Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy

MPG-Autoren
/persons/resource/persons259992

Abdo,  M.
University of Stuttgart, Institute for Functional Matter and Quantum Technologies;
Max Planck Institute for Solid State Research;
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133864

Rolf-Pissarczyk,  S.
Max Planck Institute for Solid State Research;
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133858

Loth,  S.
University of Stuttgart, Institute for Functional Matter and Quantum Technologies;
Max Planck Institute for Solid State Research;
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

acsphotonics.0c01652.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Abdo, M., Sheng, S., Rolf-Pissarczyk, S., Arnhold, L., Burgess, J. A. J., Isobe, M., et al. (2021). Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy. ACS Photonics, 8(3), 702-708. doi:10.1021/acsphotonics.0c01652.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-4B79-D
Zusammenfassung
Broadband THz pulses enable ultrafast electronic transport experiments on the nanoscale by coupling THz electric fields into the devices with antennas, asperities, or scanning probe tips. Here, we design a versatile THz source optimized for driving the highly resistive tunnel junction of a scanning tunneling microscope. The source uses optical rectification in lithium niobate to generate arbitrary THz pulse trains with freely adjustable repetition rates between 0.5 and 41 MHz. These induce subpicosecond voltage transients in the tunnel junction with peak amplitudes between 0.1 and 12 V, achieving a conversion efficiency of 0.4 V/(kV/cm) from far-field THz peak electric field strength to peak junction voltage in the STM. Tunnel currents in the quantum limit of less than one electron per THz pulse are readily detected at multi-MHz repetition rates. The ability to tune between high pulse energy and high signal fidelity makes this THz source design effective for exploration of ultrafast and atomic-scale electron dynamics.