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Abstract

A new diagnostic has been developed to investigate the wave-particle interac-

tion in the phase-space in gyrokinetic particle-in-cell codes. Keeping information

about energy transfer terms in the velocity space, the technique has been im-

plemented and tested in the global code ORB5 and it gives an opportunity to

localise velocity domains of maximum wave-plasma energy exchange for separate

species. Moreover, contribution of different species and resonances can be esti-

mated as well, by integrating the energy transfer terms in corresponding velocity

domains. This Mode-Plasma-Resonance (MPR) diagnostic has been applied to

study the dynamics of the Energetic-particle-induced Geodesic Acoustic Modes

(EGAMs) in an ASDEX Upgrade shot, by analysing the influence of different

species on the mode time evolution. Since the equations, on which the diag-

nostic is based, are valid in both linear and nonlinear cases, this approach can

be applied to study nonlinear plasma effects. As a possible future application,

the technique can be used, for instance, to investigate the nonlinear EGAM

frequency chirping, or the plasma heating due to the damping of the EGAMs.
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1. Introduction

Gyrokinetic (GK) codes have recently become standard tools for the investi-

gation of waves and instabilities in tokamak plasmas, with frequency below the

ion cyclotron frequency [1]. Although they have been traditionally considered

numerically heavy, in comparison to lighter hybrid models, in the last years GK

codes have become capable of providing global electromagnetic (EM) predic-

tions of the nonlinear plasma dynamics, thanks to smart schemes improving the

numerical performance [2, 3], and to the access to high-performance computers.

One advantage of using GK codes is that their model includes kinetic effects

such as wave-particle resonances, which are neglected in fluid descriptions.

Wave-particle interaction, such as Landau damping, can be best detected

by phase space resolving diagnostics. In particular, investigating collisionless

energy transfer signals as a function of particle velocity, necessary details can

be provided to identify dominant collisionless processes governing the damping

or growth of electrostatic (ES) zonal modes, such as geodesic acoustic modes

(GAMs) [4, 5, 6] or energetic-particle driven GAMs, called EGAMs [7, 8, 9, 10].

There are different kind of techniques to investigate dynamics of modes in the

phase-space. Correlation techniques [11] can be used to clarify the origin of the

energy-transfer process and the nature of mechanisms that lie beyond observed

mode dynamics by calculating correlations of the energy transfer terms with

different fields signals. Conjunction diagnostics based on the measurements at

different positions along the same magnetic flux tube can be used to study the

integrated effect of wave-particle interactions between the two space points [12].

The conjunction studies are particularly well suited to study the waves, that

are propagating along the magnetic field lines, such as shear-Alfvén waves.

In this work we develop a Mode-Particle-Resonance (MPR) diagnostic in

the code ORB5 [13, 14] to investigate energy transfer signals in velocity space

2



in global gyrokinetic (GK) simulations. The previous version of this diagnos-

tic gave only time evolution of the energy transfer terms, averaged over the

whole phase space [15, 16, 17]. We extend it, by keeping information about

these terms in the velocity space, that gives an opportunity to investigate the

contribution of different resonances in different velocity domains to the mode

dynamics. This technique is applied in global GK simulations of an experi-

mental shot on ASDEX-Upgrade machine to study EGAMs. These modes are

characterised by the oscillations of mainly toroidally symmetric global radial

ES field with frequency comparable to that of the GAMs. The energetic parti-

cles (EPs) excite the mode through the inverse Landau damping, and EPs are

displaced from higher to lower energy range [18, 19]. On the other hand, the

GAMs and EGAMs are mainly damped by Landau damping. In addition to ion

Landau damping, GAMs have been found to be subject to the electron Landau

damping [20, 21, 22, 23] as well. Here, we show that EGAMs are also subject to

electron Landau damping, which can be as important as ion Landau damping

in experimentally relevant conditions. Moreover, in these simulations the MPR

diagnostic provides additional details to clarify the role of different species in

the EGAM-plasma interaction.

The GAMs and EGAMs can play a significant role in the regulation of the

turbulence-transport processes. The GAMs are an oscillating branch of zonal

flows [24, 5] (ZFs). The ZFs can reduce the radial transport in tokamak plasma

acting as a sink for the turbulence energy through the inverse energy cascading

or/and by shearing plasma eddies [25, 26, 27, 28]. Contrarily, the role of the

GAMs [29, 30, 31, 32] in the turbulence suppression is still unclear and even

contradictory [33, 34]. It could be explained by the fact that the GAMs can

transfer the energy in both directions. They can either take the energy from

the turbulence, being directly excited by instabilities [29] and arising from the

ZFs due to the magnetic curvature, or they can return the energy back to the

instabilities [33]. Due to this complex dynamics, the role of the EGAMs in the

turbulence suppression is still a subject of study [35, 36, 37, 38, 39]. At the

same time, EGAMs might play a role of an intermediate agent between the
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fluctuating fields and thermal plasma, by spreading fluctuating field energy to

the bulk plasma through the collisionless wave-particle interaction [19]. In such

a way, the EGAMs might be a crucial component in tokamak plasma stabilisa-

tion and be significantly helpful in the plasma heating. Thus, investigation of

EGAMs characteristics, especially in the velocity space, is necessary for precise

understanding of the transport phenomena in fusion reactors, where the EPs are

produced as the result of the nuclear fusion reaction or by external sources such

as neutral beam injection (NBI) or ion cyclotron resonance heating (ICRH).

The remainder of the paper is structured in the following way. In section 2

the theoretical background and the implementation of the MPR diagnostic in

ORB5 is presented. After that, the processing of the output signals from the

diagnostic is demonstrated, and an example of an ES simulation of the GAMs

in a circular magnetic configuration is given (Sec. 3). In Sec. 4 we show that

the MPR diagnostic verifies the GAM dispersion relation. Having discussed the

technique, the experimental AUG shot #31213 is investigated in section 5 using

the developed diagnostic in linear simulations. Results, calculated in ORB5,

are compared with simulations of the GENE code for an ES case with adiabatic

electrons in Sec. 6.

2. Formulation and implementation of the Mode-Particle-Resonance

diagnostic

2.1. Field energy and energy transfer signal

The GK model used in ORB5 is based on a Lagrangian variational principle

using a Hamiltonian representation of the perturbed phase-space Lagrangian,

which is truncated up to the O(ε2δ) terms [17]. Here, the small parameter εδ is

related to the field perturbations and is defined as:

εδ = (k⊥ρth)
eΦ

Ti
, (1)

where Φ is the ES potential perturbation (E = −∇Φ), k⊥ρth is the normalized

perpendicular wavenumber, ρth is the thermal ion Larmor radius, Ti is the
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thermal ion temperature. The corresponding ES Hamiltonian contains up to

O(ε2δ) terms

H = H0 +H1 +H2, (2)

H0 =
p2
z

2m
+ µB, (3)

H1 = ZeJ0Φ, (4)

H2 = −mc
2

2B2
|∇⊥Φ|2. (5)

Here, m, Ze are the species mass and charge, J0 is the gyroaveraging operator

Eq. 34, pz is a parallel canonical momentum, which is pz = mv‖ in the ES case,

µ is the species magnetic moment, B is the background magnetic field, c is the

light speed. Taking into account the linearised polarization and quasineutrality

approximation, which is used in ORB5, the total GK energy in the ES limit has

the following form:

E =
∑
sp

∫
dW dV (f(H0 +H1) + f0H2) (6)

where the kinetic part of the energy is

Ek =
∑
sp

∫
dW dV (fH0), (7)

while the field energy is

Ef =
∑
sp

∫
dW dV (fH1 + f0H2) (8)

Here, f(r, pz, µ, t) = f0(r, pz, µ)+δf(r, pz, µ, t) is a species distribution function,

and the integration is performed over the real V and velocity W spaces. Evalu-

ating the time derivative of the kinetic energy Ek, the energy transfer between

the plasma and the field can be found as

P =
dEk
dt

= −
∑
sp

Ze

∫
dV dWfṘ0 ·∇(J0Φ), (9)

where Ṙ0 is the species unperturbed equations of motion. The detailed deriva-

tion of the GK energy and the plasma-field energy transfer signal can be found

in [14, 17].
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Finally, it should be noted that the splitting on the ’kinetic’ and the ’field’

parts is in some sense arbitrary. In this work we keep terms, which depend on

species characteristics, in the ’kinetic’ part, and the rest of the total energy is

taken as the ’field’ component. More precisely, using GK Poisson equation, the

total energy Eq. 6 can be transformed into the following form Ref. [14]

E =
∑
sp

∫
dW dV

(
p2
z

2m
+ µB +

1

2
ZeJ0Φ

)
f (10)

Here, the first two terms correspond to Eq. 7, while the last term is related to

Eq. 8.

2.2. Simplified derivation of a wave growth rate

By considering a simplified electrostatic model, we are going to show the

derivation of an expression for a wave growth rate. We start from Eq. 9, where

due to the energy conservation we can write that

P =
∑
sp

Psp = −dEf
dt

, (11)

Ef =
∑
sp

mspc
2

2B2

∫
dV |∇⊥Φ|2. (12)

Here, the expression for the ES field energy Ef is obtained from Eq. 8 and the

GK Poisson equation, by treating particles drift-kinetically (J0 is equal to 1).

Considering a general case of a propagating eigenmode and starting from the

evolution of the electric field E = −∇Φ

E(r, t) = Re [E(r) exp(−iωt) exp(γt)] =

(cos(ωt)Re[E(r)] + sin(ωt)Im[E(r)]) exp(γt) (13)

where ω, γ are frequency and damping/growth rate of the field, we get an

expression for the field energy integrated in space:

Ef (t) = (A2 + C cos2(ωt)) exp(2γt), (14)

with a constant C and non-zero constant A2. Its time derivative is

dEf
dt

= 2γEf − ωC sin(2ωt) exp(2γt). (15)
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Using the above equations, we can find the damping/growth rate of the field

energy in the following way:

1

2Ef
dEf
dt

= γ − ω sin(2ωt)

2A2/C + 1 + cos(2ωt)
. (16)

Due to the field oscillations, the above expression includes a term, which depends

on the field frequency. To exclude this term, one should perform time averaging

on several periods of the field oscillations:∫ nT

0

sin(2ωt)

2A2/C + 1 + cos(2ωt)
dt = 0, (17)

where T is a period of the field oscillations, and n is a number of the periods.

