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Deep learning algorithms classify plant species with high accuracy, and smartphone 
applications leverage this technology to enable users to identify plant species in the 
field. The question we address here is whether such crowd-sourced data contain sub-
stantial macroecological information. In particular, we aim to understand if we can 
detect known environmental gradients shaping plant co-occurrences. In this study 
we analysed 1 million data points collected through the use of the mobile app Flora 
Incognita between 2018 and 2019 in Germany and compared them with Florkart, 
containing plant occurrence data collected by more than 5000 floristic experts over 
a 70-year period. The direct comparison of the two data sets reveals that the crowd-
sourced data particularly undersample areas of low population density. However, using 
nonlinear dimensionality reduction we were able to uncover macroecological patterns 
in both data sets that correspond well to each other. Mean annual temperature, tem-
perature seasonality and wind dynamics as well as soil water content and soil texture 
represent the most important gradients shaping species composition in both data col-
lections. Our analysis describes one way of how automated species identification could 
soon enable near real-time monitoring of macroecological patterns and their changes, 
but also discusses biases that must be carefully considered before crowd-sourced biodi-
versity data can effectively guide conservation measures.

Keywords: automated species identification, canonical correlation analysis, citizen 
science, floristic survey, macroecological patterns, nonlinear dimensionality reduction

Introduction

Climate change, habitat losses and intensified land-use dynamics threaten current 
levels of biodiversity across the planet (Blowes  et  al. 2019, Brondizio  et  al. 2019). 
Accurately predicting the effects of these global transformations on species occur-
rences, communities and ultimately on ecosystem functioning, has made substantial 
progress over the last decades, but uncertainties remain high as long as reference data 
are scarce (Urban et al. 2016). It is therefore important to find new ways to quickly and 
reliably monitor species (co-)occurrences in space and time.
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Automated species identification is one promising avenue 
that has been discussed since the potential of machine learn-
ing for ecological applications has become evident (Gaston 
and O’Neill 2004). With the advent of deep learning meth-
ods (Goodfellow  et  al. 2016) automated species identifica-
tion reaches levels of accuracy comparable to human experts 
(Bonnet  et  al. 2018, Wäldchen and Mäder 2018a, Jones 
2020, Villon et al. 2020). Today, multiple smartphone apps 
leverage such algorithms and enable users to identify e.g. 
plants, insects or birds directly in the field (Kumar  et  al. 
2012, Affouard et al. 2017, Van Horn et al. 2018, Wäldchen 
and Mäder 2018a, Jones 2020). The voluntarily shared ancil-
lary information on time and location could soon turn such 
mobile observations into an invaluable resource for different 
monitoring tasks (Bonnet  et  al. 2020). Consequently, the 
questions discussed in the existing literature on automated 
species identification mainly revolve around the accuracy of 
the competing algorithmic approaches for automated species 
identification (Nguyen  et  al. 2018, Wäldchen and Mäder 
2018b, Jones 2020, Villon et al. 2020).

Despite the popularity of the corresponding apps for auto-
matic species identification, little is known about the joint 
potential of such individual observations to reveal biodiversity 
gradients and patterns of plant co-occurrences. If it could be 
shown, however, that data collected with the help of mobile 
apps can be used identify specific macroecological patterns, a 
wide range of new perspectives for the study of large-scale bio-
diversity dynamics would emerge. The aim of this study is to 
take a step in this direction. We want to understand whether 
an opportunistic crowd-sourced data collection of two years, 
derived from a smartphone application for automatic plant 
identification, encodes macroecological patterns of plant co-
occurrences similar to those that can be obtained from data 
collected over decades of intensive mapping of plant species 
in the same geographical area. We used the records of the 
plant identification app Flora Incognita, an app developed to 
automatically identify all vascular plant species in Germany, 
which is increasingly used throughout Europe (<https://
floraincognita.com/>, Wäldchen  et  al. 2018, Rzanny  et  al. 
2019, Mäder  et  al. accepted) and compared them to the 
records of the German sampling program Florkart, which is 
a long-term cumulative mapping project that turned into a 
national sampling effort administered by the German Federal 
Agency for Nature Conservation (Netzwerk Phytodiversität 
Deutschland and Bundesamt für Naturschutz 2013).

The study is structured as follows: firstly, we compare the 
two data collections at the grid level and investigate potential 
biases. Specifically, we investigated whether human popu-
lation density, a known bias in crowd-sourced data, would 
have an imprint on the data quality. Secondly, we focus on 
comparing the macroecological co-occurrence patterns in 
the observed species compositions extracted with non-linear 
dimensionality reduction. The rationale is that both data sets 
can be regarded as independent samples from the same eco-
logical gradients, hence we would expect that the extracted 
patterns are directly related. Thirdly, we explore the joint low-
dimensional ecological gradients in relation to climatic and 

soil properties in order to understand whether the recovered 
co-occurrence patterns are indeed related to expected envi-
ronmental drivers. Finally, we discuss data limitations and 
our findings in the light of the urgently needed perspectives 
for rapid assessments of the state of biodiversity and macro-
ecological patterns beyond the aspects investigated here.

