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We consider frequency-weighted damping optimization for vibrating systems
described by a second-order differential equation. The goal is to determine vis-
cosity values such that eigenvalues are kept away from certain undesirable areas
on the imaginary axis. To this end, we present two complementary techniques.
First, we propose new frameworks using nonsmooth constrained optimization
problems, whose solutions both damp undesirable frequency bands and main-
tain the stability of the system. These frameworks also allow us to weight, which
frequency bands are the most important to damp. Second, we also propose a fast
new eigensolver for the structured quadratic eigenvalue problems (QEPs) that
appear in such vibrating systems. In order to be efficient, our new eigensolver
exploits special properties of diagonal-plus-rank-one (DPR1) complex symmet-
ric matrices, which we leverage by showing how each QEP can be transformed
into a short sequence of such linear eigenvalue problems. The result is an eigen-
solver that is substantially faster than standard techniques. By combining this
new solver with our new optimization frameworks, we obtain our overall algo-
rithm for fast computation of optimal viscosities. The efficiency and performance
of our new approach are verified and illustrated on several numerical examples.
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1 INTRODUCTION

Consider a vibrational mechanical system described by the second-order differential equation

𝑀𝑞(𝑡) + 𝐶(𝑣)𝑞̇(𝑡) + 𝐾𝑞(𝑡) = 0, (1.1)

where𝑀,𝐶(𝑣), 𝐾 ∈ ℝ𝑛×𝑛 are all symmetric positive definite matrices, respectively, representingmass, damping, and stiff-
ness, and the damping matrix 𝐶(𝑣) depends on 𝑟 nonnegative viscosity parameters, that is, 𝑣 ∈ ℝ𝑟

+, where ℝ𝑟
+ is the set

of 𝑟-dimensional vectors with real nonnegative entries. We assume that the number of damping parameters is small, that
is, 𝑟 ≪ 𝑛, as is typical in practice, and that 𝐶(𝑣) has the following form:

𝐶(𝑣) = 𝐶int + 𝐺 diag(𝑣1, … , 𝑣𝑟)𝐺
𝖳 = 𝐶int +

𝑟∑
𝑗=1

𝑣𝑗𝑔𝑗𝑔
𝖳
𝑗
, (1.2)

where 𝐶int represents internal damping, 𝐺 ∈ ℝ𝑛×𝑟 describes the geometry of damping positions, and 𝑔𝑗 denotes the 𝑗th
column of 𝐺. Internal damping can be modeled in various ways, for example, Rayleigh (or classical) damping, where
𝐶int = 𝛼𝑀 + 𝛽𝐾 and 𝛼, 𝛽 ≥ 0. In this paper, we focus on another convention that is widely used, namely that the internal
damping is a small multiple of the critical damping, that is,

𝐶int = 𝛼𝑀
1

2

√
𝑀

−
1

2 𝐾𝑀
−

1

2 𝑀
1

2 , (1.3)

where 𝛼 > 0. In this case, 𝐶int is symmetric positive definite. For more details on critical damping, see Refs. [1–3].
The second-order differential equation (1.1) of course is associated with the quadratic eigenvalue problem (QEP)

(𝜆(𝑣)2𝑀 + 𝜆(𝑣)𝐶(𝑣) + 𝐾)𝑥(𝑣) = 0. (1.4)

For a given vector 𝑣 specifying the viscosity parameters, let Λ(𝑣) denote the spectrum of Equation (1.4). Each eigen-
value 𝜆(𝑣) corresponds to a natural frequency of the system (1.1), that is, a frequency on which the system prefers to
vibrate. Vibrations can be increased if the system is excited by an external force whose frequencies are close to the natural
frequencies. All frequencies that can significantly excite the system are called undesirable frequencies.
One approach to minimizing the impact of external forces is damping optimization, which has been widely studied

in the last few decades. In the most general context, given mass and stiffness matrices, the problem is to determine a
damping matrix such that unwanted vibrations decay as fast as possible. This requires specifying an objective function to
be optimized, and the choice of objective function strongly depends on the application and desired outcome. An overview
of different damping optimization criteria can be found in Veselić [1]. For the nonhomogeneous case, where the system
is additionally excited, damping optimization has also been studied in Refs. [1, 4]. In Kuzmanović et al. [4], the authors
consider energy over arbitrary time, while Veselić [1] considers the case where the excitation function is periodic. For
multiple input, multiple output systems, one can also optimize damping in second-order systems byminimizing standard
systems norms, such as the2 or∞ norms; see Refs. [5–9].
In our setting, Equation (1.1) corresponds to the homogeneous case for which one can consider optimizing the total

average energy in various ways; see Refs. [1, 10–12]. One can also use eigenvalue-based criteria to damp resonant frequen-
cies, that is, by directly altering the spectrum of Equation (1.4), as has been considered in Gräbner et al. [13] where the
spectral abscissa criterion is minimized. The spectral abscissa of Equation (1.4) is defined

𝛼MCK(𝑣) = max
𝜆(𝑣)∈Λ(𝑣)

Re 𝜆(𝑣). (1.5)

Given some 𝑣 ∈ ℝ𝑟, the system (1.1) is asymptotically stable if and only if all the eigenvalues of the corresponding eigen-
value problem (1.4) are in the open left half-plane, that is, 𝛼MCK(𝑣) < 0. Note that under our assumption that𝑀,𝐶(𝑣), 𝐾

are all symmetric positive definite matrices, and where 𝑣 ∈ ℝ𝑟
+, the system (1.1) is asymptotically stable; for more details,

see Tisseur and Meerbergen [14].

 15214001, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202100127 by M

PI 335 D
ynam

ics of C
om

plex T
echnical System

s, W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



JAKOVČEVIĆ STOR et al. 3 of 21

We consider the frequency isolation problem where viscosities are optimized in order to keep eigenvalues away from
the certain undesirable areas on the imaginary axis, that is, away from undesirable resonant frequency bands that are
known a priori. This variation of the frequency isolation problem has been studied in several works. In Joseph [15], a
Newton-type method for structures vibrating at low frequencies was proposed, while a less costly inverse eigenvalue
method was presented in Egaña et al. [16], where a target spectrum, which avoids an undesirable resonance band, is
fixed in advance. Meanwhile, Moro and Egaña [17] considered the frequency isolation problem for undamped vibrational
systems where there is no 𝐶(𝑣) in Equation (1.4), or equivalently, 𝐶(𝑣) is always zero. In damping optimization where
𝐶(𝑣) is present, avoiding undesirable frequency bands can be achieved either by choosing damping positions (by opti-
mizing matrix 𝐺) or by viscosity values (by optimizing 𝑣 ∈ ℝ𝑟

+) or doing both simultaneously. Computing the optimal
damping positions is a very challenging problem and there is no efficient algorithm for it, though some heuristics can
be found in, for example, Kanno et al. [18]. One approach to determining optimal damping positions is “direct” brute
force, where all possible damping configurations are considered and viscosities are optimized for each configuration. In
any case, while optimization of damping positions is a challenging and a very important question in and of itself, in
this paper, we focus on accelerating this overall process via proposing faster methods for viscosity optimization for fixed
damping positions. Therefore, in our algorithms here, we consider that the matrix 𝐺 specifying the damping positions is
fixed, but we have in mind that, in practice, viscosity optimization would be applied over many different configurations of
damping positions.
In this paper, we aim to accelerate such damping-based approaches for frequency isolation via new fast techniques

for the important subproblem of determining optimal damping viscosities for a given configuration of damping posi-
tions. More specifically, given a general system (1.1), where 𝐶(𝑣) has the form given in Equation (1.2), the internal
damping matrix 𝐶int is given by Equation (1.3), and the matrix 𝐺 specifying the damping positions is fixed, we con-
sider the problem of optimizing the viscosity parameters 𝑣 ∈ ℝ𝑟

+ so that the eigenvalues of Equation (1.4) are kept
away from undesirable resonant bands as much as possible. Our contribution here consists of two complementary new
techniques. First, we propose two related nonsmooth but continuous constrained optimization problems as new mod-
els for the frequency isolation problem and show how solutions can be computed via gradient information and recent
advances in nonsmooth constrained optimization. When our new problems are solved, their solutions provide viscos-
ity parameters, which maintain stability of the system and damp user-defined undesirable frequency bands. In addition
to specifying the number of frequency bands and their respective widths, the undesirable bands can also be weighted
in order to prioritize which are most critical to damp. Second, as the cost of our optimization process is actually dom-
inated by solving a sequence of related QEPs, where 𝐶(𝑣) is changing as the viscosity parameters are optimized, we
also propose a fast algorithm to solve this sequence of QEPs. Our method, which is many times faster than using stan-
dard eigensolvers for QEPs and can be considered an extension of Jakovčević et al. [19] for computing eigenvalues of
diagonal-plus-rank-one (DPR1) complex symmetric (DPR1Csym) matrices, works by exploiting the fact that changing
the viscosity parameters is equivalent to making a low-rank update to 𝐶(𝑣). Since such structure is not inherent to our
problem, we expect that our technique for solving such sequences of QEPs could be quite beneficial in other applications
as well.
The paper is organized as follows. In Section 2, we motivate and establish our two new models for the frequency

isolation problem, explain their properties, and discuss how to compute solutions of them. Then, in Section 3, we
present our new approach for efficiently solving the corresponding sequence of QEPs that arises during optimization
(using either of our new models discussed in the previous section). We show how both eigenvalues and eigen-
vectors of the QEPs can be computed, as both are needed in our optimization-based approach. In Section 4, we
present our full algorithm for damping optimization by combining our aforementioned components from Sections 2
and 3. Finally, we validate our new techniques and compare our two models for frequency-weighted damping in
Section 5.