Due to that, the damping/growth rate of the field can be calculated using the

following expression:

γ = −1

2

1

nT

∫ nT

0

P
Ef

dt, (18)

where P represents the work done by the ES field on the plasma. A negative

rate γ < 0 corresponds to a positive signal P, indicating the energy transfer

from a wave to plasma particles. On the other hand, a positive rate γ > 0

corresponds to a growth of the wave. It should be noticed that the GAMs or

EGAMs can take the form of a standing wave, which is a limiting case of a

propagating wave, where 2A2/C → ε with a positive infinitesimally small value

ε > 0: ∫ nT

0

sin(2ωt)

(1 + ε) + cos(2ωt)
dt = 0. (19)

Finally, note that in the case of n 6= 0, field energy would be a purely grow-

ing function that would simplify the problem by exempting us from the time

integration in Eq. 18.

2.3. Elimination of the zero-frequency zonal flows

In the previous section, we were assuming that the electric field consists on

only an oscillating component, but it can have some residue as well. In case of

the zonal electric field, we are dealing with zero-frequency zonal flows (ZFZF).
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This constant component might strongly distort the energy transfer and field

energy signals, that leads to some errors in the calculation of the GAM damping

rate. To estimate the contribution of the ZFZF component, we are going to

consider the zonal electric field at some radial point s1:

e(s1) = e0 + e1 cos(ωt) exp(γt). (20)

Here, we assume that the GAM is a standing wave. The field energy, averaged

over the whole space, can be expressed in this case as

Egam =
1

4
E2

1(1 + cos(2ωt)) exp(2γt), (21)

Ezf =
1

2
E2

0 + E0E1 cos(ωt) exp(γt) + Egam, (22)

where Egam is the field energy of the GAM component, Ezf is the total energy

of the zonal field. E0, E1 are amplitudes of the ZFZF and GAM electric field,

integrated in space. First of all, we can find the amplitudes e0 and e1, just by

averaging in time the signal e(s1). Since we have flat temperature, density and

safety factor profiles, we assume that e0 and e1 are constant in space. In other

words, we can estimate the ZFZF/GAM ratio as

η =
e0

e1
=
E0

E1
. (23)

Using this ratio, we can estimate the GAM contribution to the field energy in

the following way

E2
1 =

Ezf (t)
1
2η

2 + η exp(γt) + 1
2 exp(2γt)

∣∣∣∣
t=cnTgam

, (24)

where Tgam is a period of the GAM oscillation, cn = 0, 1, ... for η > 0 and

cn = 1/2, 3/2, ... for η < 0. As a result, one can eliminate the ZFZF contribution

to the field energy using the following expression

Egam = Ezf − ηE2
1

(
1

2
η + cos(ωt) exp(γt)

)
. (25)
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Finally, the energy transfer signal between the GAM and plasma particles can

be found as

Pgam = −∂Egam
∂t

= Pzf + ηE2
1 exp(γt)(γ cos(ωt)− ω sin(ωt)), (26)

Pzf = −∂Ezf
∂t

, (27)

where Pzf is calculated by the MPR diagnostic in ORB5. It must be mentioned

that in order to reduce the ZFZF contribution one has to get some preliminary

estimation of the GAM frequency and damping rate. Moreover, since in the

current version of the MPR diagnostic the energy transfer and field energy

signals are averaged in the whole space domain, one can use this diagnostic only

in GAM simulations with flat temperature and safety factor profiles, or for the

investigation of the EGAM dynamics, whose frequency and growth rate do not

change much in radial direction.

2.4. Discretization

To describe the implementation of the diagnostic in the code ORB5, we

should start from the discretization of the plasma distribution function in the

code. ORB5 is a particle-in-cell (PIC) code, where the Vlasov equation is solved

using a Monte Carlo algorithm, and the Maxwell equations are solved using a

finite-element method. At the beginning of a simulation a finite collection of

initial positions in phase space is sampled by a set of numerical markers [14].

Every marker has a particular magnetic moment µsp = mspv
2
⊥,sp/(2B), a posi-

tion in real space Rsp, a parallel canonical momentum pz,sp and it is moving in

a background magnetic field B = bB with

B∗sp = B +
cpz,sp
Zspe

∇× b, (28)

B∗‖,sp = b ·B∗sp. (29)

Here, c is the speed of light, msp and Zspe are the species mass and charge,

where for electrons Zee = −e and e is the absolute value of the electron charge.

Taking a phase-space position Z = (Rsp, pz,sp, µsp) of a species marker as a
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random variable, the code distributes the markers in the phase space according

to the initial particle distribution function f0,sp. It means, that each marker

is a realisation of the random variable Z. For simplicity, a marker will be

considered as a particle that is moving along a particular orbit defined by the

following equations of motion:

Ṙsp =

(
pz,sp
msp

− Zspe

mspc
J0,spA‖

)
B∗sp
B∗‖,sp

+

c

ZspeB∗‖,sp
b× [µsp∇B + Zspe∇(J0,spΨsp)] , (30)

ṗz,sp =−
B∗sp
B∗‖,sp

· [µsp∇B + Zspe∇(J0,spΨsp)] , (31)

µ̇sp =0, (32)

which are obtained by varying a GK Lagrangian with respect to the phase-space

coordinates Z = (Rsp, pz,sp, µsp) [17, 40]. The orbits are perturbed by the field

perturbation

Ψsp = Φ− pz,sp
mspc

A‖, (33)

with Φ and A‖ being electric and parallel magnetic potential perturbations

respectively, where only Φ remains in ES simulations. In the gyro-kinetic ap-

proximation the code deals with the dynamics of the gyrocentres, whose orbits

are perturbed by the potentials, averaged in a space domain, defined by the

species Larmor radius, around a marker position. This averaging is represented

by the operator J0,sp:

J0,spG(Rsp, µsp) =
1

2π

∫ 2π

0

G(Rsp + ρsp(α)) dα, (34)

where G(Rsp, µsp) is an arbitrary function, and ρsp is the vector going from

the guiding center to the particle position. In the drift-kinetic approximation,

the potential perturbation is considered at a space point, where a marker is

localised, without performing the gyro-averaging. In ORB5 the thermal and

fast ions can be treated either gyro-kinetically or drift-kinetically, while the

electrons are calculated drift-kinetically.

10



The time evolution of the plasma distribution function fsp is described by

the Vlasov equation:

dfsp
dt

=
∂fsp
∂t

+ Ṙsp ·∇fsp + ṗz,sp
∂fsp
∂pz,sp

= 0. (35)

Considering perturbations of the distribution function and of the particle orbits

till the first order, one can linearize the Vlasov equation:

∂δfsp
∂t

+ Ṙ0,sp ·∇δfsp + ṗ0,z,sp
∂δfsp
∂pz,sp

=

−
(
∂f0,sp

∂t
+ Ṙ0,sp ·∇f0,sp + ṗ0,z,sp

∂f0,sp

∂pz,sp

)
−
(

Ṙ1,sp ·∇f0,sp + ṗ1,z,sp
∂f0,sp

∂pz,sp

)
. (36)

Assuming that f0,sp is an equilibrium distribution function, it should be con-

served along unperturbed particle trajectories (Ṙ0,sp, ṗ0,z,sp):

df0,sp

dt

∣∣∣∣
0

=
∂f0,sp

∂t
+ Ṙ0,sp ·∇f0,sp + ṗ0,z,sp

∂f0,sp

∂pz,sp
= 0. (37)

In other words, the first bracket on the right hand side of Eq. 36 is equal to

zero. Finally, the time evolution of the perturbation of the species distribution

function in linear simulations is described in the following way:

dδfsp
dt

∣∣∣∣
0

= −df0,sp

dt

∣∣∣∣
1

, (38)

where

∣∣∣∣
1

indicates that it is necessary to take derivatives along the perturbed

parts of species orbits (Ṙ1,sp, ṗ1,z,sp). Thermal species have an equilibrium

distribution function in a form of the Maxwellian one:

f therm0,sp =
nsp(ψ)

(2π)3/2u3
th,sp(ψ)

exp

[
− msp

Tsp(ψ)

(
1

2

(
pz,sp
msp

)2

+
µspB

msp

)]
,(39)

uth,sp(ψ) =

√
Tsp(ψ)

msp
, (40)

where nsp(ψ), Tsp(ψ) are species density and temperature profiles along the

radial coordinate ψ, which is the poloidal flux. A symmetric two-bumps-on-tail
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distribution function has been used in this work for the fast species [41, 42].

This distribution assumes a flat temperature profile of the fast species:

ffast0,sp =Asp(ψ) exp

[
− msp

TH,sp

(
1

2

(
pz,sp
msp

)2

+
µspB

msp

)
−

u2
H,sp

2TH,sp

]

cosh

(
pz,sp
msp

uH,sp
TH,sp

)
, (41)

A(ψ) =
nsp(ψ)

(2π)3/2T
3/2
H,sp

, (42)

where uH,sp, TH,sp are constant input parameters, which specify a shift and

width of the bumps respectively.

