
Abstract Nutrient availability, especially of nitrogen (N) and phosphorus (P), is of major importance 
for every organism and at a larger scale for ecosystem functioning and productivity. Changes in nutrient 
availability and potential stoichiometric imbalance due to anthropogenic nitrogen deposition might 
lead to nutrient deficiency or alter ecosystem functioning in various ways. In this study, we present 6 
years (2014–2020) of flux-, plant-, and remote sensing data from a large-scale nutrient manipulation 
experiment conducted in a Mediterranean savanna-type ecosystem with an emphasis on the effects of N 
and P treatments on ecosystem-scale water-use efficiency (WUE) and related mechanisms. Two plots were 
fertilized with N (NT, 16.9 Ha) and N + P (NPT, 21.5 Ha), and a third unfertilized plot served as a control 
(CT). Fertilization had a strong impact on leaf nutrient stoichiometry only within the herbaceous layer 
with increased leaf N in both fertilized treatments and increased leaf P in NPT. Following fertilization, 
WUE in NT and NPT increased during the peak of growing season. While gross primary productivity 
similarly increased in NT and NPT, transpiration and surface conductance increased more in NT than 
in NPT. The results show that the NPT plot with higher nutrient availability, but more balanced N:P leaf 
stoichiometry had the highest WUE. On average, higher N availability resulted in a 40% increased leaf area 
index (LAI) in both fertilized treatments in the spring. Increased LAI reduced aerodynamic conductance 
and thus evaporation at both fertilized plots in the spring. Despite reduced evaporation, annual 
evapotranspiration increased by 10% (48.6 ± 28.3 kg H2O m−2), in the NT plot, while NPT remained 
similar to CT (−1%, −6.7 ± 12.2 kgH2O m−2). Potential causes for increased transpiration at NT could be 
increased root biomass and thus higher water uptake or rhizosphere priming to increase P-mobilization 
through microbes. The annual net ecosystem exchange shifted from a carbon source in CT (75.0 ± 20.6 gC 
m−2) to carbon-neutral in both fertilized treatments [−7.0 ± 18.5 gC m−2 (NT) 0.4 ± 22.6 gC m−2 (NPT)]. 
Our results show, that the N:P stoichiometric imbalance, resulting from N addition (without P), increases 
the WUE less than the addition of N + P, due to the strong increase in transpiration at NT, which indicates 
the importance of a balanced N and P content for WUE.

Plain Language Summary The availability of nutrients like nitrogen (N) and phosphorus (P) 
is important for every living organism on Earth. Due to human activities, especially combustion processes 
large amounts of N are transported into the atmosphere and ecosystems. Therefore, ecosystems receive 
additional N but no other nutrients. We are investigating if the addition of N alone will lead to deficits in 
other nutrients and thus impact the functioning of ecosystems. Hence, we set up a large-scale ecosystem 
experiment in a Mediterranean tree-grass ecosystem where we fertilized two plots with N (16.9 ha) and 
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1. Introduction
Nitrogen (N) and phosphorus (P) availability are key nutrient drivers of ecosystem carbon cycling (Coskun 
et  al.,  2016; Ellsworth et  al.,  2017; Fay et  al.,  2015; Fernández-Martínez et  al.,  2014; Jiang et  al.,  2019). 
Changes in nutrient availability can impact ecosystem function (Musavi et al., 2015; Reichstein et al., 2014), 
plant traits (Klodd et al., 2016; Liang et al., 2020; Maire et al., 2015), water-use efficiency (WUE) (Huang 
et al., 2015), and canopy structure (Migliavacca et al., 2017).

Current and projected levels of anthropogenic N deposition are expected to cause stoichiometric imbalanc-
es in plant-available N and P in several terrestrial ecosystems (Du et al., 2020; Peñuelas et al., 2010, 2013). 
In such a scenario, plants must adapt to altered and potentially imbalanced nutrient availability (Elser 
et al., 2010; Güsewell, 2004; Oldroyd & Leyser, 2020; Zhu et al., 2016). In terms of carbon and water fluxes, 
ecosystem-level responses due to nutrient availability and stoichiometric N:P imbalances are poorly under-
stood and may differ from those at the leaf, plant, or community level, due to interactions and compensatory 
effects among and between plants and soil. At the ecosystem level, it is especially important to understand 
and characterize how resource-use efficiencies such as WUE are changing with the stoichiometric imbal-
ance and climate change. Especially in semi-arid ecosystems, increases in WUE could have positive effects 
on carbon sequestration potential as more carbon can be fixed with the same limited amount of available 
water (Grunzweig et al., 2003). In addition, increased WUE allows for maintaining photosynthesis while 
losing less water through transpiration. This leads to less soil moisture depletion and avoids the earlier on-
set of water stress and senescence in summer (Luo et al., 2020). There is a physiological trade-off between 
nutrient-use efficiency and WUE (Field et al., 1983; Han et al., 2016) arising from the importance of stoma-
tal openings in enhancing the former while decreasing the latter. However, it is unclear to what degree an 
imbalance of the N:P ratio at ecosystem level will influence transpiration and WUE or how it is regulated 
by climate variability (Fernández-Martínez et al., 2014; Jiang et al., 2019; Luyssaert et al., 2014; Peñuelas 
et al., 2010, 2013).

This knowledge gap owes to the small spatial scales of experiments that manipulate nutrient availability, 
which have typically ranged from individual leaves and plants in mesocosm experiments to the order of a 
few tens of meters in small plot studies (Fay et al., 2015; Ford et al., 2016; Wicklein et al., 2012). While these 
experiments provide answers for nutrient manipulations for specific ecosystem compartments, such as soil 
and plants, they do not allow for the quantification of ecosystem-scale responses by carbon and water fluxes 
or water-use efficiency (WUE) in an integrated system at high temporal resolutions. The reliability of pre-
vious ecosystem-scale studies of surface properties and N effects on ecosystem-atmosphere exchange has 
been widely debated. Many studies were based on natural spatial variability in N content and may be influ-
enced by confounding factors, e.g., temperature, species, and stand density (de Vries et al., 2008; Luyssaert 
et al., 2014; Magnani et al., 2007, 2008). While studies concerning the relationship of leaf N and ecosystem 
functioning exist and can be improved upon, systematic studies of the role of P and N:P ratio imbalances at 
the ecosystem level are lacking (Du et al., 2020; Penuelas et al., 2020). In general, investigations of fluxes or 
resource-use efficiency at the ecosystem level, under controlled N and P nutrient treatments are missing.

This study aims to address these knowledge gaps and comprehensively quantify the effects of concomitant 
increasing N availability and increasing N:P imbalance on ecosystem functioning and on WUE in a semi-ar-
id tree-grass ecosystem.
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N + P (21.5 ha). A third plot served as the control treatment. While the N-only treatment created an 
imbalance between the available N and P, this imbalance was relieved in the N + P treatment where both 
N and P were provided. Our measurements showed that both fertilized treatments increased their carbon 
uptake and turned the ecosystem from a carbon source to carbon neutral. One of the main differences 
between the fertilized treatments which is associated with the imbalance of available N and P is the loss 
of water through the vegetation (transpiration). This increase in transpiration was only observed in the 
N-only but not in the N + P treatment. Our results show, that the N:P stoichiometric imbalance, resulting 
from N-only addition, increases the water-use efficiency (i.e., the carbon gain per water loss) less than the 
addition of N + P, due to the strong increase in transpiration at the N-only treatment.
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We present here, 6 years (2014–2020) of data from a large-scale N and 
P manipulation experiment, in which we combine eddy covariance data 
with satellite and plant trait data. We measured and compiled ecosystem 
responses of water fluxes [evapotranspiration (ET), transpiration (T), 
evaporation (E)], carbon fluxes [net ecosystem exchange (NEE), gross 
primary productivity (GPP), ecosystem respiration (Reco)], and differ-
ent metrics of WUE (i.e., the carbon uptake per unit of water lost), with 
changes in canopy structure (leaf area index, LAI) and foliar nutrient 
content and isotopes, mainly during the winter and spring period.