Material and methods

Data

Flora Incognita
Flora Incognita (<https://floraincognita.com/>, Mäder et al. 
2021) is a freely available mobile app allowing the automated 
identification of wild flowering plants and originally devel-
oped for the German flora. In January 2020 the app was 
already able to identify 4848 vascular plant species, cover-
ing the central European flora and beyond. Depending on 
the difficulty of identification, the app analyses one or more 
smartphone photograph(s) from predefined perspectives. 
Images of the whole plant or plant organs such as flowers, 
leaves or fruits are incrementally transferred to the Flora 
Incognita server until the plant can be identified at the spe-
cies level and the result is transferred back to the user’s device. 
The interactive classifier utilises a task-specific cascade of con-
volutional neural networks (CNN), a default choice for ana-
lysing high-dimensional and spatially correlated input data 
such as images (LeCun  et  al. 1995, Wäldchen and Mäder 
2018a). Taxonomy for species occurring in Germany is based 
on GermanSL (Jansen and Dengler 2008) with some criti-
cal genera (e.g. Hieracium, Rubus, Sorbus, Taraxacum) not 
fully resolved to the species level. Depending one the score 
of the result, the classifier requires one to three images of 
different perspectives or organs. The classifier is pre-trained 
on the ImageNet data set and fine-tuned on the growing 
Flora Incognita data set; today the training data set contains 
approximately two million training images. Identifications 
suggested by the classifier need to be confirmed by the user 
in order to create a record. Upon confirming the identifica-
tion, the result is stored in the database including images, 
date and geographical location – if provided voluntarily by 
the user. For the comparison of the Flora Incognita to the 
national inventory (Florkart, see below), we used only con-
firmed records including location data and transferred all 
data points into presence–absence records referring to the 
same geographical grid as used by Florkart. For this study we 
used all data points with geolocation in Germany collected in 
2018 and 2019 summing up to 961 116 records.

Florkart
As reference data we used Florkart, the inventory of vascular 
plant ocurrences in Germany. The database contains multiple 
mapping campaigns involving thousands of voluntary sur-
veyors as well as literature reviews that were gathered since 
the middle of last century. The data are freely accessible via 
the information system FloraWeb (<www.floraweb.de/>)  
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run by the Federal Agency for Nature Conservation on 
behalf of the German Network for Phytodiversity (NetPhyD; 
Netzwerk Phytodiversität Deutschland and Bundesamt für 
Naturschutz 2013). The presence of a species is recorded on 
the basis of grid tiles, originally representing ordnance sur-
vey maps at a scale of 1:25 000. Each tile covers a section of 
10′ longitude × 6′ latitude, corresponding to a surface area 
of approximately 118 km2 in the north to 140 km2 in the 
south of Germany. Each tile carries the binary information 
whether a species appears in it or not. Neither exact spatial 
coordinates of individual records nor frequencies are known. 
Today, Florkart comprises approx. 30 000 000 individual 
records. Both, the crowd-sourced Flora Incognita data and 
long-term inventory data of Florkart were preprocessed to 
contain only species names and grid cells shared by both data 
sets. Intersecting the 2761 Florkart dimensions and Flora 
Incognita results in 2598 species that potentially occur in 
3003 spatial grid cells.

Ancillary data
Unlike Florkart, we had to assume that the number of Flora 
Incognita records would strongly depend on the number of 
device carriers i.e. population density at a certain location. In 
order to understand the potential bias due to population den-
sity in the direct comparison of Flora Incognita and Florkart 
we used population data from the German National Census 
2011, <https://www.zensus2011.de/EN/> as reference. 
These data were provided by the Federal Statistical Office.

To explain macroecological patterns we used the biocli-
matological features and standard variables from WorldClim 
(<www.worldclim.org/>, Fick and Hijmans 2017, highest 
resolution 30 s, 103 variables in total), as well as soil physical 
and chemical properties derived from Soil Grids (<https://
soilgrids.org/>, Hengl et al. 2014, provided at 250 m spatial 
resolution, 127 variables). All environmental variables were 
aggregated to the grid cells predefined by Florkart, where 
we averaged values where appropriate, but took the grid cell 
minimum or maximum where the variables required that 
(e.g. maximum/minimum temperatures of warmest/cold-
est month). We then subjected the variables belonging to 
WorldClim and SoilGrids to a principal component analy-
sis (PCA; cf. Supporting information) in order to obtain a 
reduced set of interpretable predictors for both the climate 
and edaphic domain. We further worked with the four lead-
ing principal components for WorldClim and SoilGrids as 
the differences in explained variance in the scree plot for 
subsequent axes was marginal (i.e. after the ‘elbow’). This 
heuristic approach leads to two sets of PCs that account for 
89.8% (WorldClim) and 90.6% (Soil Grids) of the variance 
respectively, leading to well clearly identifiable components 
that were used in the subsequent analyses.

