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Abstract 
 
Humans and other animals are capable of inferring never-experienced relations (e.g., A>C) 
from other relational observations (e.g., A>B and B>C). The processes behind such transitive 
inference are subject to intense research. Here, we demonstrate a new aspect of relational 
learning, building on previous evidence that transitive inference can be accomplished 
through simple reinforcement learning mechanisms. We show in simulations that inference 
of novel relations benefits from an asymmetric learning policy, where observers update only 
their belief about the winner (or loser) in a pair. Across 4 experiments (n=145), we find 
substantial empirical support for such asymmetries in inferential learning. The learning 
policy favoured by our simulations and experiments gives rise to a compression of values 
which is routinely observed in psychophysics and behavioural economics. In other words, a 
seemingly biased learning strategy that yields well-known cognitive distortions can be 
beneficial for transitive inferential judgments. 
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Main 
 
Humans routinely infer relational structure from local comparisons. For instance, learning that 
boxer Muhammad Ali defeated George Foreman can let us infer that Ali would likely win 
against other boxers that Foreman had defeated. More formally, generalizing from relational 
observations to new, unobserved relations (e.g., knowing A>B and B>C leads to A>C) is 
commonly referred to as transitive inference1–4. Transitive inference is not a uniquely human 
capacity 5 but can also be observed in non-human primates 6–8, rats 9, and birds 10–12. 
 
In the laboratory, transitive inference can be observed after teaching subjects the relations 
between neighbouring elements from an ordered set of arbitrary stimuli (Fig. 1a). The 
neighbour relations are typically taught through pairwise choice feedback (Fig. 1b) where the 
relational information is deterministic (i.e., if A>B, in our sporting analogy, A would never lose 
a match against B). Various theories have been proposed to describe how observers 
accomplish transitive inferences of non-neighbour relations (e.g., A>D) in such settings. One 
class of models posits that subjects learn implicit value representations for each individual 
element (A, B, C, etc.), which then enables judgments of arbitrary pairings 3,13,14. Alternatively, 
transitive inference could be accomplished through more explicit, hippocampus-based 
memory processes 15–18, which we will return to further below.  
 
 

 
 
Figure 1. a, Exemplary stimulus set and hidden relational value structure. b, Example trials for pairwise 
comparisons of neighbouring (top) and non-neighbouring items (bottom). Participants are asked on 
each trial to select the higher-valued item. Choices on neighbour trials are always given feedback. 
Choices on non-neighbour trials are given feedback in the full-feedback condition, but not in the partial 
feedback condition (see text for details). 
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Before turning to transitive inference, we consider relational learning in a “full feedback” 
scenario (cf. Fig. 1b) where choice feedback is provided for every possible pairing of items, 
such that no transitive inference is required. We model implicit value learning in this setting 
through a simple reinforcement learning (RL) mechanism (Q-learning, see Methods) by which 
relational feedback (e.g., “correct” when selecting A over B) may increase the perceived value 
(Q) of item A and decrease that of item B (Model Q1, Fig. 2a). In this simple RL model, 
relational feedback symmetrically updates (with opposite signs) the value estimates for both 
items in a pair. For instance, if Muhammad Ali beat George Foreman, it seems rational to 
attribute this outcome to Ali’s greater skill as much as to Foreman’s deficit. We show in 
simulations that symmetric value updating is in fact optimal in the full feedback setting. An 
alternative model with asymmetric learning rates (α+ ≠ α-) applied to the winner and loser in 
a pair, respectively (Model Q2; “2” denotes dual learning rates), learns worse than the 
symmetric model (Q1) where 𝛼+ = 𝛼− (Fig. 2b-c). Implicit value learning generally gives rise 
to a “symbolic distance effect” 1,19,20, where nearby elements are less discriminable (due to 
more similar value estimates) than elements with greater ordinal distance 14,21.  
 
Next, we turn to a “partial feedback” setting, which is the typical transitive inference scenario, 
with feedback only being provided for pairs of items with neighbouring values (Fig. 1b). Here, 
the simple RL model only effectively learns about stimuli at the extremes of the ordered set 
(e.g., A and H, supplementary Fig. S1a), since these are statistically more likely to be winners 
or losers than their neighbours (under uniform sampling). No value learning occurs for 
intermediate items (stimuli B to G), since these are equally likely to be paired with lower and 
higher valued stimuli 3. However, the model can easily be adapted to performing transitive 
inference when extending it with a simple assumption for similar approaches, see 22,21,14: value updates 
should scale with the difference between the estimated item values, Q(A)-Q(B). More 
specifically, to the extent that A is already higher valued than B, observing the expected 
outcome A>B should induce weaker value updates, whereas the unexpected outcome A<B 
should induce stronger updates. To illustrate, observing an unknown amateur boxer win 
against a world champion should induce stronger changes in belief than the opposite, less 
surprising result (champion>amateur). When incorporating this simple assumption into our 
model (Model Q1*), it learns orderly structured values, Q(A) > Q(B) > … > Q(H), and thus 
accomplishes transitive inferences for all pairs of items (Fig. 2d; see also supplementary 
Movie M1 for illustration how our Q-learning models accomplish transitive learning). We also 
observe a symbolic distance effect with this type of learning under partial feedback, similar to 
what we observed with simple RL under full feedback (cf. Fig. 2d and 2a). 
 
Notably, the effect of asymmetric learning rates (𝛼+ ≠ 𝛼−, Model Q2*) under partial 
feedback is strikingly different from what we observed with full feedback. Under partial 
feedback, optimal performance is achieved with a strongly asymmetric learning policy (α+>>α- 
or α+<<α-), where only the winner (or loser) in a pair is updated (Fig. 2e-f, see also 
supplementary Movie M1). In other words, in a setting where hidden relational structure is 
inferred from only local comparisons, it is surprisingly beneficial to ignore losers (or winners) 
in outcome attribution. Of note, the winner/loser asymmetry outlined here differs from, and 
is orthogonal to, previously described asymmetries in learning from positive/negative e.g., 23–26 
or (dis-)confirmatory outcomes 27,28. A noteworthy aspect of our model Q2* is that the 
surprisingly superior, asymmetric learning policy results in a compression of the observer’s 
latent value structure (Fig. 2f). Selective updating therefore naturally gives rise to diminishing 
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sensitivity towards larger values as is universally observed in Psychophysics 29, numerical 
cognition 30,31, and Behavioural Economics 32. 
 

