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Only three genomes have been recovered from individuals  
that fall close in time to the settlement of Europe and 
Asia more than 40 thousand years ago (ka)1,2. A complete 

genome has been produced from the ~45,000-year-old remains of 
Ust’-Ishim, a Siberian individual who showed no genetic continuity 
to later Eurasians3. This contrasts with the ~40,000-year-old East 
Asian individual from Tianyuan whose genome is more closely 
related to many present-day Asians and Native Americans than 
to Europeans4. From Europe, only the partial genome of an indi-
vidual called Oase 1 and dated to ~40 ka has been recovered, and 
this showed no evidence of shared ancestry with later Europeans5. 
However, Oase 1 carried more Neanderthal ancestry (6–9%) than 
other modern human genomes sequenced to date, owing to admix-
ture with Neanderthals that occurred within the six generations 
before the individual lived.

Here, we study genome sequences generated from a largely 
complete ancient skull that was discovered alongside other skeletal 
elements in 1950 inside the Koněprusy cave system in present-day 
Czechia6,7 (Fig. 1, Extended Data Fig. 1 and Supplementary Section 1).  
All skeletal elements were found to originate from one adult female 
individual called Zlatý kůň (Golden Horse) after the hill on top of  
the cave system. Archaeological investigations ascribed the stone and 
bone tools retrieved from the cave to the early Upper Palaeolithic. 
However, the artefacts in association with this individual could not 
be confidently assigned to any specific cultural technocomplex6,8. 
The remains were first thought to be at least 30,000 years old in 
accordance with morphological and stratigraphic information and 

the type of associated faunal remains8,9. Moreover, damage on the 
left side of the frontal human bone was interpreted as biting and 
gnawing by hyenas, which went extinct from central Europe around 
24 ka10,11. Whereas direct radiocarbon dating resulted in a much 
younger date of ~15 ka (12,870 ± 70 years bp; GrA-13696)12, a recent 
craniometric analysis that included a virtual reconstruction of  
the Zlatý kůň skull supports that the individual lived before the last 
glacial maximum13.

In an attempt to clarify the age of Zlatý kůň, we radiocarbon 
dated a cranial bone fragment, resulting in a significantly older date 
of ~27 ka (23,080 ± 80 years bp; MAMS-36077) compared with the 
first direct date. A third date, comprising a solvent pre-wash treat-
ment followed by ultrafiltration on the same bone fragment, pro-
duced a younger date of ~19 ka (15,537 ± 65 years bp; OxA-38602)14. 
The large discrepancies between the three direct dates suggest that 
the Zlatý kůň specimen is highly contaminated and that radiocar-
bon dating on bulk collagen may be unreliable (Supplementary 
Section 2 and Extended Data Fig. 2). We therefore extracted the 
amino acid hydroxyproline from leftover collagen to attempt to 
date a compound-specific fraction from the bone15. This yielded 
the oldest determination of ~34 ka (29,650 ± 650 years bp; OxA-
38022). However, we suspect this is also artificially young due to 
the presence of trace exogenous contaminants derived from ani-
mal glue, as supported by genetic analysis (discussed below and in 
Supplementary Section 2). We therefore conclude that the hydroxy-
proline determination reflects a minimum age, with the true age 
likely to be much older.
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Modern humans expanded into Eurasia more than 40,000 years ago following their dispersal out of Africa. These Eurasians 
carried ~2–3% Neanderthal ancestry in their genomes, originating from admixture with Neanderthals that took place sometime 
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We extracted DNA from ~15 mg bone powder from the Zlatý 
kůň petrous portion of the temporal bone and first enriched for and 
sequenced the mitochondrial genome (mtDNA) to ~150-fold cover-
age (Methods). Around 4% of the mtDNA sequences were estimated 
to stem from human contamination (Supplementary Section 3). 
The reconstructed mtDNA belongs to haplogroup N and its branch 
length, measured as the number of accumulated substitutions, is 
similar to those of the currently oldest sequenced modern human 
mtDNA genomes (Fig. 2a and Extended Data Fig. 3), including the 
recently published mtDNAs from Bacho Kiro, a cave in Bulgaria with 
remains dating to 43–47 ka1. Bayesian tip dating suggests that Zlatý 
kůň lived ~43 ka (95% highest posterior density = 31.5–52.6 ka).