2 NEW FRAMEWORKS FOR FREQUENCY-WEIGHTED DAMPING

Consider how the eigenvalues Λ(𝑣) of Equation (1.4) evolve as the viscosities parameters 𝑣 are changed, and suppose
𝜔 ∈ ℝ is an undesirable frequency, that is, we wish to keep the spectrum of Equation (1.4) away from 𝐢𝜔 on the imaginary
axis. Since eigenvalueswith imaginary parts close to𝜔 can also be undesirable, we thus consider the undesirable frequency
band [𝜔 − 𝑏, 𝜔 + 𝑏] about 𝜔 for some given 𝑏 > 0. In order to minimize the impact of eigenvalues of Equation (1.4) in this
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frequency band, it is tempting to consider solving the optimization problem:

min
𝑣∈ℝ𝑟

max{Re 𝜆(𝑣) ∶ 𝜆(𝑣) ∈ Λ(𝑣) and Im𝜆 ∈ [𝜔 − 𝑏, 𝜔 + 𝑏]}

s.t. 𝛼MCK(𝑣) ≤ tolsa for some tolsa < 0,

𝑣𝑗 ≥ 0 for 𝑗 = 1,… , 𝑟,

(2.1)

whichwould act to push all the eigenvalues ofΛ(𝑣)with imaginary parts in [𝜔 − 𝑏, 𝜔 + 𝑏] as far to the left as possiblewhile
still maintaining asymptotic stability of the system and physically realistic, that is, nonnegative, viscosities. Alternatively,
one might consider swapping the objective function and the stability constraint in Equation (2.1), that is, minimize the
spectral abscissa as much as possible subject to the constraint that the eigenvalues in the frequency band, that is, those
which have imaginary parts in [𝜔 − 𝑏, 𝜔 + 𝑏], are all kept at least some fixed distance to the left of the imaginary axis (and
again enforcing nonnegative viscosities). However, these two related optimization problems are rather difficult to solve as
the function beingminimized inEquation (2.1) is actually discontinuous. In general, this functionhas jumpdiscontinuities
whenever a rightmost eigenvalue that attains the maximum leaves the horizontal strip in the complex plane defined by 𝜔

and 𝑏, or vice versa, when a new eigenvalue enters this region to become a rightmost eigenvalue in this strip, and these
discontinuities are typically not uncommon.
To overcome this problem, in this section, we propose two alternatives to Equation (2.1) where continuity is maintained

and so our new optimization problems for frequency isolation are much more practical to solve. This allows us to use
continuous optimization techniques to compute viscosity values such that eigenvalues are kept away from an undesir-
able frequency band defined by 𝜔 and 𝑏. In fact, as we will soon explain, our distance function can be used for different
undesirable frequency bands simultaneously.

2.1 Approach 1

Let the tuple 𝐸 = (𝑎, 𝑏, 𝑐) denote the axis-aligned ellipse

(𝑥 − Re 𝑐)2

𝑎2
+

(𝑦 − Im 𝑐)2

𝑏2
= 1, (2.2)

where 𝑎, 𝑏 > 0, respectively, denote the semi-major and -minor axes and 𝑐 ∈ ℂ is the center of the ellipse. Identifying ℝ2

with ℂ, consider the following algebraic distance 𝑑 ∶ ℂ ↦ [0,∞) of a point 𝑧 ∈ ℂ to this ellipse, that is,

𝑑(𝑧; 𝐸) ∶=
(Re (𝑧 − 𝑐))2

𝑎2
+

(Im (𝑧 − 𝑐))2

𝑏2
. (2.3)

Thus, 𝑑(𝑧; 𝐸) > 1 when 𝑧 is outside of the ellipse, 𝑑(𝑧; 𝐸) ∈ [0, 1) when 𝑧 is inside the ellipse, and 𝑑(𝑧; 𝐸) = 1 when 𝑧 is
on the ellipse, that is, 𝑧 = 𝑥 + 𝐢𝑦 satisfies Equation (2.2).
Now suppose that 𝜔 ≥ 0 and 𝑏 > 0 specify an undesirable frequency band [𝜔 − 𝑏, 𝜔 + 𝑏]. Given some 𝑎 > 0, a notion of

distance between a point in the complex plane and the interval 𝐢[𝜔 − 𝑏, 𝜔 + 𝑏] on the imaginary axis is given via 𝑑(𝑧; 𝐸)

for 𝐸 = (𝑎, 𝑏, 𝐢𝜔), that is, the ellipse (2.2) centered at 𝐢𝜔 on the imaginary axis. If 𝑧 is such that Im 𝑧 ∈ (𝜔 − 𝑏, 𝜔 + 𝑏), then
the larger we make the value of 𝑎, the further 𝑧 must be to the left or right of the minor axis of the ellipse given by 𝐸

in order for 𝑑(𝑧; 𝐸) > 1 to hold. Thus, as a continuous measure of the distance of the spectrum of Equation (1.4) to the
undesirable frequency [𝜔 − 𝑏, 𝜔 + 𝑏], we define

𝑑Λ,𝐸(𝑣) ∶= min{𝑑(𝜆(𝑣); 𝐸) ∶ 𝜆(𝑣) ∈ Λ(𝑣)}, (2.4)

where 𝐸 = (𝑎, 𝑏, 𝐢𝜔). Function 𝑑Λ,𝐸(𝑣) > 1 when all the eigenvalues of Λ(𝑣) are outside the given ellipse, 𝑑Λ,𝐸(𝑣) ∈ [0, 1)

when one or more eigenvalues are inside this ellipse, and 𝑑Λ,𝐸(𝑣) = 1 when at least one eigenvalue is on this ellipse and
none are inside. The specific value of the semi-major axis 𝑎 determines the importance of the undesirable frequency band
by dictating how far away eigenvalues should be from the interval 𝐢[𝜔 − 𝑏, 𝜔 + 𝑏], where eigenvalues with imaginary parts
closer to 𝜔 are weighted more, that is, must be further away. When multiple undesirable frequency bands are specified
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by frequencies {𝜔1, … , 𝜔𝑘} and associated (half) bandwidths {𝑏1, … , 𝑏𝑘}, their relative importance can be determined by
providing different semi-major axis values {𝑎1, … , 𝑎𝑘}, with 𝜔𝑗 ≥ 0 and 𝑎𝑗, 𝑏𝑗 > 0 for all 𝑗 = 1,… , 𝑘. Thus, we generalize
Equation (2.4) to measuring the distance of the spectrum Λ(𝑣) to the 𝑘 undesirable frequency bands by defining

𝑑Λ, (𝑣) ∶= min{𝑑Λ,𝐸𝑗
(𝑣) ∶ 𝐸𝑗 ∈ }, (2.5)

where 𝐸𝑗 ∶= (𝑎𝑗, 𝑏𝑗, 𝐢𝜔𝑗) is the tuple defining the 𝑗th axis-aligned ellipse for the 𝑗th undesirable frequency band [𝜔𝑗 −

𝑏𝑗, 𝜔𝑗 + 𝑏𝑗] with relative importance 𝑎𝑗 > 0 and  ∶= {𝐸1, … , 𝐸𝑘} is the set of 𝑘 corresponding ellipses.
Using Equation (2.5), we now present our first new model for the frequency isolation problem:

𝐌𝐨𝐝𝐞𝐥 𝟏∶ min
𝑣∈ℝ𝑟

𝛼MCK(𝑣)

s.t. 𝑑Λ, (𝑣) ≥ 1,

𝛼MCK(𝑣) ≤ tolsa for some tolsa < 0,

𝑣𝑗 ≥ 0 for 𝑗 = 1,… , 𝑟,

(2.6)

that is, minimize the spectral abscissa as much as possible subject to the respective constraints that all the eigenvalues
of Equation (1.4) are outside of the ellipses defined by  , the system is asymptotically stable, and the viscosities are non-
negative. Although the spectral abscissa is being minimized in Equation (2.6), note that the additional constraint that
the spectral abscissa be negative is necessary. There are multiple reasons for this. First, not all optimization solvers iter-
ate only over the feasible set, and so negative viscosities may be encountered during optimization, which in turn may
make 𝛼MCK(𝑣) positive. Second, satisfying 𝑑Λ, (𝑣) ≥ 1 is not equivalent to satisfying stability, as 𝑑Λ, (𝑣) ≥ 1 can hold even
if all the eigenvalues were to be in the right half-plane. Third, 𝛼MCK(𝑣) may have stationary points where 𝛼MCK(𝑣) ≥ 0

holds, and so a feasible minimizer of Equation (2.6) without this stability constraint would not necessarily result in an
asymptotically stable system.
While 𝛼MCK(𝑣) and 𝑑Λ, (𝑣) in Equation (2.6) are nonsmooth functions, they are at least continuous (unlike the objective

function in Equation (2.1)). As there has been significant progress recently in developing effective solvers for nonsmooth
constrained optimization, for example, Refs. [20, 21], where the functions are continuous but their nonsmoothness is
restricted to a set of measure zero, as is typical, it is reasonable to apply such techniques to compute minimizers of Equa-
tion (2.6). We describe the details of how this is done later on and for nowmake some additional general comments about
Equation (2.6). Since 𝛼MCK(𝑣) and 𝑑Λ, (𝑣) will typically be nonconvex and Equation (2.6) may have infeasible stationary
points, we cannot necessarily expect to find a globally optimal solution to Equation (2.6), and solvers may also sometimes
converge to infeasible points. However, in applications, locally optimal solutions are often sufficient and provide mean-
ingful improvements in performance over nonoptimized configurations. Moreover, both of these problems can typically
be mitigated merely by computing multiple solutions to Equation (2.6) via initializing a solver from many different start-
ing points and taking the best of the resulting solutions. Note that the choice of  depends on the application and is fixed
before optimization commences. However, if the 𝑎𝑗 values are chosen too aggressively (too large), there is no guarantee
that Equation (2.6) will have any feasible solutions. Thus, we now propose a second new model as an alternative and
which avoids this issue.

2.2 Approach 2

Again consider a single axis-aligned ellipse (2.2) defined by tuple 𝐸 = (𝑎, 𝑏, 𝑐), where 𝑎, 𝑏 > 0 and 𝑐 = 𝜂 + 𝐢𝜔with 𝜂, 𝜔 ≥ 0

(so 𝑐 is not necessarily on the imaginary axis), and suppose that 𝑏 and 𝑐 are fixed but 𝑎may be varied. Then, given a point
𝑧 ∈ ℂ, consider the largest we can make this ellipse, by changing the length of its major axis, such that 𝑧 is not inside the
ellipse. For 𝑧 = 𝑥 + 𝐢𝑦 and 𝑐 = 𝜂 + 𝐢𝜔, solving Equation (2.2) for yields that this largest possible value for the semi-major
axis is

𝑎(𝑧; 𝐸) ∶=

⎧⎪⎨⎪⎩
𝑏|Re 𝑧−𝜂|√

𝑏2−(Im𝑧−𝜔)2
, if Im 𝑧 ∈ (𝜔 − 𝑏, 𝜔 + 𝑏),

∞ otherwise,
(2.7)
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where the largest possible semi-major axis value is infinite when the point 𝑧 is not directly to the left or right of the
ellipse, that is, Im 𝑧 ∉ (𝜔 − 𝑏, 𝜔 + 𝑏). Note that this convention is consistent even when 𝑧 = 𝜂 + 𝐢(𝜔 ± 𝑏), that is, one
of the endpoints of the minor axis, since in this case, 𝑧 can never be inside the ellipse no matter how large the major
axis is. While 𝑎(𝑧; 𝐸) is determined only by 𝑏 and 𝑐 from the tuple 𝐸, we continue to use the tuple 𝐸 = (𝑎, 𝑏, 𝑐) for
notational and conceptual consistency with Section 2.1, but when the value of 𝑎 is not fixed, we will instead write
𝐸 = (∼, 𝑏, 𝑐).
As a function of 𝑧, 𝑎(𝑧; 𝐸) is real-valued and always nonnegative. Note that 𝑎(𝑧; 𝐸) is continuous wherever Re 𝑧 ≠