We analyze the available data streams to evaluate if and how changing 
nutrient availability and stoichiometric N:P imbalance influences carbon 
and water fluxes, canopy structure and WUE at ecosystem scale.

2. Material and Methods
2.1. Site Description

The study site, Majadas de Tiétar (Casals et  al.,  2009; El-Madany 
et al., 2018; Perez-Priego et al., 2017), is located in the center of the Iberi-
an Peninsula (39°56′25″N 5°46′29″W). It is a tree-grass ecosystem, a typ-
ical “Iberic dehesa,” with 20–25 Quercus ilex trees ha−1. The average cano-
py height is 8.7 ± 1.25 m, and the fractional canopy cover is 23.0 ± 5.3% 
(Bogdanovich et al., 2021). The dehesa is managed and used for extensive 
cattle farming with a cow density of ≤ 0.3 ha−1. Precipitation and temper-
ature were measured at the site between 2004 and 2019. The mean annual 
precipitation was 636  mm, ranging from 440   to 965  mm. Nearly 85% 
of the annual precipitation fell between October and April. The mean 
annual temperature was 16.7°C with a mean annual minimum temper-
ature of −4.7°C and a mean annual maximum temperature of 41.1°C. 
The mean LAI of the green vegetation (LAIgreen) changes throughout 
the seasons, with a mean value between 0.25 ± 0.07 m2 m−2 in summer 
and 1.75 ± 0.25 m2 m−2 at the peak of the growing season in spring, for 
the herbaceous layer and between 1.5 and 2.0 m2 m−2 for the trees. Due 
to their fractional tree canopy cover, this converts to 0.3–0.4 m2 m−2 for 
the total area. The trees have a rather constant LAI throughout the year 
and seasonal variability of the ecosystem LAI is driven by the phenolo-
gy of the herbaceous layer (Luo et al., 2018). The growing season begins 
with the re-greening of the herbaceous layer after the autumn rains start, 
which usually is in October (Figure  1). The growing season lasts usu-
ally until the end of April to the end of May when the depletion of soil 
moisture, high radiation and temperatures lead to the senescence of the 
herbaceous layer.

The soils are characterized as Abruptic Luvisol with a sandy upper layer 
(Nair et al., 2019). The prevailing wind directions are west-southwest and 
east-northeast.

2.2. Experimental Design and Fertilization

The study-site was divided into three plots. N was added to one plot (NT), N + P to another one (NPT), and 
the third plot served as the unfertilized control area (CT).

The fertilizers were applied with a tractor around the eddy covariance towers. The fertilized areas were 
21.5 and 16.9 ha at NPT and NT, respectively (Figure 2). Phosphorus (50 kg P ha−1) in the form of triple 
superphosphate [Ca(H2PO4)2] fertilizer, was applied in November 2014 at the NPT. In March 2015, NPT and 
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Figure 1. Flux and meteorological overview of the control plot from 
March 2014 to March 2020. Small black dots are half hourly data and 
the big colored points correspond to weekly averages. Ta is the air 
temperature in 2 m (a), VPD is vapor pressure deficit in 2 m (b), SWCn is 
the normalized soil moisture content for the top 20 cm (c), Rain are daily 
precipitation sums (d), H is the sensible heat flux (e), LE is the latent heat 
flux (f), NEE is the net ecosystem exchange of carbon dioxide (g) big green 
dots are daytime averages and big brown dots are night time averages. The 
vertical dashed lines correspond to the winter (blue) and spring period 
(red).
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NT received 100 kg N ha−1 in the form of ammonium nitrate (NH4NO3) and calcium ammonium nitrate 
(5Ca(NO3)2NH4NO3), respectively. Calcium ammonium nitrate was used at NT to account for the calcium 
included in the triple superphosphate fertilizer used at NPT. A second dose of fertilizer was applied in 
March 2016, 10 kg P ha−1 and 20 kg N ha−1, using the same fertilizers as before. No further additions of 
nutrients were made to follow the outcome of the added nutrients and the ecosystem response in time.

2.3. Eddy Covariance Data

2.3.1. Eddy Covariance Setup

Three ecosystem eddy covariance (EC) towers are operated at the site, one in each plot. The long-term 
FLUXNET site Majadas de Tiétar (ES-LMa in FLUXNET, since 2003) serves as CT, and two additional tow-
ers are added for the fertilization experiment and are operated since March 2014. These EC towers are 
named ES-LM1 (NT) and ES-LM2 (NPT). Each tower is equipped with a R3-50 sonic anemometer (Gill 
Instruments Limited, Lymington, UK) to measure three-dimensional wind components and sonic temper-
ature, and a LI-7200 infra-red gas analyzer (Licor Bioscience, Lincoln, Nebraska, USA) to measure CO2 and 
H2O mixing ratios. The measurement height is at all towers 15 m above ground.

2.3.2. Data Treatment, Gap-Filling and Partitioning

Eddy covariance data and meteorological data were collected and calculated, as described in El-Madany 
et al. (2018). The processing of the raw high-frequency data was conducted using EddyPro v 6.2.0 (Fratini 
& Mauder, 2014). Calculated CO2 fluxes were storage corrected from seven-point profile measurements.
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Figure 2. Post-fertilization MERIS Terrestrial Chlorophyll Index (MTCI, a vegetation index associated with the 
chlorophyll content of vegetation) values from hyperspectral airborne CASI images (April 23, 2015) of the study site. 
Tower locations are indicated with a cross in the center of the respective footprint climatology (80% isolines). The 
purple symbols represent the control (CT), dark blue the nitrogen (NT) and light blue the nitrogen + phosphorus (NPT) 
treatment. Colors represent MTCI values and indicate the degree of canopy chlorophyll concentration from yellow 
(low) to green (high). Green circular structures are trees. The dashed lines mark the outer limits of the fertilized areas. 
The green line structures within the treatments are tractor tramlines from the application of fertilizer. The white areas 
are water bodies.
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A friction velocity (u*) threshold [0.194 ± 0.03 ms−1 (CT), 0.200 ± 0.03 ms−1 (NT), 0.207 ± 0.02 ms−1 (NPT); 
mean ± sd] was determined for each year following Papale et al. (2006), and all data with u* values below 
the established threshold were removed from further analysis. The gap-filling of missing and bad quality 
data [QC values > 1 according to Mauder and Foken (2011)] was then performed (Reichstein et al., 2005). 
Subsequently, flux partitioning of NEE into GPP and Reco was conducted by applying the nighttime flux 
partitioning method (Reichstein et al., 2005). All post-processing was conducted using the R package REd-
dyProc v 1.2.2 (Wutzler et al., 2018). The details of the full processing including statistics on the number of 
gaps for the individual fluxes are provided in the Supplementary Material and Figure S1.

