a2i δijnµnγ ũ0,γ

∫ φ

φ0

I ′j(Φ)Ii(Φ) dΦ (5.10)

= ũµ0 −
e

ρ0m
(fµν1 I1 + fµν2 I2)ũ0,ν +

1

2ρ0
(h2 − 1)nµ

+
nµ

ρ0

∫ φ

φ0

(
ξ21I
′
1I1 + ξ22I

′
2I2
)
dΦ (5.11)

= ũµ0 −
e

ρ0m
(fµν1 I1(φ) + fµν2 I2(φ))ũ0,ν +

1

2ρ0
(h2(φ)− 1)nµ

+
1

2ρ0

(
ξ21I

2
1 (φ) + ξ22I

2
2 (φ)

)
nµ, (5.12)

with the relation for the integral analogue to (5.6) but with the relation Ij(φ0) = 0∫ φ

φ0

I ′jIj dΦ = −
∫ φ

φ0

I ′jIj dΦ + I2j (φ)− I2j (φ0) =
I2j (φ)

2
. (5.13)

The iteration can be stopped at this point because this is already the exact solution.
Putting γ[2]ν into the integral of γ[3]µ(φ) one can see that the last term of γ[2]ν does
not contribute because it goes to zero after multiplication with the electromagnetic
field tensor nνF µν = nνf

µν
j Ψ′j = 0 and one is left with the same integral as before.
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5.2 Picard iteration for the semiclassical solution

The basic structure is the same as for the classical case but the differential equation
is slightly different. It will be solved by picard iteration [20] similar to above where
the starting value is γ[0]µ(φ) = ũµ0 . For k = 1 one finds

γ[1]µ(φ) = ũµ0 −
∫ φ

φ0

γ[0]αηαν
mρ0

(
h̃(Φ)e

F̃ µν(Φ)√
g(Φ)

)
dΦ

+

∫ φ

φ0

nµ
2

3

α

m
h̃(Φ)

(
ξ21(Ψ̃′1(Φ))2 + ξ22(Ψ̃′2(Φ))2

)
dΦ (5.14)

= ũµ0 −
ũ0,νe

ρ0m

∫ φ

φ0

h̃(Φ)fµνj
Ψ̃′j(Φ)√
g(Φ)

dΦ +

∫ φ

φ0

nµ

ρ0
h̃(Φ)h̃′(Φ) dΦ (5.15)

= ũµ0 −
1

ρ0

e

m
fµνj Ĩj(φ)ũ0,ν +

1

2ρ0
(h̃2(φ)− 1)nµ, (5.16)

where Einstein notation for i, j = {1, 2} is used and the Ĩj(φ) in this case being

Ĩj(φ) ≡
∫ φ

φ0

h̃(Φ)
Ψ̃′j(Φ)√
g(φ)

dΦ. (5.17)

For the next step k = 2 one finds

γ[2]µ(φ) = ũµ0 −
∫ φ

φ0

e

ρ0m

(
h̃(Φ)

F̃ µν(Φ)√
g(Φ)

)
ηανγ

[1]α(Φ) dΦ

+

∫ φ

φ0

nµ
2

3

α

m
h̃(Φ)

(
ξ21(Ψ̃′1(Φ))2 + ξ22(Ψ̃′2(Φ))2

)
dΦ (5.18)

= ũµ0 −
e

ρ0m

∫ φ

φ0

h̃(Φ)
fµνi Ψ̃′i(Φ)√

g(Φ)
ηαν

(
ũα0 −

e

ρ0m
fαβj Ĩj(Φ)ũ0,β

+
1

2ρ0
(h̃2(Φ)− 1)nα

)
dΦ +

1

2ρ0
(h̃2(φ)− 1)nµ (5.19)

= ũµ0 −
ũ0,νe

ρ0m
fµνj Ĩj(φ)− 1

ρ20

e2

m2
fµνi fαβj ηαν

∫ φ

φ0

Ĩ ′i(Φ)Ĩj(Φ) dΦ

+
1

2ρ0
(h̃2(φ)− 1)nµ (5.20)

= ũµ0 −
e

ρ0m

(
fµν1 Ĩ1(φ) + fµν2 Ĩ2(φ)

)
ũ0,ν +

1

2ρ0
(h̃2(φ)− 1)nµ

+
1

2ρ0

(
ξ21 Ĩ

2
1 (φ) + ξ22 Ĩ

2
2 (φ)

)
nµ. (5.21)

With the same argumentation as for the classical solution, this is the exact solution.
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5.3 Identities and integrals

a) Identity for total differentials and derivatives

−d
2φ

ds2
=

(
dφ

ds

)3
d2s

dφ2
=

(
dφ

ds

)3(
ds

dφ

d

ds

ds

dφ

)
=

(
dφ

ds

)2(
d

ds

ds

dφ

)
(5.22)

=
d

ds

(
ds

dφ

(
dφ

ds

)2
)
− ds

dφ

(
d

ds

(
dφ

ds

)2
)

(5.23)

=
d2φ

ds2
− 2

d2φ

ds2
. (5.24)

b) Integral over a closed period ∫ 2π

0

eiaxeibx dx = 0, (5.25)

when a+ b = integers\{0}.

c) Euler representation of the trigonometric function (sin4)

sin4(x) =

(
−1

4

(
e2ix + e−2ix − 2

))2

=
1

16

(
e4ix + e−4ix + 6− 4e2ix − 4e−2ix

)
.

(5.26)

d) Approximate solution of a double integral for large, positive integers N∫ 2πN

0

sin2(
x

2N
) sin(nx+ a) dx

∫ x

0

sin4(
y

2N
) cos(ny + b) dy

≈ Nπ cos(a− b) 5

16
· 1

n
, (5.27)

where n = integers and a, b are real values.
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