To study the nuclear genome, we sequenced ~20 million DNA 
fragments after targeted enrichment with oligonucleotide probes 
for 1.24 million single nucleotide polymorphisms (SNPs)16. A 
total of ~678,000 targeted SNPs (54%) were covered at least once 
after genome-wide enrichment (capture dataset). In addition, we 
sequenced ~4 billion random DNA fragments from the same DNA 
library of Zlatý kůň, resulting in ~3.8-fold genomic coverage (shot-
gun dataset). In line with the sex assignment based on morphol-
ogy13, the X chromosome and autosomes showed similar coverage, 
indicating that Zlatý kůň is female (Extended Data Fig. 4). The pres-
ence of Y chromosomal sequences suggested that up to 4% of the 
nuclear DNA sequences in the shotgun dataset originate from male 
contamination. Estimates based on linkage disequilibrium17 suggest 
that nuclear contamination is <1% in the capture dataset and ~2% in 
the shotgun dataset (Supplementary Section 4). The majority of the 
Zlatý kůň shotgun sequences (~3.2-fold out of ~3.8-fold total) have 
been generated from a single-stranded DNA library that allows for 
the quantification of contamination with an explicit model of DNA 
damage in the DNA molecules18. This model yielded an estimate 
of contamination of 0.1% (s.e. = ±2.0%) (Supplementary Section 4).

We used the non-human fraction of the shotgun data to further 
investigate whether the use of animal glue could have influenced 
our attempts at radiocarbon dating of the Zlatý kůň skull. Searching 
a metagenomic database, we found that the highest proportion 
of non-human mammalian shotgun sequences aligned to bovids 
(Supplementary Section 2). We were able to reconstruct ~95% of the 
bovid mtDNA from the shotgun sequences of the single-stranded 
library and found that it falls within the most common modern 
European cattle haplogroup19 in a phylogenetic analysis (Extended 
Data Fig. 5). Low levels of substitutions that are indicative of ancient 
DNA damage suggest that the cattle sequences do not derive from 
present-day laboratory contaminants (Extended Data Fig. 5). Taken 
together, these results suggest that the Zlatý kůň skull has been 
preserved with glue from cattle that penetrated into the sequenced 
petrous bone.

To gain insight into the genetic relationship of Zlatý kůň to 
present-day and ancient individuals, we calculated summary sta-
tistics based on the sharing of alleles (f3, f4 and D statistics20) with 
our capture and shotgun datasets. We first compared Zlatý kůň with 
present-day European and Asian individuals using an African popu-
lation (Mbuti) as an outgroup and found that Zlatý kůň shares more 
alleles with Asians than with Europeans (Extended Data Fig. 6).  
A closer relationship to Asians has also been observed for other 
Upper Palaeolithic and Mesolithic European hunter-gatherers com-
pared with present-day Europeans and can be explained by ancestry 
in present-day Europeans from a deeply divergent out-of-Africa lin-
eage referred to as basal Eurasian21. European hunter-gatherers gen-
erally do not carry basal Eurasian ancestry, whereas such ancestry 
is widespread among ancient hunter-gatherers from the Caucasus, 
Levant and Anatolia22–24. When we tested European hunter-gatherers 
without basal Eurasian ancestry against ancient and present-day 
Asians, we found that none of these comparisons indicate a closer 
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Fig. 1 | The Zlatý kůň fossil. a, Locations of the Koněprusy cave, where the Zlatý kůň human remains were found, and of other fossils with an age of 
at least ~40,000 years that yielded genome-wide data (Ust’-Ishim, Oase 1 and Tianyuan) or mtDNA (Fumane 2 and Bacho Kiro). b, Micro-computed 
tomography-based virtual reconstruction of the Zlatý kůň skull in frontal and lateral view. The map in a was created with QGIS47 using Natural Earth48 
vector data.
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relationship of Zlatý kůň with either group (Supplementary Sections 5  
and 9 and Extended Data Fig. 7). This suggests that Zlatý kůň falls 
basal to the split of the European and Asian populations.