2.3.3. Flux Footprint Calculations

To estimate which areas were sampled by the EC systems and to evaluate how similar these areas were the 
flux footprint (FP) model of Kljun et al. (2015) was used, as integrated into the Flux Footprint Prediction 
(FFP)-R-code version 1.4 (available at http://footprint.kljun.net/download.php). We calculated the FPs for 
all half-hourly (HH) periods between March 2014 and February 2020, when all input parameters (wind 
speed, wind direction, the standard deviation of lateral wind component, u*, Obukhov length and bound-
ary layer height) for the model were available and friction velocity values were above the u*-threshold. 
The boundary layer height estimates were used from ERA5 at 0.25-degree spatial resolution (Hersbach 
et al., 2018) and linearly interpolated to fit the 30-min temporal resolution of the EC data. The flux footprint 
climatology (FFC) was subsequently calculated based on 64271 (CT), 66920 (NT), and 67862 (NPT) individ-
ual HH footprints, by integrating the flux contribution from the peak location into all directions until that 
is, 80% of the total contribution was reached. The 80% contribution was selected because it was the largest 
at which no overlap between the treatments was observed (Figure 2). The size of the FFC for the three plots 
were 26.0 ha (CT), 23.2 ha (NT), and 24.3 ha (NPT). At NT and NPT the fertilized areas covered 16  and 
19.1 ha centered on the respective FFC.

The FFC was intersected with Landsat 7 Normalized Difference Vegetation Index (NDVI) maps (see 2.4.1) 
and classification maps from airborne hyperspectral measurements (see 2.4.2 and Pacheco-Labrador 
et al. (2017; 2020)) to calculate, for example, average NDVI values, tree canopy cover and FFC size. The 
medians of the distribution of tree and grass fraction from the individual HH FPs of all treatments agree 
within 2% with the fractional cover within the FFC. Between treatment differences of the fractional covers 
were below 6% (Figure S2) for the FFC as well as the medians of the HH flux footprints.

2.4. Remote Sensing Data

2.4.1. Landsat Data

The Landsat 7 NDVI at 30 m spatial resolution (Masek et al., 2006) data were obtained from Google Earth 
Engine Data Catalog (https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_
C01_T2_SR#description) and were used to characterize pre-fertilization (1999–2014) and post-fertilization 
(2015–2019) differences within the 80% isolines of the FFC at each tower (Figure S3). First, a subset in-
cluding the outer margins of the 80% FFCs was taken from each scene. Depending on their size individual 
FFC included 264 to 294 30 × 30 m Landsat 7 pixels. After May 31, 2003, the Scan Line Corrector (SLC) of 
Landsat 7 broke, which resulted in a reduction of available pixels per scene. The data gaps form alternating 
wedges that increase in width from the center to the edge of a scene and change position in the different 
overpasses. Additionally, the following quality control scheme was used to ensure that pixels within the 
subsetted scenes were cloud-free and of good quality: Atmospheric opacity ≤0.1, cloud cover ≤2, pixel qual-
ity ≤66 and pixel saturation = 0. In case that more than 20% of the pixels were flagged as bad quality the 
whole scene was removed from the analysis. The lowest number of good quality pixels within the FFCs for 
an individual scene ranged between 60% and 68% of all available pixels (including data gaps due to SLC 
error). Average NDVI values were calculated for each treatment’s FFC when the quality of the respective 
scene was good. Overall, 170 and 92 scenes fulfilled the quality criteria for the pre- and post-fertilization 
periods, respectively.
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2.4.2. Airborne Spectral Measurements

Airborne hyperspectral measurements were conducted using a Compact Airborne Spectrographic Imager 
CASI-1500i (CASI) (Itres Research Ltd., Calgary, AB, Canada) with a spatial resolution of 1.25 m and 140 
spectral bands ranging from 380  to 1,050 nm (Pacheco-Labrador et al., 2017, 2020). The CASI was on board 
a C-212-200 RS airplane, which was operated by the Spanish Institute for Aerospace Technology. Hyper-
spectral flight campaigns were conducted on May 5, 2011 (before the experiment), April 8, 2014 (during the 
experiment but before the fertilization), and April 23, 2015 (after the fertilization) around solar noon and 
using similar flight patterns. The Envisat MEdium Resolution Imaging Spectrometer (MERIS) Terrestrial 
Chlorophyll Index (MTCI) was calculated based on the CASI data, to have an estimate of canopy chloro-
phyll content in the different treatments (Dash & Curran, 2007).
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Here, ρ is the hemispherical-directional reflectance factor for a specific wavelength in nm. The numbers 
denote the wavelengths. Similarly, NDVI was calculated from the CASI data following Rouse et al. (1974).
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For details about the processing of the hyperspectral images we refer to Pacheco-Labrador et al. (2017, 2020). 
The number of CASI pixels within each FFC ranged, depending on its size, between 148763 – 166350. MTCI 
and NDVI values from pixels classified as water bodies were excluded from the analysis. Differences be-
tween distributions were then used to estimate the effect of the fertilization (Figure S4).

2.5. Ecosystem Functional Parameter

2.5.1. Metrics of Photosynthetic Capacity

The maximum net CO2 uptake rate of the canopy at infinite global radiation (Amax) was calculated as part 
of the daytime flux partitioning (Lasslop et al., 2010) as implemented in ReddyProc v.1.2.2 and described in 
Wutzler et al. (2018 Chapter 2.3.2 Equations 2 and 3) using a rectangular hyperbolic light response curve 
(LRC, Equation 3).





 

 
 

max

max

g

g

A R
NEE

R A (3)

where Rg is the global radiation, α the initial slope of the LRC and γ the Lloyd and Taylor respiration model 
(Lloyd & Taylor, 1994). We want to emphasize, that Amax includes a VPD dependency based on an exponen-
tially decreasing function at VPD values > 10 hPa).

To calculate the GPP value at light saturation that is, Rg = 1,000 W m−2 (GPPsat), the “light.response” function 
of the “bigleaf” R-package (Knauer et al., 2018 Equation 29) was used as shown in Equation 4.
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where α is the initial slope of the LRC, RgRef the reference Rg of 1,000 W m−2, and Reco the ecosystem res-
piration. The parameters α and GPPsat are derived using the “nls” function in R (R Development Core 
Team, 2015). GPPsat was calculated for every day using a three-day moving window.
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2.5.2. Water-Use Efficiency Metrics

We used the stomatal slope parameter G1 as a physiologically significant WUE metric from the eddy covar-
iance data (Knauer et al., 2018). It is calculated based on the stomatal model of Medlyn et al. (2017) and is 
inverse to the WUE.

 
   

 
1

0 1.6 1s
a

G GPPG G
CVPD

 (5)

sG  is the surface conductance for water vapor, 0G  is the minimum canopy conductance, 1G  is the stomatal 
slope parameter, VPD the vapor pressure deficit, Ca the CO2 concentration and GPP is the gross primary 
productivity.

For the calculation of G1, the R package “bigleaf” was used (Knauer et al., 2018). To ensure meaningful 
estimates of G1, data were first filtered for the following reasons: 1) to only include measured, flux and 
meteorological input parameters (no gap-filled data); 2) to remove 48 h after precipitation; and to ensure 
that values were within the following ranges 3) global radiation (Rg) > 100 W m−2; 4) GPP > 1 µmol m−2 
s−1; 5) VPD > 0.1 kPa; 6) LE and net radiation (Rn) > 0 W m−2; and 7) relative humidity (rH) < 95%. After 
filtering, 18% (CT), 20% (NT), and 20% (NPT) of the site data remained. The difference of 2% in data availa-
bility was due to a longer data gap at the CT plot, which was caused by lightning in the summer of 2014. Gs 
was calculated based on the inverted Penman-Monteith equation (Knauer et al., 2018 Equation 15), where 
aerodynamic conductance was estimated, according to Thom et al. (1972). G1 was then calculated for the 
spring of each year, individually, to compare the changes in G1 between sites and pre- and post-fertilization. 
The uncertainty of G1 was estimated by randomly resampling 10% of the data used to calculate G1. This 
procedure was repeated 100 times for each spring season of each year (2014–2019).

