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Using the Feynman-Kac formula, a work fluctuation theorem for a Brownian particle in a non
confining potential, e.g., a potential well with finite depth, is derived. The theorem yields an
inequality that puts a lower bound on the average work needed to change the potential in time.
In comparison to the Jarzynski equality, which holds for confining potentials, an additional term
describing a form of energy related to the never ending diffusive expansion appears.

I. INTRODUCTION

Thermal equilibrium is one of the most fundamental
concepts in statistical mechanics. Roughly speaking it is
a state where time does no longer appear in any of the rel-
evant macroscopic observables. These equilibrium states
are very well studied and there exists a set of basic sta-
tistical and thermodynamic statements about them. Let
us list some of them for the simple special case of an
overdamped one dimensional Brownian particle in ther-
mal equilibrium with a heat bath of temperature T and
inside a potential V (x). Equilibrium statistical mechan-
ics tells us that the probability density function (PDF) of
the particles position is Boltzmann distributed and hence
given by

PB(x) =
e−V (x)β

ZV
. (1)

Here β = 1/kBT and ZV is a normalization factor. From
equilibrium thermodynamics we know that an isothermal
and quasi-static transition from one equilibrium state to
another, which in our case is done by changing the po-
tential from V1 to V2, consumes an average amount of
Energy in the form of work W given by

〈W 〉 = ∆F. (2)

Where ∆F is the Helmholtz free energy difference be-
tween the initial and the final state. Recall that ∆F
is connected to the normalization factor via ∆F =
−kB [log(ZV2)− log(ZV1)]. Also note, due to the stochas-
tic nature of the system W is a random variable and 〈· · ·〉
denotes the expectation value. Relaxing the quasi-static
assumption the above equality (2) becomes an inequality

〈W 〉 > ∆F, (3)

which can be derived by applying the Clausius inequality,
a manifestation of the second law of thermodynamics, to
the first law of thermodynamics. Surprisingly the above
inequality can also be derived by a more fundamental
equality, namely the Jarzynski equality [1]〈

e−β(W−∆F )
〉

= 1. (4)

This equality belongs to a family of so-called integral fluc-
tuation theorems. In the past years a number of integral

and so-called detailed fluctuation theorems for different
cases have been discovered, see [2–11] for further reading.
Since changing the potential with nonzero speed drives
the system away from equilibrium, inequality (3) and the
Jarzynski equality (4) are actually out of equilibrium re-
sults. Hence it is only required that the system starts in
equilibrium and the final equilibrium state exists. The
emphasis here is on exists, W does not care if the sys-
tem relaxes back to equilibirum after the potential has
been changed. Now for some systems equilibrium states
do not exist. For our simple case, thermal equilibrium
can be reached under the condition that the system is
enclosed by a potential which diverges faster than loga-
rithmically in space, e.g., a harmonic potential or hard
reflective walls. We will call such potentials confining.
In principle, since most of the fundamental forces (weak,
electromagnetic, gravity) are not diverging it is natural
to assume that in reality confining potentials are very ex-
otic. In most cases they are only local approximations of
globally non confining potentials, for example a harmonic
potential can approximate the Lennard-Jones potential
around its minimum.

The general question that this article is trying to tackle
is the following: Do thermodynamic equalities and in-
equalities, structurally similar to the Jarzynski equal-
ity(4), and the lower bound (3), also exist in non-confined
systems? Or in other words, how important is it to con-
fine the system in order to get these fundamental results?
To seek for a general answer is most certainly too ambi-
tious, hence we constrain ourselves to the special case of a
Brownian particle inside an asymptotically flat potential
which goes to zero at least as fast as 1/x and is changed in
time via an external protocol. This choice is mainly mo-
tivated by the following already existing results. It was
shown in [12, 13] that for these kind of systems, assuming
that the potential is time independent, to leading-order
in the long time limit, the PDF P (x, t) assumes the shape

P (x, t) ≈ PGB(x, t) =
e−

x2

4Dt−βV (x)

N(t)
, (5)

where N(t) is the normalization constant which is ∼
√
t

for sufficiently large t. Eq. (5), has a simple intu-
itive explanation: The Gaussian factor in the asymp-
totic shape of the PDF is dominant in the tails of the
system, at x >