To date, only two ancient Eurasian genomes have been produced 
from individuals who, like Zlatý kůň, appear to fall basal to the split 
of Europeans and Asians: Ust’-Ishim and Oase 1. To test whether 
Zlatý kůň derives from the same population as Ust’-Ishim, we tested 
for a closer relationship to it compared with other ancient Eurasian 
hunter-gatherers24–26. Interestingly, we found that Ust’-Ishim shares 
more ancestry with later Eurasian individuals (Fig. 2b). This sug-
gests that Zlatý kůň was part of a population that split earlier from 
the population that later gave rise to Ust’-Ishim and other Eurasian 
populations (Fig. 2c). Due to the limited data for Oase 1, we are 
unable to clarify whether Zlatý kůň and Oase 1 derive from the 
same or separate populations.

Around 6–9% of the genome of Oase 1 is derived from 
Neanderthals, compared with 2–3% in present-day and ancient 
Eurasians5,27,28. To test whether a higher contribution is also pres-
ent in Zlatý kůň, we calculated Neanderthal ancestry on the shot-
gun dataset as the excess of shared alleles with a Neanderthal as 
opposed to an African and normalized this quantity by the expected 
sharing between two Neanderthals as opposed to an African 
(f4 ratios20; Supplementary Section 6). Zlatý kůň is estimated to  
carry 3.2% (s.e. = ±0.32%) Neanderthal ancestry, which is the high-
est value among six Upper Palaeolithic and one Mesolithic Eurasian 
hunter-gatherers with genome-wide data (range = 3.0–2.1%). 

However, this difference was not significant at a level of two stan-
dard errors for five out of seven comparisons (Fig. 3a).

To study the distribution of Neanderthal ancestry along the 
genome, we first determined 430,075 sites on autosomes where the 
genome of a high-coverage European Neanderthal carries on both 
chromosomes a variant that is not observed in more than 99.9% 
of present-day Africans and great ape outgroups (Supplementary 
Section 7). Of the 166,721 sites that are covered by Zlatý kůň shot-
gun data, 4,480 (2.7%) carried the Neanderthal allele. Neanderthal 
sites in the Zlatý kůň genome cluster into segments where they 
occur at high frequency (~50%; Fig. 3b) and we used this cluster-
ing to label segments of likely Neanderthal ancestry with a hidden 
Markov model (Supplementary Section 7). One of the Neanderthal 
segments falls within a large region on chromosome 1 that shows lit-
tle to no evidence of Neanderthal ancestry in present-day humans29 
(Extended Data Fig. 8). This suggests that this desert of Neanderthal 
ancestry had not been fully formed at the time Zlatý kůň lived.

Recombination will break long Neanderthal segments into 
shorter segments over time. To gain more insight into the timing 
of Neanderthal admixture in Zlatý kůň, we scaled the length of the 
Neanderthal segments using either an African American map (AA 
map)30 or the Decode recombination map (deCODE map)31 and 
compared the genetic length of the 100 longest segments in Zlatý 
kůň with those identified in other early Eurasian hunter-gatherers 
using the same method (Extended Data Fig. 9). We found that Zlatý 
kůň carries segments that are on average longer than those of all 
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other Eurasian hunter-gatherers (Fig. 3c). Assuming that recom-
bination breaks Neanderthal ancestry into shorter segments every 
generation (see ref. 5 and Supplementary Section 8), we estimated 
that the last admixture with Neanderthals occurred ~70–80 gen-
erations before Zlatý kůň lived (AA map: 74 generations (95% 
confidence interval (CI) = 61–89); deCODE map: 78 generations 
(95% CI = 64–94)). In contrast, the genome of the currently oldest 
sequenced modern human, Ust’-Ishim, yielded significantly higher 
estimates of 94 generations (95% CI = 77–113) and 99 generations 
(95% CI = 81–119) using the AA map and deCODE map, respec-
tively. Estimating ages using segments called by admixfrog (a soft-
ware for inferring local Neanderthal ancestry32) yielded comparable 
results (Supplementary Section 8).

