
Exploitation of DevOps concepts for the ASDEX Upgrade DCS

B. Sieglina, T. Zehetbauera, A. Lenza, M. Kölbla, A. Grätera, W. Treutterera, ASDEX Upgrade Teama

aMax-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching

Abstract

The ASDEX Upgrade Discharge Control System (DCS) is designed to be distributed and highly modular. By nature it
is a complex system that requires expert knowledge to develop, deploy and operate. This paper discusses the application
of DevOps concepts to DCS and its impact on the operation of ASDEX Upgrade.

The aim is to provide stable and undisturbed operation of ASDEX Upgrade, whilst having a low hurdle to include
new capabilities into DCS to extend the operational scope. To ensure both goals are met DevOps concepts have been
introduced to DCS. For the code development a review process was added using the code review tool Gerrit. Each
change is only accepted into the code repository once the review and automated testing have been completed.

The automated testing and packaging of DCS are conducted using the automation server Jenkins. DCS is not directly
installed on the host computers, but is operated using the containerization framework Docker. The containers allow easy
deployment of DCS onto new systems as well as the quick change of DCS versions on the systems. A new or updated
component can easily be tested by deploying the appropriate container. In case of failure the previous state is restored
by redeploying the container in the previous version.

DCS components can be classified into two types, the real time and the non real time parts. Non real time parts
are the services that are required to manage the configuration of the system and the setup of the real-time interaction
between participants. The new deployment method with Docker is used for both non real time as well as real time
services and is operational on ASDEX Upgrade since the 2019/2020 campaign. No impact of the determinism of the
real time components have been observed when operated within a docker container.

1. Introduction

Operation of fusion devices is a complex and challeng-
ing task. In case of a tokamak, such as ASDEX Upgrade,
plasma operation requires sophisticated, reliable and fast
control. Considering that the aim of current fusion devices
is to conduct experiments to enable future fusion power
plants, the control system has to be flexible and extensi-
ble in order to support the increasing demand for advanced
control. This flexibility and extensibility is increasing the
difficulty to achieve reliability. In order to ensure both for
ASDEX Upgrade, DevOps principles stemming from soft-
ware development have been applied to the development
and deployment of the discharge control system (DCS).
One requirement of the implementation is the use of stan-
dard solutions which have a wide user base. This is done
to reduce the work required for the setup and maintenance
of the system. In section 2 of this paper the DevOps prin-
ciples and their implementation are discussed. The devel-
opment and deployment strategy is discussed in section 3.

2. DevOps

The term DevOps is a combination of software devel-
opment Dev and IT operations Ops. It denotes a set of

Email address: bernhard.sieglin@ipp.mpg.de (B. Sieglin)

practices that aim to reduce the system development time
and provide continuous delivery with a high level of soft-
ware quality.

A central instrument to implement the DevOps prac-
tices is the so called toolchain. The function of the toolchain
is to aid the development, delivery and management of
software applications throughout the system development
life cycle. The toolchain itself consists of multiple tools
and services that interact in order to fulfill the desired
tasks.

1. Code development and review, source code manage-
ment and coordination of collaborative working.

2. Building the software and monitoring the current
build status.

3. Testing the software and identifying issues as soon
as possible.

4. Packaging the software and pre-deployment staging.
5. Releasing the software for deployment.
6. Configuration and management of infrastructure.
7. Monitoring of the production systems.

It has to be noted that the toolchain described here
contains only the functional parts from coding to deploy-
ment on the production systems. Tools for change man-
agement and extensive monitoring are not discussed in
this paper but are currently in different states of imple-
mentation on ASDEX Upgrade. On ASDEX Upgrade the

Preprint submitted to Elsevier August 2020



toolchain is using the collaboration tool Gerrit [1] for host-
ing of the source code and configuration as well as for code
review. Each code change made in DCS is submitted to
Gerrit which starts a code review before the change is ac-
cepted into the repository. Only after the approval of the
change by at least one responsible officer can the change
be submitted to the code repository.

