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Well-balanced finite volume
multi-resolution schemes for
solving the Ripa models
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Abstract
In this article, fifth order well-balanced finite volume multi-resolution weighted essentially non-oscillatory (FV MR-
WENO) schemes are constructed for solving one-dimensional and two-dimensional Ripa models. The Ripa system gen-
eralizes the shallow water model by incorporating horizontal temperature gradients. The presence of temperature gradi-
ents and source terms in the Ripa models introduce difficulties in developing high order accurate numerical schemes
which can preserve exactly the steady-state conditions. The proposed numerical methods are capable to exactly pre-
serve the steady-state solutions and maintain non-oscillatory property near the shock transitions. Moreover, in the pro-
cedure of derivation of the FV MR-WENO schemes unequal central spatial stencils are used and linear weights can be
chosen any positive numbers with only restriction that their total sum is one. Various numerical test problems are con-
sidered to check the validity and accuracy of the derived numerical schemes. Further, the results obtained from consid-
ered numerical schemes are compared with those of a high resolution central upwind scheme and available exact
solutions of the Ripa model.
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Introduction

The shallow water equations (SWEs) are of great
importance due to wide range applications in incom-
pressible flows, such as bore propagation, solute trans-
port, currents in estuaries, and in surges or tsunamis
phenomenon. The Ripa model comprises the SWEs
and terms which account for horizontal temperature
fluctuations. This shows that the study of Ripa models
is of great importance to understand the various real-
world phenomenon. Initially, the Ripa model was pre-
sented in Refs.1–3 to analyze the ocean currents. The
governing equations of this model were derived by inte-
grating the velocity field, density, and horizontal gradi-
ents along the vertical direction in each layer of multi-
layered models.3,4 Recently, different numerical

schemes are introduced to solve the Ripa models, see
for instance.4–9 Meanwhile, the exact solutions of
Riemann problems for one-dimensional Ripa models
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with flat and non flat bottom topographies are com-
puted in Rehman and Qamar.10 The basic idea for con-
structing exact solutions in Rehman and Qamar10 have
been taken from Refs.11–13 All the aforementioned
numerical techniques for the Ripa models are at most
second order accurate except the one presented in Han
and Li.6 Han and Li6 the authors have used high order
finite difference schemes based on WENO limiters14 for
solving the Ripa model. However, the finite difference
schemes have some limitations. For examples, the finite
volume numerical techniques enforce the conservation
of flow variables at the discretized level and such types
of techniques are easily formulated for the unstructured
grid systems.

Due to the importance of nonlinear hyperbolic con-
servation laws, lot of high order numerical schemes
have been designed to solve these laws. Among them,
essentially non-oscillatory (ENO) and weighted essen-
tially non-oscillatory schemes have been applied suc-
cessfully to solve these conservation laws in one, two,
and three dimensions. First of all, Harten and Osher15

developed FV ENO numerical scheme that used an
adaptive stencil based on smooth indicators. This
scheme resolved the sharp discontinuities efficiently and
ensured high order accuracy in the smooth areas. After
that, Shu and Osher16,17 introduced finite difference
ENO schemes in 1988 and 1989. Subsequently, Liu
et al.18 introduced the third order FVWENO numerical
scheme which is improved version of FV ENO scheme.
In this FV WENO scheme, they improved the order of
accuracy and used the convex combination of all the
candidate stencils. Later, Jiang and Shu19 developed
high order finite difference WENO numerical schemes.
Since then, these numerical schemes are being devel-
oped, modified, and extended for different fields of sci-
ence and engineering, for detail see Refs.20–30 Also well-
balanced finite difference and finite volume WENO
schemes6,14,31–33 are developed for compressible and
incompressible fluid flows.

In this article, fifth order well-balanced finite volume
multi-resolution WENO schemes are constructed for
solving the one-dimensional (1D) and two-dimensional
(2D) Ripa models with and without source terms. We
borrow the idea of MR-WENO scheme from Zhu and
Shu34 and take the idea of well-balancing technique
from Xing and Shu.33 Zhu and Shu34 the authors
develop this scheme for computing the homogeneous
models. Basically, the multi-resolution techniques35,36

were designed to reduce the computational costs of high
resolution numerical algorithms. Since these multi-
resolution schemes concentrate the regions of computa-
tional domain which include sharp gradients. Further,
the multi-resolution WENO scheme has better conver-
gence property as compare to the classical WENO
scheme. Wang et al.37 the authors have proved that the
multi-resolution WENO scheme has better convergence

property by considering the one-dimensional steady
state shallow flows. For further detail about these
schemes, the reader is referred to the articles.37–39

Further, the presence of horizontal temperature gradi-
ents and source terms make the Ripa models more chal-
lenging for the numerical schemes. Hence, it is more
difficult to numerically preserve the steady-state solu-
tions of the considered models. The main objectives of
the suggested numerical schemes are to preserve the
steady-state solutions without sacrificing the high order
accuracy and do not create unwanted oscillations in the
vicinity of temperature jump. This objective is achieved
by decomposing the integral of source terms into the
sum of particular terms, then computing each term in a
way which is consistent to the computation of corre-
sponding numerical fluxes.

The organization of remaining article is as follow. In
Section 2, the mathematical form of 1D and 2D Ripa
systems is given. Next, the construction of fifth order
FV MR-WENO for 1D and 2D problems are presented
in Section 3. In Section 4, we develop the well-balanced
techniques for 1D and 2D Ripa models. In Section 6,
the numerical solutions obtained from the considered
numerical methods are compared with the results of the
high resolution central upwind schemes40 and for some
particular cases these numerical solutions are also com-
pared with exact solutions of 1D Ripa model.10 Finally,
in Section 7, the conclusions are presented.