To estimate the time of admixture independent of calling 
Neanderthal ancestry segments, we applied a previously published 
method that is based on the correlation of the state of Neanderthal 
informative sites over increasing distances33. Applying this method 
to the Zlatý kůň shotgun dataset yielded an estimate of 63 genera-
tions since admixture (s.e. = ±0.6), whereas Ust’-Ishim was esti-
mated to have lived 84 generations after the admixture (s.e. = ±1.3).

Most of the Neanderthal ancestry in present-day and ancient 
humans probably originates from a common admixture event with 
a group of Neanderthals who were more closely related to European 
Neanderthals than to a Neanderthal from the Altai Mountains28. 
To test whether the Neanderthal ancestry in Zlatý kůň shows 
the same relationship, we used D statistics to compare the shar-
ing of alleles with the high-coverage genomes of a European and 
an Asian Neanderthal in addition to five published low-coverage 
genomes from late Neanderthals from Europe34. Zlatý kůň showed 
no significant difference compared with Ust’-Ishim in its sharing of 
alleles with late Neanderthals, in line with the similar proportion of 
Neanderthal ancestry in these two hunter-gatherers (Supplementary 
Section 6 and Extended Data Fig. 10).

Assuming a common Neanderthal admixture event, these 
results suggest that Zlatý kůň is of approximately the same age as 
the ~45,000-year-old Ust’-Ishim individual or up to a few hundred 
years older. However, if a second Neanderthal admixture event 
affected Ust’-Ishim after the initial common Neanderthal admix-
ture, as was previously suggested33, Zlatý kůň could be even several 
thousands of years older than Ust’-Ishim. We have not found sup-
port for a second Neanderthal admixture event in the Zlatý kůň data 
(Supplementary Section 8).

The genetic identity of the modern humans who colonized 
Eurasia before ~40 ka remains largely unknown. Here, we sequenced 
and analysed the genome of an early European and determined that 

she was part of a population that formed before the populations that 
gave rise to present-day Europeans and Asians split from one another. 
Our estimated age of ~45,000 years or even older could make Zlatý 
kůň the oldest European individual with a largely preserved skull13. 
As for Ust’-Ishim and Oase 1, Zlatý kůň shows no genetic continuity 
with modern humans who lived after ~40 ka. It is possible that this 
discontinuity is linked to the Campanian Ignimbrite eruption ~39 ka 
that severely affected the climate in the Northern Hemisphere and 
that may have reduced the viability of Neanderthals and early mod-
ern humans in large parts of western Eurasia35,36. Whether the mod-
ern humans who lived before the turnover event, such as the Oase 1 
and Bacho Kiro individuals3,5, belonged to the same early European 
population can only be resolved with further genome-wide data 
from those individuals37. Future genetic studies of these and other 
early European individuals will thus help to reconstruct the history 
of these first modern humans who expanded into Eurasia after the 
out-of-Africa event and before the major dispersal that gave rise to 
modern-day non-African populations.

Note added in proof: We refer readers to related work by  
M. Hajdinjak et al.37 who analysed nuclear sequences from  
Bacho Kiro individuals that dated to around 45,000 years ago.