√
πDt where the potential is effec-

tively zero whereas at small x and t � 1, the Gaus-
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sian factor is = 1 and the Boltzmann factor is domi-
nant. When t → ∞, according to Eq. (5), the PDF
approaches a non-normalizable Boltzmann infinite invari-
ant density [12, 13] (see also the related works [14, 15])
limt→∞N(t)Pt(x) → exp(−V (x)/kBT ), which replaces
the standard Boltzmann distribution in its role in de-
termining integrable physical observables such as energy
and occupation times, and leads to infinite ergodic the-
ory, see e.g., [14, 16–19].

II. SETTING THE STAGE

We begin with the overdamped Langevin dynamics of
a Brownian particle in an external potential field

ẋt = −V
′(xt, λt)

γ
+
√

2D ξt, (6)

where V (xt, λt) is a potential depending on an externally
controlled protocol λt, and D, γ, ξt are respectively the
diffusion constant, the friction and Gaussian white noise
with zero mean and

〈ξt ξt′〉 = δ(t− t′). (7)

Furthermore V (xt, λt) is assumed to be an asymptoti-
cally flat potential well which falls of at least as rapidly
as 1/x hence

lim
x→±∞

V (x, λt) = 0. (8)

The evolution of the PDF P (x, t) is given by

∂tP (x, t) = LP (x, t), (9)

where L is the Fokker-Planck operator

L =

(
D∂2

x +
1

γ
∂xV

′
)
. (10)

For a fixed λt and sufficiently long times P (x, t) converges
to [13]

PGB(x, t, λt) =
e−

x2

4Dt−βV (x,λt)

N(t, λt)
, (11)

here β = 1
kBT

, kB is the Boltzmann constant and N(t, λt)
is the normalization constant

N(t, λt) =

∫ ∞
−∞

e−
x2

4Dt−βV (x,λt)dx. (12)

Although we mentioned in the introduction that for large
enough t, N(t, λt) ∼

√
t , we choose to keep the full nor-

malization constant since it leads to faster convergence.
The particular scenario that we consider throughout

this article is the following. At t = 0 the particle is
placed inside the potential well. From t = 0 to t = t0
the system relaxes such that at t = t0 the density is

approximately given by PGB(x, t0), Eq. (11). From t =
t0 to t = t1 the potential is changing according to an
externally controlled protocol λt. At t = t1 the potential
stops changing and in principle the system relaxes back
to a state described by (11). The relaxation in the end
however will not play a role in the results. In this scenario
the work done by the protocol along a trajectory up to
time t is given by

Wt =

∫ t

t0

λ̇τ
∂V (xτ , λτ )

∂λτ
dτ =

∫ t

t0

∂V (xτ , τ)

∂τ
dτ. (13)

III. A MOTIVATING SPECIAL CASE: THE
INFINITELY FAST PROTOCOL

Let us start by considering a simple special case where
the potential changes instantaneously. This can be ex-
pressed mathematically by stating that the change of the
potential V (x,Θ(t− t0)) in time is only through a heavi-
side/theta function Θ(t− t0). The natural choice for the
protocol here is

λt = Θ(t− t0). (14)

Introducing the abbreviate notation

∆V (x) := V (x, 1)− V (x, 0) (15)

we write the potential as

V (x, λt) = V (x, 0) + λt∆V (x). (16)

According to (13) the trajectory dependent work is then
given by the difference between the potential after and
before the change evaluated at xt0 ,

Wt = ∆V (xt0). (17)

As mentioned in the introduction we are interested in a
Jarzynski like equality. Due to the simple expression for
the work we can straight forwardly calculate〈

e−βWt
〉

=

∫ ∞
−∞

e−∆V (x) PGB(x, t0, 0) dx (18)

=

∫∞
−∞ e−

x2

4Dt0
−βV (x,1)dx

N(t0, 0)
. (19)

Introducing a quantity ∆G analogue to the Helmholtz
free energy difference

∆G = −β ln

(
N(t0, 0)

N(t0, 1)

)
(20)

= −β ln

∫∞−∞ e−
x2

4Dt0
−βV (x,1)dx∫∞

−∞ e−
x2

4Dt0
−βV (x,0)dx

 (21)

we arrive at 〈
e−βWt

〉
= e−β∆G. (22)
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Eq. (22) is analogous to Eq. (4), but in contrast to the
standard Jarzinski equality, it is now valid even though
the system has no equilibrium state. By the so called
Jensen’s inequality this relation yields

〈Wt〉 > ∆G. (23)

In the next section we will derive a version of (22) valid
for arbitrary protocol speed.