𝜂, since then the ratio in Equation (2.7) continuously goes to infinity as Im 𝑧 ∈ (𝜔 − 𝑏, 𝜔 + 𝑏) approaches 𝜔 ± 𝑏. When
Re 𝑧 = 𝜂 holds, 𝑎(𝑧; 𝐸) only has two discontinuities, as in this case, the numerator in 𝑎(𝑧; 𝐸) is zero, and so 𝑎(𝑧; 𝐸) has a
jump between zero and infinity at 𝑧 = 𝜂 + 𝐢(𝜔 ± 𝑏). Relative to Equation (2.1), where the discontinuities can be common
and negatively impact solvers, the only two discontinuities of 𝑎(𝑧; 𝐸) are relatively benign as they typically will not be
encountered. Moreover, by a modification, which we will explain momentarily, we can additionally remove these two
benign discontinuities from the optimization problem.
Now considering the spectrum Λ(𝑣) of Equation (1.4), we can use 𝑎(𝑧; 𝐸) to determine how the largest value of the

semi-major axis of the ellipse 𝐸 = (∼, 𝑏, 𝜂 + 𝐢𝜔), such that none of the eigenvalues are inside it, varies with respect to the
viscosities 𝑣 changing:

𝑎Λ,𝐸(𝑣) ∶= min{𝑎(𝜆(𝑣); 𝐸) ∶ 𝜆(𝑣) ∈ Λ(𝑣)}. (2.8)

Clearly, function 𝑎Λ,𝐸(𝑣) inherits the properties of 𝑎(𝑣; 𝐸) discussed above, but since 𝜂 ≥ 0, note that 𝑎Λ,𝐸(𝑣) is continuous
at 𝑣 if the system is asymptotically stable for 𝑣. Furthermore, 𝑎Λ,𝐸(𝑣) is smooth at point 𝑣 if there is only a single eigenvalue
(excluding conjugacy) on the ellipse given by 𝐸 = (𝑎Λ,𝐸(𝑣), 𝑏, 𝜂 + 𝐢𝜔) and this eigenvalue is simple. Thus, to damp the
frequency band [𝜔 − 𝑏, 𝜔 + 𝑏], we could consider solving,

max
𝑣∈ℝ𝑟

𝑎Λ,𝐸(𝑣)

s.t. 𝛼MCK(𝑣) ≤ tolsa for some tolsa < 0,

𝑣𝑗 ≥ 0 for 𝑗 = 1,… , 𝑟.

(2.9)

where maximizing 𝑎Λ,𝐸(𝑣) acts to push all eigenvalues directly to the left of the interval 𝐢[𝜔 − 𝑏, 𝜔 + 𝑏] as far to the
left as possible. While Equation (2.9) is still discontinuous, encountering the two discontinuities of 𝑎Λ,𝐸(𝑣) during
optimization is unlikely; not only do the discontinuities occur off of the feasible set, that is, when the system is not
stable, they require that an eigenvalue passes through 𝜂 + 𝐢(𝜔 ± 𝑏) exactly in order to occur. On the other hand, many
optimization solvers do explore the infeasible set during optimization, and even though function 𝑎Λ,𝐸(𝑣) is otherwise
continuous, it can nevertheless have arbitrarily high growth when there exists an eigenvalue 𝜆(𝑣) with Re 𝜆(𝑣) ≈ 𝜂

and Im𝜆(𝑣) ∈ (𝜔 − 𝑏, 𝜔 + 𝑏) approaches the endpoints of this interval. As such, before extending Equation (2.9) to the
case of multiple ellipses, that is, multiple frequency bands to damp, we first propose modifying Equation (2.9) via a
barrier function.
The core idea of introducing a barrier function is to alter Equation (2.9) such that viscosities which cause 𝛼MCK(𝑣)

to get close to 𝜂 will be increasingly penalized, to the point that optimization will never allow a configuration 𝑣 to be
accepted as an iterate where 𝛼MCK(𝑣) ≥ 𝜂 holds. We do this by modifying the objective function such that it goes to
negative infinity as 𝛼MCK(𝑣) goes from tolsa to 𝜂. Since optimization can never accept points where the objective func-
tion is infinite, this barrier guarantees that points where 𝑎Λ,𝐸(𝑣) is discontinuous are never encountered. Furthermore,
accepting points where 𝑎Λ,𝐸(𝑣) is nearly discontinuous will also be heavily discouraged, as the barrier-modified objective
function that we are trying to maximize quickly goes to negative infinity as 𝛼MCK(𝑣) increases beyond tolsa. However,
such a barrier function should not introduce any new discontinuities or nonsmooth points of its own, nor should it alter
the objective function where 𝛼MCK(𝑣) ≤ tolsa holds, as all of these things could make optimization more difficult. We
construct our barrier function out of a cubic polynomial and log-based function that are specifically crafted to meet
these goals.
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JAKOVČEVIĆ STOR et al. 7 of 21

Given real scalars 𝑦1 < 𝑦2 and a continuous function 𝑓 ∶ ℝ𝑟 ↦ ℝ, we define the following generic barrier function:

𝛽(𝑓(𝑥); 𝑦1, 𝑦2) ∶=

⎧⎪⎪⎨⎪⎪⎩

0 if 𝑓(𝑥) ≤ 𝑦1,

𝜏1(𝑓(𝑥) − 𝑦1)
3 + 𝜏2(𝑓(𝑥) − 𝑦1)

2 if 𝑓(𝑥) ∈ (𝑦1, 𝑦],

− log
(

𝑦2−𝑓(𝑥)

𝑦2−𝑦

)
+ ℎ if 𝑓(𝑥) ∈ (𝑦, 𝑦2),

∞ otherwise,

(2.10)

where 𝑦 ∈ (𝑦1, 𝑦2), ℎ > 0, and

𝜏1 ∶=
(2ℎ + 1)𝑦 − 𝑦1 − 2ℎ𝑦2

(𝑦2 − 𝑦)(𝑦 − 𝑦1)3
and 𝜏2 ∶=

𝑦1 + 3ℎ𝑦2 − (3ℎ + 1)𝑦

(𝑦2 − 𝑦)(𝑦 − 𝑦1)2
. (2.11)

Thus, as 𝑓(𝑥) goes from 𝑦1 to 𝑦2, our barrier function 𝛽(𝑓(𝑥); 𝑦1, 𝑦2) goes from zero to infinity. The constants 𝜏1, 𝜏2 ∈ ℝ

are specifically chosen so that the value of 𝛽(𝑓(𝑥); 𝑦1, 𝑦2) always varies continuously and ∇𝛽(𝑓(𝑥); 𝑦1, 𝑦2) is continuous
wherever ∇𝑓(𝑥) is continuous, with ‖∇𝛽(𝑓(𝑥); 𝑦1, 𝑦2)‖ = 0 if 𝑓(𝑥) = 𝑦1. The continuity of the gradients can be verified
by differentiating the component functions in Equation (2.10), which are shown later in Equation (2.17). In other words,
𝛽(𝑓(𝑥); 𝑦1, 𝑦2) realizes our goals stated above, as it is a continuous barrier function that can be added to any objective
function without introducing any nonsmooth points of its own, that is, points where the gradient is not defined. However,
if 𝑥̂ is a nonsmooth point of 𝑓(𝑥) with 𝑓(𝑥̂) ∈ (𝑦1, 𝑦2), then naturally 𝛽(𝑓(𝑥); 𝑦1, 𝑦2)must also be nonsmooth at 𝑥̂.
The values 𝑦 and ℎ determine exactly where 𝛽(𝑓(𝑥); 𝑦1, 𝑦2) switches between its second and third cases, that is, where

the cubic polynomial meets the log-based function when 𝑓(𝑥) = 𝑦 and 𝛽(𝑓(𝑥); 𝑦1, 𝑦2) = ℎ. While the latter monotonically
increases with respect to 𝑓(𝑥) increasing, note that this is not necessarily guaranteed for the cubic polynomial. However,
this can be enforcedwith a judicious choice of 𝑦. For example, if we choose to set 𝜏2 = 0, and consider 𝑓(𝑥) = 𝑥 (so 𝑥 ∈ ℝ),
then the cubic polynomial and its first derivative are always increasing for all 𝑦 > 𝑦1. We can then simply solve for 𝑦 by
setting the numerator of 𝜏2 in Equation (2.11) equal to zero, which yields 𝑦 = 𝑦1 +

3ℎ

3ℎ+1
𝛿, where 𝛿 = 𝑦2 − 𝑦1 > 0.

We now modify and extend Equation (2.9) to, respectively, make it continuous via our barrier function and sup-
port damping multiple frequency bands. Suppose multiple undesirable frequency bands are specified by frequencies
{𝜔1, … , 𝜔𝑘} and associated (half) bandwidths {𝑏1, … , 𝑏𝑘}, with their relative importance determined by {𝜙1, … , 𝜙𝑘}, where
𝜔𝑗 ≥ 0, 𝑏𝑗 > 0, and 𝜙𝑗 ∈ (0, 1] for all 𝑗 = 1,… , 𝑘. Then given some 𝜂 ≥ 0 and the corresponding ellipses {𝐸1, … , 𝐸𝑘} with
𝐸𝑗 = (∼, 𝑏𝑗, 𝜂 + 𝐢𝜔𝑗), our second model for optimizing viscosities is

𝐌𝐨𝐝𝐞𝐥 𝟐∶ max
𝑣∈ℝ𝑟

(
𝑘∑

𝑗=1

𝜙𝑗 ⋅ min{𝑎Λ,𝐸𝑗
(𝑣),𝑚𝑗}

)
− 𝛽(𝛼MCK(𝑣); tolsa, 𝜂)

s.t. 𝛼MCK(𝑣) ≤ tolsa for some tolsa < 0,

𝑣𝑗 ≥ 0 for 𝑗 = 1,… , 𝑟,

(2.12)

where we use ℎ ∶= 1 and 𝑦 ∶= tolsa +
3

4
(𝜂 − tolsa) for our barrier function (2.10) and 𝑚𝑗 > 0 is a fixed scalar denoting

a desired upper bound on the damping of the 𝑗th frequency band, that is, a point at which the band can be considered
sufficiently damped. The sum in the objective function of Equation (2.12) acts to push all eigenvalues to the left of the
intervals 𝐢[𝜔𝑗 − 𝑏𝑗, 𝜔𝑗 + 𝑏𝑗] farther to the left, namely, by trying to increase each of the semi-major axis values of the
ellipses (while still havingno eigenvalues inside them) asmuch as possible or until they are at least as large as the respective
𝑚𝑗 values. The inclusion of the finite 𝑚𝑗 scalars prevent optimization terminating due to one of the 𝑎Λ,𝐸𝑗

(𝑣) functions
becoming infinite, which happens if all the eigenvalues can be moved completely outside of one or more of the specified
frequency bands. This can be undesirable because when this happens, the other frequency bands may or may not be
well-optimized. Using min{𝑎Λ,𝐸𝑗

(𝑣),𝑚𝑗} prevents this from occurring, and so all the frequency bands will continue to
be optimized. Meanwhile, the 𝜙𝑗 scalars allow one to balance which frequency bands should be given the most emphasis
during optimization. By construction, our barrier function only has an effect when the spectral abscissa stability constraint
is violated, and so it does not modify our objective function on the feasible set. As 𝛽(𝛼MCK(𝑣); tolsa, 𝜂) goes continuously
to infinity as the spectral abscissa approaches 𝜂, the discontinuities of 𝑎Λ,𝐸𝑗

(𝑣) functions can never be encountered and
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8 of 21 JAKOVČEVIĆ STOR et al.

having eigenvalues with real parts close to 𝜂 is strongly penalized, which helps to avoid regions where 𝑎Λ,𝐸𝑗
(𝑣) is close to

being discontinuous. Compared to our first model in Section 2.1, we have introduced the parameter 𝜂 ≥ 0 here so that if
desired, the distance between being stable to tolerance and the discontinuities of 𝑎Λ,𝐸𝑗

(𝑣) can be increased by shifting all
the ellipses to the right.