The perturbation δf is discretized in the Z = (R, pz, µ) phase space by Nsp

markers. Apart of its location Z, every marker has a particular weight wp(t),

which should evolve consistently with the GK Vlasov equation Eq. 35. Here, we

omit the index sp to simplify equations and use the index p, indicating that a

variable is related to a particular marker. Detailed derivation of the weight time

evolution can be found in Ref. [13, 14, 43]. A marker weight can be associated to

a phase space volume Ωp and correspondent averaged perturbation distribution

function 〈δf〉Ωp :

〈δf〉Ωp =
1

Ωp

∫
Ωp

δf dΩp =
1

Ωp

∫
Ωp

wpδ(R−Rp)δ(pz − pp,z) dΩp, (43)

wp(t) = 〈δf〉ΩpΩp, (44)

lim
Ωp→0

〈δf〉Ωp → δf. (45)

Considering uniform spreading of the markers in real space and Maxwellian

distribution in the velocity space, it can be shown [43] that the phase space

volume Ωp, associated to a marker p, is

Ωp =
B∗‖,p

B
v⊥,p(πκvuth(s))2

∫ 1

0

J̄(s) ds, (46)

where J̄(s) is the flux-surface-averaged Jacobian, κv defines maximum value of

the species parallel and perpendicular velocities, normalized to a species thermal

speed uth(s) =
√
T/m, at every radial point s =

√
ψ/ψedge.
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The meaning of the variable Ωp can be explained proceeding directly from

the Monte Carlo integration [14]. The expectation value of an arbitrary function

ζ(Z̃) is

E[ζ(Z̃)] =

∫
ζ(z)f(z)dz, (47)

where Z̃ is a random variable, distributed according to the function f . To

minimize the variance of the function ζ, one can chose another distribution

function g(Z̃), which does not vanish in the support of the distribution function

f (so-called importance sampling):

E[W (Z)ζ(Z)] =

∫
ζ(z)

f(z)

g(z)
g(z)dz. (48)

In this case, speaking in terms of marker weights and using random variable

Z, distributed with density g, the expectation value of the function ζ(Z̃) is

calculated as

E[ζ(Z̃)] = E[W (Z)ζ(Z)] =
1

N

N∑
i=1

w(Zi)ζ(Zi), (49)

w(Zi) =
f(Zi)

g(Zi)
= f(Zi)Ω(Zi), (50)

that is consistent with Eq. 44. In other words, if we have a small amount

of markers in a finite phase space volume, their weights will be increased in

comparison to a domain where there are higher number of markers at the same

phase space volume. More details can be found in Ref. [14].

In the current version of the MPR diagnostic, only the electrostatic part of

Ṙsp is taken into account. To clarify different terms in Eq. 30, the characteristic
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Ṙsp can been split on the following terms:

Ṙsp = v‖,sp + v∇B,sp + vcurvB,sp + v∇p,sp + vE×B,sp, (51)

v‖,sp =
pz,sp
msp

b, (52)

v∇B,sp = µspB
1

ZspeB∗‖,sp
b× ∇B

B
, (53)

vcurvB,sp =

(
pz,sp
msp

)2
msp

ZspeB∗‖,sp
b× ∇B

B
, (54)

v∇p,sp = −
(
pz,sp
msp

)2
msp

ZspeB∗‖,sp
b×

(
b× ∇×B

B

)
, (55)

vE×B,sp = −∇(J0,spΦ)× b

B∗‖,sp
, (56)

where b × (∇ × B)/B = ∇p/B2 in Eq. 55 indicates the dependence on the

gradient of the kinetic plasma pressure p. A precise form of the GK energy

transfer signal, valide in both linear and nonlinear cases, can be derived from

the GK Hamiltonian using the Noether theorem as it is shown in Ref. [17]:

Psp = −Zspe
∫
V

dV

∫
Wsp

dWsp(f0,sp + δfsp)Ṙ0,sp ·∇(J0,spΦ) (57)

with V and Wsp being real and velocity spaces. The unperturbed particle tra-

jectory Ṙ0,sp can be obtained from Eq. 51 by eliminating all terms that include

the field perturbations Φ and A‖. It means, that the term Eq. 56 does not

contribute to the energy transfer signal Psp. For the equilibrium distribution

functions f0,sp, used in this work (Maxwellian and two bumps-on-tail), the cor-

responding part of Eq. 57 can be neglected. Because of that, we are going to

consider only the term related to δfsp. By integrating the signal over the whole

real space V and in a small velocity domain ∆Wsp, related to a particular veloc-

ity bin, we project the energy transfer signal to the velocity space of a particular

species:

Psp = −Zspe
Nsp

∑
i∈V,∆Wsp

wi,sp(vi,‖,sp + vi,∇B,sp+

vi,curvB,sp + vi,∇p,sp) ·∇(J0,spΦ)|i, (58)
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where the sum
∑
i∈V,∆Wsp

is taken on all markers in the phase volume V∆Wsp.

The gyro-averaged electric field −∇(J0,spΦ)|i is taken at a position of a marker

i. The sum is normalized to a total number of species markers Nsp in the whole

phase-space domain. Since the GK model, that is used in ORB5, is based on

the Hamiltonian formulation [17], pz,sp is used as one of the velocity variables:

pz,sp = mspv‖,sp +
Zspe

c
J0A‖, (59)

This is a common choice in most of the modern GK PIC codes. In the MPR

diagnostic a variable usp is used for a parallel velocity:

usp =
pz,sp
msp

. (60)

In the ES case, the variables usp and v‖,sp are identical usp = v‖,sp, and in

EM simulations with low β they are close usp ≈ v‖,sp. With the rise of β,

the difference between these two variables increases because of the contribution

of the parallel magnetic potential A‖. A proper transition from the variable

pz,sp to the variable v‖,sp (instead of usp) is necessary for the investigation of

the dynamics of EM modes and for proper analysis of EM simulations. It is a

matter of future publications.

3. Post-processing

Here, a GAM in a circular magnetic configuration is considered to show

how the diagnostic is organised, and how the MPR data are treated. A cir-

cular deuterium plasma with flat safety factor q = 1.5, and flat density and

temperature radial profiles is considered. The temperature is defined by the

value of ρ∗ = 1/205, where ρ∗ = ρs/a, with ρs = cs/ωci and cs =
√
Te/mi

being the sound speed and ωci = ZieB0/mi being the ion cyclotron frequency.

The simulation has been performed with the electrostatic version of ORB5 with

adiabatic electrons. Since here we are interested only in the GAM dynamics,

the simulation has been done without energetic species. Non-zonal modes, i.e.

modes with toroidal numbers n 6= 0, have been filtered out to keep only the
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physics of the zonal modes. Background magnetic field at the magnetic axis is

B0 = 2.0 T, the minor and major radii are a0 = 0.5 m, R0 = 1.65 m respec-

tively. To reduce the computational effort, a radial domain s = [0.5, 1.0] has

been simulated. The radial coordinate is s =
√
ψ/ψedge, where ψ is the poloidal

flux coordinate. The real space has been discretized with ns = 300 grid points

along the radial direction, with nχ = 64 along poloidal direction and nφ = 4

along toroidal direction. A time step dt[ω−1
ci ] = 10 has been chosen, where the

time is normalised to the inverse deuterium cyclotron frequency ωci. The num-

ber of the ion markers is Ni = 108. To simulate the GAM dynamics, so-called

Figure 1: Time evolution of the structure of the GAM radial electric field is shown on the left

plot. Velocity dependence of the energy transfer signal, averaged on several GAM periods,

is shown on the right plot. White dashed and dotted lines indicate analytical estimation of

the parallel velocities where the GAM-plasma resonance should be observed according to the

analytical expressions Eq. 61 and Eq. 62. The parallel velocity here is normalized to the sound

velocity cs =
√

Te/mi, and the magnetic moment is normalized to mic
2
s/(2B0), where mi is

the deuterium mass.

Rosenbluth-Hinton test [24] has been performed by introducing an axisymmetric

density perturbation designed to produce an initial electric potential.

First of all, the MPR diagnostic provides the energy transfer signal P(v‖, µ, t)

(Eq. 58) as a function of the velocity variables (v‖, µ) and time. By averaging

this signal on several GAM periods, resonances of the mode-particle interaction

can be localised in the velocity space. Their location can be compared with the

analytically given parallel resonance velocity:

v‖,res = qR0ωGAM , (61)
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where ωGAM is the GAM frequency, that can be found directly from the radial

zonal electric field Er. Since the perturbation of the plasma distribution func-

tion related to the GAM dynamics can have higher poloidal modes m ≥ 1, the

GAM-particle interaction can be observed at smaller parallel velocities as well

v
(m)
‖,res =

qR0ωGAM
m

. (62)

By integrating in corresponding velocity domains, one can estimate contribution

of these resonances to the mode dynamics. In this particular case, it can be

seen from Fig. 1, that the energy transfer occurs mainly at the first resonance

v‖,res. By integrating the signal in the whole velocity domain, one gets the time

evolution of P. By normalizing it to the field energy, the GAM damping rate can

be estimated using Eq. 18. Following the algorithm, which has been described

in Sec. 2.3, one can eliminate the zero-frequency zonal flow component in the

energy transfer and field energy signals. The corresponding signals are shown

in Fig. 2.

Eq. 18 involves an integration in time. Varying and choosing different time

intervals, one can estimate an errorbar of the GAM damping rate by building

a distribution (or histogram) of the damping rate values. Every chosen time

interval has to contain a whole (integer) number of GAM periods. The result

histogram can be fitted with the normal distribution function, that gives a mean

value of the damping rate γ and an errorbar is estimated as 1.96σ, where σ is

the standard deviation, found from the distribution function. The number 1.96

is the 0.975 quantile of the standard normal distribution (Ref. [44]):

P (−1.96σ < γ − γ < 1.96σ) = 0.95, (63)

where P is the probability to find the value of the damping rate in the range

[γ−1.96σ, γ+1.96σ]. Here and in the following, including the case with EGAMs,

which will be described later, every histogram has 100 or more samples. If the

histogram of the damping rate distribution is not fitted by the normal distribu-

tion function, one can estimate the calculation error using a more conservative

method, by taking the half-width of the area of the damping rate distribution.
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A result value of the GAM damping rate, found from the MPR diagnostic is

the following:

γ[ωci] = −1.1 · 10−4 ± 1.5 · 10−5, (64)

and the distribution of the GAM damping rate values is shown in Fig. 3. Here,

values of the errorbar found from the normal distribution function and directly

as a half-length of the area of the damping rate distribution are actually the

same.

Figure 2: On the left plot, time evolution of the field energy signal with ZFZF and GAM

components (red line) and with only GAM component (green line) is plotted. For comparison,

the zonal radial electric field at s = 0.74 is shown as well (blue line). On the right plot, the

raw energy transfer signal (blue line), which has both ZFZF and GAM components, and the

one without the ZFZF component (red line) are presented. The energy transfer signals are

averaged over the whole velocity and space domains.