IV. DERIVATION OF THE WORK
FLUCTUATION THEOREM

Our derivation is essentially an adjusted version of an
elegant derivation of the Jarzynski equality using the
Feynman-Kac formula, first presented in [20]. Let us
briefly state a version of the Feynman-Kac formula which
is sufficient for our purpose, for a proof see [21]. As-
sume a Langevin process xt whose phase space density
P (x, t) = 〈δ(xt − x)〉 obeys

∂tP (x, t) = LP (x, t). (24)

Here 〈· · ·〉 denotes an average over all trajectories ending
at time t and δ(xt−x) being the delta-distribution picks
out the ones that end at position x. The Feynman Kac
formula then says that

g(x, t) =
〈
δ(x− xt)e−Ωt

〉
, (25)

with

Ωt =

∫ t

t0

f(xτ , t)dτ, (26)

being a stochastic functional obeys

∂tg(x, t) = Lg(x, t)− f(x, t)g(x, t). (27)

Now we apply this statement to our case by making the
initially arbitrary seeming choice

Ωt := β

[
Wt −

∫ t

t0

(
kBT

2τ
+
xτF (xτ , λτ )

2τ

)
dτ

]
, (28)

or equivalently

f(x, τ) := β

[
∂V (x, τ, λτ )

∂τ
− kBT

2τ
− xτF (xτ , λτ )

2τ

]
,

(29)

with F = −V ′ being the force acting on the particle.
Equation (27) then becomes

∂tg(x, t) = Lg(x, t)

+ β

[
kBT

2t
+
xF (x, t)

2t
− λ̇∂V (x, λt)

∂λt

]
g(x, t).

(30)

It can be verified by direct substitution that

g(x, t) =
e−

x2

4Dt−βV (x,λt)

N(t0, λt0)
, (31)

solves (30) with the initial condition

g(x, t0) ≡ P (x, t0) = PGB(x, t0, λt0). (32)

However we also know from the Feynman-Kac formula
that (25) with the particular choice made in (28) solves
(30). Thus we have

〈
δ(x− xt)e−Ωt

〉
=
e−

x2

4Dt−βV (x,λt)

N(t0, λt0)
, (33)

which can be rewritten by defining a more general ana-
logue of the Helmholtz free energy difference than (20)

∆G := −kBT ln

(
N(t, λt)

N(t0, λt0)

)
, (34)

as 〈
δ(x− xt)e−(Ωt−β∆G)

〉
= PGB(x, t, λt). (35)

Integration over x and using (28) gives a work integral
fluctuation theorem〈

e
−β
[
Wt−

∫ t
t0

(
kBT

2τ +
xτF (xτ ,λτ )

2τ

)
dτ−∆G

]〉
= 1. (36)

which by applying the Jensen’s inequality yields

〈Wt〉 > ∆G+

〈∫ t

t0

(
kBT

2τ
+
xτF (xτ , λτ )

2τ

)
dτ

〉
. (37)

The Fluctuation theorem given by Eq.(36) is the cen-
tral result of this article. Its physical meaning will be
discussed in the next section.