2.3 Solving our optimization problems

A key goal realized by our new constrained optimization problems for frequency-weighted damping, respectively, given
in Equations (2.6) and (2.12), is that they are both continuous, unlike the formulation we first considered in Equation
(2.1). Consequently, as mentioned earlier, we thus can consider computing solutions to Equations (2.6) and (2.12) using
recent gradient-based solvers for continuous nonsmooth constrained optimization, where the nonsmoothness of the func-
tions is limited to a set of zero. This is appealing because such gradient-based nonsmooth solvers not only exhibit good
performance in practice but are also easy to use, as they only require that gradients be provided; see section 6 of Cur-
tis et al. [21] for some comparisons. The necessary gradients exist because typically such methods only encounter the
nonsmooth manifold in the limit, and so while iterates may be arbitrarily close to nonsmooth points, they are neverthe-
less not nonsmooth points themselves. Two possible gradient-based solvers for nonsmooth constrained optimization are
the open-source software packages SQP-GS [20] andGRANSO: GRadient-based Algorithm for Non-SmoothOptimization
[21]. For the purposes of this paper, we useGRANSO1 to compute solutions to Equations (2.6) and (2.12), partly because the
per-iteration cost of GRANSO is much less than that of SQP-GS. We now discuss how to compute the necessary gradients.
For our first approach, given by Equation (2.6), we need the gradient of the spectral abscissa and 𝑑Λ, (𝑣). We begin

with the former. Let 𝜆(𝑣) be an eigenvalue of Equation (1.4) with associated eigenvector 𝑥(𝑣). Since 𝑀, 𝐶(𝑣), and 𝐾 are
real symmetric matrices, 𝑥(𝑣) is also the left eigenvector for 𝜆(𝑣). Then given some 𝑣, if 𝜆(𝑣) is a simple eigenvalue with
eigenvector by 𝑥̂, by standard perturbation theory for eigenvalues we have that

𝜕𝜆(𝑣)

𝜕𝑣𝑗

||||𝑣=𝑣

= −
𝑥̂∗

(
𝜆(𝑣)𝑔𝑗𝑔

𝖳
𝑗

)
𝑥̂

𝑥̂∗(2𝜆(𝑣)𝑀 + 𝐶(𝑣))𝑥̂
. (2.13)

Furthermore, if 𝜆(𝑣) is also an eigenvalue that attains the spectral abscissa and there are no other eigenvalues with real
part equal to Re 𝜆(𝑣), that is, there are no ties (excluding conjugacy) for the spectral abscissa, then

𝜕𝛼MCK(𝑣)

𝜕𝑣𝑗

||||𝑣=𝑣

= −Re
𝜕𝜆(𝑣)

𝜕𝑣𝑗

||||𝑣=𝑣

. (2.14)

We now turn to 𝑑Λ, (𝑣). Given a single ellipse given by 𝐸 = (𝑎, 𝑏, 𝑐), consider 𝑑(𝑧(𝑡); 𝐸) defined by Equation (2.3), where
𝑧(𝑡) is a differentiable path with respect to the real scalar 𝑡. Then the derivative of 𝑑(𝑧(𝑡); 𝐸) is

𝑑 ′(𝑧(𝑡); 𝐸) = 2

(
Re (𝑧(𝑡) − 𝑐) ⋅ Re 𝑧′(𝑡)

𝑎2
+

Im (𝑧(𝑡) − 𝑐) ⋅ Im 𝑧′(𝑡)

𝑏2

)
. (2.15)

Now given 𝑣, suppose there are no ties for the value of 𝑑Λ, (𝑣), that is, its value is attained by a single eigenvalue 𝜆(𝑣) and
ellipse 𝐸 = (𝑎, 𝑏, 𝑐) ∈  , with 𝜆(𝑣) being simple. Then the gradient of 𝑑Λ, (𝑣) at 𝑣 exists, and the partial derivative with
respect to 𝑣𝑗 at 𝑣 can be constructed via Equation (2.15), where 𝑧(𝑡) is replaced by 𝜆(𝑣) and 𝑧′(𝑡) is replaced by the partial
derivative of 𝜆(𝑣) at 𝑣 given in Equation (2.13).
For our second approach, given by Equation (2.12), we have shown above how to obtain gradient of the spectral abscissa,

which leaves the objective function in Equation (2.12). Given an ellipse defined by 𝐸 = (∼, 𝑏, 𝜂 + 𝐢𝜔), again consider 𝑧(𝑡)
described above but additional suppose that Im 𝑧(𝑡) ∈ (𝜔 − 𝑏, 𝜔 + 𝑏). Then 𝑎(𝑧(𝑡); 𝐸) cannot be infinite and its derivative
is

𝑎′(𝑧(𝑡); 𝐸) =
𝑏 sgn(Re 𝑧(𝑡) − 𝜂) ⋅ Re 𝑧′(𝑡)

(𝑏2 − (Im𝑧(𝑡) − 𝜔)2)1∕2
+

𝑏|Re 𝑧(𝑡) − 𝜂|(Im 𝑧(𝑡) − 𝜔) ⋅ Im 𝑧′(𝑡)

(𝑏2 − (Im𝑧(𝑡) − 𝜔)2)3∕2
(2.16)
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JAKOVČEVIĆ STOR et al. 9 of 21

Now consider 𝑎Λ,𝐸𝑗
(𝑣), which is differentiable if there is a single eigenvalue (up to conjugacy) on the ellipse specified by

𝐸𝑗 and this eigenvalue is simple. If these assumptions hold at 𝑣 and this eigenvalue is 𝜆(𝑣), then partial derivative with
respect to 𝑣𝑗 of 𝑎Λ,𝐸𝑗

(𝑣) at 𝑣 is given by Equation (2.16) with 𝑧(𝑡) and 𝑧′(𝑡) are again replaced using 𝜆(𝑣) and Equation
(2.13). For the gradient of our barrier function, it suffices to show the derivative of 𝛽(𝑓(𝑥); 𝑦1, 𝑦2), where 𝑓 ∶ ℝ ↦ ℝ is
differentiable:

𝛽′(𝑓(𝑥); 𝑦1, 𝑦2) ∶=

⎧⎪⎪⎨⎪⎪⎩

0 if 𝑓(𝑥) ≤ 𝑦1,

(3𝜏1(𝑓(𝑥) − 𝑦1)
2 + 2𝜏2(𝑓(𝑥) − 𝑦1)) ⋅ 𝑓

′(𝑥) if 𝑓(𝑥) ∈ (𝑦1, 𝑦],
𝑓′(𝑥)

𝑦2−𝑓(𝑥)
if 𝑓(𝑥) ∈ (𝑦, 𝑦2),

undefined otherwise.

(2.17)

Then given 𝑣 and assuming 𝛼MCK(𝑣) is differentiable at 𝑣, the partial derivative with respect to 𝑣𝑗 of our barrier function in
Equation (2.12) is given by Equation (2.17), where 𝑓(𝑥) and 𝑓′(𝑥) are, respectively, replaced using 𝛼MCK(𝑣) and Equation
(2.14), 𝑦1 = tolsa, and 𝑦2 = 𝜂.

3 FAST SOLUTION OF QEPSWITH LOW-RANK STRUCTURE

The most expensive part of our approaches proposed in Section 2 is successively computing the eigenvalues and eigen-
vectors of Equation (1.4) as the viscosities are optimized, that is, as 𝐶(𝑣) is changed. One possibility is to use polyeig
in MATLAB or quadeig; see Refs. [14, 22] for more details on these methods. However, using either of these routines
would mean that solving each QEP would require roughly the same amount of cubic work, that is, (𝑛3), where we use
the usual convention of treating eigenvalue computations as atomic operations. In Ref. [23], Taslaman proposed a much
faster eigensolver for QEPs (1.4), where the damping matrix 𝐶(𝑣) is assumed to be low rank. While the overall work com-
plexity of Taslaman’s algorithm is still cubic, in experiments (see Section 5 of [23]), it was shown to be many times faster
than quadeig, and its work can be separated into offline and online components, with the latter only doing (𝑛2) work.
Taslaman’s algorithm is based on Ehrlich–Aberth iterations, which rely on a good choice of a starting point for each eigen-
value and for which determination of stopping criteria is often heuristic; for more details, see Refs. [24] and [23]. Shortly
thereafter, Taslaman’s algorithm was extended by Benner and Denißen [25] to systems where 𝐶(𝑣) = 𝐶int + 𝐶ext(𝑣) may
be full rank, but critical damping is used for the internal damping matrix 𝐶int and the external damping matrix 𝐶ext(𝑣) is
low rank.
In this section, for the same class of problems considered by Benner and Denißen, we also exploit the fact that changes

in𝐶(𝑣) are only low-rank updates, but we propose a new fast algorithm for efficiently solving suchQEPs using a rather dif-
ferent approach. Our newmethod also does cubic work once in an offline initialization phase and only a quadratic amount
of work in the online phase. Since many QEPs will typically be solved during the course of optimizing the viscosities, our
approach here can result in a significant speedup. At a high level, we propose computing the eigenvalues and eigenvectors
of Equation (1.4) by transforming this QEP into a small sequence of linear eigenvalue problems involving DPR1 matrices.
By solving these linear subproblems, we can then recover the eigenvalues and eigenvectors of Equation (1.4). Moreover,
as these DPR1 matrices are easily converted to DPR1Csym matrices, we also leverage this special structure in a new fast
eigensolver in order to be much more efficient than standard eigenvalue techniques.