The Ripa systems

Here, we describe the properties of 1D and 2D Ripa
models. The 1D Ripa model has the following form
Chertock et al.4

∂th+ ∂x(hu)= 0, ð1Þ

∂t(hu)+ ∂x hu2 +
gh2u

2

� �
=� ghu∂xz, ð2Þ

∂t(hu)+ ∂x huuð Þ= 0: ð3Þ

Where, h(x, t) represents the water depth, u(x, t) repre-
sents the fluid velocity in x direction, u is the tempera-
ture field, z(x) denotes the bottom topography, and g is
the gravitational constant. The 1D Ripa model can be
expressed as

∂tU+ ∂xF(U)=Z(U, x), ð4Þ

with U=(h, hu, hu), F(U)= (F1,F2,F3)=

(hu, hu2 + gh2u

2
, huu), and Z(U, x)= (0, � ghu∂xz, 0):

The eigen values of Jacobian matrix ∂F
∂U

are l1 = u�ffiffiffiffiffiffiffiffi
ghu
p

, l2 = u, l3 = u+
ffiffiffiffiffiffiffiffi
ghu
p

. For the stability of pro-
posed numerical schemes, these eigen values are used to
find the dynamic time steps. Similar to the system of
shallow water equations, the system (4) also has
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stationary solutions. These stationary solutions are
well-explained in the articles.5,41 One of them is
described as

H = h+ z=constant, u= 0, u=constant: ð5Þ

For this steady-state, the flux function is absolutely
balanced by the source term.

The 2D Ripa model4 is defined as

∂th+ ∂x(hu)+ ∂y(hv)= 0, ð6Þ

∂t(hu)+ ∂x hu2 +
gh2u

2

� �
+ ∂y(huv)=� ghu∂xz, ð7Þ

∂t(hv)+ ∂x(huv)+ ∂y hv2 +
gh2u

2

� �
=� ghu∂yz, ð8Þ

∂t(hu)+ ∂x huuð Þ+ ∂y hvuð Þ= 0: ð9Þ

Here, h(x, y, t) represents the water depth, u(x, y, t) and
v(x, y, t) represent the fluid velocities in x and y direc-
tions respectively, u is the temperature field, z(x, y)
denotes the bottom topography, and g is the gravita-
tional constant. The 2D Ripa model is written in com-
pact form as

∂tU+ ∂xF(U)+ ∂yG(U)=Z(U,X), ð10Þ

with U=(h, hu, hv, hu), F(U)= (F1,F2,F3,F4)=

(hu, hu2 + gh2u

2
, huv, huu), G(U)= (hv, huv, hv2 +

gh2u

2
, hvu), and Z(U,X)= (0, � ghu∂xz, � ghu∂yz, 0):

The eigen values of Jacobian matrix ∂F
∂U

are

l1 = u�
ffiffiffiffiffiffiffiffi
ghu
p

, l2 = u, l3 = u, l4 = u+
ffiffiffiffiffiffiffiffi
ghu
p

and the

corresponding eigen values of the Jacobian matrix ∂G
∂U

are s1 = v�
ffiffiffiffiffiffiffiffi
ghu
p

,s2 = v,s3 = v,s4 = v+
ffiffiffiffiffiffiffiffi
ghu
p

.
The system (10) also admits stationary solutions in

which flux gradients are balanced by the source terms
in the steady state case. One of them is expressed as

H = h+ z=Constant, u=Constant, u= 0, v= 0,

ð11Þ

Similar to the 1D case, for the steady-state in equation
(11), the source terms are completely balanced by the
flux gradients in 2D Ripa model.

Construction of high order FV MR-WENO
schemes for the Ripa models

In this section, we construct FV MR-WENO numerical
algorithm for computing the Ripa models. First, we
consider the homogeneous form of the considered
model (4) as follow

∂tU+ ∂xF(U)= 0, t.0, x 2 O, ð12Þ

and divide the domain O into cells
Ci = ½xi�1

2
, xi+ 1

2
�, i= 1, :::,N : Here, the center of i� th

cell is denoted by xi =
x

i�1
2
+ x

i+ 1
2

� �
2

and length of i� th

cell by Dxi: By integrating the equation (12) over Ci, we
have

d

dt
U(xi, t)+

1

Dxi

F(U(xi+ 1
2
, t)� F(U(xi�1

2
, t))

� �
= 0,

ð13Þ

where U(xi, t)=
1

Dxi

Ð x
i+ 1

2
x

i�1
2

U(x, t)dx. The equation (13) is
approximated by the conservative scheme, as described
in follow

d

dt
Ui(t)+

1

Dxi

F̂i+ 1
2
� F̂i�1

2

� �
= 0: ð14Þ

Where, F̂i+ 1
2
= z U�

i+ 1
2

,U+
i+ 1

2

� �
denotes the monotone

numerical flux and U
i+ 1

2
6 are pointwise approxima-

tions to U(xi+ 1
2
, t). Here, we will use the Lax-Friedrichs

flux (LFF) as a monotone numerical flux which is
defined as below

z U�
i+ 1

2
,U+

i+ 1
2

� �
=

1

2
F(U�

i+ 1
2
)+F(U+

i+ 1
2
)� q(U+

i+ 1
2
�U�

i+ 1
2
)