To estimate the fertilization effect on G1 the pre-fertilization G1 estimate for spring 2014 was subtracted 
from each post-fertilization G1 estimate for the respective spring periods (2015–2019). Thus, the differences 
between G1 at the CT plot and fertilized treatment plots (NT, NPT) correspond to the fertilization effect. 
To compare whether different WUE metrics detected the same patterns we also calculated inherent WUE 
(iWUE, Beer et al., 2009) and underlying WUE (uWUE, Zhou et al., 2014) for the same time periods as G1. 
The descriptions of the different WUE formulations are described in the SI.

2.5.3. Transpiration Estimates

The transpiration estimation algorithm (TEA) was used to partition measured ET into T and E (Nelson 
et al., 2018). TEA operates by modeling ecosystem WUET (as GPP/T) from GPP and ET data after controlling 
for E contamination in the ET signal. First, the data is filtered for periods when plants are active (i.e., GPP 
> 0.5 gC m−2 d−1) and when ecosystem surfaces are probably dry to minimize the influence of abiotic evap-
oration. A machine learning model [random forest (Breiman, 2001)] was then trained on the WUEET (as 
GPP/ET) within this filtered subset using metrics derived from the eddy covariance fluxes and associated 
meteorological data as predictors. The trained model then predicts WUET at every time step using a 75% 
quantile prediction (Meinshausen, 2006) to further account for the effect of residual E in the training data 
set. The 75% quantile was chosen based on previous experiments using the model output as synthetic eddy 
covariance data when T was known (Nelson et al., 2018). T is then ultimately calculated as GPP/WUET. See 
Nelson (2020) for the related code and tutorials describing the use of TEA.

2.6. Vegetation Data

Every year, the herbaceous layer was sampled in spring to measure biomass, green LAI and to analyze 
nutrient content. At each sampling date (Table  1), the aboveground biomass was harvested in multiple 
25 × 25 cm squares of the herbaceous layer within the 25 × 25 m plots in each FFC (Figure 2). A subsample 
of the total biomass was selected and green and senescent fractions were separated by hand in the labora-
tory. The green and senesced fractions were weighted, scanned, dried and weighted again. The LAIgreen was 
then calculated as
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greenSub

DS
green

DSG T

W W
LAI

WLAI
W A

 (6)

With WDT the dry weight of the total sample, WDSG the the dry weight of the green fraction of the subsample, 
WDS the dry weight of the subsample, LAIgreenSub the leaf area of the green fraction of the subsample and AT 
the area of the sample plot. Samples were oven-dried at 60°C for 48 h. Plant material was ground using a 
ball mill (Co. Resch) at a frequency of 20 Hz for less than 4 min. Subsequently, the material was stored for 
further chemical analysis.

N concentration (mg/g) was analyzed by the dry combustion method (Vario EL; Elemantar GmbH, Hanau, 
Germany) using 25 mg of the ground sample material.

P concentrations were analyzed using an inductive coupled plasma optical emission spectrometer (ICP 
OES, Optima 3300, Perkin Elmer). First 0.1  g of the dried and ground plant material was weighed and 
3 ml of HNO3 were added. The sample was then heated for 20 min with 1,000 W and then cooled down 
for 10 min. Afterward, the sample was filtered and diluted with deionized water to get a 50 ml sample. The 
prepared sample was then analyzed in the ICP OES.

Isotopic signatures are based on the determination of the carbon isotopic composition of dried grass and 
tree foliar samples. They were analyzed with a DeltaPlus isotope ratio mass spectrometer (Thermo Fish-
er, Bremen, Germany) coupled via a ConFlowIII open-split to an elemental analyzer (Carlo Erba 1100 
CE analyzer; Thermo Fisher Scientific, Rodano, Italy). The measurement protocol is based on Werner 
et al. (1999; 2001) and Brooks et al. (2003). Carbon isotope signatures of tree and grass samples (δ13C) were 
calculated using Equation 7.





13 13

13
13

sample standard

standard

R R
C

R
 (7)

Here 13Rsample is the 13 C/12C ratio of the respective sample, and 13RStandard is the 13 C/12C ratio of the 
standard. All values are in per mil (‰) by multiplying the δ13C values by a factor of 1,000 (Brand, 2013; Co-
plen, 2011). The δ13C values are based on the δ13CIAEA-603 – LSVEC scale. Samples were analyzed against 
a calibrated in-house-standard (Acetanilide: −30.06 ± 0.05‰). Additionally, a quality control standard (Caf-

feine: −40.46‰) was interspersed between samples. The precision of the 
sequences was smaller or equal to 0.1‰.

The leaf samples of the Quercus ilex trees were analyzed in the same 
way as the samples of the herbaceous layer. The only difference were the 
sampling dates (Table  2). For the Quercus ilex, the leaf sampling was 
done during the winter period when the foliar nutrient concentrations 
are more stable. Sampling times and numbers are shown in Table 2. For 
nutrient analysis branches from the upper third of the crown (both North 
and South orientations) were detached and 100 leaves per tree were sam-
pled. Between 6 and 8 trees (except for 2013 when 24 trees were sampled) 
were sampled per treatment (Table 2).
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2013-11-01 2014-03-01 2015-12-01 2016-12-12 2017-12-01

CT 24 8 7 7 7

NT 24 8 6 6 6

NPT 24 8 6 6 6

Table 2 
Number of Samples for Stable Carbon Isotope Signature and Nutrient 
Analysis for the Quercus Ilex Trees per Treatment and Sample Time

2014-04-08 2015-04-23 2015-05-28 2015-07-08 2016-05-03 2016-05-20 2017-05-01 2017-05-18 2018-07-17

CT 24 24 8 24 24 10 12 25 6

NT 7 8 8 8 8 4 11 12 4

NPT 6 8 8 8 8 2 12 12 8

Table 1 
Number of Samples for Nutrient Analysis for the Herbaceous Layer per Treatment and Sample Date
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2.7. Statistical Analysis

2.7.1. Estimation of Fertilization Effects and Uncertainties

To quantify the changes in carbon and water fluxes after the fertilization the pre-fertilization differences 
and post-fertilization differences between the treatments were assessed. We identified two sources of uncer-
tainty for this comparison that relate to (1) within-FFC heterogeneity and (2) differences in seasonality and 
interannual variability (IAV) between treatments (Figure S5). These independent sources of differences and 
uncertainty were considered by following the subsequent steps:

1) Within-FFC heterogeneity was accounted for by calculating between-treatment flux differences at a 
half-hourly temporal scale. The variability in meteorological conditions and wind direction modifies the 
location and size of each footprint. The vegetation properties of the different footprints vary according to 
microtopography, tree density, and species composition of the herbaceous layer within each footprint. Since 
these factors are not spatially correlated between FFCs, this variability must be accounted for when assess-
ing the overall signals of the footprint climatologies. Before fertilization, flux differences carry information 
about pre-fertilization differences, spatial variability, and flux uncertainties (El-Madany et al., 2018). After 
fertilization, the effect of nutrients could be reflected in both the average difference between fluxes and the 
variability within the FFCs.

To characterize the differences between treatments and the uncertainty that the intra-FFC variability causes 
in the determination of such differences, the half-hourly fluxes in the unfertilized, or CT were subtracted 
from those of the fertilized treatments (NT and NPT). For half-hourly (HH) differences for a flux (F) be-
tween NT and CT, this would be:

Δ –i i iF NT CT (8)

where Δ indicates the difference between a treatment and the control, F is any flux of interest (e.g., GPP or 
ET), and i stands for any individual half-hour. Due to the proximity of the treatments, the meteorological 
conditions (e.g., atmospheric pressure, precipitation, shortwave- and longwave incoming radiation, wind 
speed, wind direction, air temperature) are virtually identical for all treatments (data not shown). There-
fore, the distribution of Δ iF  within a particular time window (e.g., spring (Δ if F)) holds information about 
the mean (ΔFi) flux differences between the control and fertilized treatments and the variability within the 
FFCs. The associated uncertainty ( ) is determined as the effective standard error (ΔFi):


  Δ

Δ
Fi

Fi
effn (9)

with ΔFi  being the standard deviation of  Δ if F  and effn  the effective number of observations.

effn  accounts for the autocorrelation of the time series and was estimated using the first coefficients of the 
empirical autocorrelation function, as described by Wutzler et  al.  (2019). The empirical autocorrelation 
function was estimated using continuous and, thus, gap-filled time series. The gap-filled time series were 
smoother than the time series that excluded gaps; thus, both the autocorrelation and the resulting uncer-
tainty were probably conservatively overestimated.