Dimensionality reduction

The preprocessed species occurrence data are two data arrays 
XFK, XFI ∈ {0,1}n×p, where the indices FK and FI indicate 
either Florkart or Flora Icognita respectively, and X contains 

binary information on the presences/absence of p = 2598 spe-
cies at n = 3003 spatial grid cells. The general idea is that Flora 
Incognita and Florkart data sets are both (noisy) samples from 
the same unknown environmental gradients (the so-called 
underlying manifold). In other words, we assume that the 
p species are highly redundant meaning that the presence–
absence pattern of one species might probably be very similar, 
yet not identical, to multiple other species. This argument 
leads to the expectation that we can find some qFK and qFI-
dimensional representation of these data, i.e. YFK

FKÎ ´n q  
and YFI

FIÎ ´n q , that retain significant proportions of vari-
ance. These orthogonal, non-redundant, dimensions shall 
represent the empirical macroecological patterns we want to 
compare. We note that qFK and qFI can be different, depend-
ing on the performance of the dimensionality reduction for 
each of the data sets. To retrieve these underlying dimensions, 
we performed nonlinear dimensionality reduction separately 
for each data set via isometric feature mapping (Isomap; 
Tenenbaum et al. 2000). The method is essentially a classical 
multidimensional scaling (CMDS; Legendre and Legendre 
2012), but instead of aiming for preserving a matrix of linear 
ecological distances among the n locations, it tries to preserve 
the geodesic ecological distances (Mahecha et al. 2007). To 
estimate the geodesic distances we initially compute a dis-
tance matrix, DÎ ´n n , based on the Jaccard metric

 d ( , ) [ ; ]a b
a b

a b
= - Î1 0 1

∩
∪

where a,b ∈ {0,1}p are vectors of presence absence data 
(Jaccard 1901). Using a k-nearest neighbour (k-NN) graph, 
we can compute the shortest path among data samples. To 
find an optimal k-value we iterated from its minimal plau-
sible value to theoretical maximum (where Isomap becomes 
a standard CMDS) and explored how much variances can 
be explained by the leading dimensions (results of this sensi-
tivity analysis are provided in the Supporting information). 
This pre-analysis shows that best data-compression results are 
obtained for relatively low k-values, pointing at a highly non-
linear underlying data space. For all embeddings with k < 40 
we then performed a canonical correlation analysis (CCorA) 
between the embeddings of Flora Incognita and Florkart and 
identified the k = 16 as the one where canonical correlations 
where highest (Supporting information), while the com-
pression of the individual data sets is optimal (Supporting 
information). All subsequent analysis are based on these two 
embeddings. The implementation followed the concept out-
lined by Kraemer et al. (2018). To quantify the autocorrela-
tion in the Isomap components we used Moran’s I at lag one, 
based the queen adjacency neighbourhood definition.

Canonical correlation analysis, CCorA

The application of dimensionality reduction on the two data 
sets of interest leads to the matrices XFK and YFI, i.e. n samples 
in each of the qFK or qFI dimensions. More formally, we com-
pared two data sets that were assumed to be samples from 
the same underlying manifold. And, if this were the case, we 
could expect the recovered dimensions to be almost identical 
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and linearly related even if the dimensions themselves have 
been extracted by nonlinear dimensionality reduction. The 
whole idea behind Isomap is that it can flatten the nonlin-
earily encoded manifold (Tenenbaum et al. 2000). We there-
fore sought the canonical correlation patterns that would 
maximize the relation of both recovered sets of dimensions. 
Canonical correlation analysis (CCorA) seeks linear combi-
nations of the two input data sets (here the sets of Isomap 
dimensions XFK and XFI) such that their common correlation 
is maximized (Legendre and Legendre 2012). In other words, 
for the first canonical variate we seek z Y vFK FK FK

( ) ( )1 1= , and 
z Y vFI FI FI

( ) ( )1 1= , with z z v vFK FI FK FI
FK FI( ) ( ) ( ) ( ), , ,1 1 1 1Î Î Î  n q q , 

such that they maximize their correlation r1
1 1= ( )corr FK FIz , z( ) ( ) .  