The result from the MPR diagnostic can be compared with the direct cal-

culation of the GAM damping rate, by fitting the zonal radial electric field Er

at a particular radial point. Here, the point s = 0.74 has been taken, since it is

very close to a crest in Er, that can be seen from the left plot of Fig. 1. First of

all, the zero-frequency component of Er is filtered out for more precise calcula-

tion of the GAM characteristics. After that, the GAM frequency is estimated,

for example, by the Fast Fourier Transform. On the other hand, the damping

rate is estimated by the linear least-square root method from the peaks in the

time evolution of Er. This preliminary processing gives the first assumption of

the GAM frequency and damping rate, that are used as initial guesses in the
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non-linear fitting procedure. A function

∼ cos(ωt) exp(γt) (65)

is used as a test one, which is fitted to the time evolution of the Er(s = 0.74).

This method has been used previously in Ref. [22] to study the influence of the

drift-kinetic electrons on the GAM dynamics in linear global GK simulations.

But here, as in the MPR diagnostic, an opportunity to estimate errorbars of

the frequency and especially of the damping (or growth) rate by varying time

intervals has been added as well. To exclude outliers during the non-linear

fitting, we compare final results with the preliminary estimation of the frequency

and damping rate, excluding values, which are significantly different from the

preliminary guesses.

Finally, the GAM frequency and damping rate, found using the non-linear

fitting of Er(s = 0.74) to the test function Eq. 65, are the following:

ω[ωci] = 3.89 · 10−3 ± 7.8 · 10−6, (66)

γ[ωci] = −1.1 · 10−4 ± 8.3 · 10−6, (67)

and have been calculated from the corresponding distribution functions, shown

in Fig. 3. As it can be seen here, the calculation of the GAM frequency is quite

precise with an errorbar being around 0.3%, while the errorbar of the damping

rate prediction is around 8%. Comparing both methods (Eq. 64 and 67), one

can see that the MPR diagnostic is not as precise as the non-linear fitting,

at least, in case of the calculation of the GAM damping rate. On the other

hand, it provides additional information such as a position of the GAM-plasma

resonances in the velocity space (Fig. 1). Finally, the obtained results can be

compared with analytical predictions of the GAM frequency and damping rate,

using the Sugama-Watanabe GAM distribution function (Ref. [45, 46]):

ωSW [ωci] = 3.98 · 10−3, (68)

γSW [ωci] = −0.8 · 10−4, (69)

where it has been taken into account that the GAMs have been initialized with

a radial wavenumber krρi = 8.7 · 10−2 in a circular plasma system with flat
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Figure 3: Upper plot: distribution of the GAM damping rate from the MPR diagnostic.

Middle and bottom plots: histograms of the GAM frequency and damping rate, found using

the non-linear fitting of Er(s1) to the test function Eq. 65.

safety factor q = 1.5 and temperature Te = Ti = 1.14 keV profiles. Considering

the sensitivity of γ on krρi, the analytical theory gives a good estimation of the

GAM damping rate.

4. Analytical verification

Here, we are going to show the consistency of the MPR diagnostic by com-

paring the GAM measurements investigated with ORB5, with the analytical
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dispersion relation derived in the GK framework, by neglecting the effects of

the finite Larmor radius and finite orbit width, and considering adiabatic elec-

trons. The corresponding GAM dispersion relation (Ref. [47, 29]) is

z + q2

(
F (z)− N2(z)

D(z)

)
= 0, (70)

N(z) = z +

(
1

2
+ z2

)
Z(z), (71)

D(z) =
1

z

(
1 +

1

τe

)
+ Z(z), (72)

F (z) = z(z2 +
3

2
) + (z4 + z2 +

1

2
)Z(z), (73)

Z(z) =
1√
π

∫ +∞

−∞

exp(−y2)

y − z
dy, (74)

z =
ω̂

ωt
, ωt = vth/(qR0), vth =

√
2T/m. (75)

We omit species indices, since all relevant plasma variables are related to the

deuterium. A GAM, as a standing wave, is described by the evolution of the

zonal electric field:

E = (Er, 0, 0), (76)

Er = E1 cos(kr) exp(−iω̂t), (77)

with a radial wavenumber k and a complex frequency ω̂ = ω + iγ, that verifies

the dispersion relation Eq. 70, E1 is the GAM amplitude. The corresponding

perturbation of the deuterium distribution function is (one can find detailed

derivation in Appendix A):

δf =
e

T

iω̂F0

ω̂2 − ω2
tr

(
2cT

eB0R0

N(z)

D(z)
− vd

)
Er sin θp, (78)

where c is the light speed, ωtr = v‖/(qR0) is the passing frequency, θp is the

poloidal angle in a simplified circular geometry, F0 being the deuterium equi-

librium distribution function:

F0 =
( m

2πT

)3/2

exp

(
−
m(v2

‖ + v2
⊥)

2T

)
, (79)
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and vd being the amplitude of the radial drift composed by the curvature drift

and grad-B drift:

vd =
mc

eB0R0

(
v2
⊥
2

+ v2
‖

)
. (80)

To derive an expression for the energy transfer term, we need the equation of

motion Eq. 30, which in a linear ES system can be rewritten as:

Ṙ0 = v‖
B∗sp
B∗‖,sp

+
cµ

eB∗‖,sp
b×∇B, (81)

where B∗sp and B∗‖,sp are defined in Eq. 28 and 29 respectively. Considering a

low-pressure plasma (J0×B� 1 with a plasma current J0) in a circular plasma

cross-section with a curvature κ, one gets the following simplifications:

∇× b =
∇×B

B
+

B×∇B

B2
≈ 4π

cB0
J0 + b× κ, (82)

J0 ·E ≈ 0, (83)

b× κ ·E ≈ −Er sin θp
R0

. (84)

Applying the introduced approximations, we get that

Ṙ0 ·E ≈ Ṙ0 ·E = −vdEr sin θp. (85)

Since the energy transfer signal is a real variable, we have:

P = e

∫
dV dWR[δf ]R[Ṙ0] · R[E], (86)

and taking into account Eq. 85, one gets:

P = −e
∫

dV dWR[vdδf ]R[Er] sin θp. (87)

Considering the integration in velocity and using still complex variables, one

obtains that ∫
dWvdδf =

e

T
(I1 − I2)Er sin θp, (88)

I1 = iω̂
2cT

eB0R0

N(z)

D(z)

∫
F0vd

ω̂2 − ω2
tr

dW, (89)

I2 = iω̂

∫
F0v

2
d

ω̂2 − ω2
tr

dW. (90)
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Evaluating the velocity integrals I1 and I2, one gets the expression

I1 − I2 = −i v
3
th

ω2
cR0

q

(
N2(z)

D(z)
− F (z)

)
, (91)

which can be significantly simplified using the GAM dispersion relation (Eq. 70)

to get rid of the functions N(z), D(z), and F (z):

I1 − I2 = −iv
2
th

ω2
c

ω̂. (92)

Using Eq. 87, one can derive an expression for the energy transfer signal:

P = −E2
1

mc2

B2
0

(γ + γ cos(2ωt) + ω sin(2ωt)) exp(2γt)∫
dV sin2 θp cos2(kr). (93)

Since we consider the drift-kinetic approximation here, the gyro-averaging op-

erator J0 is equal to 1. Wave energy is taken from Eq. 12:

Ef =
mc2

2B2
0

∫
dV |∇⊥Φ|2, (94)

where we are dealing only with real signals. Finally, taking into account the

perturbation of the zonal radial electric field |∇⊥Φ|2 ≈ E2

r and Since
∫

dWF0 =

1, we get

Ef ≈
mc2

4B2
0

E2
1(1 + cos(2ωt)) exp(2γt)

∫
dV cos2(kr). (95)

The GAM damping rate can be found using Eq. 18, that leads to the following

expression

γMPR = 2

(
γ +

ω

nTgam

∫
sin(2ωt)

1 + cos(2ωt)
dt

) ∫
cos2(kr) sin2 θp dV∫

cos2(kr) dV
. (96)

The ratio of the space integrals is equal to 1/2. Taking into account Eq. 19, we

finally can prove the consistency between the GAM dispersion relation and the

MPR method:

γMPR = γ. (97)

We can compare the time behaviour of the analytical energy transfer signal

Eq. 93 with the corresponding numerical signal. Moreover, we can take into
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account the zero-frequency component, as it is done in Eq. 27. If we take the

GAM frequency (Eq. 66) and damping rate (Eq. 64 or 67) from the simulation,

described in Sec. 3, we can see that the analytical signals show a quite similar

behaviour in time (Fig. 4) as the signals from the numerical simulation. The

frequency of the P signal is double of that of Er.

The expression Eq. 97 means that using the field and plasma perturbations

(Eq. 77 and Eq. 78), which verify the GAM dispersion relation Eq. 70, in the

MPR diagnostic (Eq. 18), one gets a GAM damping rate that verifies the original

GAM dispersion relation.

Figure 4: Comparison of the time evolution of the energy transfer signals, obtained from the

numerical simulation in Sec. 3 (red dotted lines), and analytically (blue lines) from Eq. 27 (for

the left plot) and Eq. 93 (for the right plot). The numerical signal without the zero-frequency

zonal flow component, which is shown on the right plot as a red line, has been obtained, using

the procedure described in Sec. 2.3.

5. Application to EGAMs in AUG shot #31213

5.1. Equilibrium and definition of the numerical simulation

The AUG shot #31213 at time 0.84 s has been selected within the Non-

Linear Energetic-particle Dynamics (NLED) Eurofusion enabling research project [48,

9]. It has been chosen to study the effect of the energetic particles (EPs) on the

dynamics of EGAMs. That is why, in these simulations we have three species:

gyro-kinetic thermal deuterium, gyro-kinetic energetic (fast) deuterium, and
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thermal electrons, either adiabatic (AE) or drift-kinetic (KE). The linear dy-

namics of EGAMs in this NLED-AUG case has been recently investigated with

the gyrokinetic codes GENE and ORB5 by considering adiabatic electrons [49].

Here, we extend the previous study by investigating the effect of kinetic electrons

and describing the contribution of the resonances of all species in phase space.

The simulation with the AE is performed in the electrostatic limit, while the

simulation with the KE has been done including dynamics of the magnetic po-

tential perturbation as well. In this latter case the pullback method [3] has been

used for the mitigation of the cancellation problem in EM simulations [50, 2].