For workflow based task execution the automation server
Jenkins [2] is used. This service is the backbone of the
toolchain performing all tasks that are required during
the whole development and deployment process. Jenkins
builds and tests the changes submitted to Gerrit, packages
the software and deploys it onto the different systems. For
this so called pipelines are defined which perform the dif-
ferent tasks and report the results. This is used e.g. by
Gerrit to judge if a code change passed the defined tests.
Once a change is pushed to Gerrit different pipelines start
their tasks on this change, e.g. building packages, per-
forming unit tests or linting of the code and the results are
collected. Together with an approved review the success-
ful pass of all tasks is a prerequisite for change submission
into the code repository. In case of failure the submission
is blocked. Note here, that a responsible officer can, if
required, overwrite the blockage, but has to do so explic-
itly. This can be necessary if for example a change can
only work if changes of multiple projects are submitted
together.

For configuration management and system orchestra-
tion Ansible [3] is used. Using Ansible the deployment and
orchestration process becomes a configuration task. It al-
lows the definition of logical roles of components within
the system, including dependencies and inclusion of other
roles. For the deployment process on each platform so
called playbooks are defined which combine multiple roles
to define the capabilities of the system.

Figure 1: Illustration of the components of the toolchain employed
on ASDEX Upgrade.

This toolchain setup ensures an automated and repro-
ducible development and deployment process in which the

usage is unified and common mistakes, like e.g. forgetting
a step during deployment, are eliminated. In addition to
the tasks that are performed for each change there are
tasks that are performed on a regular basis. For example
the latest state of DCS is build completely every night.
This is done to see if any change has a breaking impact
on other parts of DCS. Although the toolchain introduces
some overhead during setup and usage its benefits have
outweighed this additional effort during the period of its
application to the last to ASDEX Upgrade experimental
campaigns from 2018-2020.

3. Development and Deployment

The aim of DCS is to provide a stable environment for
the operation of ASDEX Upgrade, whilst enabling enough
flexibility to implement and test new control schemes /
scenarios / experiments. In order to ensure stable opera-
tion of ASDEX Upgrade the development and deployment
process has been formalized.

Figure 2: Illustration of the technologies employed for the develop-
ment and deployment process in ASDEX Upgrade.

For version control of the source code the distributed
version control system git [4] is used. One reason for this
is that Gerrit is based on git, another is that git is com-
monly used in software development and therefore has a
wide support. The packaging is done using RPM [5] since
CentOS [6] and RedHawk [7] is used as the operating sys-
tem. RedHawk is used for systems where deterministic
timing is required, CentOS is used for systems where this
is not required. This provides the dependency tracking to
ensure all components required for a certain service are

2



installed properly. Docker [8] is used to containerize the
different services required to operate DCS. Docker is an
OS-level virtualization with which software is delivered in
packages called containers. Each container bundles its own
software, libraries and configuration and is isolated from
other containers. The containerization enables modular
orchestration of the running systems with versioning of
the source code, the packages and the running system.
The different containers communicate to each other using
well-defined channels. The containers run on the host op-
erating system kernel. This uses less resources compared
to virtual machines, which will become important in sec-
tion 4 where the application to both non real-time as well
as real-time processes is discussed.

Figure 3: Illustration of the development and deployment process
employed for the ASDEX Upgrade DCS from implementation to pro-
duction.

In addition to the technical development and deploy-
ment process, an additional separation between staging
and production has been introduced. Once a new feature
is implemented and has successfully passed the code review
it does not immediately go into production but it goes into
staging. For staging, as well as for production, the whole
deployment process is undertaken up to the point that the
final docker images are built. This is done since a change,
even if it is syntactically and logically correct, might break

other parts of DCS. Staging enables testing of new features
without already releasing the changes for production use.
This allows to test the interaction of the change with the
other components of DCS. Once the changes have been
tested they are released into production and new produc-
tion docker images are built to be used in operation.