3.1 Efficient eigenvalue computation for DPR1Csymmatrices

Let 𝐴 ∈ ℂ2𝑛×2𝑛 be a DPR1Csym matrix, that is,

𝐴 = 𝐷 + 𝜌𝑧𝑧𝖳, (3.1)

where 𝐷 = diag(𝑑1, 𝑑2, … , 𝑑2𝑛) ∈ ℂ2𝑛×2𝑛 is invertible (so 𝑑𝑖 ≠ 0 ∀𝑖), 𝑧 = [𝑧1 𝑧2 ⋯ 𝑧2𝑛]
𝖳 ∈ ℂ2𝑛, and 𝜌 > 0. Note that it is

not necessary to consider 𝜌 ≤ 0, since if 𝜌 = 0, then𝐴 is diagonal and so obtaining its eigenvalues is trivial, while if 𝜌 < 0,
then one can just instead consider 𝐴 = −𝐷 − 𝜌𝑧𝑧𝖳. Furthermore, we assume that
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10 of 21 JAKOVČEVIĆ STOR et al.

∙ 𝐴 is irreducible, that is, ∀𝑖, 𝑗 ∈ {1, … , 2𝑛}, 𝑧𝑖 ≠ 0 and 𝑑𝑖 ≠ 𝑑𝑗 if 𝑖 ≠ 𝑗, and
∙ 𝐴 is diagonalizable.

It is unnecessary to consider reducible 𝐴 matrices, since 𝑑𝑖 is an eigenvalue of 𝐷 + 𝜌𝑧𝑧𝖳, with its corresponding eigen-
vector being the 𝑖th canonical vector, if and only if 𝑧𝑖 = 0 or 𝑑𝑖 = 𝑑𝑗 for some 𝑗 ≠ 𝑖 holds (see, e.g., Xu and Qiao [26]). In
other words, such eigenvalues can be easily removed (via exact deflation) to obtain a smaller DPR1Csym matrix that is
irreducible. Per the following remark, we will be able to convert eigenvalue problems involving DPR1 matrices into ones
involving DPR1Csym matrices.

Remark 1. Note that if 𝐷 + 𝜌𝑢𝑧𝖳 ∈ ℂ2𝑛×2𝑛 is a DPR1 matrix with 𝑢, 𝑧 ∈ ℂ2𝑛 and 𝑢𝑖 ≠ 0, 𝑧𝑖 ≠ 0 ∀𝑖, then it can be rewritten
as a DPR1Csym matrix with the same eigenvalues. Letting

𝑆 ∶= diag

(√
𝑧1

𝑢1
, … ,

√
𝑧2𝑛

𝑢2𝑛

)
and 𝑧̂ ∶= 𝑆𝑢, (3.2)

it follows that 𝑢𝖳𝑆2 = 𝑧𝖳 holds, and so (𝜆, 𝑥) is an eigenpair of 𝐷 + 𝜌𝑢𝑧𝖳 if and only if (𝜆, 𝑆𝑥) is an eigenpair of 𝐷 + 𝜌𝑧̂𝑧̂𝖳.
While this transformation requires that 𝑢 and 𝑧 only have nonzero entries, this is also easily ensured via a preprocessing
step. If 𝑢𝑖 = 0 or 𝑧𝑖 = 0 for some 𝑖, then 𝑑𝑖 is an eigenvalue of 𝐷 and it can be removed via exact deflation. Thus, by
first performing a sequence of exact deflations corresponding to the zero entries of 𝑢 and 𝑧, we extract the associated
eigenvalues (and eigenvectors) and obtain a smaller DPR1 matrix that can be converted to a DPR1Csym matrix.

Thus, with our assumptions above, we need only consider the case of computing eigenvalues and eigenvectors of
DPR1Csym matrices. If we were only to consider DPR1 real symmetric matrices, then fast standard techniques can be
used that exploit the DPR1 structure, for example, divide-and-conquer, where the eigenvalues and eigenvectors of a tridi-
agonal matrix are computed by solving a sequence of eigenvalue problems involving DPR1 real symmetric matrices; see
Cuppen [27] and chapter 5.3.3 of Demmel [28]. Of course, the essential properties needed to employ such methods are
not present for DPR1Csym matrices, the most important being that the diagonal elements of 𝐷 and the eigenvalues of
𝐴 are no longer interlaced for the complex problem, since these values are now in the complex plane as opposed to on
the real line. Thus, we instead consider an approach for DPR1Csym matrices that is inspired by a different approach for
DPR1 real symmetric matrices [19]. The method of Jakovčević Stor et al. [19] computed eigenpairs using a combination
of standard and modified Rayleigh quotient iterations (RQI and MRQI, respectively), but in our setting, the eigenvalues
of Equation (3.1) will be complex (and real axis symmetry is not guaranteed), and we have observed that standard RQI
often does not converge. Moreover, we have also observed that when eigenvalues are close to each other, the method of
Jakovčević Stor et al. [19] often gets stuck oscillating between approximations in such clusters of eigenvalues. To address
these shortcomings, we propose two key modifications, namely, to completely forgo using standard RQI and to introduce
a new dynamic step-size procedure in order to steer our MRQI-based procedure towards a single eigenvalue in a cluster.
We now present our new method in complete detail.
Since 𝐴 is complex symmetric and diagonalizable, we have the following eigendecomposition:

𝐴 = 𝑊Λ𝑊𝖳, (3.3)

where Λ = diag(𝜆1, … , 𝜆2𝑛) and 𝑊 =
[
𝑤1 ⋯ 𝑤2𝑛

]
with 𝑊𝖳𝑊 = 𝐼 are, respectively, the eigenvalues and eigenvectors

of 𝐴. Note that the eigenvalues of 𝐴 are the zeros of the secular function (see e.g., Cuppen [27]):

𝑓(𝜆) = 1 + 𝜌

2𝑛∑
𝑖=1

𝑧2
𝑖

𝑑𝑖 − 𝜆
= 1 + 𝜌𝑧𝖳(𝐷 − 𝜆𝐼)−1𝑧, (3.4)

where for 𝑖 ∈ {1, … , 2𝑛}, the eigenvector 𝑤𝑖 for eigenvalue 𝜆𝑖 is given by

𝑤𝑖 =
𝑥𝑖‖𝑥𝑖‖2

with 𝑥𝑖 = (𝐷 − 𝜆𝑖𝐼)
−1𝑧. (3.5)
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JAKOVČEVIĆ STOR et al. 11 of 21

The zeros of Equation (3.4) can be found using different algorithms, for example, if 𝐴 is real, the eigenvalues can be
efficiently and reliably computed via bisection [29]. If 𝐴 is a DPR1 matrix, one can use, for example, mpsolve from the
package MPSolve (see Bini and Robol [30]), but this can be costly since mpsolve uses a large amount of extra digits of
precision (as opposed to just quad precision). If 𝐴 is a complex symmetric matrix, one can use MRQI; see Refs. [31, 32].
Regarding the eigenvector formula given in Equation (3.5), this is well known to be numerically unstable, but one option
to work around this problem is to use extended precision; for the DPR1 eigensolver of Jakovčević Stor et al. [29], a fraction
of the algorithm is implemented in quad precision, and the authors reported that overhead to use this extended precision
was very modest, that is, only 55% slower than standard double-precision implementations; see p. 314 of Jakovčević Stor
et al. [29],
In our case of 𝐴 being DPR1Csym, we can consider a modification of the MRQI approach of Jakovčević Stor et al. [19]

that both additionally takes advantage of its DPR1 structure for efficiency, and introduces our new step-size procedure to
improve the reliability of convergence. Given a starting 𝑥 ∈ ℂ2𝑛, repeat

𝛿 ← 𝜂
𝑥𝖳𝐴𝑥

𝑥𝖳𝑥
, 𝑥 ← (𝐷 − 𝛿𝐼)−1𝑧, (3.6)

where 𝜂 > 0 is a step size chosen dynamically to enhance convergence to a single eigenvalue. The computation of 𝑥 comes
from the eigenvector formula (3.5). Once 𝛿 has converged, it can be deflated from 𝐴 to obtain a new smaller DPR1Csym
matrix; see Pan and Zheng [33]. Without loss of generality, assume eigenvalue 𝜆 is computed via shift 𝑑𝑠 from the diagonal
of 𝐷. Then deflating 𝜆 from 𝐴 results in the DPR1Csym matrix 𝐴d ∈ ℂ2𝑛−1×2𝑛−1, where

𝐴d = 𝐷d + 𝜌𝑧d𝑧
𝖳
d
, where (3.7a)

𝐷d = diag(𝑑1, … , 𝑑𝑠−1, 𝑑𝑠+1, … , 𝑑2𝑛), (3.7b)

(𝑧d)𝑖 = 𝑧𝑖

√
𝑑𝑖 − 𝑑𝑠

𝑑𝑖 − 𝜆
, 𝑖 = 1, … , 𝑠 − 1, 𝑠 + 1… , 2𝑛. (3.7c)

The deflation formula comes from shifted inverse powermethod and Sherman–Morrison–Woodbury (SMW) formula, and
𝐴 is always stored implicitly, as two vectors and a scalar. A detailed pseudocode for our new eigensolver for DPR1matrices
is given in Algorithm 1.

3.2 Efficient eigenvalue computation for QEPs

We now show how to transform our QEP given by Equation (1.4) into multiple connected DPR1 eigenvalue problems.
First, since𝑀 and 𝐾 are symmetric positive definite matrices, there exists a matrix Φ which simultaneously diagonalizes
𝑀 and 𝐾, that is,

Φ𝖳𝐾Φ = Ω2 = diag(𝜔2
1, … , 𝜔2

𝑛) and Φ𝖳𝑀Φ = 𝐼, (3.8)

where 𝜔1 > ⋯ > 𝜔𝑛 > 0 are the undamped frequencies. Moreover, it can be shown that Φ also diagonalizes 𝐶int, that is,
Φ𝖳𝐶intΦ = 𝛼Ω; for more details, see Refs. [1, 10].2 Thus, we can linearize the QEP given in Equation (1.4) to obtain the
standard eigenvalue problem

𝐴(𝑣)𝑦(𝑣) = 𝜆(𝑣)𝑦(𝑣), where (3.9a)

𝐴(𝑣) =

[
0 Ω

−Ω −Φ𝖳𝐶(𝑣)Φ

]
=

[
0 Ω

−Ω −𝛼Ω

]
−

[
0

Φ𝖳𝐺

] [
𝑣1

⋱
𝑣𝑟

] [
0 𝐺𝖳Φ

]
, (3.9b)

𝑦(𝑣) =

[
ΩΦ−1𝑥(𝑣)

𝜆(𝑣)Φ−1𝑥(𝑣)

]
. (3.9c)
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12 of 21 JAKOVČEVIĆ STOR et al.