Methods
Laboratory procedures and shotgun sequencing. All laboratory procedures were 
conducted in the dedicated ancient DNA facilities of the Max Planck Institute 
for the Science of Human History in Jena, Germany. The Zlatý kůň cranium was 
sampled from the base of the cranium with a dentist drill after removal of a thin 
layer of bone powder. Two aliquots of ~15 mg bone powder were sampled and 
one was used to extract DNA using an established protocol38. A double-stranded 
DNA library with partial uracil-DNA glycosylase treatment was generated from 
25% of DNA extract39. After quantification, the library was double indexed40 and 
quantified again to establish the number of PCR cycles necessary to reach the 
amplification plateau41. The resulting library was diluted and shotgun sequenced 
on two lanes of an Illumina HiSeq 4000 platform for 2 × 50 cycles. An additional 
30% of the same extract was used to generate a single-stranded library42 on an 
automated liquid handling system (Bravo; Agilent Technologies). After indexing, 
the library was amplified for 30 cycles followed by a reconditioning PCR to remove 
heteroduplexes. The resulting library was diluted and shotgun sequenced on an 
entire flow cell (eight lanes) of an Illumina HiSeq 4000 platform for 1 × 75 cycles.

Basic processing and sequence alignment of shotgun data. A total of 
~580 million paired-end reads from the double-stranded library matched 
the correct indices, allowing for up to one mismatch per index, and were 
further processed with EAGER43. Adapter sequences were trimmed, filtered 
for a minimum length of 30 base pairs (bp) and mapped to the hg19 human 
reference genome using BWA44 with the following parameters: -n 0.01 -l 16500. 
Approximately 10% of sequences mapped with an average fragment length of 
49 bp. These sequences were filtered for a minimum mapping quality of 30 and 
duplicates were removed using Dedup43. Sequences showed C to T exchanges to 
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the human reference, indicative of ancient DNA damage, with a frequency of ~13% 
at both terminal positions45,46. The first and last two bases of shotgun sequences 
were masked (set to N) to reduce the effect of damage-associated substitutions on 
subsequent analyses.

An additional ~3.355 billion single-end reads were produced from the 
single-stranded library on a dedicated run. All sequences were processed using 
EAGER with the same parameters as above, except the mapping quality filter  
was set to 25. Around 15% of reads mapped to the human reference, with an  
average fragment length of 46 bp and 30% of C to T substitutions at the  
5′ molecule termini.

Target enrichment, sequencing and processing. The indexed library was further 
amplified to perform targeted enrichment of both the complete mtDNA (mtDNA 
capture)5 and ~1.24 million nuclear SNPs (1240K capture)16 followed by HiSeq 
paired-end sequencing and index filtering, resulting in 600,000 and 20 million 
reads, respectively. MtDNA capture and 1240K capture data were mapped against 
the mtDNA reference sequence (the Revised Cambridge Reference Sequence 
(rCRS)) using CircularMapper43 and the human reference genome (GRCh37/
hg19), respectively, with the same parameters as above and the mapping quality 
filter set to 30.