The emerging variables zFK
( )1  and zFI

( )1  are said to be the first 
canonical variates, and all subsequent canonical variates, zFI

( )i  
and zFK

( )i , 1 ≤ i ≤ min(qFK,qFI) are orthogonal to the previous. 
The solution to the problem can be achieved via singular value 
decomposition of the cross-correlation matrices. Bartlett’s χ2-
test reveals the significance of the canonical correlations.

Predicting spatial patterns

In order to predict the leading Isomap dimensions of 
Florkart and Flora Incognita, as well as the canonical vari-
ates, we used a random forest approach (Breiman 2001) 
that has been widely used i.e. for ecological applications 
(Pompe et  al. 2008, Bodesheim et  al. 2018). This flexible 
prediction approach can cope with correlations among the 
predictors and nonlinearities in the relation of predictors 
to target variables. Cross validation is needed to identify 
random forest regression models and estimate variable 
importances. However, because our data are strongly auto-
correlated in space a random selection of data points for 
cross validation would lead to overfitted models (Brenning 
2012). One approach to control for this effect is to leave 
spatially contiguous blocks of samples out in each cross-
validation step. It has been recently suggested not to select 
blocks based either on geographical distances, but to clus-
tering spatial points by their environmental conditions to 
obtain ‘environmentally separated folds’ (Valavi et al. 2018). 
Here we combined the idea of clustering by geographical 
and environmental conditions. This was possible using the 
affinity propagation algorithm (Frey and Dueck 2007) for 
data clustering, which works using asymmetric similarity 
matrices. We constructed a similarity matrix with the lower 
triangle contained environmental similarities of points 
estimated in the space of the four leading Isomap dimen-
sions, and the upper counterpart reflects the geographical 
proximity (inverse to the geographical distance). The geo-
graphical proximities penalises points that are environmen-
tally similar, but geographically distant to each other in the 
search of the clusters. The advantage of affinity propagation 
is that the number of clusters emerges from the data and 
does not have to be defined a priori (result of the cluster-
ing are shown in the Supporting information). The cross 
validation using these clusters as spatial labels, together with 
variable selection and estimating variable importance was 

performed with the ‘caret applications for spatio–temporal 
models’ (CAST R package) approach following Meyer et al. 
(2018). Because this study does not contain time informa-
tion, it essentially reduces to a spatial cross-validation sensu 
(Brenning 2012).

Results

Direct comparison of Flora Incognita and Florkart

A naïve comparison of both data sets based on Jaccard dis-
similarity at the grid-cell level revealed strongest differences in 
the least densely populated regions of Germany (Fig. 1a) – a 
bias we expected as a result of differences in the frequency of 
app usage. Jaccard dissimilarities between Florkart and Flora 
Incognita ranged between 0.55 and 1 (median of 0.87; Fig. 1a), 
which means that at best 45% of species occurrences were 
observed in both data sets across some grid cells, but some cells 
shared essentially no common species observation. The Jaccard 
dissimilarities showed a clear pattern of spatial clustering 
with lower values (i.e. better correspondence) around Berlin, 
Hamburg, Bremen and other densely urbanized regions. We 
observed maximum dissimilarities between the two collec-
tions in rural areas. Fig. 1d shows the Jaccard dissimilarities 
related to population counts. This visualization suggests that 
for each level of population count we can estimate a maximum 
dissimilarity between Florkart and Flora Incognita, and that 
this dissimilarity decreases with increasing population density. 
In other words, the correspondence of species composition 
among the two data sets is expected to increase with popula-
tion density. The quality of Flora Incognita coverage seems to 
be primarily dependent on the probability that a smartphone 
user is at a particular location. However, we also found devia-
tions from this pattern. We labelled the grid cells that showed 
a much lower Jaccard dissimilarity than the population count 
led us to expect. These places included, for example, Jena and 
Ilmenau, where the app was developed, but also well-known 
destinations for tourism (e.g. Zugspitze, Germany’s highest 
mountain; Amrum, an island in the North Sea). These find-
ings suggest that domestic ecotourism is beneficial for collect-
ing mobile-assisted citizen science data.

The Jaccard dissimilarities between Florkart and Flora 
Incognita are a symmetric measure of data mismatch 
(Fig. 1a). Hence, the observed levels of dissimilarity stem 
from a systematic undersampling from either of the two 
data sets. Figure 1b shows the Florkart exceedance, which is 
the ratio of species recorded in Florkart to those contained 
in both data sets, and Fig. 1c shows the corresponding Flora 
Incognita exceedance levels. This analysis indicated that 
the sampling biases were entirely owing to Flora Incognita 
(median of 7.04; Fig. 1b). Again, this asymmetric bias 
related well to the population counts (Fig. 1e). There were 
very few places where Flora Incognita indicated more spe-
cies occurrences than Florkart, and these were typically at 
the national border where Florkart has almost no records 
(Fig. 1c).
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Low-dimensional representations