ALGORITHM 1 Eigensolver for DPR1 matrices

Input: DPR1 matrix 𝐷 + 𝜌𝑢𝑧𝖳 with 𝜌 > 0 and vectors 𝑢, 𝑧 ∈ ℂ2𝑛 with no zero entries.
Output: Eigenvalues Λ = diag(𝜆1, … , 𝜆2𝑛) and eigenvectors𝑊 =

[
𝑤1 ⋯ 𝑤2𝑛

]
.

1: 𝑆 ← diagonal matrix from Equation (3.2)
2: 𝑧̂ ← 𝑆𝑢

3: for 𝑙 = 2𝑛, 2𝑛 − 1, 2𝑛 − 2,… , 2, 1 do
4: 𝑠 ← argmax𝑖∈{1,…𝑚}|𝑑𝑖|
5: 𝐷̂ ← 𝐷 − 𝑑𝑠𝐼

6: 𝑥 ← 𝑒𝑠 , 𝛾 ← 0, 𝜂 ← 1 (set initial values)
7: while | 𝛿

𝛾
| < tol (stop MRQI once relative change between steps is small) do

8: if not converging then
9: 𝜂 ←

𝜂

2
(reduce 𝜂 and reset other initial values)

10: 𝑥 ← 𝑒𝑠 , 𝛾 ← 0

11: end if
12: 𝛿 ← 𝜂𝑥𝑇(𝐷̂ + 𝜌𝑧̂𝑧̂𝖳)𝑥∕‖𝑥‖2

13: 𝛾 ← 𝛾 + 𝛿

14: 𝑥 ← (𝐷̂ − 𝛿𝐼)−1𝑧̂

15: 𝐷̂ ← 𝐷̂ − 𝛿𝐼

16: end while
17: 𝜆𝑙 ← 𝑑𝑠 + 𝛾

18: [𝐷, 𝑧̂] ← Update DPR1Csym matrix by deflating 𝜆𝑙 from 𝐷 + 𝜌𝑧̂𝑧̂𝖳 via Equation (3.7)
19: end for
20: 𝑊 ←

[
𝑤1 ⋯ 𝑤2𝑛

]
, where 𝑤𝑙 is computed by Equation (3.5) using 𝜆𝑙

21: 𝑊 ← 𝑆−1𝑊

Note: If 𝑢 = 𝑧, then 𝑆 = 𝐼 in line 1 and so 𝑧̂ = 𝑧 = 𝑢. Since 𝑆 is diagonal, the operations outside of the for loop amount to (𝑛2) work, while each line inside is at
most (𝑛) work. Thus, assuming that the number iterations of the while loop is never dependent on 𝑛, the total work complexity of Algorithm 1 is (𝑛2).

Let 𝑃 ∈ ℝ2𝑛×2𝑛 be the perfect shuffle permutation, which splits a set of even cardinality into two sets of equal cardinality
and interleaves them, that is, it maps the 𝑘th e s:

𝑘 ↦

{
2𝑘 − 1, if 𝑘 ≤ 𝑛

2(𝑘 − 𝑛), if 𝑘 > 𝑛.
(3.10)

Now dropping the dependency on 𝑣 for brevity and using 𝑃𝑃𝖳 = 𝐼 and 𝐴 = 𝑃𝖳𝐴𝑃, multiplying Equation (3.9a) on the left
by 𝑃𝖳 yields the eigenvalue problem

𝐴𝑃𝖳𝑦 =

([
𝐷1

⋱
𝐷𝑛

]
− 𝐺

[
𝑣1

⋱
𝑣𝑟

]
𝐺𝖳

)
𝑃𝖳𝑦 = 𝜆𝑃𝖳𝑦, where (3.11a)

𝐷𝑖 =

[
0 𝜔𝑖

−𝜔𝑖 −𝛼𝜔𝑖

]
and 𝐺 = 𝑃𝖳

[
0

Φ𝖳𝐺

]
. (3.11b)

Let Ψ𝑖 be the matrix which diagonalizes matrix 𝐷𝑖 and consider the matrices

Ψ =

[
Ψ1

⋱
Ψ𝑛

]
, 𝐷 = Ψ−1

[
𝐷1

⋱
𝐷𝑛

]
Ψ, 𝑈 = Ψ−1𝐺, and 𝑍 = Ψ𝖳𝐺, (3.12)

noticing that Ψ diagonalizes the block diagonal matrix from Equation (3.11a) into 𝐷. Thus, considering 𝐴 = Ψ−1𝐴Ψ and
multiplying Equation (3.11a) on the left byΨ−1, we further transform the eigenvalue problem into one involving a diagonal
matrix plus a low-rank update

𝐴𝑤 = 𝜆𝑤, where (3.13a)
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JAKOVČEVIĆ STOR et al. 13 of 21

𝐴 = 𝐷 − 𝑈

[
𝑣1

⋱
𝑣𝑟

]
𝑍𝖳 = 𝐷 −

𝑟∑
𝑗=1

𝑣𝑗𝑢𝑗𝑧
𝖳
𝑗
, 𝑤 = Ψ−1𝑃𝖳𝑦, (3.13b)

and 𝑢𝑗 and 𝑧𝑗 are, respectively, the 𝑗th columns of 𝑈 and 𝑍. Since matrices Φ, Ω, 𝑃, 𝐷, 𝑈, and 𝑍 are all independent
of 𝑣, obtaining the low-rank structure of 𝐴 can be precomputed once in an offline process. In fact, Φ, Ω, 𝑃, and 𝐷 are
also independent of the damping positions specified by the matrix 𝐺, and so, when optimizing viscosities for multiple
configurations of damping positions, these matrices need only be calculated once, while computing 𝑈 and 𝑍 for each
configuration is cheap.
We now show how Algorithm 1 can be iteratively applied to portions of 𝐴 in order to recover all the eigenvalues and

eigenvectors of Equation (3.13a). Let𝐴1 = 𝐷 − 𝑣1𝑢1𝑧
𝖳
1 and suppose it is diagonalizable, that is, it has eigendecomposition

𝐴1 = 𝜉1𝐿1𝜉
−1
1 , where matrices 𝜉1 and 𝐿1, respectively, contain the eigenvectors and eigenvalues of 𝐴1. Then multiplying

Equation (3.13a) on the left by 𝜉−1
1 and separating out 𝐴1, we obtain the transformed eigenvalue problem

𝜉−1
1

(
𝐴1 −

𝑟∑
𝑗=2

𝑣𝑗𝑢𝑗𝑧
𝖳
𝑗

)
𝑤 =

(
𝐿1 −

𝑟∑
𝑗=2

𝑣𝑗𝜉
−1
1 𝑢𝑗𝑧

𝖳
𝑗
𝜉1

)
𝜉−1
1 𝑤 = 𝜆𝜉−1

1 𝑤. (3.14)

If 𝐴2 = 𝐿1 − 𝑣2𝑢̃2𝑧̃
𝖳
2 is also diagonalizable, where 𝑢̃2 = 𝜉−1

1 𝑢2 and 𝑧̃2 = 𝜉𝖳
1 𝑧2, we can again similarly transform the eigen-

value problem via the eigendecomposition 𝐴2 = 𝜉2𝐿2𝜉
−1
2 . We keep applying these transformations for 𝑗 = 1,… , 𝑟 by

computing the eigendecompositions

𝐴𝑗 = 𝜉𝑗𝐿𝑗𝜉
−1
𝑗

, where 𝐴𝑗 = 𝐿𝑗−1 − 𝑣𝑗𝑢̃𝑗𝑧̃
𝖳
𝑗
, 𝐿0 = 𝐷, (3.15a)

𝑢̃𝑗 = 𝜉−1
𝑗−1

⋯𝜉−1
1 𝑢𝑗, 𝑢̃1 = 𝑢1, (3.15b)

𝑧̃𝑗 = 𝜉𝖳
𝑗−1

⋯𝜉𝖳
1 𝑧𝑗, 𝑧̃1 = 𝑧1. (3.15c)

Assuming that all the 𝐴𝑗 matrices are indeed diagonalizable, we finally obtain

𝐿𝑟

(
𝜉−1
𝑟 ⋯𝜉−1

1 𝑤
)
= 𝜆

(
𝜉−1
𝑟 ⋯𝜉−1

1 𝑤
)
, (3.16)

and so we have recovered the eigenvalues of Equation (3.13a) and can reconstruct its eigenvectors as well.

Remark 2. As a final step of our algorithm, note that we also follow a suggestion of Taslaman (see section 4.3 of Taslaman
[23]) to refine the accuracy of computed eigenvectors by doing a single step of inverse iteration for each eigenvector; due
to the particular structure of 𝐶(𝑣), the SMW formula can be used to do a single-step of inverse iteration in only(𝑛)work
per eigenvector. Similar applications of the SMW formula in damped systems for efficient computations can be found in
Refs. [4, 5, 8, 34, 35].

Pseudocode for our complete QEP eigensolver is given in Algorithm 2. We note that assuming that all matrices 𝐴𝑗 are
diagonalizable is quite standard (see, e.g., Refs. [6, 19]), and we have not observed any issues in numerical experiments
with this assumption.
We now turn to the work complexity of Algorithm 2. Recall that the work complexity of Algorithm 1 is (𝑛2), and

since we assume that the number of dampers 𝑟 is small, that is, 𝑟 ≪ 𝑛, we will treat 𝑟 as a constant. Inside the for loop of
Algorithm 2, lines 5 and 6 are potentially more than(𝑛2)work using standard techniques, but since the 𝜉𝑗 ’s are Cauchy-
like matrices, matrix-vector multiplication and linear solves can be done in approximately linear time, and so the total
cost of the loop remains at (𝑛2). Meanwhile, forming Ξ in line 9 is also not more than (𝑛2) work, since 𝑃 and Ψ are
sparse matrices and 𝜉1 ⋯𝜉𝑟 is a product of linked Cauchy-like matrices, which can also be done in (approximately) linear
time; for full details, see [19, 36]. In line 10, applying the inverse of Ω is cheap (recall that Ω is a diagonal matrix), while
if Φ is a sparse matrix, then obtaining the full matrix of eigenvectors 𝑋 is also at most (𝑛2) work. However, note that
while evaluating the functions in Equations (2.6) and (2.12) requires that we obtain all of the eigenvalues of Equation (1.4),
only a handful of the corresponding eigenvectors are needed to compute the corresponding gradients. For our setting of
optimizing viscosities using gradients, in line 10, we can selectively compute the handful of relevant eigenvectors, that
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14 of 21 JAKOVČEVIĆ STOR et al.