� �
,
ð15Þ

where q= maxU jF0(U)j. Now computational variables
are Ui(t) which will approximate the cell-averages
U(xi, t). Further, the U�

i+ 1
2
and U+

i+ 1
2
are calculated

through the adjacent cell-average values Ui by MR-
WENO reconstruction. For the fifth order MR-
WENO reconstruction, we choose three central candi-
date stencils, S1(i)= fCig, S2(i)= fCi�1,Ci,Ci+ 1g
and S3(i)= fCi�2,Ci�1,Ci,Ci+ 1,Ci+ 2g and recon-
struct the zeroth, second, and fourth degree polyno-
mials p1(x), p2(x), and p3(x) respectively, which satisfy

1

Dxi

ðx
j+ 1

2

x
j�1

2

p1(x)dx=Uj, j= i, ð16Þ

1

Dxi

ðx
j+ 1

2

x
j�1

2

p2(x)dx=Uj, j= i� 1, i, i+ 1 ð17Þ

1

Dxi

ðx
j+ 1

2

x
j�1

2

p3(x)dx=Uj, j= i� 2, i� 1, i, i+ 1, i+ 2:

ð18Þ

More precisely, the explicit expressions for p1(x), p2(x),
and p3(x) are given as follow

p1(x)=Ui, ð19Þ

Rehman et al. 3



p2(x)=
Ui+ 1 � 2Ui +Ui�1

2(Dxi)
2

(x� xi)
2

+
Ui+ 1 �Ui�1

2(Dxi)
(x� xi)

+
�Ui+ 1 + 26Ui �Ui�1

24
,

ð20Þ

p3(x)=
1

1920

½(80Ui�2 � 320Ui�1 + 480Ui � 320Ui+ 1 + 80Ui+ 2)

(Dxi)
4

(x� xi)
4

ð21Þ

+
(160Ui�2 � 320Ui�1 + 320Ui+ 1 � 160Ui+ 2)

(Dxi)
3

(x� xi)
3

ð22Þ

+
(120Ui�2 � 1440Ui�1 + 2640Ui � 1440Ui+ 1 + 120Ui+ 2)

(Dxi)
2

(x� xi)
2

ð23Þ

+
(200Ui�2 � 1360Ui�1 + 1360Ui+ 1 � 200Ui+ 2)

(Dxi)

(x� xi)

ð24Þ

+(9Ui�2 � 116Ui�1 + 2134Ui � 116Ui+ 1 + 9Ui+ 2)�:
ð25Þ

The point-wise reconstructed values U+
i+ 1

2

and U�
i+ 1

2

are
obtained by the following relations

U+
i+ 1

2
=v1Û

1

i+ 1
2
+v2Û

2

i+ 1
2
+v3Û

3

i+ 1
2
, ð26Þ

U�
i+ 1

2
= ~v1

~U
1

i�1
2
+ ~v2

~U
2

i�1
2
+ ~v3

~U
2

i�1
2
, ð27Þ

where Û
l

i+ 1
2
and ~U

l

i�1
2
, for l = 1, 2, 3, are reconstructed

values. The values ~U
l

i�1
2
are mirror symmetric to the val-

ues Û
l

i+ 1
2
. Hence, we just define the values Û

l

i+ 1
2
as

follow

Û
1

i+ 1
2
= p1(xi+ 1

2
), ð28Þ

Û
2

i+ 1
2
=

1

j2, 2

p2(xi+ 1
2
)� j1, 2

j2, 2

Û
1

i+ 1
2
, ð29Þ

Û
3

i+ 1
2
=

1

j3, 3

p3(xi+ 1
2
)� j1, 3

j3, 3

Û
1

i+ 1
2
� j2, 3

j3, 3

Û
2

i+ 1
2
, ð30Þ

with

p1(xi+ 1
2
)=Ui, ð31Þ

p2(xi+ 1
2
)=
�1

6
Ui�1 +

5

6
Ui +

1

3
Ui+ 1, ð32Þ

p3(xi+ 1
2
)=

1

30
Ui�2 �

13

60
Ui�1 +

47

60
Ui

+
9

20
Ui+ 1 +

1

20
Ui+ 2:

ð33Þ

Where j1, 2 + j2, 2 = 1, j1, 3 + j2, 3 + j3, 3 = 1, and
j2, 2, j3, 3 6¼ 0. In these expressions, j1, 2, j2, 2 are the lin-
ear weights. For a balance between the sharp and essen-
tially non-oscillatory shock transitions in non-smooth
regions and accuracy in smooth regions, we set the lin-
ear weights as j1, 2 = 1=11, j2, 2 = 10=11, j1, 3 = 1=111,
j2, 3 = 10=111, and j3, 3 = 100=111 for the fifth-order
approximation, as described in Zhu and Shu.34

The nonlinear weights vl in equation (26) are defined
as

vl =
�vlPm

l = 1 �vl

, �vl = jl,m 1+
t

e+Bl

� �
,

l = 1, :::,m; m= 3:

ð34Þ

Here e is taken as 10�10 in all the simulations. Here, jl

and Bl respectively denote the linear weights and
smoothness indicators. These smoothness indicators in
general form are written as

Bm =
X2(m�1)

j= 1

ðx
i+ 1

2

x
i�1

2

h2j�1 djpm(x)

dxj

� �2

dx, m= 2, 3,

ð35Þ

Here, the values of B1,B2, and B3 are defined in the
same way as described in Shu26,27 and Zhu and Shu.34