2) In our study, the fluxes measured in 2014 served as the pre-fertilization reference where all treatments 
were measured in parallel and, thus, allowed us to estimate the between-treatment differences for each 
season. The use of only 1 year as the baseline to determine the treatment effect might be hampered by the 
fact that flux magnitude varies between different years and seasons according to meteorological conditions, 
and proper characterization of the differences in the interannual variability of fluxes before fertilization is 
not possible.

To overcome such a limitation, we used the Landsat NDVI time series for the period 1999–2019 calculat-
ed for each FFC. Optical remote sensing is sensitive to vegetation, structural, and biochemical properties, 
including LAI and chlorophyll content (Baret & Buis, 2008; Homolová et al., 2013), and is, therefore, suit-
able to quantify the differences and variability of vegetation properties in different FFCs. We estimated the 
linear relationship from NDVI between the control and fertilized plots. The long-term NDVI relationship 
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between the FFC of the treatments was considered as the average long-
term pre-fertilization relationship between the treatments. Since NDVI 
values within the FFC are expected to have similar variance and errors, 
reduced major axis regression was performed using the “lmodel2” pack-
age version 1.7–3 (Legendre, 2018; Legendre & Legendre, 1998) in R (R 
Development Core Team, 2015).

Because NDVI is a good proxy of greenness and relates to ecosystem pro-
ductivity, the relative deviation between the 2014 NDVI values and the 
long-term linear regression, can be interpreted as the relative pre-fertili-
zation uncertainty originating from using only 2014 as a reference year 
instead of using a long-term average. The resulting uncertainties were 
4.6% and 3.3% for CT/NT and CT/NPT, respectively. Using the assump-
tion that the relative error of a flux F was similar to the relative error of 
NDVI, the corresponding pre-fertilization uncertainty for NT was calcu-
lated as:

  Δ Δ 0.046F Pre F Prei i (10)

As the relative pre-fertilization uncertainty is derived from a linear relationship, it depends on the value 
of the mean differences (i.e., ΔF Prei ). Following Equation 8–10 and assuming the error components to be 
independent, the total fertilization effect (FE) of F in a particular post-fertilization year and season and its 
associated uncertainty ( uncFE ) is:

       2 2
Δ Δ Δ Δunc F F Pre F F Prei i i iFE FE (11)

The same procedure was followed for all spring and winter periods, years, and flux variables (Figure 4, S5). 
The individual seasons were selected to cover their key features. The spring periods last for 56 days each and 
capture the peak of the growing season. The winter periods last for 61 days and cover the lowest seasonal 
temperatures. Table 3 shows the exact starting and ending dates for each season used in the analysis and in 
Figure 1 the respective meteorological conditions and flux magnitudes can be seen. Due to the variability 
in meteorological conditions the starting and end dates of each season change from year to year but they 
always have the same length.

2.7.2. Seasonal and Annual Sums

To estimate the impact of fertilization on carbon and water fluxes and the WUE of the ecosystem, we cal-
culated annual and seasonal cumulated sums (Table 4). The differences between the fertilized and control 
treatments were then used to calculate the fertilization effect on the annual and seasonal sums. We empha-
size that differences between the fertilization effects from the high-quality half-hourly data and the gap-
filled cumulated sums are expected. The main reason is the larger fraction of good quality EC data during 
daytime hours compared to nighttime data.

2.8. Functional Relations and Regression Analyses

To characterize the changes of functional properties due to fertilization, we analyzed the relationships be-
tween LAI and LAI * [N] with Amax, GPPsat, and Gs for each treatment, individually. The goodness of fit 
allows us to evaluate whether leaf [N] partially explains the respective relationships or not. LAI and leaf [N] 
were based on spatial sampling within the FFC of the treatments, and the values Amax and GPPsat were time 
averages for periods of ±7 days around the sampling date as individual values were only calculated every 
second day. The Gs values were averaged for the same period but were based on midday values between 
12:00 and 14:00 UTC. Linear, nonlinear, and segmented regressions were fitted to the data.

Linear and nonlinear least squares regressions were performed in R using the “lm” and “nls” functions 
(R Development Core Team, 2015), respectively. The nonlinear regressions used the following formula to 
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Year Spring Winter

2014 Mar 20–May 15 Dec 11–Feb 10

2015 Mar 15–May 10 Nov 22–Jan 22

2016 Mar 20–May 15 Dec 11–Feb 10

2017 Feb 24–Apr 21 Dec 01–Jan 31

Duration 56 days 61 days

Table 3 
Dates and Duration of Each Spring and Winter Season Used for the 
Analysis Separated by Year
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characterize the saturating behavior of a relationship in which the pa-
rameters a, b, and c were optimized to minimize the residual sum of 
squares (RSS) between model and observations:


 


a xy c
b x (12)

Here, y is the property of interest (e.g., GPPsat), and x is either LAI or LAI 
* [N]. The starting values for a, b, and c were the same for all treatments 
(i.e., LAI * [N] vs. GPPsat) in the CT, NT, and NPT plots.

In addition to the nonlinear regressions, segmented regressions were per-
formed using the “segmented” package (Muggeo, 2003, 2017) in R to es-
timate the breakpoint between the increase and plateau of the nonlinear 
relationship. No prior value was provided to the breakpoint estimation 
algorithm.

When comparing the means of two or more distributions a two-sam-
ple t-test was used. The “t.test” function in R (R Development Core 
Team,  2015) was used. Each distribution was tested against the others 
and the significant differences between means were encoded in letters to 
show which distributions means were significantly different from each 
other.

Analysis of Covariance (ANCOVA) was used to evaluate the treatment 
effect on changes in the linear relationship between variables. The “aov” 
function in R was used.

3. Results
3.1. Leaf Level Nutrients

The increase in [N] in the herbaceous layer of both fertilized treatments, 
NT and NPT, was most significant in the first 2 years following fertiliza-
tion (2015 and 2016). In 2017, it was higher for only a few sampling peri-
ods (Figure 3). The differences in [N] between the fertilized and control 
treatments became smaller from 2015 to 2019.

[P] increased significantly after fertilization for all years in the NPT plot, 
except during the first sample in 2015. While both nutrients were tak-
en up by the herbaceous vegetation, the resulting increased [N] reduced 
faster than [P]. The comparison of N:P ratios between CT, NT, and NPT 
showed that fertilization modified the nutrient stoichiometry of the her-
baceous vegetation as expected, with a higher average N:P ratio (stoichio-
metric imbalance) in the NT plot (9.3 ± 2.5; mean ± s.d.) than in the CT 
(7.3 ± 0.8) and NPT plots (7.5 ± 2.4) (Figure 3). In contrast, the trees did 
not consistently vary in leaf nutrient content during the post-fertilization 
period (Figure 3).