Corresponding profiles of the safety factor, species density and temperature are

shown in Fig. 5. The magnetic field is reconstructed with experimental data,

including all geometrical effects (Fig. 5). The magnetic field at the magnetic

axis is B0 = 2.2 T. The major radius at the axis is R0 = 1.67 m. The geomet-

rical major and minor radii are R0 = 1.62 m, a = 0.482 m respectively. The

Figure 5: Magnetic configuration (upper left plot), radial profile of the safety factor (upper

right plot), species temperature (lower left plot) and density (lower right plot) radial profiles

for the EGAM simulations in the ASDEX Upgrade shot #31213. The grey vertical dotted lines

indicate the right boundary of the simulated radial domain in the EM case with drift-kinetic

electrons.
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real space of the system has been discretized using the following parameters:

ns = 256, nχ = 256, nφ = 32. In the ES simulation the time grid has a step

dt[ω−1
ci ] = 20 with Ni = 5 · 108 being a number of markers for the thermal ions,

and Nf = 5 · 108 for the fast ions. In the EM case, the time step and number

of markers have been changed: dt[ω−1
ci ] = 5, Ni = Nf = 108, Ne = 4 · 108.

Such a high number of markers is needed to provide at least several thousands

of numerical markers in every velocity bin, where the mode-plasma resonances

are observed (Fig. 6). In the EM case the radial domain has been reduced to

s = [0.0, 0.9] to avoid numerical instabilities due to the abrupt increase of the

safety factor at the edge. The density profile, that is depicted in Fig. 5, cor-

responds to the case with βe = 〈ne〉Te/(B2
0/(2µ0)) = 2.7 · 10−4, where 〈ne〉 is

the electron density, averaged in a tokamak volume, µ0 is the magnetic con-

stant, and Te is measured at the radial position s = 0.0. In both cases, the

velocity distribution of the fast particles is described by the expression Eq. 41

with uH,f = 8 and TH,f = 1. It means that the distribution function of the fast

species is centred around v‖ = 8 and v‖ = −8 (two bumps-on-tail), as one can

see from Fig. 10 (grey line). Due to this shift in the parallel velocity, the fast

particles lie near the EGAM-particle resonance velocity, which is estimated in

Eq. 62, and can exchange energy with the radial electric field. More precisely,

the fast deuterium particles, which lie on the positive slope of the right bump

and negative slope of the left bump, in total, transfer their energy to the electric

field, driving in such a way the EGAMs. The width of these bumps is constant

in space, which is described by the flat temperature profile of the fast species.

The distribution function with two symmetric bumps-on-tail, but not only with

one bump, is used to avoid input of additional momentum into the plasma sys-

tem, which can change the GAM frequency, and as a result, shift the position

of the resonance between the EGAM and fast species. The term ”fast” is used

to identify species which are responsible for the EGAM excitation. The ORB5

simulation with such parameters of the fast species results in one of the highest

EGAM growth rate for the given plasma configuration.
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Figure 6: Distribution of the numerical markers among velocity bins for different species. The

parallel velocity here is normalized to the sound velocity cs =
√

Te,max/mi, and the magnetic

moment is normalized to mic
2
s/(2B0), where Te,max is the maximum electron temperature,

mi is the thermal ion (deuterium) mass.

5.2. Numerical investigation of the wave-particle resonances in the EGAM dy-

namics

First of all, one can notice from Fig. 7 that the radial structure of the EGAMs

slightly changes when the dynamics of the drift-kinetic electrons is switched on.

The position of the crest in the EGAM radial structure shifts inwards from

around s = 0.48 to s = 0.40. Considering firstly the ES case with AE, we

Figure 7: Comparison of the radial structure of Er in simulations with adiabatic (left plot)

and drift-kinetic (right plot) electrons.

compare the EGAM frequency and growth rate, calculated at radial positions

s = 0.40 and s = 0.48, using the non-linear fitting of Er:

s = 0.40 : ω[
√

2vth,i/R0] = 9.391 · 10−1 ± 3.5 · 10−4, (98)

γ[
√

2vth,i/R0] = 1.63 · 10−1 ± 1.4 · 10−3, (99)

s = 0.48 : ω[
√

2vth,i/R0] = 9.314 · 10−1 ± 3.7 · 10−4, (100)

γ[
√

2vth,i/R0] = 1.65 · 10−1 ± 1.4 · 10−3. (101)
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From here on, only the radial point s = 0.40 is considered in the following

calculations. Consistency between the EGAM growth rate, calculated directly

from Er and by the MPR diagnostic, using Eq. 18, significantly improves in time

due to the growth of the EGAM signal in comparison with the zero-frequency

zonal flow. Skipping initial transient time period, the MPR diagnostic can be

applied to measure the EGAM growth rate, that appears to be consistent with

Eq. 99:

MPR : γ[
√

2vth,i/R0] = 1.63 · 10−1 ± 2.8 · 10−3. (102)

The consistency between both methods is observed in the EM case with KE as

well:

Er(s = 0.4) : ω[
√

2vth,i/R0] = 9.586 · 10−1 ± 4 · 10−4, (103)

Er(s = 0.4) : γ[
√

2vth,i/R0] = 8.5 · 10−2 ± 1.0 · 10−3, (104)

MPR : γ[
√

2vth,i/R0] = 8.4 · 10−2 ± 3.6 · 10−3. (105)

From Eq. 98 and Eq. 103 one can see that the change in the EGAM frequency

is small in comparison with the change in the growth rate, when dynamics of

the drift-kinetic electrons is included. In particular, the EGAM growth rate

decreases from Eq. 102 to Eq. 105. We now want to investigate the role of

the drift-kinetic electrons in the EGAM dynamics to understand which wave-

particle interactions lead to the decrease of the EGAM total growth rate, by

estimation of the contribution of different species. In the simulation with adia-

batic electrons:

thermal deuterium : γ[
√

2vth,i/R0] = −2.99 · 10−1 ± 3.9 · 10−3, (106)

fast deuterium : γ[
√

2vth,i/R0] = 4.62 · 10−1 ± 2.3 · 10−3. (107)

These equations show that the total EGAM growth rate is a balance between

the drive on the fast species and damping on the thermal one (one can see also

Ref. [42] for a similar analysis in the case of EGAMs in simplified configurations,

with adiabatic electrons). Moreover, the absolute values of the species contri-
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butions are much higher than the absolute value of the EGAM total growth

rate.

In case with drift-kinetic electrons, the species contributions are the follow-

ing:

thermal deuterium : γ[
√

2vth,i/R0] = −3.94 · 10−1 ± 4.1 · 10−3, (108)

thermal electrons : γ[
√

2vth,i/R0] = −2.67 · 10−2 ± 4.6 · 10−4, (109)

fast deuterium : γ[
√

2vth,i/R0] = 5.03 · 10−1 ± 4.7 · 10−3. (110)

From the above equations one can see that the drive on the fast particles (Eq. 107

and 110) and damping on the thermal ions (Eq. 106 and 108) increase with the

inclusion of the electron dynamics. Since this increase is comparable with the

electron contribution (Eq. 109), one cannot claim from these results that the

decrease of the EGAM growth rate occurs only directly due to the additional

damping on electrons.

But apart of that, the inclusion of drift-kinetic electrons changes the po-

sition of the EGAM crest (Fig. 7) and slightly changes the EGAM frequency.

These changes can lead to the observed increase of the thermal and fast ions

contribution to the EGAM drive. Nevertheless, it is clearly shown here that in

the experimentally relevant plasma conditions the inclusion of the drift-kinetic

electrons significantly decreases the EGAM growth rate of about a factor 2.

We now want to investigate the role of the different resonances in phase

space. In Fig. 8b one can see the energy transfer signal for the EGAM-electron

interaction in the velocity space, averaged on several EGAM periods. The

red cone there indicates an analytical estimation of the boundary between the

passing and trapped electrons:

vp−tr‖ =
√

2εµ, (111)

where ε is an inverse aspect ratio. According to that figure, the EGAMs are

damped by the electrons which are localised mainly near this boundary, similar

to what happens for GAMs [20]. We should mention here that the estimated

localisation of the passing-trapped boundary is shown in Fig. 8b only as a guide

29



for the eye, and it is not used during the actual GK simulations. We can separate

three different velocity domains e1, e2, e3. The area e1, which is between the

passing-trapped boundary and a white parabola in Fig. 8b, describes mostly the

contribution of the barely trapped electrons to the EGAM damping. The area

e2, which is inside of the white parabola, corresponds to the deeply trapped

electrons. Finally, the area e3, that is the velocity domain outside the passing-

trapped boundary, describes the passing electrons. By averaging, for example, in

the velocity domain e1, one gets the time evolution of the energy transfer signal

(Fig. 8a), that should be filtered for its proper use in Eq. 18. The contributions

of the electrons from different velocity domains are the following:

e1 : γ[
√

2vth,i/R0] = −1.37 · 10−2 ± 3.9 · 10−4, (112)

e2 : γ[
√

2vth,i/R0] = 2.5 · 10−3 ± 2.0 · 10−4, (113)

e3 : γ[
√

2vth,i/R0] = −1.47 · 10−2 ± 2.3 · 10−4, (114)

e1 + e2 + e3 ≈ −2.59 · 10−2. (115)

In Fig. 9 one can see more precisely the energy flow between the zonal electric

field and the electrons in different velocity domains. First of all, we would like to

notice that one of the dominant component to the electron damping occurs due

to the barely trapped electrons (e1). It is reasonable since the resonant velocity

of the EGAM-electron interaction lies in the domain of the barely trapped parti-

cle. On the other hand, we can see a significant contribution of passing electrons

to the EGAM damping Eq. 114. The reason might be in the choice of the ve-

locity space variables in ORB5, which has been explained in Sec. 2 in Eq. 59.

More precisely, we have some contribution of the parallel magnetic potential to

the velocity coordinate, used in the MPR diagnostic. To reduce this compo-

nent, we can decrease the plasma β, as it is done in Appendix C that leads to

smaller contributions of passing and deeply trapped electron in the field-electron

interaction, keeping the same damping on barely trapped electrons.

We can estimate as well contribution of different resonances in the thermal
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(a) (b)

(c) (d)

Figure 8: Upper right plot: the energy transfer signal, averaged on several EGAM periods,

is shown with indication of different velocity domains, where the electron contribution to the

EGAM dynamics is investigated. The red cone indicates the analytical estimation of the

passing-trapped boundary Eq. 111. The main EGAM-electron interaction is observed in the

domain e1, which is between the passing-trapped boundary and the white dotted parabola.