V. A POSSIBLE PHYSICAL INTERPRETATION

Let us investigate the terms appearing in the exponent
of the fluctuation theorem Eq.(36) in more detail. One
major difference with respect to the Jarzynski equality is
the additional trajectory dependent term∫ t

t0

(
kBT

2τ
+
xτF (xτ , λτ )

2τ

)
dτ. (38)

Another minor difference is that the time dependence
of ∆G is not only due to the protocol but also explicitly
due to the Gaussian term in the normalization constant.
It is clear that both of these discrepancies are a mathe-
matical consequence of the non-equilibrium initial PDF.
Using the Feynman-Kac derivation scheme, as presented
in the previous section, one could in principle derive an
integral fluctuation theorem similar to (36) for any kind
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of non-equilibrium initial PDF. However, PGB(x, t0, λt0)
being the long time asymptotic density lets us expect
that for a sufficiently slow protocol i.e. in the quasi-static
limit P (x, τ, λτ ) = PGB(x, τ, λτ ) for τ > t0. We will sup-
port this claim later with numerical evidence. Let us now
calculate

〈Ωt〉GB =

∫ t

t0

dτ 〈f(x, τ, λτ )〉GB (39)

=

∫ t

t0

dτ

∫ ∞
−∞

dxf(x, τ, λτ )
e−

x2

4Dτ−βV (x,λτ )

N(τ, λτ )
(40)

= −
∫ t

t0

dτ
1

N(τ, λτ )

∫ ∞
−∞

dx(∂t − L)e−
x2

4Dτ−βV (x,λτ )

(41)

= ∆G. (42)

Here 〈· · ·〉GB denotes the expectation value with respect
to PGB(x, τ, λτ ) or in other words the expectation value
in the quasi-static limit. Note, from line (40) to (41)
Eq.(30) respectively Eq.(27) was used. Writing Ωt ex-
plicitly using Eq.(28) we get

〈Wt〉GB = ∆G+

〈∫ t

t0

(
kBT

2τ
+
xτF (xτ , λτ )

2τ

)
dτ

〉
GB

.

(43)

The equation above shows that in the quasi-static limit
inequality (37) becomes an equality. The analogue state-
ment for confined systems is that for sufficiently slow
protocols the system stays Boltzmann distributed which
leads to 〈Wt〉B = ∆F , where 〈· · ·〉B denotes the aver-
age with respect to the Boltzmann density (1). How-
ever there is a very intriguing difference between these
two statements. For cyclic protocols, meaning λt0 = λt,
applied to confined systems it is clear that 〈Wt〉B = 0
since ∆F = 0. Whereas for cyclic protocols applied to
non confined systems it is not obvious from (43) whether
〈Wt〉GB = 0. This raises the question if its possible to
get 〈Wt〉GB 6 0 or more generally 〈Wt〉 6 0. Or in other
words is it possible to extract energy in the form of work
by applying a cyclic protocol? It is important to realize
that due to the never-ending diffusive process a cyclic
protocol does not mean that the system itself returns to
its initial state. For now we will leave this question open
and approach it numerically in the next section. So far
we can make the following conclusions:

∆G+

〈∫ t

t0

(
kBT

2τ
+
xτF (xτ , λτ )

2τ

)
dτ

〉
(44)

is a quantity that puts a lower bound on the average work
needed to externally change the potential. In the quasi-
static limit this quantity becomes the average work and
if negative it is free to use for the external observer. It
should be mentioned that due to the protocol dependence
of second term it is not something like a free energy in the
sense of an thermodynamic potential like the Helmholtz
free energy.

Let us now focus on the second term in (44). Since
it originates from the Gaussian part of PGB(x, τ, λτ ) we
claim, at least in the quasi-static limit, that it can be in-
terpreted as an energy coming from the expansion of the
system. And indeed it can be brought into a convenient
form resembling pressure-volume work. In order to do
that we first need to establish a notion of pressure. The
osmotic pressure Π of a Brownian particle confined in a
region of size L and inside a force field F (x) is given by
[22]

Π =
1

L
[kBT + 〈xF (x)〉] . (45)

Of course our system is not confined so it is questionable
how to make use of the above expression, especially how
to choose the size of the system. Nevertheless, choosing
the length scale of diffusion Lτ =

√
2Dτ as a measure for

the size of the system and introducing a quantity

pτ :=
1

Lτ
[kBT + F (xτ , λτ )xτ ] , (46)

which can be seen as an analogue of Π but for a single
particle, allows us to rewrite

∫ t

t0

(
kBT

2τ
+
xτF (xτ , λτ )