More precisely, these smooth indicators are defined as
follow

B2 =
13

12
Ui�1 � 2Ui +Ui+ 1

� �2
+

1

4
Ui�1 �Ui+ 1

� �2
,

ð36Þ

B3 = h1 +
1

10
h3

� �2

+
13

3
h2 +

123

455
h4

� �2

+
781

20
h3ð Þ

2 +
1421461

2275
h4ð Þ,

ð37Þ

where

h1 =
1

120
11Ui�2 � 82Ui�1 + 82Ui+ 1 � 11Ui+ 2

� �
,

ð38Þ

h2 =
1

56
�3Ui�2 + 40Ui�1 � 74Ui+ 1 + 40Ui+ 1 � 3Ui+ 2

� �
,

ð39Þ

h3 =
1

12
�Ui�2 + 2Ui�1 � 2Ui+ 1 +Ui+ 2

� �
, ð40Þ
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h4 =
1

24
Ui�2 � 4Ui�1 + 6Ui � 4Ui+ 1 +Ui+ 2

� �
:

ð41Þ

Now for resolving the discontinuities efficiently, the
expression of B1 is defined as follow

d0 = Ui �Ui�1

� �2
, d1 = Ui+ 1 �Ui,

� �2 ð42Þ

�j0, 1 =
1, d0.d1,
10, otherwise

	
, �j1, 1 = 1� �j0, 1, ð43Þ

j0, 1 =
�j0, 1

�j0, 1 + �j1, 1

, j1, 1 = 1� j0, 1, ð44Þ

s0 = j0, 1 1+
d0 � d1j j2

d0 + e

 !
,

s1 = j1, 1 1+
d0 � d1j j2

d1 + e

 !
, s=s0 +s1:

ð45Þ

In equation (45), e can be taken any small positive num-
ber for avoiding the denominator to become zero. In
the last, we set

B1 =
1

s2
s0(Ui �Ui�1)+s1(Ui+ 1 �Ui)
� �

: ð46Þ

The term t in equation (34) is given as

t =

P2
l = 1 B3 �Blj j

2

 !
: ð47Þ

This completes the procedure of spatial reconstruction.
Next we describe the finite volume MR-WENO

scheme for 2D Ripa model. Consider the two-
dimensional Ripa model (10) in homogeneous form as
follow

∂tU+ ∂xF(U)+ ∂yG(U)= 0, t.0, x, y 2 O: ð48Þ

Divide the computational domain O into cells Cij =

½xi�1
2
, xi+ 1

2
�3 ½yj�1

2
, yj+ 1

2
�, i= 1, :::,Nx, j= 1, :::,Ny: and

integrate the equation (48) over cell Cij to obtain

d

dt

e
U(xi, yj, t)+

1

DxiDyj

(

ðy
j+ 1

2

y
j�1

2

F(U(xi+ 1
2
, y, t))dy�

ðy
j+ 1

2

y
j�1

2

F(U(xi�1
2
, y, t))dy

+

ðy
j+ 1

2

y
j�1

2

G(U(x, yj+ 1
2
, t))dy�

ðy
j+ 1

2

y
j�1

2

G(U(x, yj�1
2
, t))dy)= 0,

ð49Þ

where eU(xi, yi, t)=
1

DxiDyj

Ð y
j+ 1

2
y

j�1
2

Ð x
i+ 1

2
x

i�1
2

U(x, y, t)dxdy is the

cell average. The notations g( � ) and ( � ) denote the cell

average in x-direction and cell average in y-direction.
The equation (49) is approximated as follow

d

dt
eUij(t)+

1

Dxi

F̂i+ 1
2
, j � F̂i�1

2
, j

� �
+

1

Dyj

Ĝi, j+ 1
2
� Ĝi, j�1

2

� �
= 0,

ð50Þ

where numerical fluxes are defined as

F̂i+ 1
2
, j =

X3

l = 1

YlF̂(U
�
i+ 1

2
, j+ul

,U+
i+ 1

2
, j+ul

)= eFi+ 1
2
, j,

ð51Þ

and

Ĝi, j+ 1
2
=
X3

l = 1

YlĜ(U�
i+ul , j+

1
2
,U+

i+ul , j+
1
2
)=Gi, j+ 1

2
,

ð52Þ

with F̂i+1
2
, j=z U�

i+ 1
2
, j+ul

,U+
i+ 1

2
, j+ul

� �
and Ĝi+ul , j+

1
2
=

z U�
i+ul , j+

1
2
,U+

i, j+ 1
2

� �
, where numerical flux z (a, b) is

defined on the same lines as given in equation (15) and
U

i+ 1
2
, j+ul

6 and U
i+ul , j+

1
2
6 are approximations

acquired by MR-WENO reconstruction strategy in a
dimension-by-dimension way. Yl and ul are the
Gaussian quadrature weights and nodes. Here, for the
fifth order reconstruction, we varies l from 1 to 3. For
more detail about the implementation of two dimen-
sional WENO schemes, the reader is referred to
Shu26,27 and Zhu and Shu.34

Construction of well-balanced techniques
for the Ripa systems

Here, we construct a high order well-balanced FV MR-
WENO scheme for 1D and 2D Ripa models. First we
construct a well-balanced high order finite volume
WENO scheme for 1D Ripa model (4). By using equa-
tions (4) and (14), we obtain the semi-discrete form of
1D Ripa model as follow

d

dt
Ui(t)=�

1

Dxi

F̂i+ 1
2
� F̂i�1

2

� �
+

1

Dxi

ð
Ci

Z(U, x)dx,

ð53Þ

The key idea to develop a well-balanced FV MR-WENO
scheme which exactly preserves the steady-states (5) is
to decompose the integral of non-conservative term in
equation (53) into sum of various terms. Each term is
computed in a way that consistent with the correspond-
ing computed flux terms. The first step in construction of
high order well-balanced FV MR-WENO method is to
obtain the values of U

i+ 1
2

6 from the given cell averages
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Ui as explained in Section 3. Consider that the source
term can be written as