 
 
Figure 2. Model simulations under full (panels a-c) and partial feedback (panels d-f); a, Item-level 
learning under full feedback (grey in Fig. 1, see Exp. 1) predicted by symmetric model Q1. Upper, 
exemplary evolution of item values 𝑄 (a.u.) over trials. Lower, predicted probabilities of correct choices 
for each item pairing. b, Simulated task performance (mean proportion correct choices on the second 
half of trials) of model Q2 across varying values of learning rates 𝛼+(winning items) and 𝛼−(losing 
items). For values on the diagonal (dashed white), model Q2 is equivalent to model Q1. Black dot 
indicates parameters used for simulation of symmetric learning in panel a. Red triangle indicates 
parameters used for asymmetric learning in panel c. c, Same as a, but using model Q2 with asymmetric 
learning rates. d, Same as a, but for model Q1* in a partial feedback scenario (see Exp. 2-4). e and f, 
Same as b and c, but using model Q2* under partial feedback. Note that asymmetric learning leads to 
lower performance under full feedback (b) but improves performance under partial feedback (e). 
Asymmetric learning results in a compressed value structure (c and f). 
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Going beyond typical studies of transitive inference with deterministic outcomes, we 
examined whether our simulation results generalize to scenarios where relational outcomes 
can be variable, as is the case in many real-world domains such as sports, stock markets, or 
social hierarchies. To this end, we added random variance to the comparison outcomes such 
that e.g., an item won over its lower-valued neighbour in approx. 80% of cases but lost in the 
other 20% (see Methods for details). Intuitively, we allowed for the possibility that competitor 
A may sometimes lose against B, even if A is generally stronger. We found that our simulation 
results held for such probabilistic environments, just as they did for deterministic scenarios 
(supplementary Fig. S2). 
 
Before turning to empirical data, we also consider an alternative strategy to solving transitive 
inferences 8,33,34, which relies more directly on memories of pair relations experienced on 
previous trials (supplementary Fig. S1b). For instance, a sports enthusiast might remember 
Ali’s triumph over Foreman 1974 in Zairei, and also recall that Foreman had previously 
defeated Joe Frazierii, to conclude that Ali would outmuscle Frazier in a fightiii . More formally, 
when asked to judge the relationship between A and C, one might retrieve the “missing” 
(linking) neighbour relations (A-B, B-C) to infer a transitive comparison. In its simplest form, 
memory for pair relations can enhance performance on the neighbouring pairs proper (Model 
P, supplementary Fig. S1b, left). To the extent that further pair relations can be retrieved 
through associative learning 17,35 or spreading activation 36, one may also infer non-neighbour 
relations through the linking of intermediate relations (Model Pi, supplementary Fig. S1b, 
right). Such relational memory-based transitive inference gives rise to an inverse symbolic 
distance effect (Fig. S1b, right), where nearby pairs are more discriminable than more distant 
pairs, reflecting the high dimensionality of the underlying associative memory structure. In 
modelling our empirical data, we allow for both implicit value learning (models denoted by a 
Q), relational memory-based strategies (models denoted by a P), and a combination of both, 
in explaining human transitive inference.  
 

  

 
i https://en.wikipedia.org/wiki/The_Rumble_in_the_Jungle  
ii https://de.wikipedia.org/wiki/The_Sunshine_Showdown  
iii Muhammad Ali in fact defeated Joe Frazier in 1974 and 1975 
(https://en.wikipedia.org/wiki/Thrilla_in_Manila). An earlier bout between the two was won by Frazier 
(https://en.wikipedia.org/wiki/Fight_of_the_Century), representing an example of non-deterministic 
comparison outcomes (see also Exp. 1-3). We note that in real-life examples such as competitive sports, 
transitivity can also be violated when outcomes are determined by multiple relevant dimensions (e.g., speed, 
endurance, technique).  
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Results - Experiments 
 
We report the results of four experiments (n=145) where we varied whether feedback was 
full or partial and whether it was probabilistic or deterministic (see Methods). In all 
experiments, participants were shown a pair of items (drawn from a set of 8) on each trial and 
were asked to make a relational choice (Fig. 1). Participants were given no prior knowledge 
about item values and could only learn through trial and error feedback. 
 

Full Feedback 
 
In Experiment 1 (n=17), probabilistic choice feedback (see Methods) was provided after each 
of 448 sequential pair comparisons (“full feedback”). Figure 3a shows the mean proportions 
of correctly choosing the higher-valued item, averaged over all trials in Exp. 1. Descriptively, 
the choice matrix is dominated by a symbolic distance effect, as predicted by implicit value 
learning. Fitting our item-level learning models (Q1, Q2, Q1*, Q2*), the best fit of the data is 
provided by the simplest model (Q1) with a single learning rate for winners and losers (Fig. 3c 
and 3e; protected exceedance probability: pxp(Q1)>0.99; mean BIC=361.79 ± 24.68 s.e.m.). In 
other words, participant behaviour was consistent with a symmetrical updating policy, which 
our simulations showed to be optimal in the full feedback setting.  
 

Partial Feedback 
 
In Experiments 2-4, choice feedback was only provided on neighbour pairs (“partial feedback”) 
to study transitive inference. In these experiments, we increased the frequency participants 
were shown neighbouring pairs relative to non-neighbouring pairs to provide more learning 
opportunities, since the task is inherently harder. We verified that our simulation results were 
invariant to this modification (supplementary Figure S3). Otherwise, the design of Experiment 
2 (n=31) was identical to Exp. 1. Experiment 3 (n=48) was an online replication of Exp. 2, where 
the pair items on each trial were shown side-by-side instead of sequentially. Experiment 4 
(n=49) was similar to Exp. 3, but feedback was made deterministic (100% truthful) as in 
previous studies of transitive inference (see Methods for individual experiment details).  
 
The choice data from each of the partial feedback experiments (Exp. 2-4, Fig. 3b) showed clear 
evidence for transitive inference, with above-chance performance for non-neighbouring pairs 
that never received feedback (mean accuracy averaged over non-neighbour trials, Exp. 2: 
0.714 ± 0.028; Exp. 3: 0.698 ± 0.018; Exp 4: 0.709 ± 0.019; Wilcoxon signed-rank tests against 
chance level (0.5): all p<0.001, all r>0.84). Further, the grand mean choice matrices showed 
the following descriptive characteristics: (i) a symbolic distance effect similar to that observed 
with full feedback, (ii) an asymmetry with greater discriminability of lower-valued items, and 
(iii) relatively increased discriminability of neighbour pairs.  
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Figure 3. Empirical results and model fits. a-b, mean proportions of correct choices observed in each 
experiment (a, full feedback; b, partial feedback). c-d, mean choice probabilities predicted by the best 
fitting model in each experiment. e-f, model comparison (e, Exp.1; f, Exp. 2-4). Markers show variance 
explained (Rsq, Pseudo-R-squared, left y-axis; diamonds, mean; dots, individual participants. Rsq is 
inversely related to BIC, with larger values indicating better fit). Error indicators show s.e.m. Overlaid 
bar graphs indicate each model’s probability of being the winning model in terms of protected 
exceedance probability (pxp, right y-axis, see Methods). The model space is described with the 
nomenclature Q: item-level learning; 1/2: symmetric/asymmetric; *: difference-weighted updating; P: 
pair-relational learning; i: pair-relation-based inference. 
 