A random allele was drawn from the 1240K capture data using PileupCaller  
in pseudohaploid mode (https://github.com/stschiff/sequenceTools). The calling  
of transversions among the 1.24 million target SNPs considered full sequences,  
whereas 2 bp at both termini of sequences were trimmed before calling  
transition SNPs. Finally, the resulting calls were merged with a large genotype  
dataset of ancient and present-day individuals for the same set of ~1.24 million  
SNPs (https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr- 
downloadable-genotypes-present-day-and-ancient-dna-data; version 37.2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the sequence data generated and analysed during the current study are 
available in the European Nucleotide Archive under study accession number 
PRJEB39040.
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Extended Data Fig. 2 | Four direct radiocarbon dates calibrated in years before present (calBP) with 68.3% and 95.4% probability. OxA-38022 refers to 
the HYP dating performed in Oxford. The dates were calibrated using OxCal 4.446 and the IntCal20 calibration curve49,50.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Maximum Parsimony tree of 54 modern-day worldwide mtDNA sequences, 28 Palaeolithic Eurasian mtDNAs, Zlatý kůň mtDNA 
and a Neanderthal mtDNA as outgroup. Text color relates to radiocarbon date, that is red (undetermined), blue (45–40 kya) and yellow (40–24 kya). 
Numbers show the number of substitutions along lineages; capital letters on the right side of the tree indicate mtDNA haplogroups.
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Extended Data Fig. 4 | Coverage on sex chromosomes and autosomes. Average coverage by shotgun sequences for chromosome X, Y (horizontal 
dashes) and autosomes (violin plot).
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Extended Data Fig. 5 | Characteristics of Bos taurus mtDNA sequences and genome. a, C-to-T substitutions at the 5′ end and read length distributions 
of mtDNA sequences mapping specifically to the mtDNA references of Homo sapiens, Bos taurus, Capra hircus and Oryctolagus cuniculus. Note that a 
single-end 75-cycle chemistry kit was used for the retrieval of the reported sequencing reads and, therefore, DNA fragments of length 76 bp or above have 
not been sequenced at their full length and are binned here together. b, Maximum parsimony tree of 35 present-day and ancient cattle mtDNAs and the 
Bos taurus mtDNA reconstructed from the deep shotgun sequencing of the DNA extracted from the Zlatý kůň petrous bone. Cattle haplogroups are listed 
on the right side of the tree.
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Extended Data Fig. 6 | Comparable signal of Basal Eurasian ancestry in Zlatý kůň and Ust’-Ishim. Zlatý kůň’s asymmetric sharing of alleles with some 
Europeans compared to Asians (x-scale) is also observed to a comparable degree in Ust’-Ishim (y-scale). The ancient genome from Tianyuan is used as a 
proxy for Asians. The solid and dash error bars correspond to one and two standard errors, respectively.
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Extended Data Fig. 7 | Heat-map matrix of pairwise f3-outgroup statistics with Mbuti as outgroup. Zlatý kůň shows no closer affinity to Ust’-Ishim and 
Oase 1 or to any later hunter-gatherer individuals.
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Extended Data Fig. 8 | Neanderthal desert region on chromosome 1 in Zlatý kůň and 5 high-coverage ancient genomes. Each panel shows 
Neanderthal-shared variants in red and non-shared variants in gray. The orange line indicates the posterior decoding probabilities for Neanderthal 
ancestry from the hidden Markov model approach. The Neanderthal ancestry segment in Zlatý kůň (chr1:112696231-112855758) is supported by 17 
Neanderthal shared variants. A short region, spanning only 6 bp (chr1:102812075-102812081) is called in Loschbour and contains four sites that are 
Neanderthal shared. The short length and high density of sites do not support a true Neanderthal origin.
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Extended Data Fig. 9 | Fraction of the Zlatý kůň genome covered by the top 100 called introgressed regions sorted by length. The fraction of the genome 
covered by Neanderthal ancestry (y-scale) was calculated by dividing the cumulative length in Morgan of introgressed regions up to and including the 
nth longest region shown on the x-scale by two times the total length of the autosomes in Morgan. Results are shown for the African American or Decode 
recombination maps.
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Extended Data Fig. 10 | Pairwise comparison of low-coverage Neanderthals in their sharing of alleles with European and Asian hunter-gatherers. Shown 
are the D-statistics of the form D(Mbuti, Hunter-Gatherer, Neanderthal1, Neanderthal2). The Hunter-Gatherer corresponds to the columns; rows show the 
two compared Neanderthals in order Neanderthal1: Neanderthal2. Error bars correspond to two standard errors.
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Palaeontology and Archaeology
Specimen provenance The specimen was provided by the National Museum in Prague, Czechia.

Specimen deposition The specimen is deposited at the Department of Anthropology of the National Museum in Prague, Czechia.

Dating methods Three new radiocarbon dates were obtained from the right zygomatic bone: 1) Collagen ultrafiltration dating at the Klaus Tschira 
Archaeometry Center in Mannheim, Germany; 2) Amino acid hydroxyproline dating at the Oxford Radiocarbon Accelerator Unit in 
Oxford, UK; 3) Sample pretreatment (solvent wash, decalcification in acid, base wash, re-acidification and gelatinization) and 
ultrafiltration dating at the Oxford Radiocarbon Accelerator Unit in Oxford, UK.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight The Department of Anthropology of the National Museum in Prague, Czechia approved and provided guidance on the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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