Z(U, x)= Zq(U, x)=
X

r

sr(ar(U, x))b
0

r(x), q= 1, 2, 3,

ð54Þ

where sr and br are some known functions, for more
detail, see Xing and Shu.33 Since the source term of
Ripa model is

Z(U, x)= Z1(U, x), Z2(U, x), Z3(U, x)= (0, � ghu∂xz, 0)ð Þ:
ð55Þ

As Z1(U, x) and Z3(U, x) are zeros so only Z2(U, x) is
written as

Z2(U, x)=� ghu∂xz=� gu(h+ z)zx +
gu

2
(z2)x: ð56Þ

From equations (5), (54), and (56) , we have

a1 = z+ h=constant, a2 = u= 0, a3 = u,
s1(a1)=� gu(h+ z), s2(a2)=

gu

2
,

b1(x)= z, b2(x)= z2:
ð57Þ

For the construction of high order finite volume scheme
apply MR-WENO reconstruction to the function
(0, z(x), 0), with coefficients computed from h, hu, hu, to
obtain z

i+ 1
2

6 . Next integrate the source term in equa-
tion (54) over the cell Ci asð

Ci

Z(U, x)dx=
X

r

ð
Ci

sr(ar(U, x))b
0

r(x)dx: ð58Þ

and decompose it in the following way

X
r

ð
Ci

sr(ar(U, x))b
0

r(x)dx

=
X

r

(
1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
))

ð
Ci

b
0

r(x)dx

+

ð
Ci

(sr(ar(U, x))� 1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
)))b

0

r(x)dx)

=
X

r

(
1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
))(br(xi+ 1

2
)� br(xi�1

2
))

+

ð
Ci

(sr(ar(U, x))� 1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
)))b

0

r(x)dx),

ð59Þ

The high order approximations (br)i+ 1
2
6 to br(xi+ 1

2
)

are chosen suitably which satisfy the following relation

F2(Ui+ 1
2
6 )�

X
r

sr(ar(U, x)i+ 1
2
6 (br)i+ 1

2
6 )= constant,

ð60Þ

when the steady-state is reached. For 1D Ripa model
these high order approximations (br)i+ 1

2
6 are defined as

(b1)i+ 1
2
6 = z

i+ 1
2
6 , (b2)i+ 1

2
6 =(z

i+ 1
2
6 )2: ð61Þ

and clearly for the steady-state (11) and (57), we have

F2(U
+
i+ 1

2
)�
X

r

sr(ar(U , x)+i+ 1
2
(br)

+
i+ 1

2

=
g

2
(u+

i+ 1
2
)(h+

i+ 1
2
)2 +

g

2
(u�

i+ 1
2
(h�

i+ 1
2
+ z�

i+ 1
2
)

+ u+
i+ 1

2
(h+

i+ 1
2
+ z+

i+ 1
2
))z+

i+ 1
2
� g

2
u+

i+ 1
2
(z+

i+ 1
2
)2

=
g

2
(c)((h+

i+ 1
2
)2 � (z+

i+ 1
2
)2)+ g(c)(c)z+

i+ 1
2

=
g

2
(c)((h+

i+ 1
2
)+ (z+

i+ 1
2
))((h+

i+ 1
2
)� (z+

i+ 1
2
))+ g(c)(c)z+

i+ 1
2

=
g

2
(c)(c)((h+

i+ 1
2
)� (z+

i+ 1
2
))+ g(c)(c)z+

i+ 1
2

=
g

2
(c)2((h+

i+ 1
2
)� (z+

i+ 1
2
)+ 2(z+

i+ 1
2
))

=
g

2
(c)3:

Similarly we can get F2(U
�
i+ 1

2
)�
P

r sr(ar(U, x)�i+ 1
2

(br)
�
i+ 1

2
= g

2
(c)3: Thus the source term takes the follow-

ing form

X
r

ð
Ci

sr(ar(U, x))b
0

r(x)dx

=
X

r

(
1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
))((b̂r)i+ 1

2
� (b̂r)i�1

2
)

+

ð
Ci

(sr(ar(U, x))� 1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
)))b

0

r(x)dx),

ð62Þ

where (b̂r)i+ 1
2
is approximation to br(xi+ 1

2
) and defined

as

(b̂r)i+ 1
2
=

((br)
�
i+ 1

2
+(br)

+
i+ 1

2
)

2
: ð63Þ

The remaining integral term in equation (62) is com-
puted by high order Gauss-Lobatto quadrature.
Finally, for the construction of well-balanced FV MR-
WENO scheme, introduced a minor change in a mono-
tone Lax-Friedrichs numerical flux

F̂i+ 1
2
= z U�

i+ 1
2
,U+

i+ 1
2

� �
=

1

2
F(U�

i+ 1
2
)+F(U+

i+ 1
2
)� q(U+

i+ 1
2
�U�

i+ 1
2
)

h i
,

by replacing (U+
i+ 1

2
�U�

i+ 1
2
) with (a(U, x)+i+ 1

2
�

a(U, x)�i+ 1
2
), where a(U, x)+i+ 1

2
=(a1(U, x)+i+ 1

2
,

a2(U, x)+i+ 1
2
, a3(U, x)+i+ 1

2
). Now modified numerical flux

becomes
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F̂i+ 1
2
= z U�

i+ 1
2
,U+

i+ 1
2

� �
=

1

2
F(U�

i+ 1
2
)+F(U+

i+ 1
2
)� q(a(U, x)+i+ 1

2
� a(U, x)�i+ 1

2

h i
:

ð64Þ

This completes the construction of well-balanced FV
MR-WENO scheme for 1D Ripa system. Finally, we
end up with the semi-discrete equation as follow

d

dt
Wi(t)=�

1

Dxi

F̂i+ 1
2
� F̂i�1

2

� �
+

1

Dxi

Zið Þ, ð65Þ

or the above equation can be described as

d

dt
Wi(t)=L(W): ð66Þ

Where L(u) denotes spatial operator. Now, for solving
the system of ordinary differential equations (66), we
apply the third order TVD RK method16 as follow

U(1) =Un + dtL(un),

U(2) =
3

4
Un +

1

4
(U(1) + dtL(U(1))),

U(n+ 1) =
1

3
Un +

2

3
(U(2) + dtL(U(2))),

ð67Þ

with dt= CFL�dx
q

where q=maxUjl(U)j and CFL
denotes Courant-Friedrichs-Lewy coefficient.

Proposition 4.1.The construction of FV MR-WENO
method with modified Lax-Friedrichs numerical flux
is a well-balanced scheme and high order accurate for
general solutions.

Proof. Obviously, for the steady-state solution, ar(U, x)
and ar(U, x)i 6 1

2
6 are equal to the same constant c at

each Gauss-Lobatto point in equation (59), so the inte-
gral termð

Ci

(sr(ar(U, x))� 1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
)))b

0

r(x)dx,

becomes zero and flux term in equation (64) becomes

F̂i+ 1
2
=

1

2
F(U�

i+ 1
2
)+F(U+

i+ 1
2
)

h i
: ð68Þ

Now the truncation error term reduces to

� F̂2, i+ 1
2
+ F̂2, i�1

2
+
X

r

(
1

2
(sr(ar(U, x)+i�1

2
)+ sr(ar(U, x)�i+ 1

2
))((b̂r)i+ 1

2
� (b̂r)i�1

2
),

=� F̂2, i+ 1
2
+ F̂2, i�1

2
+
X

r

(sr(c))((b̂r)i+ 1
2
� (b̂r)i�1

2
),

=� F̂2, i+ 1
2
+
X

r

(sr(c))((b̂r)i+ 1
2
)+ F̂2, i�1

2
�
X

r

(sr(c))((b̂r)i�1
2
),

=� 1

2
(F̂2(U

�
i+ 1

2
)+ F̂2(U

+
i+ 1

2
))+

X
r

(sr(c))
1

2
((br)

+
i+ 1

2
+(br)

�
i+ 1

2
)

+
1

2
(F̂2(U

�
i�1

2
)+ F̂2(U

+
i�1

2
))�

X
r

(sr(c)))
1

2
((br)

+
i�1

2
+(br)

�
i�1

2
),

ð69Þ

By using equation (60), the expression in equation (69)
becomes zero which shows that the proposed numerical
scheme is well-balanced. It is straightforward that the
proposed numerical scheme is high order accurate for
general solutions.

Now we explain the construction of well-balanced
finite volume scheme for 2D Ripa model. By using the
equations (10) and (50) with equations (51) and (52),
semidiscrete form of the 2D Ripa model is written as

d

dt

e
Uij(t)+

1

Dxi

F̂i+ 1
2
, j � F̂i�1

2
, j

� �
+

1

Dyj

Ĝi, j+ 1
2
+ Ĝi, j�1

2

� �
=

1

DxiDyi

ð
Cij

ð
Cij

Z(U,X)dxdy,

ð70Þ

where the source term of 2D Ripa model is

Z(U,X)= Z1(U, x, y), Z2(U, x, y), Z3(U, x, y),ð
Z4(U, x, y)= (0, � ghu∂xz, � ghu∂yz, 0)Þ:

ð71Þ

As Z1(U, x, y) and Z4(U, x, y) are zeros, so the decompo-
sition of Z2(U, x, y) and Z3(U, x, y) is written as

Z2(U, x)=� ghu∂xz=� gu(h+ z)zx +
gu

2
(z2)x, ð72Þ

and

Z3(U, x)=� ghu∂yz=� gu(h+ z)zy +
gu

2
(z2)y: ð73Þ

Next we follow the same procedure in each of the x and
y directions as discussed for the construction of 1D
case.
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Central upwind numerical scheme

For validation and checking the accuracy, the results
obtained from the multi-resolution WENO numerical
schemes are compared with the results obtained from
the CUP schemes.40 Here, only final formulaton of the
second order CUP scheme is presented. For detail, see
Nessyahu and Tadmor40 and references therein. By
integrate the equation (12) over ith cell Ci, we have

U
n+ 1

i+ 1
2
=

1

2
(U

n

i +U
n

i+ 1)+
Dxi

8
((Ux)

n
i � (Ux)

n
i+ 1)

� q(F(U)
n+ 1

2

i+ 1 � F(U)
n+ 1

2

i ),

ð74Þ

where (U)
n+ 1

2

i are the mid-point values and approxi-
mated by the Taylor expansion and the numerical deri-
vatives (Ux)

n
i are calculated by employing nonlinear

limiters to guarantee non-oscillatory behavior of the
reconstructed values, as mensiond in Nessyahu and
Tadmor.40

Numerical tests

In this section, various numerical test problems are car-
ried out for the 1D and 2D Ripa systems. The results
obtained from well-balanced FV MR-WENO scheme
are compared with the results of central upwind scheme.
In some cases, results obtained from well-balanced FV
MR-WENO schemes are also compared with the avail-
able analytical results. In all case studies outflow bound-
aries are used except in the accuracy test.