 
The modelling results for the partial feedback experiments are summarized in Fig. 3d and 3f. 
We highlight two main findings. Firstly, the partial feedback data were better described by 
asymmetric models with different learning rates for winners and losers. This held true at every 
level of model complexity, with our asymmetric models (Q2, Q2*, Q2*+P, Q2*+Pi) always 
performing better than their symmetric counterparts (Q1, Q1*, Q1*+P, Q1*+Pi; Wilcoxon 
signed-rank tests comparing BICs, Exp. 2-4 combined: all p<0.001, all r>0.35), and regardless 
of whether the partial feedback was probabilistic (Exp. 2 and 3; comparison of mean BIC 
between Q2- and Q1 models: both p<0.001, both r>0.60) or deterministic (Exp. 4; p<0.001, 
r=0.63). In other words, participants adopted an asymmetric learning policy which proved 
superior in our model simulations (cf. Fig. 2e). Secondly, behaviour in the partial feedback 
scenario was not fully described by item-level value learning alone. The winning model in Exp. 
2 and 4 (Q2*+P; pxp=0.91 and 0.85; mean BIC=609.15 ± 12.77 and 434.27 ± 6.29) incorporated 
the additional assumption of memory for the pair relations (< or >) experienced on neighbour 
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trials, in addition to the value estimates of the individual items. This pair-relational memory 
(+P, see Methods: Models) accounts for the relatively increased performance for neighbouring 
pairs in Exp. 2 and 4 (Fig. 3b, first off-diagonals, cf. supplementary Figure S1b). In Exp. 3, the 
model comparison was less clear, with model Q2* showing the highest pxp (0.91) but model 
Q2*+P providing a better average fit in terms of BIC (676.86 ± 19.40 vs. 692.09 ± 8.61, 
Wilcoxon signed-rank test: p<0.001, r=0.48). However, we found no evidence that pair-
relational memory contributed to transitive inference in our experiments. Incorporating 
associative recall of “linking” neighbour pair relations (+Pi) worsened the model fits, both in 
terms of pxp (all pxp < 0.03) and BIC (Exp. 2-4 combined, Q2*+Pi: 570.42 ± 15.72 compared to 
Q2*+P: 567.60 ± 15.38; Wilcoxon signed-rank test: p<0.001, r=0.53), which is in line with the 
absence of an “inverse” symbolic distance effect (cf. Fig. S1b, right) in the empirical choice 
data (Fig. 3b). 
 
We also compared our new model family against two previous models of transitive inference 
(see supplementary Methods): a classic value-transfer model (VAT) 21 and a more recent model 
that is based on ranking algorithms used in competitive sports such as chess (RL-ELO) 22. When 
fitted to our partial feedback data (Exp. 2-4 combined), both VAT and RL-ELO were 
outperformed by our winning model Q2*+P (mean BIC VAT: 606.59 ± 14.04; RL-ELO: 617.96 ± 
15.07; Q2*+P: 567.60 ± 15.38; Wilcoxon signed-rank tests vs. Q2*+P: both p<0.001, both 
r>0.65). This held true even when we modified VAT and RL-ELO to include pair-level learning 
(+P) and separate learning rates for winners and losers (mean BIC=572.95 ± 15.17 and 576.34 
± 15.94, respectively; both p<0.014, both r>0.21). Our new, asymmetric Q-learning process 
thus explained our experimental data better than these earlier models of transitive inference. 
 
Our model simulations (Fig. 2e) indicated two aspects of asymmetric learning that are not 
directly evident from the group-level results shown in Fig. 3. First, performance benefits under 
partial feedback emerged not only for selective updating of winners, but likewise for selective 
updating of losers. Second, performance was highest for extreme asymmetries where the 
loser (or winner) in a pair was entirely ignored. We examined these aspects more closely on 
the individual participant level (Fig. 4). Half of our subjects in Exp. 2-4 (n=64) were indeed 
characterized by extreme asymmetry towards winners (with 𝛼−near zero). Interestingly, 
however, another subgroup (n=17) showed the opposite, an extreme asymmetry towards 
losers (with 𝛼+ near zero). In other words, in the partial feedback setting, most individuals 
showed an extreme bias towards winners or losers, either of which proved to be optimal 
policies in our model simulations (Fig. 2e and Fig. S2, right). Under full feedback (Exp. 1), in 
contrast, we found no substantial asymmetries when allowing the learning rates for winners 
and losers to vary freely (model Q2, Fig. 4, white bars). Statistical analysis confirmed that the 
asymmetries under full feedback (Exp. 1) were significantly lower than under partial feedback 
(Mann–Whitney U test of absolute asymmetry indices collapsed over Exp. 2-4: p=0.006, 
r=0.23; see Methods). 
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Figure 4: Middle, histogram of participants in Exp. 1 (full feedback, white) and Exp. 2-4 (partial 
feedback; color-coded) sorted according to normalized model-estimated asymmetry:  (𝛼+ −
𝛼−)/|(𝛼+ + 𝛼−)|. A majority (n=81 out of 128) of the participants in the partial feedback experiments 
(Exp. 2-4) showed strongly asymmetric updating either of winning or of losing items. Raster plot on 
bottom shows individual participant results (Exp. 1 shown in black). Left, mean choice behaviour of 
participants that were strongly biased towards losers (leftmost bar in middle). Right, same as left, for 
participants strongly biased towards winners (rightmost bar in middle). 
 

 
A potentially surprising observation in the subgroup of participants who selectively updated 
winners (Fig. 4 right) is a tendency for below-chance performance for relatively high-valued 
non-neighbours (e.g., A-D) despite each individual performing robustly above chance overall 
(cf. Methods: Participants). A priori, RL-based models such as our Q-learning family could 
encompass below-chance performance only through the counterintuitive assumption of 
negative learning rates. Indeed, repeating our analysis while allowing for negative values of 
𝛼+ and/or 𝛼− yielded a small but significant improvement in model fit (mean BIC=562.52 ± 
15.23 compared to 567.60 ± 15.07; Wilcoxon signed-rank test: p<.001, r=0.50). Upon closer 
inspection, in the n=64 participants who selectively updated winners (i.e., with a positive 𝛼+; 
mean=0.069 ± 0.007), the estimate of 𝛼− indeed was weakly negative (mean=-0.009 ± 0.0016; 
Wilcoxon signed-rank test against zero: p<0.001, r=0.64). A potential explanation is that 
participants may sometimes have confused the pair items in memory at the time of feedback 
(cf. Fig. 1b, right). Under one-sided learning of only winners, such confusion would result in 
the losing item occasionally being updated with the incorrect sign, while no other learning 
about the loser would occur on the remaining trials. In our modelling, which did not consider 
memory confusions, this would manifest in a negative net learning rate for losers. No such 
result would be expected under more symmetric learning, where the effect of occasional 
confusions would be counteracted by correct learning (about either item) on the remaining 
trials. Thus, while the trend for a negative learning rate and the observation of systematically 
false inferences about certain item pairs (Fig. 4 right) seem illogical, they are consistent with 
a strongly asymmetric learning mechanism that is also prone to occasional memory errors.  
 