4. DCS Services

The DCS services consist of two main types, real-time
and non real-time services. For each service a separate
docker image is created. The docker image for the real time
services contains all application processes (AP) available
in DCS. During the deployment of the docker container
the configuration of the container is set. This determines
which DCS configuration is loaded during operation, defin-
ing which APs are instantiated for the specific monitoring
and control tasks. The orchestration of the running sys-
tem is done using docker compose. This allows the spec-
ification of the different services and dependencies via a
YAML configuration file. In addition the communication
channels, e.g. ethernet ports, are specified and resources,
like CPU affinity, available memory, etc can be assigned.
For the real time services the corresponding capabilities
have to be enabled in both the kernel and the configura-
tion of the docker daemon. In the docker compose file of
the real time services the permissions have to be granted
to allow operation with real time policies. During the com-
missioning of the docker based deployment, as well as dur-
ing operation, the performance of the real time system has
been monitored. All real time systems have an in house
developed Time-to-Digital-Converter (TDC) [9] installed
which provides time synchronisation between the systems.
These provide a time reference with a resolution of 20 ns
and are used to monitor the timing of the DCS real time
processes. The jitter in the timing of the DCS cycles has
been compared for the same software, directly installed on
the system and run using the docker image. No difference
in the timing has been observed and the jitter was in the
order of around 5µs for both variants. This is similar to
the jitter determined from cyclic tests of the underlying
system.

In order to have an easy to use user interface for the
orchestration of the different systems and services Por-
tainer [10] is used. This provides a web interface which
allows configuration, deployment and monitoring of mul-
tiple systems. Using this starting, stopping or deploying
DCS is literally done by the push of button. During opera-
tion this proved to be comfortable, reducing the workload
and effort of the DCS operator.

The encapsulation of the different services into separate
docker containers enables the heterogeneous deployment of
services onto staging or production machines. This means
that, as long as the communication protocol between the
different services is not changed, images from staging and
production can be operated together. Note, however, that
for a control system, the compatibility of communication

3



Figure 4: Illustration of the services forming the core DCS on AS-
DEX Upgrade. Note: LCx8 is dedicated for integration tests of
staging on the production system.

protocols is only one prerequisite for operating production
and staging images together. They must also be compati-
ble semantic-wise. I.e. the staging image under test must
have no or only a well-confined influence on the control
system actions.

The possibility to operate a heterogeneous system, con-
taining of staging and production images, increases testa-
bility of new features whilst decreasing the impact of er-
rors. In case an error is detected a rollback to the previ-
ous operational version is done by redeploying the previ-
ous configuration. This capability has proofed to be very
valuable. Considering the number of people required to
operate a fusion device and the costs associated with this
it is, to say the least, reassuring to be able to introduce a
change into the control system without the danger of pre-
venting operation. The common practice employed at AS-
DEX Upgrade is not to change the deployed control system
on operation days. During an ASDEX Upgrade campaign
there are typically five operation days within two weeks.
This leaves time in between two operation days to deploy
an updated control system version and conduct tests on
the production environment. Should however, despite all
the testing done before, an error occur during operation
due to the newly deployed control system version, it is now
always possible to rollback to the previous working version
within a couple of minutes. The docker based deployment
has been employed since the 2019-2020 campaign, before
DCS was deployed by installing the RPM packages directly
onto the target systems. The new deployment strategy has
been in place since 2018 and since then no experimental
time has been lost related to the development and deploy-
ment process. However, it has to be mentioned that the
gained flexibility from the docker base deployment signifi-
cantly decreased the hurdle to introduce new features into
DCS. Examples for this are the active control of the X-
point radiator and the improved actuator management.