3.2. Carbon Fluxes

The impact of fertilization on carbon fluxes was largest for the spring 
and winter periods of 2015 and 2016 (Table 4 and Figure 4). GPP gen-

erally increased, while Reco increased much less or even reduced, which caused NEE to become more 
negative. For the spring periods from 2015 to 2019, the average HH daytime ΔNEE was more negative in 
the fertilized treatments (−0.0156 ± 0.0076 gC m−2 (mean ± s.d.) at NT and −0.0161 ± 0.0077 gC m−2 at 
NPT). This resulted in 57% and 48% more negative cumulated spring NEE in the NT and NPT, compared 
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Figure 3. Nitrogen (N) and phosphorous (P) concentration for the 
herbaceous layer (a), (b) and tree leaves (d), (e) as well as the N:P ratios (c) 
for the herbaceous layer. Samples are from within the footprint areas of 
the control (CT, purple), nitrogen (NT, blue), and nitrogen + phosphorus 
treatments (NPT, light blue). The black vertical line separates the pre- 
and post-fertilization periods. Letters above boxplots indicate significant 
differences between treatments at the p < 0.05 level based on the two-sided 
Wilcoxon test.
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to CT (−46.8 ± 6.0 gC m−2; Table 4). Spring ΔGPP was higher in the NPT 
plot, +43.6 ± 18.7 gC m−2 (14%) and +39.4 ± 7.0 gC m−2 (13%) in the NT, 
while ΔReco was +12.7 ± 11.0 gC m−2 (5%) and +21.0 ± 19.7 gC m−2 (8%) 
relative to the CT (Table 4).

During winter periods, large changes in carbon fluxes were observed 
in the fertilized treatments. Particularly, during the first 2  years fol-
lowing fertilization (2015–2016, Figure  4), the average HH ΔNEE was 
more negative than in any other seasons or years (−0.0453 ± 0.0085 and 
−0.0393  ±  0.0082 gC m−2 at NT and NPT). The increased uptake was 
a result of high ΔGPP (+0.0481  ±  0.0094 (NT) and +0.0482  ±  0.0149 
(NPT) gC m−2) relative to small positive ΔReco (+0.0039 ± 0.016 (NT) 
and +0.0048 ± 0.0147 (NPT) gC m−2) in both treatments.

The average cumulated winter NEE became 82% (NT) and 110% 
(NPT) more negative in the fertilized treatments compared to the CT 
(−12.4 ± 13.6 gC m−2). Again, this increase in carbon uptake was driven 
by a substantial increase in GPP in both fertilized treatments (i.e., ΔGPP 
+19.0 ± 16.3 gC m−2 (13%) in the NT and +19.6 ± 18.9 gC m−2 (14%) in 
the NPT) compared to the increase in Reco.

When comparing drier (2015, 2017, 2019) and wetter (2016, 2018) spring 
periods, the fertilization effects vary in their strength and between treat-
ments. The fertilization effects in dry and wet spring periods (Figure S6) 
were in opposite directions in the NT and NPT plots and point toward 
stronger carbon uptake in the NPT during drier conditions and in the NT 
during wetter conditions.

At the annual scale, ΔGPP was positive in the fertilized treatments 
+131.6 ± 31.2 gC m−2 (12%) in the NT and +143.2 ± 46.7 gC m−2 (13%) 
in the NPT, but ΔReco was less high +49.6  ±  45.4 gC m−2 (NT) and 
+68.5  ±  54.4 gC m−2 (NPT), respectively. As a result, the annual NEE 
changed from an average carbon source in the CT (+75.0 ± 20.6 gC m−2) 
to carbon-neutral in the NT (−7.0 ± 18.5 gC m−2) and NPT (+0.4 ± 22.6 
gC m−2) plots.

3.3. Water Fluxes

ET was highest during the spring and lowest during winter with cumu-
lated values at CT of 122.7 ± 2.2 kgH2O m−2 and 29.4 ± 1.1 kgH2O m−2, 
respectively. The fertilization effects on water fluxes differed between the 
NT and NPT. While changes in ΔET at NPT during spring and winter 
were on average negative, they were positive in the NT (Table  4, Fig-
ure 4). During spring and winter, the cumulated seasonal sums of T in-
creased for both fertilized treatments, and they decreased for E. ΔT was 
highest in the NT (+12.4 ± 6.3 kgH2O m−2; 13%) while in the NPT, it was 
only +4.4 ± 3.8 kgH2O m−2 (5%). In addition, E was substantially reduced 
in the NPT plot compared to the NT plot, with an overall decrease in ET 
in the NPT plot (Table 4).

At the annual scale, ΔET was +48.6 ± 28.3 kgH2O m−2 (10%) in the NT 
and −6.7 ± 12.2 kgH2O m−2 (−1%) in the NPT. The positive ΔET in the 
NT was driven by the ΔT [+57.5 ± 30.0 kgH2O m−2 (19%)], whereas the 
ΔT in the NPT [+21.6 ± 16.9 kgH2O m−2 (7%)] was compensated by the 
negative ΔE [−24.2 ± 8.7 kgH2O m−2 (−16%)].
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Figure 4. Mean fertilization effects (FE) for spring (left column) and 
winter (right column) periods from 2015 to 2019 (abbreviated as 15 to 
19 on the x-axis) in the plots fertilized with nitrogen (NT, dark blue) 
and nitrogen + phosphorus (NPT, light blue), including the associated 
uncertainties (vertical bars). Shown are fertilization effects for net 
ecosystem exchange (NEE, (a), (b)), gross primary productivity (GPP, (c)), 
(d)), ecosystem respiration (Reco, (e), (f)), evapotranspiration (ET, (g), (h)), 
transpiration (T, (i), (j)), and evaporation (E, k, l).
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3.4. Water-Use Efficiency

Changes in carbon and water fluxes due to fertilization display increased 
uptake of carbon during the growing season for both treatments and a 
reduction in ET in the NPT in spring, while ET and T increased in the 
NT for the same period (Table 4). A comparison across three measures of 
WUE (G1, IWUE, and uWUE) showed that they all follow the same main 
patterns as a result of fertilization (Figure S7). Changes in G1, as well as 
Gs, T, and GPP during the post-fertilization spring periods, are reported 
in Figure 5. Overall, strong interannual variability with consistent treat-
ment effects was observed.

On average, NPT had the lowest G1 values, which means it had the high-
est WUE, followed by NT. Both fertilized treatments showed increased Gs 
and T compared to the CT. However, for both, Gs and T values of the NPT 
were significantly lower in most springs compared to the NT (p < 0.01; 
Figure 5). As seen in Table 4 there was less evapotranspiration and tran-
spiration in the NPT relative to the NT plot. The values of GPP were al-
ways (except for NPT in Spring 2016) significantly higher in the NT and 
NPT plots (p < 0.01) than in the CT plot (Figure 5). Overall, the increase 
in WUE of the fertilized treatments, compared to the CT, was driven by 
the increase in GPP due to the fertilization. However, the loss of water 
shown by T mediated the magnitude and differences between the NT 
and NPT. The different behavior of GPP and Gs between the fertilized 
treatments resulted in different WUEs. In addition, in three out of five 
and four out of five post-fertilization years, Gs and T were significantly 
(p  <  0.01) lower in the NPT than in the NT, respectively, indicating a 
better water-saving strategy in the NPT plot.

The δ13C isotopic signatures from the plant samples of the herbaceous 
layer show similar patterns as the eddy covariance based WUE estimates. 
While we did not find significant differences between the treatments in 
the control year (2014), we observed significantly higher δ13C values of 
the herbaceous layer in the NPT (p < 0.05; Figure 6). In contrast, the iso-
topic signatures of the herbaceous layer in the NT plot were significantly 
higher in the first year than in the CT plot and, thus, underline the more 
substantial increase in WUE in the NPT compared to the NT plot.

The δ13C values agree with the average post-fertilization WUET estimates. 
WUET spring values were 3.327 (CT), 3.307 (NT), and 3.624 gCkgH2O−1 
(NPT) and show the highest WUE in the NPT and similar values for the 
NT and CT plots.