To summarize our empirical findings, when transitive relations could only be inferred from 
local comparisons (Exp. 2-4), human learning was characterized by a one-sided outcome 
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attribution, which proved to be surprisingly optimal in model simulations. In contrast, a 
symmetrical attribution of relational outcome to winners and losers emerged in a setting 
where all pair relations could be directly experienced (Exp. 1), and for which our simulations 
identified symmetrical updating to be the most efficient.  

 
Discussion 
 
Reasoning about the relationships between arbitrary pairings of items is a key component of 
human intelligence. Through simulations, we showed how different learning regimes perform 
better in full and partial feedback contexts. Under full feedback, the best Q-learning model 
used symmetric learning to update the value estimates for the winning and losing items in 
opposite directions, with the same magnitude. However, under partial feedback (only for 
neighbouring items), the best learning model used asymmetric learning to only update the 
value representations for either the winner or the loser. Across four experiments, we find 
robust evidence that human learners used the best learning rule to match their feedback 
context. Participants used symmetric learning under full feedback (Exp. 1) and asymmetric 
learning under partial feedback (Exp. 2-4). While our asymmetric models allowed for a wide 
range of possible learning rate combinations, a majority of subjects showed one-sided 
learning, where value representations were only updated for either winners or losers.  
 
An important feature found both in our model simulations and participant behaviour is a 
compression of the emerging implicit value structure, which results in a systematic decrease 
in discriminability of higher valued items (see Fig. 2f and Fig. 3b,d). This resembles the Weber-
Fechner Law in psychophysics 29, where sensitivity to stimulus differences diminishes with 
increasing magnitude see also 37,32. While there exist alternative theoretical accounts for this 
ubiquitous phenomenon e.g., 38, our findings add a new perspective: compressed 
representations of magnitude emerge naturally from a learning policy that is optimized for 
inferring global relationships from only local comparisons. From this perspective, subjective 
compression might not only reflect an efficient adaptation to the distribution of stimuli in the 
environment 39–41, but could also result from learning policies that enhance transfer to novel 
relationships. 
  
In other contexts, previous RL studies have discovered different types of learning 
asymmetries, such as between positive and negative 24,25 or confirmatory and disconfirmatory 
outcomes 28. The one-sided learning policy highlighted here in the context of transitive 
inference is orthogonal to these other asymmetries but may play a similar role in leveraging a 
biased but advantageous learning strategy see also 27,42,43. Unlike with optimal cognitive biases 
reported previously 44–48, we did not find the benefit of the present learning asymmetries to 
emerge from general limitations (noise) in decision making (supplementary Fig. S4). We 
speculate that human learners may adopt the present biases more strategically, in settings 
where the availability of only sparse feedback presages the requirement of future inferential 
judgments.  

 
Previous theories have proposed richer and more complex cognitive mechanisms for 
transitive inference, often with an emphasis on the key role of the hippocampus in 
representing relational knowledge 15,49. Early research appealed to the idea that individuals 
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used spatial representations to learn ordered value sequences 1,8,50. More recently, various 
models have been proposed that use associative learning mechanisms to describe how 
interactions between episodic memories in the hippocampus can generalize relational 
knowledge from local to distant comparisons 17,51. In our present experiments, we found no 
evidence for transitive inference through such “associative linking” and failed to observe its 
key empirical prediction (an inverse symbolic distance effect, cf. Fig. 3b and S1b, right).  We 
show instead that simpler mechanisms of value learning 21,52,53 combined with clever biases 
(i.e., asymmetric learning rates) can be sufficient for performing TI and for accurately 
describing human learners. 
 
In summary, we report evidence for pronounced asymmetries in transitive relational learning, 
where observers selectively update their beliefs only about the winner (or the loser) in a pair. 
Although asymmetric learning yields distorted value representations, it proves beneficial for 
generalization to new, more distant relationships. Thus, this biased learning regime appears 
well-adapted for navigating environments with relational structure on the basis of only sparse 
and local feedback.  
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Methods 

 

Participants 
 
Participants in Exp. 1 and 2 were recruited from a participant pool at the Max Planck Institute 
for Human Development. Of these, n=20 participated in Experiment 1, (13 female, mean age 
27.15 ± 3.91 years) and n=35 participated in Experiment 2 (14 female, 27 ± 3.80 years). 
Participants in Exp. 3 and 4 were recruited online via Prolific Academic (www.prolific.co) with 
n=76 completing Exp. 3 (23 female, 24.73 ± 5.40 years) and n=60 completing Exp. 4 (23 female; 
25.92 ± 4.54 years). Participants in Exp. 1 and 2 received a compensation of €10 per hour and 
a bonus of €5 depending on performance. Payment in Experiment 3 and 4 was £4.87 (£1.46 
bonus) and £3.75 (£1.12 bonus), respectively. We obtained written informed consent from all 
participants and all experiments were approved by the ethics committee of the Max Planck 
Institute for Human Development.   
 
Participants who did not reach above-chance learning levels were excluded from analysis. The 
threshold for inclusion was set to 60% correct judgments in the last two blocks of the 
experiment, which corresponds to a binomial test probability of p<0.01 compared to chance-
level (50%). After exclusion, n=17 (Exp. 1), n=31 (Exp. 2), n=48 (Exp., 3) and n=49 (Exp. 4) 
participants remained for analysis.  
 

Stimuli, task, and procedure 
 
in Exp. 1 and 2, eight pictures of everyday objects and common animals were used as stimuli 
(Fig. 1a). In Exp. 3 and 4, we included 12 additional pictures of objects and animals and 
selected for each participant a new subset of 8 images as stimuli. An additional set of 8 
pictures was used for instructions and practice purposes in each experiment. All images were 
from the BOSS database 54, with the original white background removed.  
 
All experiments involved learning the latent relations between the 8 stimuli 
(A>B>C>D>E>F>G>H) through pairwise choice feedback, where the latent value structure was 
pseudo-randomly assigned to the pictures for each participant. On each trial, a pair of pictures 
was presented and observers were asked to choose the higher-valued stimulus (two-
alternative choice with time-out). All possible stimulus pairings (8 neighbours and 20 non-
neighbours) were randomly intermixed across trials, with randomized ordering of the 
elements in a pair (e.g., A-B or B-A). Prior to all experiments, participants were given written 
instructions and were asked to complete two brief practice blocks to familiarize with the task. 
 