2τ

)
dτ =

∫ Lt

Lt0

pτ dLτ . (47)

Here we have substituted τ = L2
τ/(2D) in the integral

and used definition (46). Consequently Eq.(36) and in-
equality (37) can be written as〈

e
−β
[
Wt−

∫ Lt
Lt0

pτ dLτ−∆G
]〉

= 1, (48)

and

〈Wt〉 > ∆G+

〈∫ Lt

Lt0

pτ dLτ

〉
. (49)

We agree that the structure of the integral in (48) could
just be a nice coincidence. However let us present another
argument. Assume a one dimensional Brownian particle
with diffusion coefficient D̃ and temperature T̃ inside a
confining potential Ṽ (x, t) given by

Ṽ (x, τ) = V (x, τ) +
x2

4Dτ
kBT. (50)

Note V (x, τ) is as before a non confining potential but

Ṽ (x, τ) is now enclosed by an additional harmonic po-
tential which opens up with time. In the quasi-static
limit the PDF of the system is given by PGB(x, τ) and
is thus indistinguishable from our non-confined system.
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The average work in the confined system yields

〈
W̃t

〉
GB

=

〈∫ t

t0

∂Ṽ (xτ , τ)

∂τ
dτ

〉
GB

(51)

=

〈∫ t

t0

∂τV (xτ , τ)dτ

〉
GB

− kBT

〈∫ t

t0

x2
τ

4Dτ2
dτ

〉
GB

=

∫ t

t0

dτ

〈
∂τV (x, τ)− kBT

x2

4Dτ2

〉
GB

(52)

= −
∫ t

t0

dτ
1

N(τ)

∫
dx ∂τ

(
e−

x2

4Dt−βV (x,τ)
)

(53)

= 〈Wt〉GB −
〈∫ t

t0

(
kBT

2τ
+
xτF (xτ , τ)

2τ

)
dτ

〉
GB

(54)

= 〈Wt〉GB −

〈∫ Lt

Lt0

pτ dLτ

〉
GB

, (55)

where Eq. (30) was used to get from line (53) to line
(54) , note the vanishing boundary terms. The above
calculation shows that in the quasi-static limit the work
done by opening the harmonic potential coincides with
the path dependent part of the expansion energy of the
non-confined system. The main difference between the
two forms of energy is that in the confined system work
is assumed to be externally controllable. In the non-
confined system a part of the explicit time dependence
comes from the inherent diffusive expansion and is hence
not assumed to be externally controllable.

VI. EXAMPLES

As an example for our theory we choose the inverted
Gaussian potential well

V (x, λτ ) = −A(λτ )e−
(x−B(λτ ))2

2 , (56)

whose depth A(λτ ) or location B(λτ ) is changed in time
by the protocol λτ . A convenient way to show the in-
tegral fluctuation theorem Eq.(36) is by showing it in-
directly via verifying Eq.(35). We proceed in the fol-
lowing manner. An ensemble of ntrajectory trajectories is
generated using the standard Euler-Maruyama method
with an time increment of ∆τ and initial position x = 0.
At τ = t0 a PDF is constructed and checked if it has
converged to PGB(x, t0, λt0). At the end of the protocol
which is at τ = t, the PDF is checked again to make
sure that it is now different from PGB(x, t, λt), which
should be the case for sufficiently fast protocols. The
PDF’s are simply constructed as histograms from the
ensemble. To verify Eq.(35) we have to recall that ex-
pectation values for stochastic processes are path inte-
grals, namely we can write: 〈δ(x − xt)e

−Ω[xτ ]−β∆G〉 =∫
D[xτ ]δ(x− xt)e−Ω[xτ ]−β∆Gp[xτ ], where p[xτ ]D[xτ ] is a

measure for the probability to observe a trajectory xτ .