One-dimensional test problems

In this subsection we discuss test problems for 1D Ripa
system with flat and non-flat bottom topographies.

Test problem 1: This test problem checks the effi-
ciency of proposed numerical scheme to capture the
small perturbation in steady-state solution. Consider
the small perturbation F(x) to a steady-state solu-
tion in computational domain ½�2, 2� as

(h, u, u)(x, 0)=
(6� z(x)+F(x), 0, 4), x\0,
(4� z(x)+F(x), 0, 9), x.0,

	
where

F(x)=
0:1, �1:5 ł x ł � 1:4,
0:0, otherwise:

	
and take the following non-flat bottom topography

z(x)=
0:85(cos(10p(x+ 0:9))+ 1), �1:ł x ł � 0:8,
1:25(cos(10p(x� 0:4))+ 1), 0:3 ł x ł 0:5,

0, otherwise:

8<:
The steady-state solution is a piece-wise constant
steady solution. The initial surface and pressure are
shown in Figure 1. Then the solutions on 200 grid cells
is obtained from FV MR-WENO and central upwind
(CUP) schemes are shown in Figure 2 at time t= 0:4.
Clearly the numerical solutions obtained from FV MR-
WENO scheme are more efficient as compare to the
results obtained from CUP scheme.

Test problem 2: This test problem taken from
Snchez-Linares et al.8 and is used to check the
numerical order of accuracy of considered numerical
algorithm for a smooth solution. Consider the
domain is ½0, 1� and simulation time t= 1. The ini-
tial conditions are given as

h(x, 0)= 1:0� z(x), hu(x, 0)= 0:1, u(x, 0)

= 1:0+ 0:01cos(2p(x� 0:5)),

Figure 1. Surface and pressure at t= 0:0.

8 Advances in Mechanical Engineering



and the bottom function z(x) is defined as

z(x)= 0:1sin(4px)� 1:0:

As exact solution of this problem is not known, so ref-
erence solution which computed with 4000 cells is
treated as exact solution for computing the numerical
L1-errors. These errors and numerical order of accuracy
for the FV MR-WENO scheme are given in Table 1,
which clearly shows that fifth order accuracy is
obtained.

Test problem 3: Consider the dam break problem,
taken from Touma and Klingenberg,9 over a flat
bottom with the following initial conditions

(h, u, u)(x, 0)=
(5, 0, 3), x ł 0,
(1, 0, 5), x.0:

	
In Figure 3, the exact and approximate solutions on
200 grid points are plotted in the computational
domain ½�1, 1� at time t = 0:2. Good agreement among
analytical and numerical results verify the correctness of
both numerical schemes but computation of L1-errors and
computational time for both numerical schemes are men-
tioned in Table 2 show that the proposed numerical
method is more efficient that the CUP scheme.

Test problem 4: This test problem is taken from
Touma and Klingenberg,9 in which dam break

Figure 2. Comparison of finite volume WENO with central upwind scheme. Surface and pressure at t= 0:4.

Table 1. L1-errors and numerical orders of accuracy for 1D Test problem 2.

No. of cells h hu h u

L1-error Order L1-error Order L1-error Order

20 1:17310�3 — 2:46310�3 — 2:26310�3 —
40 3:73310�5 4.9712 7:83310�5 4.9735 7:07310�5 4.9985
80 9:970310�7 5.2254 2:190310�6 5.1600 1:68310�6 5.3952
160 3:10310�8 5.0073 6:58310�8 5.0567 5:18310�8 5.0194
320 9:18310�10 5.0776 1:98310�9 5.0545 1:51310�9 5.1003

Table 2. L1-errors and computational time for 1D Test problem 3 over flat bottom.

No. of cells FV WENO CUP

h hu CPU(s) h hu CPU(s)

200 2:24310�1 3:42310�1 3:098 6:34310�1 6:98310�1 3:29
400 5:73310�2 0:67310�1 3:82 2:59310�1 2:41310�1 4:014
800 9:71310�3 3:01310�2 10:26 5:82310�2 6:37310�2 10:77
1600 5:19310�3 7:43310�3 25:08 0:56310�2 0:43310�2 25:67
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problem over a flat bottom topography with initial
conditions are defined as follow

(h, u, u)(x, 0)=
(2, 0, 1), �0:5 ł x ł 0:5,
(1, 0, 1:5), otherwise:

	
The solution profiles h, u, and p= gh2u

2
are obtained on

200 grid points in domain ½�1, 1� at time t= 0:2, as
shown in Figure 4. Both numerical methods resolve the
discontinuities in efficient way but the considered
numerical method behaves more efficiently in the com-
putation of solution profile u.

Test problem 5: This test problem is taken from
Touma and Klingenberg,9 to check the efficiency of
well balance FV MR-WENO scheme on non-flat
bottom topography. In this test problem the step
like bottom topography is considered since we have
exact solution of Ripa model with step like bottom
topography. The initial conditions are given by

(h, u, u)(x, 0)=
(25� z(x), 0, 10), x ł 300,
(20� z(x), 0, 5), x.300,

	
and bottom topography is defined as

z(x)=
8, x.300,
0, otherwise:

	
The solution profiles h, hu, and hu on 400 grid points
in the domain ½0, 600� at time t= 12:0 are shown in
Figure 5. A very good agreement between exact solu-
tion and well-balanced FV MR-WENO scheme is
observed in figure while central upwind scheme pro-
duces oscillation near the stationary shock wave.