Experiment 1 (full Feedback, n=17). On each trial, two items were presented one after the 
other at fixation (0.5 s/item) with an inter-stimulus interval of 2-3s (randomized). After the 
second item, Arabic digits “1” and “2” were displayed to the left and right of fixation (positions 
randomized across trials) and participants were asked to choose the higher-valued item by 
pressing the corresponding arrow key (left or right) within 2s. A written feedback message 
(“great” for correct responses, “incorrect” for errors) was shown after each choice  
(neighbouring and non-neighbouring pairs). The items’ latent values in Exp. 1 were 
probabilistic (with a Gaussian distribution) and designed such that feedback was truthful on 
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approx. 80% of neighbour trials (“probabilistic feedback”). Each Participant performed 448 
learning trials with all possible stimulus pairings (n=56) presented in each of 8 consecutive 
blocks. Experiments 1 and 2 were conducted in lab, using Psychophysics Toolbox Version 3 55 
running in MATLAB 2017a (MathWorks). 
 
Experiment 2 (partial feedback, n=31). The design was nearly identical to Exp. 1, but choice 
feedback was only given after neighbouring pairs. After non-neighbouring pairs instead, a 
neutral “thank you” message was displayed. neighbouring pairs were presented more often 
(2.5 times as often as non-neighbouring pairs), resulting in 616 trials (presented in 8 blocks of 
77). In Exp. 2, we additionally recorded EEG and participants performed a brief picture viewing 
task prior to the experiment. These data were collected for the purpose of a different research 
question and are not reported here. 
 
Experiment 3 (partial feedback, n=48). The basic design was identical to Exp. 2, except for the 
following changes: Both pair items were displayed simultaneously on screen for 2.5 s, one to 
the left and the other to the right of a centred fixation cross. Participants were instructed to 
quickly select the higher valued item using the left or right arrow key. After neighbouring pairs, 
a feedback message (“win” or ”loss”) was presented. After non-neighbouring pairs, no 
feedback message was shown. Experiments 3 and 4 were programmed in PsychoPy 2020.1.3 
56 and conducted online (Pavlovia.org), with intermittent attention checks. 
 
Experiment 4 (partial feedback, deterministic, n=49). The design was identical to Exp. 3, but 
feedback was always truthful (“deterministic feedback”). As learning expectedly proceeds 
faster with deterministic feedback, neighbouring pairs were presented only 2 times as often 
as non-neighbours and we reduced the number of trials to 420 (presented in 6 blocks of 70 
trials). 
 

 

Models    

 
Item-level learning 

 
To model how observers update their value estimates about the winning item 𝑖 and the losing 
item 𝑗 after relational feedback, we assume a simple delta rule (Rescorla & Wagner, 1972) 
(model Q1; Eq. 1a and 1b):  
 

𝑄𝑡+1(𝑖)  =  𝑄𝑡(𝑖)  +  𝛼[    1 − 𝑄𝑡(𝑖)] 
𝑄𝑡+1(𝑗)  =  𝑄𝑡(𝑗)  +  𝛼[−1 − 𝑄𝑡(𝑗)] 

 
where 𝑄𝑡  is the estimated item value at time 𝑡 and 𝛼 is the learning rate. 
 
Transitive inference is enabled by a modified updating rule similar to 22,14 based on the relative 
difference 𝑑𝑡(𝑖, 𝑗) between the value estimates for the winner 𝑖 and the loser 𝑗 in a pair (Eq. 
2): 
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𝑑𝑡(𝑖, 𝑗)  = 𝜂[𝑄𝑡(𝑖)  − 𝑄𝑡(𝑗)] 

 
where 𝜂 is a scaling factor. Value updating is then moderated by the extent to which feedback 
is consistent (or inconsistent) with 𝑑𝑡(𝑖, 𝑗) (model Q1*; Eq. 3a and 3b): 
 

𝑄𝑡+1(𝑖)  =  𝑄𝑡(𝑖)  +  𝛼[    1 − 𝑑𝑡(𝑖, 𝑗) − 𝑄𝑡(𝑖)] 
𝑄𝑡+1(𝑗)  =  𝑄𝑡(𝑗)  +  𝛼[−1 +  𝑑𝑡(𝑖, 𝑗) − 𝑄𝑡(𝑗)] 

 
for the winning item 𝑖 and the losing item 𝑗, respectively. Note that Eq. 1 is a special case of 
Eq. 3 when 𝜂 = 0. 
 
We can also allow asymmetric updating of winners and losers by introducing separate learning 
rates 𝛼+ and 𝛼− (models Q2/Q2*; Eq. 4a and 4b): 
 

𝑄𝑡+1(𝑖)  =  𝑄𝑡(𝑖)  + 𝛼+[    1 − 𝑑𝑡(𝑖, 𝑗) − 𝑄𝑡(𝑖)] 
𝑄𝑡+1(𝑗)  =  𝑄𝑡(𝑗)  +  𝛼−[−1 + 𝑑𝑡(𝑖, 𝑗) − 𝑄𝑡(𝑗)] 

 
where the winning item 𝑖 is updated via 𝛼+ and the losing item 𝑗 is updated via 𝛼−. 
 
In order to convert the value estimates from item-level learning into pairwise choice 
probabilities for any two items 𝑖 and 𝑗, we use a logistic choice function to define the 
probability of choosing 𝑖 > 𝑗 based on the difference between the estimated item values (Eq. 
5): 
 

𝐶𝑃𝑖𝑡𝑒𝑚,𝑡 =
1

1 + 𝑒𝑥𝑝(−(𝑄𝑡(𝑖) − 𝑄𝑡(𝑗))/𝜏𝑖𝑡𝑒𝑚)
 

 
where 𝜏𝑖𝑡𝑒𝑚is the (inverse) temperature parameter controlling the level of decision noise in 
choices based on item-level learning. 