ALGORITHM 2 QEP eigensolver for Equation (1.4)

Input:𝑀 and 𝐾 from Equation (1.4), 𝛼 ≥ 0 for 𝐶int from Equation (1.3), Φ andΩ from Equation (3.8), Ψ, 𝐷,𝑈, and 𝑍 from Equation (3.12),
and 𝑣 ∈ ℝ𝑟 .

Output: Eigenvalues 𝐿 and eigenvectors 𝑋 of QEP (1.4)
1: 𝐿0 ← 𝐷

2: for 𝑗 = 1,… , 𝑟 do
3: [𝑢̃𝑗, 𝑧̃𝑗] ← 𝑗th columns of 𝑈 and 𝑍, respectively
4: [𝐿𝑗, 𝜉𝑗] ← eigenvalues and eigenvectors of 𝐿𝑗−1 − 𝑣𝑗𝑢̃𝑗𝑧̃

𝖳
𝑗
computed by Algorithm 1

5: 𝑈 ← 𝜉−1
𝑗 𝑈

6: 𝑍 ← 𝜉𝖳
𝑗 𝑍

7: end for
8: 𝐿 ← 𝐿𝑟

9: Ξ ← 𝑃Ψ𝜉1 ⋯𝜉𝑟 , where 𝑃 ∈ ℝ2𝑛×2𝑛 is the perfect shuffle permutation
10: 𝑋 ← ΦΩ−1Ξ(1 ∶ 𝑛, ∶) (Take the first 𝑛 rows of Ξ)
11: 𝑋 ← each column (an eigenvector) of 𝑋 gets refined according to Remark 2

Note: For simplicity of the pseudocodes in this paper, we assume that vectors 𝑢̃𝑗 and 𝑧̃𝑗 never have zero entries, scalar 𝑣𝑗 ≠ 0, and 𝐿𝑗−1 − 𝑣𝑗𝑢̃𝑗 𝑧̃
𝖳
𝑗 is actually given to

Algorithm 1 as 𝐿𝑗−1 + |𝑣𝑗|(− sgn(𝑣𝑗)𝑢̃𝑗)𝑧̃
𝖳
𝑗
to adhere to its convention that 𝜌 > 0. If 𝑣𝑗 = 0, obtaining the eigenvalues and eigenvectors is immediate (so Algorithm 1

is not needed), while if either 𝑢̃𝑗 or 𝑧̃𝑗 contain zero entries, then per Remark 1, exact deflation is first used to remove the corresponding eigenvalues, which are on
the diagonal of 𝐿𝑗−1, and then Algorithm 1 is called on the resulting deflated DPR1 matrix to obtain the remaining eigenvalues and eigenvectors. Finally, note that
by design of Algorithms 1 and 2, for 𝑗 > 1 in line 4, Algorithm 1 is warm started by using the eigenvalues of the previous DPR1 eigenvalue problem as shifts for the
next DPR1 eigenvalue problem.

is, we apply Φ to the few corresponding columns of Ω−1Ξ(1 ∶ 𝑛, ∶) in order to not exceed (𝑛2) work when Φ is dense.
Finally, per Remark 2, refining the eigenvectors using inverse iteration is only (𝑛) work per eigenvector. Hence, the
overall work complexity of Algorithm 2 is quadratic.
In terms of constant factors, the total cost of Algorithm 2 is dominated by line 4, that is, the call to Algorithm 1, which

invoked a total of 𝑟 times. As such, provided 𝑛 is small enough, it is not always critical to implement lines 5, 6, 9, and
10 in Algorithm 2 as discussed above in order to attain the theoretical work complexity result (but those steps should
indeed be taken if 𝑛 is very large). Also, we note that the subsequent calls to Algorithm 1 can be faster than the first one
because, by our design of the two algorithms, we are actually warm starting Algorithm 1 by choosing the initial shifts as
the eigenvalues of the previous eigenvalue problem. Thus, when two consecutive DPR1 eigenvalue problems have quite
similar spectra, which is not uncommon, we end up having excellent initial shift choices for which to accelerate the
convergence of Algorithm 1 in line 4 of Algorithm 2.

4 THE FREQUENCY-WEIGHTED DAMPING OPTIMIZATION ALGORITHM

Weare now ready to present our new algorithm for frequency-weighted damping of QEPs.We beginwith the offline phase,
which simply precomputes the matrices from Equations (3.8) and (3.12) so that Algorithm 2 can be used to evaluate all the
eigenvalue-based functions (and their gradients) that appear in Equations (2.6) and (2.12). While this offline phase has a
(𝑛3) work complexity, it only needs to be done once. We emphasize again that the simultaneous diagonalization part of
the offline phase is also independent of the damping positions, and so it only needs to be performed once for all different
damping positions.
For the online phase, by using Algorithm 2, evaluating all the functions (and their gradients described in Section 2.3) in

Equation (2.6) or Equation (2.12) for a given vector 𝑣 ∈ ℝ𝑟 is then only(𝑛2)work, as opposed to(𝑛3) via standard eigen-
solvers. In terms of the overall cost, this is a significant savings as we expect to require many function evaluations before
converging to a stationary point of Equation (2.6) or Equation (2.12), particularly since these are nonsmooth optimization
problems. To find solutions of Equations (2.6) and (2.12), we use GRANSO; a high-level description of our method is given
in Algorithm 3.
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ALGORITHM 3 Frequency-weighted damping optimization algorithm

Input:𝑀 and 𝐾 from Equation (1.4), 𝛼 ≥ 0 for 𝐶int and 𝐺 from Equation (1.2), set of 𝑘 ellipses  , weights [𝜙1, … , 𝜙𝑘] with each 𝜙𝑗 ∈ (0, 1]

for ellipse 𝐸𝑗 ∈  , 𝜂 ≥ 0, tolsa < 0, initial viscosity values 𝑣init ∈ ℝ𝑟
+, and approach ∈ {1, 2}.

Output: Computed for optimized viscosities 𝑣opt ∈ ℝ𝑟
+ for either Equation (2.6) or Equation (2.12)

1: Offline stage: (Set up for computing functions and gradients via Algorithm 2)
2: [Φ,Ω] ←matrices from Equation (3.8) (Diagonalization)
3: [Ψ, 𝐷,𝑈, 𝑍] ←matrices from Equation (3.12) (Linearize and construct low-rank structure)
4: Online stage: (Optimize viscosities using GRANSO and Algorithm 2)
5: if approach = 1 then
6: 𝑣opt ← solution returned by GRANSO for Equation (2.6) initialized at 𝑣init

7: else
8: 𝑣opt ← solution returned by GRANSO for Equation (2.12) initialized at 𝑣init

9: end if

F IGURE 1 Diagram of an 𝑛-mass oscillator

5 NUMERICAL EXPERIMENTS

All experiments were done in MATLAB R2021a using a mid-2020 13″ MacBook Pro with an Intel Core i5-1038NG7 CPU
(quad core) and 16GB of RAM running macOS 10.15.7. Our code for replicating all experiments reported here is both
included as supplementary material with this article and available in a permanent and public archive on Zenodo.3 For the
values of 𝑛 in our experiments here, it sufficed to implement lines 5, 9, and 10 of Algorithm 2 using standard techniques
and compute all the eigenvectors, as opposed to leveraging the Cauchy-like structure and possibly selectively computing
eigenvectors. As test problems, we used various instances of an 𝑛-mass oscillator; see Figure 1. For thismechanical system,
we have the following matrices:

𝑀 = diag(𝑚1,𝑚2, … ,𝑚𝑛), (5.1a)

𝐾 =

[
𝑘1 + 𝑘2 −𝑘2

−𝑘2 ⋱ ⋱
⋱ ⋱ −𝑘𝑛

−𝑘𝑛 𝑘𝑛 + 𝑘𝑛+1

]
, (5.1b)

𝐶ext(𝑣) = 𝑣1𝑒𝑗𝑒
𝖳
𝑗
+ 𝑣2(𝑒𝑘 − 𝑒𝑘+1)(𝑒𝑘 − 𝑒𝑘+1)

𝖳 + 𝑣3𝑒𝑙𝑒
𝖳
𝑙
, (5.1c)

where 𝑒𝑗 denotes the 𝑗th canonical vector, and 𝑣1, 𝑣2, 𝑣3 ≥ 0 are the viscosity values. In 𝐶ext(𝑣), the 𝑒𝑗𝑒
𝖳
𝑗
and 𝑒𝑙𝑒

𝖳
𝑙
terms,

respectively, mean that there are grounded dampers on masses 𝑚𝑘 and 𝑚𝑙, while (𝑒𝑘 − 𝑒𝑘+1)(𝑒𝑘 − 𝑒𝑘+1)
𝖳 indicates that

masses 𝑚𝑘 and 𝑚𝑘+1 are connected by a damper. Thus, for Figure 1, 𝐶ext(𝑣) is defined using 𝑗 = 𝑘 = 1 and 𝑙 = 𝑛 − 1.
Considering Equation (1.2), we also have that 𝐶ext(𝑣) = 𝐺 diag(𝑣1, 𝑣2, 𝑣3)𝐺

𝖳, where 𝐺 = [𝑒𝑗 𝑒𝑘 − 𝑒𝑘+1 𝑒𝑙].
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F IGURE 2 The overall running times as the system dimension 𝑛 is increased. For the direct solvers, polyeig and quadeig, the overall
running times to solve instances of Equation (1.4) are shown. For the indirect solvers, eig(𝐴) and Algorithm 2, the overall running times are
separated into their offline and online parts, where the offline cost for both is computing Φ from Equation (3.8).