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

(a) PGB(x, t0, t0) P(x, t0) (xt0 x)

4 2 0 2 4
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b)

(x xt)e (Wt G)

PGB(x, t, t)
P(x, t) (xt x)

(x xt)e (Wt
Lt

Lt0
p dL G)

FIG. 1. Numerical results for Brownian particle inside a potential
given by (56), parameters are chosen a s follows: D = kBT = γ = 1,

A(τ) = θ(τ−t0) sin( τ−t0
t−t0

π), B(τ) = 1, t0 = 0.1, t = 1, ∆τ = 10−3,

n = 106. (a) Shows a comparison at time τ = t0 of the analytic
expression (11) for asymptotic long time density PGB(x, t0, λt0 )
(black solid line) with a histogram (orange filled histogram) con-
structed from an ensemble of numerically generated trajectories
representing the PDF P (x, t0). (b) Shows a comparison at τ = t
of the analytic expression (11) for the asymptotic long time den-
sity PGB(x, t, λt)(black solid line) with three different histograms.
Each of these histograms is constructed from an ensemble of nu-
merically generated trajectories. The dash dotted orange line repre-
sents the regular PDF P (x, t). The blue filled histogram represents
the left-hand side of Eq. (35), the path probabilities are thus re-

scaled by exp
(
−β
[
Wt −

∫ Lt
Lt0

pτ dLτ −∆G
])

. The green dashed

line represents a histogram where path probabilities are re-scaled
by exp (−β [Wt −∆G])

, emphasizing the relevance of the ”pressure-volume” term”.

Plugging this into Eq. (35) yields

∫
D[xτ ]δ(x− xt)e−(Ω[xτ ]−β∆G)p[xτ ] =

e−
x2

4Dt−βV (x,λt)

N(t0, λt0)
.

(57)

The form of (57) allows us to interpret e−(Ω[xτ ]−β∆G) as
an additional weight on the path-probability. Therefore,
if we multiply the increment that one particle adds to the
height of a bin in the PDF’s histogram by e−(Ω[xτ ]−∆G)

we get an histogram representing the left hand side of
Eq.(35). And if Eq.(35) is correct this histogram should
match PGB(x, t, λt). The results for different cases of
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x
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0.025
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0.175

(a) PGB(x, t0, t0) P(x, t0) (xt0 x)

15 10 5 0 5 10 15
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b)

PGB(x, t, t)
P(x, t) (xt x)

(x xt)e (Wt G)

(x xt)e (Wt
Lt

Lt0
p dL G)

FIG. 2. Same scenario as described in Fig.1 with parameters cho-
sen as follows: D = kBT = γ = 1, A(τ) = θ(τ − t0) τ−t0

t−t0
+ 1,

B(τ) = 1, t0 = 10, t = 11, ∆τ = 10−3, n = 106.

A(τ) and B(τ) are displayed in Fig.(1-3). Let us briefly
discuss them.

In Fig.1 A(τ) = θ(t0 − τ) sin( τ−t0t−t0 π) and B(τ) = 1,
which means the particle freely diffuses during the initial
relaxation meaning P (x, t0) = PGB(x, t0, λt0) is exact for
an arbitrary small t0 and the derivation of Eq.(35) is ex-
act as well. As such we can see this case as a test of
the numerical procedure more than a test of the analyt-
ical results. Fig. 1 (a) shows the expected agreement
of the PDF with PGB(x, t0, λt0). Fig.1 (b) shows that in
the end of the protocol P (x, t, λt) 6= PGB(x, t, λt) further-
more it clearly verifies Eq.(35) and shows the significance

of
∫ Lt
Lt0

pτ dLτ .

In Fig.2 A(τ) = θ(t0 − τ) τ−t0t−t0 + 1 and B(τ) = 1.
Contrary to the previous case there is a potential dur-
ing the initial relaxation. This means t0 has to be cho-
sen sufficiently big such that PGB(x, t0, λt0) ≈ P (x, t, λt).
Fig.2(a) shows that for the particularly chosen parame-
ters t0 = 10 suffices. As before Fig.2(b) verifies Eq.(35)

however
∫ Lt
Lt0

pτ dLτ seems to be negligible.