 

Pair-relational learning 

 
For the partial feedback scenario, we also define an alternative learning model that tracks the 
learned relations between neighbouring items (rather than the individual items’ values). For 
each neighbouring pair 𝑛 (1..7), we can describe the relation between its members (e.g., A>B)  
probabilistically in terms of a beta distribution: 

 
𝑝𝑛  ∼ 𝐵𝑒𝑡𝑎(𝑈𝑛, 𝐿𝑛)   

 
Following truthful feedback (e.g., “correct” when A>B was chosen), the upper value of the 
beta distribution is updated (Eq. 6a): 

 
𝑈𝑛,𝑡+1 = 𝑈𝑛,𝑡 + 𝛾 

 
whereas following untruthful feedback (only in experiments with probabilistic feedback, see 
Exp. 2 and 3), the lower value is updated (Eq. 6b): 
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𝐿𝑛,𝑡+1 = 𝐿𝑛,𝑡 + 𝛾 

 
with 𝛾 acting as a learning rate. We can thus define the learned neighbour relation at time 
𝑡 based on the expectation of the beta distribution (Eq. 7): 

 

𝑝𝑛,𝑡 =
𝑈𝑛,𝑡

𝑈𝑛,𝑡 + 𝐿𝑛,𝑡
 

 
where 𝑝𝑛,𝑡 = 0.5 reflects indifference and values of 𝑝𝑛,𝑡 larger (or smaller) than 0.5 reflect a 
preference for the true (or opposite) relation. While this mechanism can learn the relation 
between neighbouring items under partial feedback, it fails to learn the relations between 
non-neighbouring items for which there is no direct feedback signal. However, transitive 
inference of non-neighbouring relations is possible through associative recall of those 
neighbour relations that “link” the two non-neighbour items in question. To allow for this 
possibility, we define the inferred relation between any two items 𝑖 and j via the intermediate 
neighbour pair relations 𝑝𝑛,𝑡  ∈  𝑀separating 𝑖 and 𝑗 (Eq. 8): 

  

𝑝𝑖>𝑗,𝑡  =  
∑   

𝑝𝑛,𝑡 ∈ 𝑀 (𝑝𝑛,𝑡 − 0.5)

|𝑖 − 𝑗|𝜆+1
+ 0.5 

 
where |𝑖 − 𝑗| is the rank distance between the items’ true values, and 𝜆 is a free parameter 
reflecting failure to retrieve linking relations in the range [0, ∞]. If 𝜆 = 0, non-neighbour 
relation will be a lossless average of all intermediate neighbour relations (i.e., perfect 
memory). As 𝜆 grows, the preference between non-neighbours will shrink to indifference with 
increasing distance between 𝑗 and 𝑖. In other words, this model performs perfect transitive 
inference if 𝜆 = 0, and no transitive inference as 𝜆 → ∞. Note that for neighbour pairs (where 
|𝑖 − 𝑗| = 1), Eq. 8 is equivalent to Eq. 7.  
 
We again use a logistic choice rule to define the probability of choosing item 𝑖 over 𝑗 based on 
pair relation 𝑝𝑖>𝑗,𝑡 subject to decision noise 𝜏𝑝𝑎𝑖𝑟  (Eq. 9): 

  

𝐶𝑃𝑝𝑎𝑖𝑟,𝑡 =
1

1+𝑒𝑥𝑝(−𝑝𝑖>𝑗,𝑡/𝜏𝑝𝑎𝑖𝑟)
. 

 

 
From Equations 6-8, we constructed alternative models incorporating pair-relational 
learning (Model P, where 𝜆 is fixed at a large value) and pair-relational inference (Model Pi, 
where 𝜆 is a free parameter). 
 
To combine item-level and pair-relational learning, we assume that choices are triggered by 
whichever of the two models provides a stronger preference on a given trial. Thus, choices 
are based on item-level learning (𝐶𝑃𝑖𝑡𝑒𝑚) if (Eq. 10a): 
 

| 𝐶𝑃𝑖𝑡𝑒𝑚,𝑡 − 0.5 | > | 𝐶𝑃𝑝𝑎𝑖𝑟,𝑡 − 0.5 | 

 
and are based on pair-relational learning (𝐶𝑃𝑝𝑎𝑖𝑟) if (Eq. 10b): 
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| 𝐶𝑃𝑖𝑡𝑒𝑚,𝑡 − 0.5 | < | 𝐶𝑃𝑝𝑎𝑖𝑟,𝑡 − 0.5 | 

 
This effectively implements a mixture of item- and pair-level learning. 
 

Model space 

 
From Equations 1-10, we constructed a nested model space with either one or two learning 
rates (1: symmetric, 2: asymmetric updating, cf. Eq. 4). One set of models allows for simple 
item-level RL only (Models Q1 and Q2) or additionally for item-level transitive inference 
(Models Q1* and Q2*, Eq. 1-5). Alternative models (Eq. 6-9) incorporated pair-relational 
learning (Model P) and pair-relational inference (Model Pi). Mixture models (Eq. 10) combined 
item-level and pair-relational learning, specifically (Q1*+P, Q2*+P, Q1*+Pi, Q2*+Pi). 
Technically, all models under study were derived from the most flexible model Q2*+Pi with 
individual parameter restrictions (e.g., 𝛾 = 0 yields model Q2*; or 𝛼+ = 𝛼−  yields symmetric 
updating). 

Performance simulations 

We simulated the performance of our item-level learning models (Q1, Q2, Q1*, Q2*) in tasks 
akin to those used in the human experiments, with full and partial feedback (Fig. 2 and Fig. 
S1-S3). The performance simulations were run in Matlab R2020a (MathWorks). Models were 
initialized with flat priors about the item values (all 𝑄1(𝑖) = 0, i.e., the first choice was always 
a random guess with 𝐶𝑃1 = 0.5). Like in the human experiments, choice feedback was 
provided either for all pairs (full feedback) or only for neighbour pairs (partial feedback). We 
simulated model performance over a range of learning rates (𝛼+ and 𝛼−, 0 to 0.1 in 
increments of 0.001). Relational difference-weighting (𝜂) was set to either 0 (models Q1/Q2) 
or 8 (models Q1*/Q2*), and decision noise (𝜏𝑖𝑡𝑒𝑚) was set to 0.2 and 0.04 (full and partial 
feedback) which resembles the noise levels estimated in our human observers in the 
respective experiments. Mean choice probabilities (e.g., Fig 2a lower) and performance levels 
(e.g., Fig 2b) were simulated using the same number of trials and replications (with a new trial 
sequence) as in the respective human experiments. Simulation results under partial feedback 
(Fig. 2e and S2-4) were qualitatively identical when inspecting performance on non-
neighbouring pairs only. 

Parameter estimation and model comparison 

Model parameters were estimated by minimizing the negative log-likelihood of the model 
given each observer’s single-trial responses across values of the model’s free parameters 
[within bounds (lower;upper): 𝛼/𝛼+/𝛼−(0;0.2), 𝜂(0;10), 𝜏𝑖𝑡𝑒𝑚(0;1), 𝛾(0;1), 𝜆(0;100), 
𝜏𝑝𝑎𝑖𝑟(0;1), with a uniform prior]. All model fitting was performed in R (R core team, 2020;  

https://www.R-project.org/). Minimization was performed using a differential evolution 
algorithm 57 with 200 iterations. We then computed the Bayesian Information Criterion (BIC) 
of each model for each participant and evaluated the models’ probability of describing the 
majority of participants best (protected exceedance probability, pxp) 58. In Fig. 3e and 3f, we 
also provide a Pseudo-R-squared computed as 𝑅𝑠𝑞 = 1 − (𝐵𝐼𝐶 𝑚𝑜𝑑𝑒𝑙/𝐵𝐼𝐶 𝑛𝑢𝑙𝑙), which 
quantifies goodness of fit relative to a null model of the data, with larger values indicating 
better fit similar to 59. Model comparisons for Exp.1 (full feedback) were restricted to item-level 
learning models, as the availability of direct feedback for every pairing would equate pair-level 
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learning models (P, Pi) to homogenous learning of all pairs, obviating contributions from 
transitive inferences. 
 