We assumed that the p = 2598 species considered in this study 
were samples from a low-dimensional manifold, whose intrinsic 
dimension q ≪ p. Fig. 2 shows the comparison of the degree to 
which the two data streams can be compressed. We found that 
Florkart could be compressed much better than Flora Incognita 
(residual variances in four dimensions were approx. 10% ver-
sus 40%; for a sensitivity analysis with varying parameters see 
the Supporting information). In the following we worked with 
the leading four Isomap components of both data sets, selected 
such that for both data set additional dimensions did not 
explain substantially more variance. Given that both data sets 
were of exactly the same extrinsic dimension and covered the 
same geographical and species range, this figure suggests that 
Flora Incognita data must be noisier (i.e. harder to compress).

Visualizing the leading components in geographic space 
partly supports this conjecture (Fig. 3a–d versus Fig. 3e–h). 
While the leading dimensions from Florkart data showed 
smooth geographical patterns, the analogously extracted 

components from Flora Incognita were less smooth. To 
confirm the notion of lower autocorrelation in the patterns 
extracted from Flora Incognita we estimated Moran’s I for 
each dimension and get the following values for Florkart 
I I I Iy y y yFK FK FK FKand( ) ( ) ( ) ( ). , . , .1 2 3 40 96 0 90 0 75 0( ) = ( ) = ( ) = ( ) = ..81 ,  
and for Flora Incognita 
I I I Iy y y yFK FK FK FKand( ) ( ) ( ) ( ). , . , .1 2 3 40 57 0 67 0 60 0( ) = ( ) = ( ) = ( ) = ..53 . 
In light of the limited compressibility (Fig. 2), this finding 
is yet another hint for a high amount of noise in the crowd-
sourced data.

However, we also note that the first Isomap dimension 
derived from Flora Incognita (Fig. 3e) apparently shares cer-
tain patterns with the undersampling biases that we related 
to population density (cf. Fig. 1a–b). To investigate this fur-
ther, we used a machine-learning-based variable selection 
approach to understand to what degree ‘population count’ 
would be selected as a key predictor variable for each of the 
Isomap dimensions in both data sets. The results show that 
the dominant factor explaining the first two Flora Incognita 

Figure 1. Spatial inconsistencies between the Flora Incognita app data and the long term national inventory Florkart. (a) Map of Jaccard-
distances between Florkart and Flora Incognita occurrence data at the grid-cell level (observed minimum = 0.55). Maximal distances are 
found in rural areas in north-eastern-Germany. (b) Florkart exceedance level: the fraction of species in Florkart that are not found by Flora 
Incognita; and analogously. (c) Flora Incognita exceedance level. (d–f ) Relation of the values in the maps to population counts from the 
national census 2011.
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dimension is population density (Supporting information). 
The leading two Florkart dimensions, instead, can only be 
related to the two climate axes temperature and the wind/
seasonality axes, while the third axis has also a strong link to 

population density. Given that there is no reason to expect a 
population density effect in Florkart one shall also consider 
that population density and environmental conditions are 
not necessarily independent from each other.

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Florkart
Flora Incognita

Dimension

R
es

id
ua

l v
ar

ia
nc

e

Figure 2. Effectiveness of nonlinear dimensionality reduction. Residual variances in the compression of Florkart and Flora Incognita with 
Isomap (here k-NN = 16) show that Florkart can be compressed much more strongly than Flora Incognita, suggesting that we have much 
reduced noise levels.

Figure 3. Leading biogeographical dimensions recovered from Florkart and Flora Incognita. (a–d) Show the leading Isomap dimensions, 
yFK

( )i , and in (e–h) the analogously extracted Isomap dimensions from Flora Incognita yFI
( )i  where i = 1,…,4. Biogeographical gradients in 

Florkart are much smoother compared for Flora Incognita. The first Flora Incognita dimension in (e) is similar to the sampling bias in Fig. 
1a. All others share patterns with the leading Florkart dimensions.
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Interestingly, Flora Incognita’s second Isomap dimension 
was visually comparable to the first dimension recovered 
from Florkart. Figure 3 led us to suspect that higher Flora 
Incognita dimensions corresponded to the Florkart dimen-
sion, except for the first dimension, which apparently mainly 
carried the signal of the spatial bias.