Test problem 6: Now we consider the dam break
problem over a rectangular bump.9 In this problem
the bottom topography is defined as

z(x)=
8, jx� 300j.275,
0, otherwise:

	
and initial conditions are defined as

(h, u, u)(x, 0)=
(20� z(x), 0, 10), x ł 300,
(15� z(x), 0, 5), x.300:

	
The computational domain ½0, 600� is discretized into
400 grid cells and the solution profiles h, u, and p are
computed at time 0:2, as shown in Figure 6. Once again

Figure 3. Comparison of numerical results obtained from FV MR-WENO scheme with exact Riemann solutions and solutions of
CUP scheme.
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proposed numerical scheme behaves very well over
non-flat bottom topography.

Two-dimensional test problems

In this subsection we present test problems for 2D Ripa
model over flat and non flat bottom topographies.

Test problem 7: Consider the two dimensional rec-
tangular dam break problem over a flat bottom
topography, taken from Touma and Klingenberg.9

The initial conditions which feature two constant
states are given by

(h, u, v, u)(x, y, 0)=
(2, 0, 0, 1), if jxjł 0:5,
(1, 0, 0, 1:5), otherwise:

	
The solution profiles h,hu, and hu are computed in the
computational domain ½�1, 1�3 ½�1, 1� at time 0:2
using the well-balanced FV MR-WENO scheme, as
shown in Figure 7. The computational domain is dis-
cretized into 100 3 100 grid cells. Moreover the solu-
tion profiles, obtained from both numerical schemes,

are drawn along x� axis in Figure 8. A good agree-
ment between numerical results is observed.

Test problem 8: We consider the 2D steady-states
problem for Ripa system. Consider the small pertur-
bation F(x, y) to a steady-state solution as

(h, u, u)(x, y, 0)=

(3� z(x, y)+F(x, y), 0, 0, 4=3), if x2 + y2\0:25,

(2� z(x, y)+F(x, y), 0, 0, 3), otherwise:

	

where

F(x)=
0:1, if 0:01 ł x2 + y2\0:09,
0:0, otherwise:

	
and take the following non-flat bottom topography

z(x, y)=

0:5exp(� 100((x+ 0:5)2 +(y+ 0:5)2)), if x ł 0,

0:6exp(� 100((x� 0:5)2 +(y� 0:5)2)), otherwise

(
:

Figure 4. Test problem over flat bottom topography. Comparison of numerical results obtained from FV MR-WENO scheme with
CUP scheme.
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Figure 5. Test problem for the non-flat bottom topography. Comparison of numerical results obtained from FV MR-WENO
scheme with exact Riemann solutions and solutions of CUP scheme.

Figure 6. Rectangular dam break over non-flat bottom topography. Comparison of finite volume WENO with CUP scheme.
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Figure 7. Rectangular dam break over flat bottom.The solution profiles are computed by well-balanced finite volume WENO
scheme.

Figure 8. Rectangular dam break over flat bottom.Comparison of finite volume WENO scheme with central upwind scheme.
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The solution profiles h+ z,u, and u are computed in
the computational domain ½�1, 1�3 ½�1, 1� at time
0:2 using the well-balanced FV MR-WENO scheme,
as shown in Figure 9. The computational domain is
discretized into 200 3 200 grid cells. Moreover the
solution profiles, obtained from both numerical
schemes, are drawn along x-axis in Figure 10.
Clearly from Figure 10, the results of proposed
numerical scheme are far better as compare to cen-
tral upwind scheme.

Test problem 9: This test problem33 is used to check
the numerical order of accuracy of proposed numer-
ical scheme for a smooth solution. Consider the
computational domain is ½0, 1�3 ½0, 1� and simula-
tion time t = 0:035. The initial conditions are given
by

h(x, y, 0)= 10:0+ exp (2px) cos (2py),

hu(x, y, 0)= sin ( cos (2px)) sin (2py),

hv(x, y, 0)= cos ( sin (2py)) cos (2px),

u(x, y, 0)= cos (x) sin (y),

and the bottom function z(x) is defined as

z(x, y)= sin (2px)+ cos (2py):

As exact solution of this problem is not known, so ref-
erence solution which computed on 1000 3 1000 grid
cells is treated as exact solution for computing the
numerical L1-errors. These errors and numerical order
of accuracy for the FV MR-WENO scheme are given
in Table 3, which clearly shows that fifth order accu-
racy is obtained in 2D case.

Conclusions

Well-balanced FV MR-WENO schemes were derived
to solve the 1D and 2D Ripa models. Despite the pres-
ence of temperature gradients and source terms in the
considered models, the derived numerical schemes
exactly held the steady-state solutions, maintained the
high order accuracy for smooth solutions, and sup-
pressed the unwanted oscillations near the strong shock
transitions. Different 1D and 2D numerical test prob-
lems were computed to check the validity of designed
numerical algorithms qualitatively and quantitatively.
The numerical results of derived numerical algorithms
were compared with those obtained from the exact
solutions and CUP schemes. A very good agreement
was seen among the results of designed numerical
schemes and exact Riemann solver for the Ripa system.
However, the proposed schemes have produced better
results as compared to the CUP schemes.

Figure 9. Small perturbation of steady-state.
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