In Fig.3 A(τ) = 5 and B(τ) = 5 θ(τ − t0) τ−t0t−t0 , again
there is a potential during the initial relaxation which
we chose to be 5 kBT deep. Instead of changing the
amplitude A(τ) we are now changing the location of the

15 10 5 0 5 10 15
x

10 6

10 5

10 4

10 3

10 2

10 1

100
(a) PGB(x, t0, t0) P(x, t0) (xt0 x)

15 10 5 0 5 10 15
x

10 6

10 5

10 4

10 3

10 2

10 1

100
(b)

PGB(x, t, t)
P(x, t) (xt x)

(x xt)e (Wt G)

(x xt)e (Wt
Lt

Lt0
p dL G)

FIG. 3. Same scenario as described in Fig.1 with parameters
chosen as follows: D = kBT = γ = 1, A(τ) = 5, B(τ) =

5θ(τ − t0) τ−t0
t−t0

, t0 = 10, t = 11, ∆τ = 10−3, n = 106. Note

the logarithmically scaled y axis.

100 101 102 103 104

t t0

0.25

0.20

0.15

0.10

0.05

k B
T

Lt

Lt0
p dL + G

Lt

Lt0
p dL GB + G

Wt

FIG. 4. Average work (black dots) and expression (44) (blue
squares) vs. duration of the protoccol t− t0. The orange triangles
are displaying the semi-analytical calculation of the right-hand-side
of Eq. 43. Parameters are choosen as follows: D = kBT = γ = 1,
A(τ) = θ(τ − t0) sin( τ−t0

t−t0
π), B(τ) = 1, t0 = 0.5, ∆τ = 10−3,

n = 105.
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100 101 102 103 104

t t0

0.06

0.05

0.04

0.03

k B
T

Lt

Lt0
p dL + G

Lt

Lt0
p dL GB + G

Wt

FIG. 5. Average work (black dots) and expression (44) (blue
squares) vs. duration of the protocol t − t0. The orange trian-
gles are displaying the right-hand-side of Eq. 43. Parameters are
chosen as follows: D = kBT = γ = 1, A(τ) = θ(τ − t0) τ−t0

t−t0
+ 1,

B(τ) = 1, t0 = 103, ∆τ = 10−3, n = 105

100 101 102 103 104

t t0

0.0

0.5

1.0

1.5

2.0

2.5

k B
T

Lt

Lt0
p dL + G

Lt

Lt0
p dL GB + G

Wt

FIG. 6. Average work (black dots) and expression (44) (blue
squares) vs. duration of the protocol t − t0. The orange triangles
are displaying the right-hand-side of Eq. 43. Parameters are chosen
as follows: D = kBT = γ = 1, A(τ) = 5, B(τ) = 5θ(τ − t0) τ−t0

t−t0
,

t0 = 104, ∆τ = 10−3, n = 105

potential. As in the previous case Fig.3(a) shows good
agreement of PGB(x, t0, λt0) with P (x, t, λt) and Fig.3(b)

verifies Eq.(35). However also in this case
∫ Lt
Lt0

pτ dLτ

seems to be negligible.
In order to verify Eq. (43) and inequality (37) we in-

vestigate the same examples as the quasi static limit is

0 100 200 300 400
n

0.08

0.06

0.04

0.02

0.00

k B
T

(b)

W n

5 10 15 20
n

10 3

10 2

10 1

k B
T

(a)

W n

0 50 100 150 200 250 300 350 400
n

0.2

0.0

0.2

0.4

0.6

k B
T

(c)

n
W n

FIG. 7. Behavior of the average work 〈W 〉n per cycle n for a cycle
duration of 1. (a) Shows the initially exponential behavior. For
n > 9, −〈W 〉n < 0 and hence can not be displayed in the semi-
logarithmic plot. (b) Shows that 〈W 〉n goes to a value slightly
above zero. This results in a linear increasing cumulative sum∑
n 〈W 〉n, as can be seen in (c) .