3.5. Functional Relationships

Strong linear relationships between LAIgreen and Amax [R2 = 0.80 (CT), 0.93 (NT), 0.92 (NPT)] across all treat-
ments were observed (Figure 7a). The offsets in the linear fits ranged between 10.9 and 14.3 µmol m−2 s−1. 
Also, both fertilized treatments showed higher Amax values than the CT after fertilization.

GPPsat values collapsed into a small range between 5 and 7 µmol m−2 s−1 for the sampling points of July 
when LAIgreen values across treatments were below 0.5 m2 m−2 and water stress was high (Figures 7b and 1). 
The fit of LAIgreen and GPPsat was not linear and GPPsat flattened at higher LAIgreen values (Figure 7b). The 
change point of the segmented regression analysis showed that the plateau started at a LAIgreen of about 
1.8 ± 0.15 m2 m−2. Similar to Amax, GPPsat values in the CT were lowest, showing a lower photosynthetic 
capacity in the CT compared to the fertilized treatments.
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Figure 5. Between-tower differences for water-use efficiency-related 
parameters for the spring periods from 2015 to 2019. Boxplots for 
each treatment [control (CT, purple), nitrogen (NT, dark blue), and 
nitrogen + phosphorus treatments (NPT, light blue)] and year are the 
differences between the respective post-fertilization years (2015–2019) and 
the pre-fertilization period of 2014. The panels display the stomatal slope 
parameter (G1, (a)), surface conductance (Gs, (b)), canopy transpiration 
based on the TEA algorithm (c), and gross primary productivity (GPP, (d)). 
Letters above the boxplots indicate significant differences in the means 
based on two-sample t-tests at the p < 0.01 level.
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The Gs were nonlinearly related to LAIgreen similar to GPPsat, and the 
treatments reached their plateau around 6 mm s−1 (Figure 7c). The high-
est values of Gs were detected in the NT, while NPT and CT had lower and 
more similar values. The largest differences between NT and the other 
fitted curves were detected for LAIgreen values below 1.1 m2 m−2. The Gs 
values converged with increasing LAIgreen, especially for values after the 
change point of the segmented regression.

When analyzing the functional relationships above with LAIgreen * [N] 
the R2 values for LAIgreen and Amax increased [0.80−0.91 (CT), 0.93−0.96 
(NT)] or remained similar [0.92−0.91 (NPT)] and the RSS of the LAIgreen 
and GPPsat reduced [11.6−7.0 µmol m−2 s−1 (CT), 6.9−3.5 µmol m−2 s−1 
(NT), 2.2−2.0 µmol m−2 s−1 (NPT)]. For the relationship LAIgreen with Gs 
at CT the RSS reduced, but it increased for NT and NPT.

Based on linear relationships between Gs and GPPsat, the fertilized treat-
ments have higher GPPsat for the same Gs values that is, a significant dif-
ference in offset but no significant difference in slope. On the other hand, 
for the same increase in GPPsat, the increase in Gs is highest in the NT 
plot but not significantly different from the NPT and CT plots (Figure S8 
p < 0.05).
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Figure 6. Isotopic signature of δ13C for the herbaceous layer during the 
spring periods between 2014 and 2017. Boxplots display the distribution 
for all samples within each treatment, namely, the control (CT, purple), 
nitrogen (NT, blue), and nitrogen + phosphorus treatments (NPT, light 
blue). Letters above the boxplots indicate significant differences in the 
medians based on one-sided Wilcoxon tests at the p < 0.05 level.

Figure 7. Functional relationships between maximum net carbon uptake (Amax), photosynthetic capacity (GPPsat), and surface conductance (Gs) with green 
leaf area index (LAIgreen, top row) and green leaf area index * nitrogen concentration (LAIgreen * [N], bottom row) of the herbaceous layer for the control (CT, 
purple), nitrogen (NT, blue), and nitrogen + phosphorus treatments (NPT, light blue). All figures include the respective regression formulas and fits (solid 
lines). In addition, the nonlinear fits contain a segmented regression (dashed black line) with the respective breakpoint of the two linear fits and its uncertainty 
(black dot with dashed line at the bottom). Horizontal error bars display the standard deviation from the LAI spatial sampling, and vertical error bars display 
the temporal variability of Amax, GPPsat, and midday Gs for ±7 days around the sampling day. For the nonlinear fits, the residual sum of squares (RSS) was used 
to show the goodness of fit.
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4. Discussion
We will discuss the impacts of nutrient availability and stoichiometric imbalance on carbon and water flux-
es, ecosystem-scale WUE, functional relationships, canopy structure, and nutrient content of the vegetation.

The observed changes in leaf nutrients within the herbaceous layer, but not in tree leaves, suggest that the 
ecosystem response to the fertilization was driven by the herbaceous layer rather than by the trees. The 
higher response of the herbaceous layer could be related to the common competition between trees and 
grasses for resources in savanna ecosystems (Riginos, 2009; Rivest et al., 2011; Sankaran et al., 2004; Scholes 
& Archer, 1997). The marked differences in root system profiles between the herbaceous layer and trees in 
the study system (Rolo & Moreno, 2012) would have allowed a higher uptake of nutrients by herbaceous 
species in the uppermost soil layers and hampered any response in trees. This agrees with the findings of 
Scalon et al. (2017), who analyzed the leaf nutrient concentrations of woody species in a Brazilian savan-
na in a long-term nutrient manipulation experiment and found no influence of N and P additions to the 
leaf nutrient concentrations. In contrast, a nutrient manipulation experiment conducted in the Harvard 
experimental forest for 15 years showed a constant increase in leaf nutrient content for oak and pine trees 
(Magill et al., 2004). The absence of increased leaf nutrients in the trees with simultaneously increased leaf 
nutrients of the herbaceous layer allows us to suggest that the ecosystem response to fertilization was driven 
by the herbaceous layer rather than by the trees. With only leaf data available, we cannot rule out that the 
trees have responded to the higher N availability different than increased leaf N (e.g., by increased LAI or 
storing N in other organs).

The strong response in carbon uptake during the first two winters following fertilization (Figure 4) could 
be a result of the strong mobility of N within the ecosystem. This was emphasized by the reduction of [N] 
during the experiment. Also, the highest N availability in the soil is expected to occur during the fall with 
the re-wetting of the soil after the summer drought (Joffre, 1990; Morris et al., 2019). This increased N avail-
ability then caused a faster development of the vegetation biomass (Luo et al., 2020) and higher gross and 
net carbon uptake rates. At the same time, the high mobility of N, due to the strong precipitation in the fall, 
likely leads to strong uptake via the re-greening vegetation and strong leaching of N into deeper soil layers 
where the herbaceous vegetation cannot access it anymore, but trees potentially could. This might lead to 
a continuous decrease in leaf [N] in the herbaceous layer and the strong fertilization effect being restricted 
to the first two winter periods. In contrast, P, which is less mobile, stayed in the system in the NPT plot and 
led to persistently high levels of P in the herbaceous layer at NPT.

The increased N availability can alter N:P stoichiometry in plants and result in P limitation (Du et al., 2020; 
Li et  al.,  2016; Peñuelas et  al.,  2013). Under these conditions, plants try to increase their P uptake 
(Güsewell, 2004). In a recent review, Oldroyd and Leyser (2020) describe how plants sense P availability 
and how they react to conditions of P limitation. The main root adaptations are increased lateral growth 
and elongated root hairs to more efficiently extract P, which has the highest availability in the topsoil. Nair 
et al.  (2019) analyzed root biomass and root length density in the CT, NT, and NPT plots and found in-
creased root biomass but no increase in root length in the NT plot; while in the NPT plot, the root mass 
did not increase, but the root length density did, which is in agreement with the findings of Oldroyd and 
Leyser (2020).