Common macroecological patterns

In the best conceivable case, Flora Incognita and Florkart 
would have exactly the same entries for each species at each 

location. Hence, we next investigated the degree to which the 
dimensions extracted from Flora Incognita and Florkart were 
aligned and could be interpreted as a common set of underly-
ing environmental conditions. Figure 4 shows the four lead-
ing canonical variables, that is, the linear combinations of 
Isomap dimensions from each of the two data sets that maxi-
mize mutual correlations under the constraint of sequential 
orthogonality. We obtained four significant canonical vari-
ates with correlation values of ρ1 = 0.86, ρ2 = 0.65, ρ3 = 0.49 
and ρ4 = 0.37. These values of correspondence led us to 
conclude that the Flora Incognita records contain the major 

Figure 4. Joint biogeographical gradient in Flora Incognita and Florkart recovered from their leading Isomap dimensions and their relation 
to environmental drivers. (a–d) Significant canonical variates for Florkart zFK

( )i , i = 1,…,4 and in (e–h) for Flora Incognita zFI
( )i , i = 1,…,4. 

Both data sets share four biogeographical gradients with canonical correlations ranging from ρ1 = 0.86 to ρ4 = 0.37. (i–l) Predicting the joint 
canonical variates (e.g. zFK

( )1  and zFI
( )1 ) with random forests allows an environmental interpretation shown here as variable importance. 

Results from separate variable importance estimates for the prediction of the pairs z zFK FI
( ) ( ),i i  leads to similar, yet not identical results 

(Supporting information).
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biogeographical patterns of the German flora. Essentially, the 
canonical variate 1 was only driven by Florkart dimension 
1, while in the case of Flora Incognita, the canonical variate 
1 combined patterns from its first two Isomap dimensions 
(results in Supporting information). The second canonical 
variate corresponded to Isomap dimensions 3 of both Flora 
Incognita and Florkart.

The identified joint macroecological patterns (Fig. 4) sug-
gest that Flora Incognita indeed captures major patterns of 
species composition that could be linked to climatic and 
edaphic conditions. Using a machine learning regression 
approach that accounted for nonlinear relations, which was 
cross-validated to consider contiguous spatial folds to avoid 
overfitting due to autocorrelation, we were able to interpret 
all four significant canonical variates. In Fig. 4i–l we show the 
variable importance for the joint prediction of the Florkart 
and Flora Incognita canonical variates. The first joint pat-
tern is the most strongly related to the wind/temperature 
seasonality/temperature maximum axis, but also has a strong 
imprint of the soil water/texture axis. Interestingly, the first 
three canonical variates also reveal an imprint of population 
density. We suspect that in Germany, the human imprint 
is interrelated with natural sources of variation, as reported 
previously e.g. by Kühn et al. (2004), and it should always 
be considered a predictor beyond the analysis of data biases. 
The second canonical variate mainly reflects the signature of 
the precipitation axis, but again the wind/temperature sea-
sonality/temperature maximum axis has an effect, along with 
an additional imprint of soil pH values. The third and forth 
axes are the most complex, containing the interactions of 
more climate variables. The fact that PC4(soil) is not picked 
up as predictor can be explained by the fact that this is yet 
a second water related axis, which is however more related 
to soils clay content and therefore nonlinearily related to 
PC1(soil). Results for the variables of importance in predict-
ing the canonical variates independently are shown in the 
Supporting information. The models trained for the four 
canonical variates explained 49%, 51%, 38% and 41% of 
variance, respectively (in spatial cross validation).

Discussion

This study reports two apparently contradictory findings: On 
the one hand we find that macroecological species compo-
sition patterns uncovered from crowd-sourced plant occur-
rences can reveal plausible environmental gradients (Fig. 4), 
on the other hand we have identified substantial spatial biases 
in the raw data (Fig. 1). The fact that the recovered mac-
roecological patterns were robust to the spatial biases is an 
argument in favour of the chosen approach of nonlinear 
dimensionality reduction. However, these results must be 
interpreted with due caution, as the robustness of the pre-
sented results and the perspectives of the approach for com-
parable applications will always depend on data quality. In 
the following we therefore firstly discuss data quality issues, 
secondly the robustness of the macroecological patterns, and 

finally develop a perspective for transferring this approach the 
continental or global scale.