approached, simply by making the duration of the proto-
col successively larger. The results depicted in Fig. (4-6)
are in good agreement with Eq. (43) and inequality (37).
Note that in Fig. (4-6) the initial relaxation time t0 was
chosen large enough in order to reduce the error from
approximating the initial distribution with PGB(x, t0).
It is also important to realize that in Fig.4 and Fig.5

| 〈W 〉 −
∫ Lt
Lt0

pτ dLτ −∆G| goes to zero faster than 〈W 〉.
Interestingly the average work for the sinusoidal chang-

ing A(τ) is always negative even though the change of
the potential is cyclic, see Fig.4. As already discussed
in the previous section this is not possible for confined
systems since it would violate the second law of thermo-
dynamics. However, for our non confined systems this is
per se not a violation of the second law since the system
does not return to its original state. Repeating a cycle
n times does not necessarily lead to an infinite energy
output, it depends on how the average work per cycle
〈W 〉n behaves with n. And indeed as one can see from
Fig.7(a,b), 〈W 〉n increases exponentially fast and decays
to zero from above after a small but positive value has
been reached. This behavior leads to a positive total
work 〈W 〉 =

∑
n 〈W 〉n > 0, for large enough n, see Fig.

7(c).

VII. CONCLUSION AND DISCUSSION

We have derived a work fluctuation theorem, see Eq.
(36), similar to the Jarzynski equality but applicable to
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a Brownian particle inside a potential well with finite
depth that is changed in time by an external protocol.
Such systems are not able to reach thermal equilibrium
which is reflected in the fluctuation theorem by an addi-
tional path dependent term (38) besides work. The in-
equality that results from this fluctuation theorem puts
a fundamental lower bound on the work that is needed
to change the potential in time. It is expected to become
an equality in the quasi-static limit which gives the new
term the meaning of an energy that can be extracted
from the never ending diffusive spreading of the system.

The only approximation in the derivation of Eq. (36) is
done by approximating the PDF at the start of the proto-
col with the long time asymptotic density PGB(x, t0, λt0)
given by Eq.(11). Our theory would be exact, if the den-
sity at the beginning of the protocol were exactly the
Gauss-Boltzmann density PGB(x, t0, λt0). This approxi-
mation is the better the longer the initial time evolution.
So for every finite time evolution t0 also relation (36) is
only an approximation. At first glance this seems to be
a disadvantage in comparison to the Jarzynski equality.
Here the Boltzmann density, which is an exact solution of
the Fokker-Planck equation, is assumed to describe the
system at the start of the protocol. However this line
of thought is misleading. In Brownian dynamics simula-
tions or an experiment one would need to wait infinitely
long for a confined system to reach a state which is ex-
actly described by the Boltzmann density. In that sense
assuming that a confined system can be described by the
Boltzmann density is as much of an approximation as as-
suming that a non-confined system can be described by
PGB(x, t0, λt0). The rate of convergence however might
be different.

A major open question is how Eq. (36) relates to
stochastic thermodynamics and one of its main results,
the Seifert fluctuation theorem [3]. Considering the sim-
ple special case of free Brownian motion it is easy to show
that they do not coincide. Furthermore the inequality

implied by Seifert’s theorem becomes an equality if the
system is time reversible, inequality (37) on the other
hand is expected to become an equality if the protocol is
quasi-static. Now, for stochastic systems the Jarzynski
equality can be seen as a special case of Seifert’s fluctua-
tion theorem. Its implied inequality becomes an equality
in the quasi-static limit which in this case is also the time
reversible limit. The conclusion here would be that for
non-confined systems time reversibility is no longer im-
plied by quasi-staticity. Intuitively this is simply a conse-
quence of the never ending diffusive spreading. However,
in order to make a more definite statement further inves-
tigations are required.

Another question is when the term (38) in the fluctua-
tion theorem (36) becomes irrelevant? It does not appear
in the special case of the infinitely fast protocol, see Eq.
(23). It also seems to be irrelevant in the numerical exam-
ples where the initial relaxation time is much longer than
the duration of the protocol, see Fig.2(b) and Fig.3(b).
Both of these results point in the direction that (38) is
negligible if the initial relaxation time is long compared
to the duration of the protocol.

Yet another question is how general these type of work
fluctuation theorems are. In principle, the mathemati-
cal procedure based on the Feynman-Kac formula can be
applied to any long time asymptotic initial PDF. Con-
sequently the difficult part in deriving such a fluctua-
tion theorem is to find this PDF. Some already existing
and usable results for further research are presented in
[14, 23].
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