5. Unified system setup

So far the application of DevOps principles to the DCS
of ASDEX Upgrade has been discussed. This, however, is
only one component which is required for the operation
of ASDEX Upgrade during an experimental campaign. In

addition to this there are a variety of other systems and
services which have to operate. An example for this are
real time diagnostics which provide data for control dur-
ing plasma discharges. The development and deployment
strategies discussed for the DCS have also been applied
to the so called DCS satellites [11]. Operation of DCS
satellites with and without data acquisition hardware has
been successfully demonstrated. The real time part of the
in house build SIO2 data acquisition system [12] has been
successfully operated using the docker based deployment.
Utilizing this deployment method helps to reduce the effort
required for the initial setup as well as for maintenance.
Starting from the 2020-2021 campaign the base system for
the real time DCS systems will be unified. It will con-
sists of a bare real time Linux (CentOS or RedHawk) in-
stallation with all hardware drivers and a running docker
daemon. The purpose of each system will only be deter-
mined by the hardware that is installed in the system, e.g.
IO hardware or data acquisition and the software that is
deployed on the system using docker.

6. Conclusions

Employing DevOps concepts on ASDEX Upgrade has
proven to be successful. It has been observed that the over-
all reliability of DCS operation has improved. The devel-
opment speed and quality has increased whilst achieving
a reduction in the risk of introducing errors into the pro-
duction environment. All together this ensured a stable
environment for the ASDEX Upgrade experimental cam-
paigns. During the experimental campaigns of ASDEX
Upgrade from 2018-2020 no experimental time was lost
due to DCS errors related to the development and deploy-
ment process.

It is foreseen to further extend the DevOps concepts
to e.g. change management and monitoring. The cur-
rent state achieved on ASDEX Upgrade proved the viabil-
ity of DevOps. However, one has to consider the limited
available resources for operation and development. Tak-
ing this into account the efficiency has to be improved
continuously. This issue is not limited to fusion research
but is a common problem encountered in most industries.
Therefore solutions for these problems are under constant
development by a large community, which can be readily
adapted and utilized.

Acknowledgement

This work has been carried out within the framework
of the EUROfusion Consortium and has received funding
from the Euratom research and training programme 2014-
2018 and 2019-2020 under grant agreement No 633053.
The views and opinions expressed herein do not necessarily
reflect those of the European Commission.

4



References

[1] Gerrit code review (2020).
URL https://www.gerritcodereview.com/

[2] Jenkins (2020).
URL https://www.jenkins.io/

[3] Ansible (2020).
URL https://www.ansible.com/

[4] Git (2020).
URL https://git-scm.com/

[5] Rpm package manager (2020).
URL http://rpm.org/

[6] Centos (2020).
URL https://www.centos.org/

[7] Redhawk linux (2020).
URL https://www.concurrent-rt.com/products/redhawk-linux/

[8] Docker (2020).
URL https://www.docker.com/

[9] G. Raupp, R. Cole, K. Behler, M. Fitzek, P. Heimann, A. Lohs,
K. Lüddecke, G. Neu, J. Schacht, W. Treutterer, D. Zasche,
T. Zehetbauer, M. Zilker, A “universal time” system for asdex
upgrade, Fusion Engineering and Design 66-68 (2003) 947 – 951,
22nd Symposium on Fusion Technology.

[10] Portainer (2020).
URL https://www.portainer.io/

[11] B. Sieglin, W. Treutterer, L. Giannone, Dcs satellite: En-
hanced plant system integration on asdex upgrade, Fusion En-
gineering and Design 146 (2019) 1737 – 1740, sI:SOFT-30.
doi:https://doi.org/10.1016/j.fusengdes.2019.03.028.

[12] K. Behler, H. Eixenberger, B. Kurzan, A. Lohs, K. Lüddecke,
M. Maraschek, R. Merkel, G. Raupp, G. Sellmair, B. Sieglin,
W. Treutterer, Recent diagnostic developments at asdex up-
grade with the fpga implemented serial i/o system “sio2” and
“pipe2” daq periphery, Fusion Engineering and Design 159
(2020) 111873.

5