Plants increase transpiration to better extract nutrients, especially P, from the soil (Cernusak et al., 2011; 
Cramer et al., 2008; Huang et al., 2017; Kröbel et al., 2012; Pang et al., 2018; Rose et al., 2018). Our results 
agree with this finding and showed that both treatments increased their LAI, but transpiration increased 
most in the NT plot. A consequence of increased transpiration under P limitation is the reduction in WUE.

G1 and WUET showed that WUE increased more in the NPT plot than in the NT plot, even though GPP 
increased similarly during the spring (Table 4). This is supported by the higher δ13C at NPT, which indicates 
that the ratio of leaf-internal CO2 concentration (ci) to ambient CO2 concentration (ca) is smaller (Cernusak 
et al., 2013; Seibt et al., 2008). The decrease in the ci/ca points toward stronger stomatal closure, less tran-
spiration and thus higher WUE (Medlyn et al., 2011). The increase in WUE at NPT is consistent between 
methods and across scales that is, δ13C at leaf level and G1 and WUET at ecosystem scale. This highlights the 
importance of P availability for WUE across scales.
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The N fertilization induced a P limitation in the NT plot and the increasing transpiration might (i) increase 
P uptake directly via a direct water stream into the plant or by (ii) allowing increased photosynthesis and 
fueling soil microbes to extract P from organic matter through rhizosphere priming (Kuzyakov, 2002). This 
is supported by the recent work of Chen et al. (2020), who showed that during the first years following N 
fertilization, phosphatase activity increases and indicates a progressive attenuation of the N-induced P limi-
tation through the plant and microbial activity. This would also be supported by the increased root biomass 
at NT (Nair et al., 2019). Additionally, the increased LAIgreen in the NT plot combined with similar [P] as in 
CT shows that more P was incorporated into plant material. This additional P at NT must be extracted from 
the soil or recycled from organic material, maybe through one of the suggested processes.

When sampling the abovementioned differences between treatments at the ecosystem scale, we observed a 
substantial IAV in WUE and its associated water and carbon fluxes (Figure 4) between dry and wet spring 
periods (Figure S6). This indicates that ecosystem responses to nutrient availability and stoichiometric im-
balance are modulated by water availability. Lower WUE in the NT plot, compared to NPT, resulted in 
faster senescence toward the end of spring, as shown by Luo et al. (2020). A reduced growing season length 
and lower WUE (at NT) potentially reduces the carbon uptake compared to an ecosystem losing less water 
with a higher WUE (NPT). Meteorological drivers, especially the ones related to water availability, strong-
ly impact the productivity of this ecosystem during the spring and winter (El-Madany et al., 2020; Sippel 
et al., 2017) and influence the phenology of herbaceous plant species at the site (Luo et al., 2018). On top 
of the IAV, there was a strong seasonal variability with the strongest fertilization effects occurring when 
conditions were promoting the development of the vegetation (i.e., the winter and spring), while the fertili-
zation effects and their IAV strongly reduce during the summer (Figure 7). This, again, emphasizes that the 
herbaceous layer drives the fertilization effects rather than the trees, which are the only active component 
of the ecosystem in the summer and they only have a canopy cover of about 20%. The relationship between 
LAIgreen and GPPsat and Gs especially underpin that for low LAIgreen conditions (LAI < 0.5 m2 m−2), the treat-
ment differences are also low.

The strong linear relationship of LAIgreen to Amax and LAIgreen * [N] to Amax suggests that the increased 
maximum net carbon uptake was driven by increased LAI in both treatments. The effect of nitrogen was 
through the release of the N limitation which promoted the development of more biomass and potentially, 
also the increase of chlorophyll content in the leaves. As shown in Luo et al. (2020), the increased biomass 
development was already happening during the re-greening when the fertilized treatments developed and 
increased their LAI more rapidly than the CT. This also explains why the largest treatment effects in carbon 
fluxes were found during the winter and spring periods and emphasize that the study site was N limited.

A positive relationship between leaf nitrogen content and photosynthetic capacity is described at leaf lev-
el (Evans, 1989; Kattge et al., 2009) but also at ecosystem scale (Kergoat et al., 2008; Musavi et al., 2016). 
When using the product of leaf nitrogen content and LAI (i.e., LAIgreen * [N]) and photosynthetic capacity 
(i.e., GPPsat) the relationship between LAIgreen * [N] and GPPsat improves for all treatments (with more ex-
plained variance) than that involving only LAIgreen. The flattening of the curve at higher LAI values could 
be a consequence of lower leaf levels getting less light. Additionally, leaf properties like the maximum rate 
of Rubisco carboxylase activity (Vcmax) might result in light saturation. This would be in agreement with 
the relationship of LAIgreen and LAIgreen * [N] with Gs, which reached its maximum value of approximately 
7 mm s−1 after LAIgreen reached approximately 1.0 m2 m−2. The increase of mean springtime LAIgreen in the 
fertilized treatments was approximately 0.7 m2 m−2, which corresponds with an increase of 40% compared 
to CT (1.72 m2 m−2). The reduced evaporation and increased transpiration during spring could be driven by 
increased LAI because it increases the transpiration-surface per m2 ground area and additionally intercepts 
more light which is then not able to heat the soil below the leaves (Pott & Hüppe, 2007; Wei et al., 2017). The 
surface conductance reaches its maximum already at an LAI of 1.0 m2 m−2 and at a lower value as compared 
to GPPsat (1.8 m2 m−2). With increasing LAI, leaves could start to shade other leaves below, reduce their 
surface temperature and thus VPD within the herbaceous canopy. Similarly, the increasing LAI results in 
reduced aerodynamic conductance (Figure S9) which in turn hinders the exchange of moisture out of the 
canopy and thus potentially reduces VPD. In addition, these processes are modulated by modified WUE as 
a result of nutrient availability and stoichiometric imbalance of the N:P ratio.
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5. Conclusion
Systematic differences in ecosystem responses were detected between NT and NPT as a consequence of 
nutrient application. The fertilizer application at NT led to a wide N:P ratio (i.e., a stoichiometric imbalance 
and potential P limitation in the herbaceous layer), which increased transpiration to extract more P from 
the soil. In addition, springtime biomass production and carbon fluxes increased compared to the control. 
Altogether, springtime WUE increased in the NT plot, but not as strongly as in the NPT plot, where not only 
GPP increased but also the transpiration was reduced compared to NT. WUET only increased in the NPT 
plot but decreased in the NT plot.

The functional relationships between LAIgreen and Amax and GPPsat show better fits when using LAIgreen * [N] 
and emphasize the importance of [N] for explaining the carbon fluxes, while for Gs using LAIgreen * [N] even 
reduced the goodness of fit. A lower N:P ratio at CT and NPT resulted in the lowest surface conductance 
while it was strongly increased at NT with its high N:P ratio.

Overall, the changes in WUE in the fertilized treatments were first driven by the increase in carbon uptake 
through increased LAI. Second, between-treatment differences were driven by the narrow N:P ratio in the 
NPT plot, which reduced transpiration compared to NT and increased WUE. Further, the strength of all 
responses was highly modulated by water availability. Our results suggest the importance of compensating 
P limitations in case of N:P imbalance to increase WUE in semi-arid ecosystems.

Data Availability Statement
The half-hourly eddy covariance, meteorological, nutrient, isotopic signatures, and green LAI data are made 
available via http://doi.org/10.5281/zenodo.4453567 (El-Madany et al., 2021). For the availability of the hy-
perspectral images we refere to (Pacheco-Labrador et al., 2020) and the data availability statement within.
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