Data quality of automated species identification

Today multiple apps for automated plant species identifica-
tion are available (e.g. Bing, Flora Incognita, Google Lens, 
iPlant, PlantNet, PlantSnapb, Seek/iNaturalist; Jones 2020). 
One question is whether data collected by any of the other 
apps would haven been better, equally or less suitable for this 
specific study. A general remark is that Flora Incognita was 
launched in spring 2018 with the aim of supporting users 
in identifying flowering species in Germany. For the spe-
cific case of the German flora, the app’s accuracy approaches 
> 93% for single observations (Wäldchen  et  al. 2018), 
which are values close to expert-level classification results 
(Rzanny et al. 2019).. This is why, from a botanical point of 
view, we can regard Flora Incognita as suitable for the anal-
ysed region. However, Flora Incognita has shown potential 
beyond this regional focus: in a recent comparison of eight 
apps for automated plant species identification carried out 
for the British flora, it was reported that Flora Incognita is 
on par with other apps such as Plant.id, Google Lens and 
Seek (Jones 2020). The study by Jones (2020) also reports, 
for instance, that Flora Incognita, along with Seek makes ‘the 
fewest wrong suggestions as they tended not to give an answer 
where there is uncertainty’ (Jones 2020). These findings sug-
gest that other apps could have produced data of equal qual-
ity. In general, we expect that the maturity of the automated 
species classification algorithms to further increase in the 
coming years (Affouard et al. 2017, Van Horn et al. 2018, 
Jones 2020) through better training data in cooperation of 
users and botanical experts (in the case of Flora Incognita this 
is achieved via the companion app Flora Capture; Boho et al. 
2020), by using more advanced deep learning approaches 
for automated plant species identification (cf. latest advances 
presented e.g. in Figueroa-Mata and Mata-Montero 2020, 
Villon  et  al. 2020), or by more strongly considering addi-
tional information e.g. of geographical locations as suggested 
for instance by Wittich et al. (2018) or using other ancillary 
information (Goldsmith et al. 2016, Terry et al. 2020), e.g. 
exploiting novel potentials of satellite remote sensing data 
that can encode multiple land surface properties across scales.

Improvements in classification accuracy will, however, not 
solve the lack of spatial sampling coverage which is probably 
the major obstacle to the scientific exploitation of crowd-
sourced data. This problem became obvious in the direct 
comparison of Flora Incognita and Florkart at the grid-cell 
level (Fig. 1). We assume that the main effect leading to 
low correspondence levels between classical inventories and 
crowd-sourced data is the users recording behaviour. Flora 
Incognita is primarily used by non-experts with an interest in 
common or conspicuous species. Many common inconspicu-
ous species (such as Poaceae) are barely recorded. Another 
effect is that even in areas with high numbers of observa-
tions, rare species tend not to be sampled by Flora Incognita, 
while the expert surveys included in Florkart do report such 
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species. These are typical biases that have been shown in cit-
izen-science studies when non-experts are involved in data 
collection (Geldmann et al. 2016, Boersch-Supan et al. 2019, 
Johnston et  al. 2020). Another problem that might appear 
is the ‘confirmation bias’. Users of Flora Incognita need to 
confirm their observations which may lead to incorrectly 
reclassify a species. This issue is probably not so severe, as 
it mostly leads to errors when the classification algorithm is 
highly uncertain and shall actually reduce its error rates. At 
the same time, Flora Incognita also provides species descrip-
tions, where plant characteristics are described and images 
are shown. Users can thus verify the automatic identification 
again, which additionally reduces the ‘confirmation bias’. 
Still, further quality control such as plausibility checks need 
to be developed to increase the reliability of records and the 
signal to noise ratio. At the same time, it is also important to 
draw the user attention to specific species groups that should 
be recorded. This can be achieved, for example, when specific 
citizen science projects are carried out with Flora Incognita 
or comparable apps.

On retrieving empirical macroecological patterns

Related to the question of data quality issues during crowd-
sourcing is need for robust reference data. In this study, we 
relied on Florkart which today integrates observations col-
lected over 70 years, but suffers from some caveats as well. 
For instance, Mahecha and Schmidtlein (2008) reported 
sampling biases in Florkart due to inaccurate naming con-
ventions in particular in times where Germany was politi-
cally divided. Recently, Eichenberg  et  al. (2020) reported 
that, with the exception of neophytes, many species groups 
have declined in Germany over the past decades. Their study 
is mainly based on Florkart data and reports a negative trends 
in species richness of −0.19 [% year−1] after correcting for 
multiple potential taxonomic and sampling issues.

While we can assume that the spatial biases in Florkart 
are marginal to the present study (Mahecha and Schmidtlein 
2008, reported that the spatial sampling biases they identified 
in Florkart did not affect the leading Isomap components), 
the temporal non-stationarities in the reference data will need 
to be further investigated. The finding that Flora Incognita 
data contains macroecological co-occurrence patterns that 
match those extracted from Florkart, despite the data limita-
tions in both data sets, indicates that the approach of extract-
ing the leading underlying ecological dimensions minimises 
the imprint of biases. The known data artefacts and species 
range shifts have been mostly reported for individual species, 
i.e. singular dimensions in the high-dimensional binary vec-
tor space (Eichenberg et al. 2020). As we have shown here, the 
few underlying dimensions are related to gradients in climate 
conditions and soil properties along which species niches are 
oriented. Because both data sets have been gathered indepen-
dently, and given that both data sets suffer from their own 
biases, this emergence of common macroecological patterns 
is also an opportunity: co-interpreting crowd-sourced data 
and expert survey unravels robust ecological patterns and 

benefit from the strengths of both approaches as suggested 
earlier by Robinson et al. (2020).