To quantify model-estimated asymmetry (Fig. 4), we computed an index of the normalized 
difference in learning rates 𝐴 = (𝛼+ − 𝛼−)/|(𝛼+ + 𝛼−)| which ranges from -1 (updating of 
losers only) to 1 (updating of winners only), with 𝐴 = 0 indicating symmetric updating. For 
comparison between full and partial feedback experiments, we contrasted the absolute |𝐴| 
estimated from the winning models in Exp. 2-4 (Q2*+P/Q2*, see Fig. 3) with that estimated 
from model Q2 in Exp. 1. 

Model- and parameter recovery 

To establish whether the individual models can be distinguished in model comparison we 
simulated, for each participant and model, 100 experiment runs using the individuals’ 
empirical parameter estimates under the respective model. We then fitted the generated data 
sets (binomial choice data) with each model and evaluated how often it provided the best fit 
(in terms of BIC). This way we estimated the conditional probability that a model fits best given 
the true generative model [𝑝(𝑓𝑖𝑡|𝑔𝑒𝑛)]. However, a metric more critical for evaluating our 
empirical results is 𝑝(𝑔𝑒𝑛|𝑓𝑖𝑡), which is the probability that the data was generated by a 
specific model, given that the model was observed as providing the best fit to the generated 
data 60. We compute this probability using Bayes theorem, with a uniform prior over models 
[𝑝(𝑔𝑒𝑛)]: 

𝑝(𝑔𝑒𝑛|𝑓𝑖𝑡) =
𝑝(𝑓𝑖𝑡|𝑔𝑒𝑛)𝑝(𝑔𝑒𝑛)

∑  𝑛𝑀𝑜𝑑𝑒𝑙𝑠
𝑠𝑖𝑚=1 𝑝(𝑓𝑖𝑡|𝑔𝑒𝑛)𝑠𝑖𝑚𝑝(𝑔𝑒𝑛)𝑠𝑖𝑚

  

To mimic the level of inference in our human data fitting, we examined mean 𝑝(𝑓𝑖𝑡|𝑔𝑒𝑛) and 
𝑝(𝑔𝑒𝑛|𝑓𝑖𝑡) on the experiment level, based on full simulations of all participants in Exp. 1 (full 
feedback) and Exp. 2 (partial feedback). Critically, under partial feedback (cf. Exp. 2-4), all our 
models were robustly recovered with this approach (supplementary Fig. S5). 

Under full feedback (Exp. 1), human participant behaviour was best characterized by 
symmetric learning rates (𝛼+ ≈ 𝛼−), even when both learning rates were free parameters 
(Fig. 3e and Fig. 4). To test whether we could have detected asymmetric learning, had it 
occurred in Exp. 1, we enforced asymmetry in simulation by setting 𝛼− to values near zero (by 
drawing from a rectified Gaussian with 𝜇 = 0 and 𝜎 = 0.01). We likewise enforced difference-
weighted updating (𝜂 > 0) when simulating model Q2*, by setting 𝜂 to similar levels as 
empirically observed in the partial feedback experiments (𝜇 = 3 and 𝜎 = 0.5). With this, the 
model recovery for Exp. 1 successfully distinguished between symmetric (Q1/Q1*) and 
asymmetric learning models (Q2/Q2*, supplementary Fig. S6). However, models with 
difference-weighted updating (Q1*/Q2*, Eq. 2-3) were partly confused with models Q1/Q2. 
In other words, our empirical finding of Q1 as the winning model in Exp. 1 (Fig. 3e) does not 
rule out the possibility of Q1* as the generative process under full feedback.  

To establish whether our inferences about model parameters (e.g., Fig. 4) are valid, we 
simulated choices under partial feedback (Exp. 2) using our winning model (Q2*+P). Choice 
data sets were simulated using each participant’s empirical parameter estimates and 
iteratively varying each parameter over 20 evenly spaced values within the boundaries used 
in Parameter estimation (see above). We then fit the model to the simulated data sets and 
examined the correlations between generative and recovered parameters (supplementary 
Fig. S7 and S8). All fitted parameters correlated most strongly with their generative 
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counterparts (min 0.59, max 0.93) while correlations with other generative parameters were 
generally weaker (min -0.44, max 0.43). 

 
Statistical analyses  

Behavioural and modelling results were analysed using nonparametric tests (two-sided) as 
detailed in Results. In case of multiple tests, the maximum p-value (uncorrected) is reported. 

  
Code and data availability 
 
The data that support the findings of this study are available at: 
https://arc-git.mpib-berlin.mpg.de/ti/asymm 
 
The experiment- and analysis code will be made available at: 
https://arc-git.mpib-berlin.mpg.de/ti/asymm 
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Supplementary Movie 
 
 
 

 
https://arc-git.mpib-berlin.mpg.de/ti/asymm/-/blob/master/MovieM1.mov 

Supplementary Movie M1: Simulations of Q-learning under partial feedback for models Q1 
(left) and Q1* (middle) with the same learning rate for winning and losing items, and for model 
Q2* (right) with asymmetric learning about winners only (𝜶− set to 0). Colored dots indicate 
the momentary Q-values for items A-H. Simulations are shown for a trial sequence with 
deterministic feedback for illustration purposes. The movie first plays 200 learning trials (top 
panels) and then repeats the same trials more slowly (bottom panels). Non-neighbour trials 
(on which no feedback is given) are fast forward. Green and red disks indicate the winning and 
losing item on every trial. 

Model Q1 (left) effectively learns only about the extreme items (A and H), while intermediate 
item values fluctuate unsystematically around the pre-experiment baseline. In models with 
difference-weighted updating (Q1* and Q2*, middle and right), value differences propagate 
through the item series, which leads to a more monotonic value structure that enables 
transitive inferences also about intermediate items (B-G). In model Q1* (middle) with 
symmetric learning, propagation can occur in both directions, which results in partly 
conflicting updates for mid-range items (e.g., C-F). This induces residual non-monotonicity in 
the evolving value structure, which can compromise transitive inference. In model Q2* (right) 
with asymmetric learning, in contrast, conflicting updates are reduced, leading to a more 
strictly monotonic value structure that enables superior transitive inference.   