The white horizontal dashed lines indicate the analytical estimation of the main EGAM-

plasma resonance Eq. 61. Upper left plot: energy transfer signal, averaged in the velocity

domain e1. The blue line corresponds to the initial raw signal, while the red line shows

the signal, after low-pass filtering. Bottom row: the energy transfer signals for the thermal

(left plot) and fast (right plot) deuterium with indication of different velocity domains. The

dotted lines indicate positions of the first v‖,res and second v‖,res/2 resonances. The parallel

velocity here is normalized to the sound velocity cs =
√

Te,max/mi, and the magnetic moment

is normalized to mic
2
s/(2B0), where Te,max is the maximum electron temperature, mi is the

mass of the thermal deuterium.

deuterium velocity space (Fig. 8c):

i11 : γ[
√

2vth,i/R0] = −1.01 · 10−1 ± 3.4 · 10−3, (116)

i12 : γ[
√

2vth,i/R0] = −1.02 · 10−1 ± 3.7 · 10−3, (117)

i21 : γ[
√

2vth,i/R0] = −6.7 · 10−2 ± 2.7 · 10−3, (118)

i31 : γ[
√

2vth,i/R0] = −9.6 · 10−2 ± 2.6 · 10−3, (119)

i41 : γ[
√

2vth,i/R0] = −1.00 · 10−1 ± 1.4 · 10−3, (120)

i12 + i21 + i31 + i41 ≈ −3.65 · 10−1, (121)
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Figure 9: Energy transfer between the EGAM and the thermal electrons, averaged on several

EGAM periods, in different velocity domains, which are indicated in Fig. 8b. The black

cone is the electron passing-trapped boundary. The dashed horizontal lines are the analytical

estimation of the main resonant velocities.

where the domain i21 is the same as i11, but extended along µ.

In Eq. 121 the contributions of all considered resonances are summed up.

The result value is close enough to the total contribution of the thermal ions to

the EGAM damping (Eq. 108). From one point of view, it is an additional option

to verify the implemented diagnostic. On the other hand, by comparing Eq. 116

and 117, one can see that the parallel dynamics has a predominant contribution
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to the energy exchange between the EGAMs and the thermal deuterium plasma.

Finally, we can consider different velocity domains in the EGAM - energetic

deuterium interaction (Fig. 8d):

f1 : γ[
√

2vth,i/R0] = 2.85 · 10−1 ± 4.78 · 10−3, (122)

f2 : γ[
√

2vth,i/R0] = −7.11 · 10−2 ± 3.8 · 10−3, (123)

f3 : γ[
√

2vth,i/R0] = 3.61 · 10−1 ± 6.3 · 10−3, (124)

f4 : γ[
√

2vth,i/R0] = −6.7 · 10−2 ± 4.0 · 10−3, (125)

f1 + f2 + f3 + f4 = 5.08 · 10−1. (126)

One can see that there is an EGAM damping even on the energetic particles

(Eq. 123 and 125). But it is significantly smaller than the dominant drive

(Eq. 122 and 124). Sum on the resonances (Eq. 126) indicates that the EGAMs

are driven by the fast species and its absolute value is close enough to the total

drive, found in Eq. 110.

6. Comparison with GENE

To verify some of the results, obtained in Sec. 5, we have performed a com-

parison with the gyrokinetic GENE code, that has a similar diagnostic. The

Gyrokinetic Electromagnetic Numerical Experiment (GENE) [51] is an Eule-

rian code, which solves the Vlasov-Maxwell system of coupled equations on the

phase-space grid (R, v‖, µ) at each time step. Here, R denotes the gyrocenter

position, v‖ the velocity component parallel to the magnetic field and µ the

magnetic moment. The gyrokinetic description employs an approach based on

the study of a distribution function fs(R, v‖, µ) for each plasma species (s),

which contrarily as it is done in a particle-in-cell code as ORB5, is not dis-

cretized with markers. The distribution function is split, accordingly to the

so-called δ-f approach, into a background component f0,s and in a small fluc-

tuating part f1,s, i.e. fs = f0,s + f1,s. The equilibrium distribution function

f0,s is usually modelled with a Maxwellian distribution. However, recently, this

assumption has been relaxed and more flexible equilibrium distributions can
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be considered [52, 53, 54]. In particular, different analytic choices, e.g. slow-

ing down, bi-Maxwellian and bump-on-tail, as well as numerical distributions

as obtained from numerical models are supported. While the equilibrium dis-

tributions are considered time independent on the turbulent time scales, their

perturbed components evolve in time accordingly to the Vlasov equation, which

in the linear and electrostatic limit employed throughout this paper reads as

(for more details one can see Ref. [55, 56, 57])

∂f1,s

∂t
+
Cvth,s
2JB0

[
v2
‖ + µB0, h1,s

]
zv‖

+
1

C
∂φ̄1

∂y
∂f0,s

+
T0

qs

2v2
‖ + µB0

B0

(
Kx

∂h1,s

∂x
+Ky

∂h1,s

∂y

)
= 0. (127)

Here, the function h1,s represents the non-adiabatic part of the perturbed dis-

tribution function f1,s. It is defined as h1,s = f1,s − qφ̄1/(B0T0,s)∂f0,s/∂µ.

Eq. 127 is written in the field aligned coordinate system (x, y, z) with x the

radial, y the bi-normal and z the field aligned directions. Moreover, φ̄1 de-

notes the gyro-averaged electrostatic potential, J the phase-space jacobian,

Kx ∼ −∂yB0 − ∂zB0 and Ky ∼ ∂xB0 − ∂zB0, respectively, the radial and bi-

normal curvature terms and C2 = B0 · B0. Finally, the Poisson brackets are

defined as

[a, b]c,d =
∂a

∂c

∂b

∂d
− ∂a

∂d

∂b

∂c
. (128)

Eq. 127 needs to be solved self-consistently with the Poisson field equation. The

full plasma dynamic can be investigated in GENE either in a flux-tube (local

assumption) [51] or in a full-global radial domain [55]. The local approxima-

tion allows the radial direction to be Fourier transformed by assuming periodic

boundary conditions. GENE is able to study the contribution of each plasma

species to the overall more unstable mode-dynamic through the study of the

time evolution of the potential energy of the system Ew [58, 59]. It is defined

only in Fourier space (only in the local flux-tube limit) for each wave vector

k = (kx, ky) as follows

Ew =

〈∫
dµdv‖

π

2
B0n0qΦ̄

∗
1,kf1,k

〉
z

. (129)
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Here, the bracket represents the field-aligned z-average, namely

〈A (z)〉z =

∫
J (z)A (z) dz∫
J (z) dz

. (130)

The time derivative of Eq. 129 determines the energy flow during the whole

simulation time domain. In particular it represents the energy effectively trans-

ferred from the particles to the field. It reads as

∂Ew
∂t

=

〈∫
dµdv‖

π

2
B0n0qΦ̄

∗
1,k∂tf1,k

〉
z

. (131)

From the energy relation of Eq. 131 it is to compute the more unstable linear

growth rate γ through the time variation of the potential energy, as shown in

details in Ref [49, 15, 58, 60], by the relation

γ =
1

Ew

∑
s

∂Ew,s
∂t

. (132)

Eq. 132 allows us to distinguish between the contribution of each species to

the total growth rate, by removing the sum over all the species and studying

each term separately. Positive (negative) values of ∂Ek,s/∂t indicate that the

plasma species considered is giving (taking) energy to (from) the electrostatic

field component with a consequent growth (damping) of the mode. Moreover,

by studying γs in phase-space, i.e. (v‖, µ) for each plasma species, velocity

resonances, which are the main drive term of the EGAMs studied in this paper,

can be investigated in details.

The same AUG shot has been simulated in GENE in case with adiabatic

electrons (one can see also Ref. [49]), using the flux-tube version of the code

at s = 0.5. In Fig. 10 one can see that both ORB5 and GENE give the same

positions of the resonances of the EGAM - fast deuterium plasma interaction.

According to chosen parameters of the fast deuterium distribution function,

peaks of the energetic bumps are located at |v‖| = 8. As a benchmark,

comparison of the EGAM frequency and total growth rate has been done as

well. One can see that both codes give the same values of the mode frequency:

GENE : ω/2π = 42 (kHz), (133)

ORB5 : ω/2π = 43.60± 0.02 (kHz). (134)
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Figure 10: Resonance positions of the EGAM - fast deuterium interaction, obtained from

GENE and ORB5. The velocity grid is normalised to the sound speed cs =
√

Te,max/mi.

The grey dotted line indicates the positions of the bumps, which describe the equilibrium

distribution of the fast deuterium.

On the other hand, there is 18% consistency between the codes for the EGAM

total growth rate:

GENE : γ = 40 · 103 (s−1), (135)

ORB5 : γ = (47.6± 0.4) · 103 (s−1), (136)

and for the contributions of different plasma species to the mode dynamics:

thermal deuterium : GENE : γ = −74 · 103 (s−1), (137)

ORB5 : γ = (−87± 1) · 103 (s−1), (138)

fast deuterium : GENE : γ = 115 · 103 (s−1), (139)

ORB5 : γ = (134.8± 0.7) · 103 (s−1). (140)

The difference in the values can be explained mainly by the fact that the
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simulation in GENE has been performed using the local flux-tube version, while

the simulation in ORB5 is a global one.

7. Conclusions

In this paper a Mode-Particle-Resonance (MPR) diagnostic has been imple-

mented in the gyrokinetic code ORB5 to investigate mode-plasma interaction

processes. The technique is based on the investigation of energy transfer terms

in the velocity space (Eq. 58) and gives an opportunity to localise velocity do-

mains of maximum energy exchange between an electrostatic mode and different

species.

Moreover, integrating in a chosen velocity domain, a rate of the mode damp-

ing or growth can be calculated using Eq. 18 and contribution of different species

to the mode dynamics can be estimated as well. Using a GAM dispersion re-

lation, which neglects finite-Larmor-radius and finite-orbit-width effects and

treats the electrons as adiabatic [47, 29], the theoretical principle, which lies

behind the MPR diagnostic, has been analytically verified for an ES case. It

has been shown that the GAM damping rate, derived from the energy exchange

principle (Eq. 18), is identical to the GAM damping rate, given by the GAM

dispersion relation Eq. 70. Analytical time evolution of the energy transfer sig-

nal, given in Eq. 93, has been found to have the same frequency as the numerical

one (Fig. 4).