Future research into the proposed approach will be ori-
ented along three avenues: 1) novel dimensionality reduction 
approaches could improve the robustness of the underly-
ing co-occurrence patterns. Although Isomap is much more 
effective for extracting underlying patterns compared to 
classical linear alternatives in biogeographical applications 
(Mahecha et al. 2007, 2009, Van Der Maaten et al. 2012), 
we expect that also in this area that novel deep-learning 
algorithms, such as (constrained) variational autoencoders 
(Kingma  et  al. 2019) could be used as robust alternatives. 
2) An additional improvement for the approach presented 
here will be exploiting the exact geographical locations of the 
crowd-sourced data or 3) using the proposed approach for 
tracking the change in macroecological patterns over time. 
The latter is possible given the accurate time-information 
available for each item such that e.g. phenological studies of 
empirical macroecological patterns are in reach.

Perspectives for regional to global applications

This study shows that crowd-sourced data from a mobile app 
do contain substantial macroecological patterns, which in the 
future could potentially become available at the sub-seasonal 
time scales and higher spatial resolutions. The next key ques-
tion that needs to be addressed is whether these advances 
can be established as a new operational tool for monitoring 
spatiotemporal macroecological dynamics across continents 
or even globally. While the technical answer to this ques-
tion is affirmative, the available apps and data-exploration 
methods are at a level of maturity where one can even think 
of assessing the diversity in the hot-spots of diversity, user 
community engagement will become the critical bottleneck. 
Undersampling in areas of low population density and the 
fact that a range of ecologically important species groups tend 
to be ignored are big challenges. Of course such problems 
were expected and have been reported for citizen science proj-
ects engaged with different species groups (Geldmann et al. 
2016, Tiago et al. 2017, Millar et al. 2019, Johnston et al. 
2020). As a consequence, crowd-sourced collections as pre-
sented here shall not be used for directly estimating levels of 
species richness and their changes and can only complement 
expert based biodiversity assessments. For instance, Boersch-
Supan et al. (2019) suggested that simple statistical models 
for estimating population trends from opportunistic lists are 
robust only for widespread and common species, even in a 
scheme with many observers and extensive coverage. Data 
quality limitations of this kind explain the general cautionary 
reception of citizen science approaches in the scientific litera-
ture (Dickinson et al. 2010, Kosmala et al. 2016, Urban et al. 
2016, Callaghan et al. 2019b), as well as the ongoing efforts 
to optimise sampling and evaluation strategies for citizen sci-
ence data (Specht and Lewandowski 2018, Callaghan et al. 
2019a, Kelling et al. 2019).

But even if the current potentials of automated species 
recognition are not in the direct quantification of species 
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richness, can such data complement professional inventories 
or be exploited as inputs to more complex analysis. Under 
the assumption that apps for automated species identification 
continue to enjoy broad user uptake and sufficient informa-
tion comes together (Bonnet  et  al. 2020), we envisage that 
analyses like the one presented here could offer novel perspec-
tives for macroecological research. One idea would be to co-
interpret the derived with the emerging multivariate satellite 
derived data cubes that continuously describe the states and 
processes of land-ecosystems globally (Mahecha et al. 2020). 
But the most direct way forward is addressing macroecological 
patterns in time from the seasonal (phenological) time scale 
to inter-annual dynamics. The latter is needed to quantify the 
imprint of climate variability on ecosystems as a whole. We 
hope that automated species identification will become a stan-
dard accompanying e.g. coordinated field campaigns.

We expect that the collection of species occurrence data 
with apps like Flora Incognita or others will soon be used to 
analyse changes in ecosystems worldwide in near real time. 
To achieve such a vision, two major challenges need to be 
addressed: Firstly, data interoperability across different ini-
tiatives must be achieved. Secondly, quality assurance and 
control mechanisms for all crowd-sourced data must be rigor-
ously established. Only if these two challenges are overcome 
will we be able to tap into the full potential of these new tech-
nologies to rapidly assess change in biogeographic dynamics 
on continental to global scales.

Conclusions

Almost 1 million georeferenced observations of species 
occurrences have been collected with a smartphone app 
during two growing seasons in Germany, which has led to 
complete coverage of the German traditional inventory grid. 
Despite of biases in the effective species numbers, this new 
data collection encodes important macroecological patterns 
that correspond well to those extracted from the traditional 
reference database. This finding underscores the potential of 
smartphone-assisted citizen science and crowd-sourcing for 
very rapid monitoring of changes in macroecological pat-
terns. Approaches of this kind may complement long-term 
data collections that explain decadal changes in species com-
position so far (Blowes et al. 2019). Although this study is 
regional in scope, it shows that technological advances in 
the hands of citizen scientists allow monitoring biodiversity 
transformation in near real time.
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