5.1 Validating Algorithm 2

To assess the efficiency and accuracy of our new eigensolver (Algorithm 2) for solving Equation (1.4), we used instances of
Equation (5.1) with orders 𝑛 = 200, 400, 600, … , 2000. For each value of 𝑛, we defined matrix𝑀 using𝑚𝑖 = 10 + 990(

𝑖−1

𝑛−1
)

for 𝑖 = 1, … , 𝑛 and matrix 𝐾 using 𝑘𝑖 = 5 for 𝑖 = 1, … , 𝑛 + 1, and created two problems with different configurations of
dampers, by defining two 𝐶(𝑣) = 𝐶int + 𝐶ext(𝑣) matrices. We used 𝛼 = 0.004 to define 𝐶int, while the two versions of
𝐶ext(𝑣) were defined via choosing 𝑗, 𝑘, and 𝑙 as follows:

Config A: (𝑗, 𝑘, 𝑙) =
(

𝑛

10
,
3𝑛

10
,
5𝑛

10

)
and Config B: (𝑗, 𝑘, 𝑙) =

(
3𝑛

10
,
7𝑛

10
,
9𝑛

10

)
. (5.2)

Using randomly generated viscosity values for each 𝑛, specifically 𝑣 = 0.1 + rand(3, 𝑛), we solved the resulting QEPs
with Algorithm 2 and other solvers for comparison purposes. For direct QEP solvers, we tested polyeig and quadeig.
We also benchmarked Algorithm 2 against a much simpler version of our algorithm, which also first computes matrix Φ

to simultaneously diagonalize𝑀 and 𝐾, per Equation (3.8), but then forgoes taking any advantage of low-rank structure
and instead just computes the eigenvalues of 𝐴(𝑣) defined in Equation (3.9b) via calling eig on this standard eigenvalue
problem; we refer to this simpler method as eig(𝐴).
In Figure 2, we show the overall running times, recorded using tic and toc, for all the different eigensolvers as 𝑛

increases for Config A. As can be seen, the costs of the direct solvers, polyeig and quadeig, quickly increase as 𝑛 does.
Meanwhile, eig(𝐴) and Algorithm 2 are much faster, with their respective costs also increasing at a much slower rate
with respect to 𝑛. Indeed, already by 𝑛 = 400, eig(𝐴) and Algorithm 2 are about an order of magnitude faster than the
direct solvers. Moreover, for 𝑛 = 2000, eig(𝐴) is about 35 times faster than polyeig, while Algorithm 2 is 51 times faster
than polyeig. Comparing eig(𝐴) and Algorithm 2 to each other (see Figure 2), we see the cost of the latter indeed grows
more slowly with respect to 𝑛, and that hidden constant term in the work complexity for Algorithm 2 is not an issue
for overall efficiency in practice. We note that an implementation of Algorithm 2 in a compiled language and that takes
advantage of the Cauchy-like structure of the matrices 𝜉𝑗 should be many times faster than our prototype implementation
that we have used here, which recall, is coded in MATLAB and does not yet take advantage of Cauchy-like structure. We
also performed the same scaling experiment for Config B, which resulted in plots very similar to those shown in Figure 2;
as such, we omit these additional plots here.
In order to show the accuracy of Algorithm 2, we compared its computed eigenvalues with those computed by polyeig,

and for each computed eigenvalue-eigenvector pair (𝜆, 𝑥), we computed the spectral norm of the left-hand side of Equa-
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F IGURE 3 The median and worst relative errors of eigenvalues computed by Algorithm 2 with respect to the eigenvalues computed
by polyeig are denoted by the “𝜆 error” markers, while the median and worst eigenpair residuals are denoted by “(𝜆, 𝑥) resid.” markers.

tion (1.4) with this eigenpair plugged into it. For each problem, we paired the two sets of computed eigenvalues greedily,
that is, by taking the closest pair of values across the two sets, removing this “match,” and then repeating this proce-
dure until all computed eigenvalues were paired. For each matched pair of eigenvalues, we computed the relative errors
in the real and imaginary parts separately, which we denote 𝛿Re and 𝛿Im, and then used max{|𝛿Re |, |𝛿Im |} as an overall
measure of the error in the computed pair. Then for each problem, we computed the median and worst (largest) of these
error measurements over the entire computed spectrum. Similarly, we computed the median and worst (largest) eigen-
value/eigenvectors errors over all the computed eigenpairs (𝜆, 𝑥), where the error of an eigenpair is given by taking the
norm of the left-hand side of Equation (1.4). We show the resulting error measurements in Figure 3 for both Config A
and Config B across all values of 𝑛 tested. As can be seen, the results are essentially the same for both configurations.
For comparing the accuracy of the eigenvalues with respect to those computed by polyeig, the median error was always
about 10−11, while the worst error rose from about 10−10 to a bit over 10−8 as 𝑛 increased from 200 to 2000; we saw
very similar eigenvalue errors when comparing Algorithm 2 to quadeig and even when comparing polyeig to quadeig.
Meanwhile, the eigenpairs residuals were in the worst case still under 10−12 with the median error being about 10−14,
thus demonstrating that Algorithm 2 is indeed computing eigenvalues and eigenvectors to good accuracy. Note that our
MATLAB implementation of Algorithm 2 only uses double precision and that implementing the key parts of Algorithm 1
using quad precision should improve the accuracy of Algorithm 2; in this case, Algorithm 1 and Algorithm 2 would be
mixed-precision implementations.

5.2 Validating Algorithm 3 for approaches 1 and 2

To demonstrate our new approaches for optimizing viscosities via nonsmooth constrained optimization and our new
models, Approaches 1 (Fixed ellipses) and 2 (Variable ellipses), we used additional instances of the three-damper 𝑛-mass
oscillator defined by the matrices in Equation (5.1). For these experiments, we used 𝑛 = 1000 and defined 𝑀 and 𝐾 via,
respectively, setting 𝑚𝑖 = 𝑚𝑛+1−𝑖 =

2𝑛−𝑖

200
for 𝑖 = 1, … ,

𝑛

2
and 𝑘𝑖 = 5 for 𝑖 = 1, … , 𝑛 + 1. To define 𝐶(𝑣), we used (𝑗, 𝑘, 𝑙) =

(100, 400, 900) to specify the configuration of dampers given by matrix 𝐺 in 𝐶ext(𝑣) and used various values of 𝛼 (to be
reported momentarily) for 𝐶int.
For the online optimization phase of Algorithm 3, we used GRANSO’s default parameters except we set

opts.maxit=100, always initialized GRANSO from 𝑣init = ones(3,1), and set opts.mu0=10000. This last change,
which multiplies the objective function by 10,000, was simply done for rescaling reasons, that is, so that the value of
the objective function at 𝑣init was about one for all of our test problems; in practice, opts.mu0 can be easily determined
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F IGURE 4 The eigenvalues (depicted as dots) are shown for 𝑣zero (no external damping), 𝑣init (the damping at the initial point), and 𝑣opt

(the optimized viscosities computed by GRANSO). The spectral abscissa for each set of viscosities is depicted via a vertical line: 𝑣zero (dotted),
𝑣init (solid), and 𝑣opt (dashed). For Approach 1 (right), the ellipse defining our frequency-weighting constraint 𝑑Λ, (𝑣) ≥ 1, which requires that
none of the eigenvalues are inside the ellipse defined by 𝐸 = (0.001, 0.2, 0.95𝐢), is also shown.

from the specific problem or one can use GRANSO’s automatic pre-scaling feature. Since Equations (2.6) and (2.12) are
generally nonconvex and thus may have multiple minimizers (of various quality), for best results in practice, one should
initialize GRANSO from multiple starting points and take the best of the resulting computed solutions. Finally, for all
problems and approaches 1 and 2, we set tolsa = 0.9 ⋅ min{𝛼MCK(𝑣init), 𝛼MCK(𝑣zero)}, where 𝑣zero = zeros(3,1),
We begin with approach 1, where we used 𝛼 = 0.001 for 𝐶int and defined constraint 𝑑Λ, (𝑣) ≥ 1 from Equation (2.6)

using a single ellipse, specifically 𝐸 = (0.001, 0.2, 0.95𝐢). For comparison purposes, we also ran Algorithm 3 a second time
on this same problem but without our ellipse constraint. In Figure 4, we show the different eigenvalue configurations
before and after optimization. When only minimizing the spectral abscissa, GRANSO ran for seven iterations, while for
Approach 1, GRANSO ran for 16 iterations. The solutions returned by GRANSO were, respectively,

𝑣opt =

⎡⎢⎢⎢⎣
238.7

101.2

132.6

⎤⎥⎥⎥⎦ and 𝑣opt =

⎡⎢⎢⎢⎣
8.117

8.187

0.001467

⎤⎥⎥⎥⎦. (5.3)

From Figure 4, we clearly see that both of these solutions are close to the nonsmooth manifold, with the former resulting
in several eigenvalues being close to attaining the spectral abscissa (the left pane) and the latter resulting in many more
eigenvalues being exceptionally close to the boundary of our specified ellipse (the right pane). Moreover, we see that while
the addition of constraint 𝑑Λ, (𝑣) ≥ 1 in approach 1 causes the spectral abscissa to beminimized less, approach 1 did in fact
move all of the eigenvalues at the initial viscosities 𝑣init out of our ellipse region. In other words, approach 1 successfully
computed a feasible set of viscosities that both selectively and significantly damped the desired frequency band.
Turning to approach 2, we used three ellipses to define our objective function in Equation (2.12), specifically 𝐸1 = (∼

, 0.05, 0.1𝐢), 𝐸2 = (∼, 0.05, 0.6𝐢), and 𝐸3 = (∼, 0.05, 1.1𝐢), with respective weightings 𝜙1 = 1, 𝜙2 = 0.2, and 𝜙3 = 0.1, and
𝜂 = 0. We then ran Algorithm 3 using this instance of approach 2 on the same 𝑛-mass oscillator example that we used to
test approach 1, except that now we used 𝛼 = 0.004 and 𝛼 = 0.0004. The configurations of eigenvalues before and after
optimization are shown in Figure 5. For 𝛼 = 0.004 and 𝛼 = 0.0004, GRANSO, respectively, ran for 32 and 27 iterations
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JAKOVČEVIĆ STOR et al. 19 of 21

F IGURE 5 The resulting spectrum configurations and maximized ellipses computed by Approach 2 (Variable ellipses) are shown for
two different choices of 𝛼 determining the internal damping matrix 𝐶int. See the caption of Figure 4 for the description of the legend.

before halting and, respectively, returned

𝑣opt =

⎡⎢⎢⎢⎣
8.138

7.147

1.789

⎤⎥⎥⎥⎦ and 𝑣opt =

⎡⎢⎢⎢⎣
8.295

7.767

1.673

⎤⎥⎥⎥⎦. (5.4)

for the optimized viscosity values. We again see that the solutions returned by GRANSO are very close to the nonsmooth
manifold. In the left pane of Figure 5, we see that each ellipse is essentially touching at least two eigenvalues, while in the
right pane, the three ellipses are very close to touching three, four, and three eigenvalues, respectively, from top to bottom.
Furthermore, the resulting eigenvalue configurations in Figure 5 confirm that approach 2 is indeed able to perform the
desired frequency-weighted damping, as specified by the semi-minor axis values and centers of ellipses 𝐸1, 𝐸2, and 𝐸3.
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2While the eigensolver we propose in this section assumes that Φ diagonalizes 𝐶int, note that our choice to use critical damping, that is, Equa-
tion (1.3), is not required. In particular, our approach can be applied to any internal damping that corresponds to a modally damped system,
which is a usual assumption when vibrational mechanical systems are considered.

3Downloadable from https://doi.org/10.5281/zenodo.7338121.
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