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.03.437766doi: bioRxiv preprint 

https://arc-git.mpib-berlin.mpg.de/ti/asymm/-/blob/master/MovieM1.mov
https://doi.org/10.1101/2021.04.03.437766
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

Supplementary Figures 
 
 

 
 
Supplementary Figure S1: a, Simulation of model Q1 under partial feedback. Same 
conventions as in Fig. 2. The simple Q-learning models (Q1/Q2) can only learn about the 
extreme items (here, A and H) under partial feedback. b, Choice matrices predicted by pair-
relational learning without (left, model P) or with associative recall of “linking” pair 
relationships (right, model Pi). Choice behaviour was simulated with a pair-level learning rate 
𝛾 = 1. Associative recall in model Pi (right) was enabled by additionally setting parameter 𝜆 =
1 (see Methods for details). 
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Supplementary Figure S2. Performance simulations with probabilistic choice outcomes, same 
conventions as in Fig. 2. Left, full feedback (for all pairs; cf. Fig. 2b). Right, partial feedback 
(only for non-neighbouring pairs; cf. Fig. 2e). Optimal learning under partial feedback is 
characterized by asymmetric updating (𝛼+ ≠ 𝛼−), just as was observed with deterministic 
outcomes (cf. Fig. 2e). 
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Supplementary Figure S3. Pilot experiment with partial feedback (n=11). The design was 
identical to Exp. 2, except that all item pairs (neighbours and non-neighbours) were presented 
equally frequently (like in Exp. 1). Left, Performance simulation shows a similar benefit of 
asymmetric updating as we observed in simulation of Exp. 2-4 (where neighbouring pairs were 
presented more frequently, cf. Fig 2e and S2, right). Right, Mean proportions of correct 
choices in the pilot experiment. The overall learning level was relatively low, with n=9 (of 20) 
pilot participants not meeting our inclusion threshold for above-chance performance (cf. 
Methods: Participants). The descriptive choice data of the remaining 11 pilot participants 
(shown in right) indicate a similar learning asymmetry as we observed in our main 
experiments. 
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Supplementary Figure S4. Performance simulations under partial feedback (analogous to Fig. 
2e) for different levels of decision noise (𝜏𝑖𝑡𝑒𝑚). Asymmetric learning is beneficial regardless 
of decision noise level and accordingly, across a wide range of overall performance levels. 
Simulations with probabilistic outcomes yielded a qualitatively very similar pattern. 
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Supplementary Figure S5. Model recovery results, partial feedback (cf. Fig. 3f). The models 

were generally well distinguished both in 𝑝(𝑓𝑖𝑡|𝑔𝑒𝑛) and in 𝑝(𝑔𝑒𝑛|𝑓𝑖𝑡). Of particular 

importance, our winning asymmetric models (Q2* and Q2*+P, see Results) were well 

distinguished from their symmetric counterparts (Q1* and Q1*+P), with confusion rates no 

higher than 5%. 
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Supplementary Figure S6. Model recovery results for Exp. 1 with full feedback (cf. Fig 3e). 

Simple Q-learning (models Q1/Q2) could not be confidently distinguished from models 

Q1*/Q2*. However, symmetric (Q1/Q1*) and asymmetric learning (Q2/Q2*) were 

distinguished relatively well. See Methods: Model- and parameter recovery for details.  
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Supplementary Figure S7: Parameter recovery results under partial feedback for our best-

fitting model (Q2*+P). All fitted parameters correlate most strongly with their generative 

counterparts (diagonal) while correlations with other generative parameters (off-diagonal) 

are generally weaker. 
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Supplementary Figure S8: Detailed parameter recovery results for the individual parameters. 

The parameter values used to simulate choice data are plotted on the x-axes and the 

parameter estimates obtained from fitting the model to the simulated data are plotted on the 

y-axes. Light blue: mean recovered parameter values with bootstrapped 95% confidence 

intervals. Dark blue line shows linear fit. Results from individual recovery runs are shown as 

half-transparent black dots.  
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Supplementary Methods  
 

RL-ELO 

 
When fitting RL-ELO, we replaced our Q-learning process (Methods: Item-level learning, Eq. 1) 
by a rank learning process as proposed by Kumaran and colleagues1  
 

𝑉𝑡+1(𝑖)  =  𝑉𝑡(𝑖)  +  𝛼[    1 − 𝐶𝑃𝑤𝑖𝑛,𝑡] 

𝑉𝑡+1(𝑗)  =  𝑉𝑡(𝑗)  +  𝛼[−1 + 𝐶𝑃𝑤𝑖𝑛,𝑡] 
 
where 𝑉(𝑖) and 𝑉(𝑗) are the ranks of the winning item 𝑖 and the losing item 𝑗, 𝐶𝑃𝑤𝑖𝑛 is the 
probability of choosing the winning item, and 𝛼 is the learning rate. 𝐶𝑃𝑤𝑖𝑛 was computed with 
a logistic choice function (analogous to Eq. 5) of the difference in ranks between the winning 
and the losing item [𝑉(𝑖) − 𝑉(𝑗)].  

 

Value-transfer 

 
The value transfer model (VAT) proposed by von Fersen and colleagues2 assumes that the 
value of the losing item is updated with a proportion of the value of the winning item. We 
implemented VAT in a similar form as described previously1:  
 

𝑉𝑡+1(𝑖)  =  𝑉𝑡(𝑖)  +  𝛼[    1 − 𝑉𝑡(𝑖)] 
𝑉𝑡+1(𝑗)  =  𝑉𝑡(𝑗)  +  𝛼[−1 − 𝑉𝑡(𝑗)] + 𝑉𝑡(𝑖) ∗ 𝜃 

 
where 𝑉(𝑖) and 𝑉(𝑗) are the values of the winning item 𝑖 and the losing item 𝑗, 𝛼 is the learning 
rate, and 𝜃 controls the value transfer from the winning to the losing item. Interestingly, this 
formulation of VAT incorporates a form of asymmetric learning (through value transfer from 
winner to loser but not vice versa), and it can even predict below-chance performance for 
certain item pairings (through exceedingly large values of 𝜃), similar to our Q2* model family. 
However, the Q2* process provided a better description of our empirical data (see Results).  
 
For comparisons with our winning model (Q2*+P), we additionally fitted extended variants of 
RL-ELO and VAT where we included separate learning rates for winner and losers (𝛼+ and 𝛼−,  
analogous to our model Q2, Eq. 3) as well as pair-relational learning (+P, Eq. 6-7 and 9-10). 
 
 
 
1. Kumaran, D., Banino, A., Blundell, C., Hassabis, D. & Dayan, P. Computations Underlying Social 

Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant 
Information. Neuron 92, 1135–1147 (2016). 
 

2. von Fersen, L., Wynne, C. D., Delius, J. D. & Staddon, J. E. Transitive inference formation in 
pigeons. Journal of Experimental Psychology: Animal Behavior Processes 17, 334–341 (1991). 
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