In Sec. 5, the MPR diagnostic has been applied to the case of AUG shot

#31213 (NLED AUG base case) to investigate contributions of different reso-

nances to the EGAM dynamics. It has been shown that inclusion of the drift-

kinetic electrons significantly decreases the EGAM growth rate of about a factor

2 for the selected case (Eq. 102 and Eq. 105). It has been shown that the EGAM

damping occurs at the first and second resonances in case of the interaction with

deuterium plasma. On the other hand, in the case of the electrons the EGAMs

are damped mainly by the barely trapped electrons (Fig. 8). The total EGAM

growth rate (Eq. 135) and contribution of the thermal (Eq. 137) and energetic
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deuterium (Eq. 139) to the mode dynamics has been calculated in the codes

ORB5 and GENE in case with adiabatic electrons. The benchmark has shown

18%-consistency for the total growth rate and species contributions.

From the point of view of further possible application, the MPR diagnostic

can be used, for instance, to study the energy exchange between energetic and

thermal species indirectly through the zonal waves, such as EGAMs, that play

a role of a mediator in this case. Other interesting effects, associated with the

EGAM nonlinear evolution, are the EGAM frequency chirping, which consists

in a fast modification of the mode frequency, and the saturation mechanisms.

Since the frequency shift during the chirping is considered to occur as a result of

the wave-particle interaction [61, 62, 63, 64, 65, 66], the MPR diagnostic can be

used to investigate this phenomenon as well. The saturation mechanisms (wave-

particle or wave-wave interactions) are important to investigate in order to build

a theoretical model capable of predicting the saturation levels in experimentally

relevant conditions, and as a consequence, the EP redistribution in phase space.

The current version of the diagnostic can be applied only to the case of

mainly electrostatic modes, such as GAMs and EGAMs. As it has been dis-

cussed in Sec. 2, the reason is in the choice of the velocity space variables in

ORB5. The MPR diagnostic can be extended to work with EM simulations

with arbitrary β, by performing a proper transition from the variable pz,sp to

the velocity variable v‖,sp. There are different possible areas of application of

the EM-MPR diagnostic. A wider range of the modes whose dynamics is mainly

controlled by wave-particle resonances, like energetic-particle driven MHD in-

stabilities, can be investigated. For a turbulent plasma, the collisionless inter-

actions between the EM fields and the plasma particles may lead to a secular

transfer of energy from fields to particles, resulting in collisionless damping of

the turbulent fluctuations. More precisely, a particular challenge in tokamak

plasma and plasma physics in general is to identify the physical mechanisms

by which the EM field and plasma flow fluctuations are damped and how their

energy is converted to plasma heat, or some other energization of particles. For

example, in astrophysical plasmas dissipation of the turbulence energy through
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the Landau damping of the Alfvén waves can take place [67]. It would be

interesting to investigate the influence of the plasma β on the energy channel-

ing [68], especially on the contributions of different species in the plasma heating

by EGAMs and Alfvén waves. There are also physical phenomena, which are

specific to the space plasma, such as particle acceleration by the magnetic en-

ergy released during collisions of the magnetic islands in solar and heliospheric

environments [69]. It might be interesting to investigate role of such processes

in tokamak plasmas as well.
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Appendix A Derivation of the species distribution perturbations

Here, we are going to show detailed derivation of the GAM dispersion rela-

tion, based on Ref. [47, 29]. Considering a plasma consisted on deuterium and

electron species (sp), we start from a GK equation, neglecting Finite-Larmor-
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Radius and Finit-Orbit-Width effects:

(ωtr,sp∂l − i(ω − ωd,sp))δKsp = −iF0,spZspe

Tsp
ω
(

Φ̃ +
ωd,sp
ω

Φ
)
, (141)

ωtr,sp =
v‖,sp

qR0
, (142)

ωd,sp = ω̂d,sp sin θp =
krmspc

ZspeB0R0

(
v2
⊥,sp

2
+ v2
‖,sp

)
sin θ, (143)

where ω is a complex GAM frequency, δKsp is a non-adiabatic perturbation of

the species distribution function:

δfsp = −Zspe
Tsp

F0,spΦ̃ + δKsp. (144)

The derivative ∂l is taken along magnetic field lines. The equilibrium distribu-

tion function F0,sp is given by Eq. 79, and is normalized to 1 (n0,sp = 1). The ES

potential Φ is decomposed on the zonal (flux-surface averaged) Φ and non-zonal

Φ̃ components. The perturbations of the species distribution functions validate

the quasi-neutrality equation:

〈δfi〉 = 〈δfe〉 →
(

1 +
1

τe

)
Φ̃ =

Ti
e

(〈δKi〉 − 〈δKe〉) , (145)

where τe = Te/Ti, and 〈.〉 denotes the integration in velocity space. From the

quasi-neutrality equation, one can derive also the vorticity equation:

ω2

v2
A,i

k2
rΦ =

〈∑
sp

4πZspe

c2
ωωd,spδKsp

〉
, (146)

vA,i =
B0√
4πmi

. (147)

We should introduce the ordering that will be used in the derivation of

the GAM dispersion relation. Since we are dealing with GAMs, which have

toroidally and mainly poloidally symmetric ES field, the ES potential pertur-

bation is not dependent on the toroidal angle. It means, that the derivative ∂l

along magnetic field lines in the GK equation Eq. 141 becomes the derivative on

the poloidal angle ∂θp . Moreover, the non-zonal component Φ̃, which depends

on the poloidal angle θp, is considered to be much smaller than the zonal com-

ponent Φ. Since the GAMs are sound oscillations (it means, ω ∼ vth,i/R), we
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are going to use the ratio ωd,i/ω ∼ krρi as the smallness parameter ε. At the

zeroth order, when the temperature is going to zero, GAM oscillations disap-

pear δK
(0)
sp = 0. Apart of that, we assume, that the ratio Φ̃/Φ is of the order of

ε. To sum up, the ordering of the system is the following one:

ωd,i
ω
∼ O(ε), (148)

Φ = Φ(0) + Φ(1), (149)

Φ(0) = Φ ∼ O(1), Φ(1) = Φ̃ ∼ O(ε), (150)

δKsp = δK(0)
sp + δK(1)

sp , (151)

δK(0)
sp = 0. (152)

Now, we are going to consider the GK equation separately for different

species. We start from the case of electrons. Due to their small mass, the

electrons have a high speed along the magnetic field, leading to the domination

of the transit frequency on all other frequencies:

ωtr,e
ω
∼ O(ε−1). (153)

On the other hand, the ordering of the drift frequency is the same for all species,

since it does not depend on the species mass. We expand the GK equation

Eq. 141 up to the O(ε) order:(ωtr,e
ω

∂θp − i
)
δK(1)

e = i
F0,ee

Te

(
Φ̃ +

ωd,e
ω

Φ
)
. (154)

By taking the flux-averaging (in this case, averaging on the poloidal angle) of

the equation, one gets δKe = 0. By considering only the terms of the O(1)

order in Eq. 154, one obtains that δ̃Ke

(1)
= 0. It means that we are dealing

with adiabatic electrons, whose distribution perturbation function does not have

any kinetic part:

δKe = 0. (155)

Now, we are going to work with the ion GK equation. It is known that the

ion transit frequency ωtr,i is of the order of the sound frequency, it means, it is
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of the order of the GAM frequency:

ωtr,i
ω
∼ O(1). (156)

As a result, considering only the terms up to O(ε), we get for the ions that(ωtr,i
ω

∂θp − i
)
δK

(1)
i = −iF0,ie

Ti

(
Φ̃ +

ωd,i
ω

Φ
)
. (157)

From the flux-surface averaging, one gets again that δKi = 0. Now, we are

splitting the distribution and field perturbations on zonal, cos θp and sin θp

components:

Φ = Φ + Φ̃c cos θp + Φ̃s sin θp, (158)

δKi = δKi
(1)

(= 0) + ˜δKi,c

(1)
cos θp + ˜δKi,s

(1)
sin θp. (159)

Considering separately zonal terms and terms in front of cos θ and sin θ func-

tions, one gets the following system of equations:
−iω 0 ωtr,i

0 −iω 0

−ωtr,i 0 −iω



˜δKi,c

(1)

δKi
(1)

˜δKi,s

(1)

 = − iF0,ieω

Ti


1 0 0

0 0 0

0 ω̂d,i/ω 1




Φ̃c

Φ

Φ̃s

 .(160)

From this system one can find the kinetic part of the distribution perturbation

for the ions:

˜δKi,c

(1)
=

−iF0,ieω

Ti(ω2 − ω2
tr,i)

(
iωΦ̃c + ωtr,iΦ̃s + ωtr,i

ω̂d,i
ω

Φ

)
, (161)

˜δKi,s

(1)
=

−iF0,ieω

Ti(ω2 − ω2
tr,i)

(
−ωtr,iΦ̃c + iωΦ̃s + iω̂d,iΦ

)
. (162)

After that, by putting Eq. 161 and Eq. 162 into the quasi-neutrality equation

Eq. 145, and taking into account the adiabaticity of electrons (Eq. 155), one can

find expressions for the non-zonal components Φ̃c and Φ̃s of the ES potential:(
1 +

1

τe

)
(Φ + Φ̃c cos θ + Φ̃s sin θ) =

Ti
e

(〈 ˜δKi,c

(1)
〉

cos θp +

〈 ˜δKi,s

(1)
〉

sin θp

)
. (163)
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First of all, one should notice that F0,i (Eq. 79) and ω̂d,i (Eq. 143) are even

functions of the parallel speed v‖,i, and ωtr,i is an odd one. Because of that,

the terms proportional to ωtr,i in Eq. 161 and Eq. 162 will disappear after the

velocity integration 〈.〉. During the velocity integration, we are going to use an

expression of the Plasma Dispersion Function (PDF) [70]:

Z(z) =
1√
π

∫ +∞

−∞

exp(−y2)

y − z
dy = −

√
π exp(−z2)(erfi(z) + i), (164)

where Im(z) < 0, erfi(z) is the Imaginary Error Function, and the following

integrals can be evaluated using the PDF:

1√
π

∫ +∞

−∞

exp(−y2)

y2 − z2
dy =

Z(z)

z
, (165)

1√
π

∫ +∞

−∞

y2 exp(−y2)

y2 − z2
dy = 1 + zZ(z), (166)

1√
π

∫ +∞

−∞

y4 exp(−y2)

y2 − z2
dy =

1

2
+ z2 + z3Z(z). (167)

We start from the first term on the right hand side in Eq. 163:

〈 ˜δKi,c

(1)
〉

= − eω2Φ̃c
Tiv3

th,iπ
3/2

〈exp

(
−v

2
‖,i+v

2
⊥,i

v2th,i

)
ω2
tr,i − ω2

〉
, (168)

where vth,i =
√

2Ti/mi. Integration in the velocity space is performed in cylin-

drical coordinates:∫ +∞

−∞
d3v = 2π

∫ +∞

0

v⊥ dv⊥

∫ +∞

−∞
dv‖. (169)

Since that, we have〈
exp(−v

2
‖,i+v

2
⊥,i

v2th,i
)

ω2
tr,i − ω2

〉
= 2π

Ti
mi

∫ +∞

−∞

exp(−v2
‖/v

2
th,i)

ω2
tr,i − ω2

dv‖. (170)

By performing the following change of variables

y =
v‖

vth,i
, z =

ω

ω0,i
, ω0,i =

vth,i
qR0

, (171)

one gets an integral, similar to Eq. 165:∫ +∞

−∞

exp(−v2
‖/v

2
th,i)

ω2
tr,i − ω2

dv‖ =

√
π(qR0)2

vth,i

1√
π

∫ +∞

−∞

exp(−y2)

y2 − z2
dy. (172)
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Combining Eq. 165, 172 and 170, and putting the result into Eq. 168, one finally

gets

〈˜δKi,c

(1)
〉 = −eΦ̃c

Ti
zZ(z). (173)

Now, we are going to consider the second term on the right hand side of Eq. 163:〈 ˜δKi,s

(1)
〉

= −eω
2

Ti

〈
F0,i

ω2
tr,i − ω2

〉
Φ̃s −

eω

Ti

〈
F0,iω̂d,i
ω2
tr,i − ω2

〉
Φ. (174)

The first term is evaluated in the same way as it has been done above:

−eω
2

Ti

〈
F0,i

ω2
tr,i − ω2

〉
Φ̃s = −eΦ̃s

Ti
zZ(z). (175)

The velocity integral in the second term is〈
F0,iω̂d,i
ω2
tr,i − ω2

〉
= πv2

th,i

∫ +∞

−∞
dv‖

(
v2
th,i/2 + v2

‖

)
exp

(
−v2
‖/v

2
th,i

)
ω2
tr,i − ω2

, (176)

where we have already performed integration on the perpendicular velocity. The

first part of this integral can be found by using again Eq. 165:

π
v4
th,i

2

∫ +∞

−∞
dv‖

exp
(
−v2
‖/v

2
th,i

)
ω2
tr,i − ω2

=
π3/2v3

th,i(qR0)2

2z
Z(z). (177)

The second part of the integral Eq. 176, using Eq. 166, is evaluated to

πv2
th,i

∫ +∞

−∞
dv‖

v2
‖ exp

(
−v2
‖/v

2
th,i

)
ω2
tr,i − ω2

= −π3/2v3
th(qR0)2(1 + zZ(z)). (178)

By using Eq. 175, 177 and 178, one can finally evaluate the second term on

the right hand side in Eq. 163,〈 ˜δKi,s

(1)
〉

=
e

Ti

(
−zZ(z)Φ̃s −

2krcTi
eB0R0ω0,i

N(z)Φ

)
, (179)

ω0,i =
vth,i
qR0

, (180)

N(z) = z +

(
1

2
+ z2

)
Z(z), (181)

where we have introduced a function N(z) (to compare to Eq. 71).
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Now, by putting Eq. 173 and Eq. 179 into Eq. 163, and considering separately

terms in front of cos θp and sin θp, we can find expressions for the non-zonal

components of the ES potential:

Φ̃c = 0, (182)

Φ̃s = − 2krcTi
eB0R0

1

ω

N(z)

D(z)
Φ, (183)

D(z) =
1

z

(
1 +

1

τe

)
+ Z(z), (184)

where a function D(z) has been introduced (to compare to Eq. 72).

Now, we are interested only in the kinetic part of the species distribution

function, that should be used in the power exchange expression Eq. 57. In

Eq. 57 one performs an integration in space, including the integration along the

poloidal direction. In case of the GAM dynamics, Ṙ0 · E ∼ sin θp, as one can

see in Eq. 85. Because of that, terms in δ̃K, that are proportional to cos θp,

will not contribute to the power exchange. It means, we need to consider only

the term ˜δKi,s

(1)
. To sum up, for the power exchange signal, we consider the

following distribution function:

δf = ˜δKi,s

(1)
sin θp. (185)

By putting results from Eq. 182 and Eq. 183 to Eq. 162, one can obtain a final

expression for the distribution perturbation, shown in Eq. 78.

Finally, it should be noticed, that using a flux-surface-averaged vorticity

equation, derived from Eq. 146:

ω2

v2
A,i

k2
rΦ =

〈
2πe

c2
ωω̂d,i ˜δKi,s

(1)
〉
, (186)

and the integral Eq. 167, one can get the GAM dispersion relation Eq. 70.

Appendix B Evaluation of the Plasma Dispersion Function

The Plasma Dispersion Function (PDF)

Z(z) =
1√
π

∫ +∞

−∞

exp(−t2)

t− z
dt (187)
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Figure 11: Domain of integration of the Plasma Dispersion Function. The contour Cγ is

curved in such a way to keep the pole z on the left hand said. After that, we assume that the

pole falls on the contour Cγ from the domain surrounded by a closed contour Γ = Cγ + CR.

is defined for the case of Im(z) > 0. But since we are dealing with the Landau

damping, we have to extend analytically this integral to the case of Im(z) < 0.

The analytical continuation is there carried out in such a way that the path of

integration is deformed into a contour for which the pole z is always sitting on

the left hand side. Now, we can consider a closed contour Γ = Cγ +CR, as it is

shown in Fig. 11, where Cγ goes along a real axis and is curved near the pole z

to keep it on the left hand side, and CR is a half circle with a radius R→ +∞.

By denoting the integrand of the PDF as G(t, z)

G(t, z) =
1√
π

exp(−t2)

t− z
, (188)

we have the following equality:∫
Γ

G(t, z) dt =

∫
Cγ

G(t, z) dt+

∫
CR

G(t, z) dt. (189)

Since

lim
R→+∞

G(t, z) = 0, (190)

the second integral on the right hand side of Eq. 189 is equal to 0. The integral

along the Cγ in the limit of a big radius R represents the analytical continuation
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of PDF. If we assume, that the pole z is sitting on the curved contour, in this

case, we can evaluate PDF using the principle value integral, more precisely, by

applying the Sokhotski - Plemelj theorem:∫
Γ

G(t, z) dt =

∫
Cγ

G(t, z) dt = P.V

∫
Cγ

G(t, z) dt− i
√
π exp(−z2). (191)

Now, for the sake of numerical calculations, we would like to relate the principle

value integral to the Imaginary Error Function Erfi(z). It is known that the

Hilbert transform of the Gaussian can be related to Erfi(z) (Ref. [71]) as

1√
π
P.V.

∫ +∞

−∞

exp(−t2)

t− z
dt = −

√
π exp(−z2)Erfi(z). (192)

Finally, the Plasma Dispersion Function Z(z), analytically extended to the lower

half of the imaginary plane, can be expressed using the following equation:

Z(z) = −
√
π exp(−z2)(i+ Erfi(z)). (193)

Appendix C EM simulation with a smaller plasma beta

The EGAM damping on the passing electrons that is observed in Eq. 114,

must be a numerical phenomenon, which occurs due to the A‖ contribution

to the velocity coordinate Eq. 59. Since A‖ reduces with plasma β, exactly

the same EM simulation as in Sec. 5 has been launched, but with a smaller

β = 2.7 · 10−5 (smaller electron density). In Sec. 5 the simulation has been

performed with β = 2.7 · 10−4. The result EGAM growth and damping rates in

this case are

total : γ[
√

2vth,i/R0] = 8.7 · 10−2 ± 3.3 · 10−3, (194)

thermal deuterium : γ[
√

2vth,i/R0] = −3.95 · 10−1 ± 3.9 · 10−3, (195)

thermal electrons : γ[
√

2vth,i/R0] = −2.1 · 10−2 ± 1.2 · 10−3, (196)

fast deuterium : γ[
√

2vth,i/R0] = 5.02 · 10−1 ± 4.0 · 10−3, (197)

that should be compared with Eq. 105 and Eqs. 108-110 respectively. One can

see that only the electron component has been changed. Finally, integrating the
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energy transfer signal in the same velocity domains as in Fig. 8b, we obtain

e1 : γ[
√

2vth,i/R0] = −1.36 · 10−2 ± 5.1 · 10−4, (198)

e2 : γ[
√

2vth,i/R0] = 2.1 · 10−3 ± 1.4 · 10−4, (199)

e3 : γ[
√

2vth,i/R0] = −8.3 · 10−3 ± 8.7 · 10−4. (200)

Corresponding field-electron energy transfer signals in velocity space are shown

in Fig. 12. Since the EGAM linear dynamics must be mostly electrostatic, its

dynamics should not depend on the value of plasma β (plasma density). Because

of that, corresponding damping and growth rates should remain the same. More

precisely, the component of the barely trapped electrons (e1) remains the same

as in Eq. 112. On the other hand, the contribution of the passing electrons (e3)

has decreased in comparison to Eq. 114, which indicates its dependence on the

magnetic potential, as it is supposed to be in the p‖-formulation.
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Figure 12: Energy transfer signal between the zonal radial electric field and electrons in the

whole velocity domain (upper left plot), as well as in the domains of barely trapped electrons

e1 (upper right), deeply trapped electrons e2 (lower left), passing electrons e3 (lower right).

Note different scales in the colorbars.
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