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For an isolated generic quantum system out of equilibrium, the long time average of observables is given
by the diagonal ensemble, i.e., the mixed state with the same probability for energy eigenstates as the initial
state but without coherences between different energies. In this work we present a method to approximate the
diagonal ensemble using tensor networks. Instead of simulating the real time evolution, we adapt a filtering
scheme introduced earlier [M. C. Bafiuls, D. A. Huse, and J. I. Cirac, Phys. Rev. B 101, 144305 (2020)] to this
problem. We analyze the performance of the method on a nonintegrable spin chain, for which we observe that
local observables converge towards thermal values polynomially with the inverse width of the filter.
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I. INTRODUCTION

When an isolated quantum system is initialized in a pure
state out of equilibrium, the unitary character of the evolution
ensures that the state remains pure at any later times. However,
if observations are restricted to a subsystem, thermalization
may occur, that is, the rest of the system can act as a bath
for the observed region [1,2]. More explicitly, if expectation
values reach and remain close to a certain value for an ex-
tended period of time, one talks about equilibration [3-5].
And thermalization occurs if those values correspond to the
expectation values at the thermal equilibrium state consistent
with the energy of the system [1,2,6,7].

For a generic Hamiltonian with nondegenerate spectrum,
the long time limit of time-averaged observables corresponds
to the expectation value in the diagonal ensemble [8]. This
mixed state, diagonal in the energy eigenbasis, can be seen
as the average of the density operator of the system at all
times. To decide whether the system can thermalize, it is
thus enough to compare the expectation values in the diag-
onal ensemble to those in thermal equilibrium at the same
energy. But while the thermal state of a local Hamiltonian
can be efficiently approximated using tensor networks [9-11],
simulating the out-of-equilibrium dynamics, and thus directly
constructing the diagonal ensemble, is a much harder prob-
lem [12,13]. We notice that some numerical methods have
been developed that can approximate the diagonal ensemble
with some restrictions, such as exact diagonalization (limited
to small systems) or the numerical linked cluster expansion

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

2469-9950/2021/103(11)/115113(9)

115113-1

[14-16] (for which the expansion may fail to converge for
some parameter choices, or initial states).

Generally speaking, integrable systems, due to their exten-
sive number of conserved local quantities, do not thermalize
but are instead argued to relax or equilibrate to the so-called
generalized Gibbs ensemble [2,8,17,18], compatible with all
the constraints. In contrast, nonintegrable systems are typi-
cally expected to thermalize [2,5,19-23]. It is thus especially
interesting to identify nonintegrable systems that fail to do so,
as the current interest in systems with many body localiza-
tion [24-26], quantum scars [27], or disorder-free localization
[28-30] makes evident. Nevertheless, the (absence of) ther-
malization of nonintegrable systems is hard to determine,
since the applicability of analytical tools for such models
is limited, and numerical simulations of out-of-equilibrium
dynamics are restricted to small systems or short times.

In this paper, we present an alternative method to find
a tensor network approximation to the diagonal ensemble,
without resorting to the explicit simulation of the dynamics.
We make use of a recently introduced filtering procedure [31],
devised to prepare pure states with reduced energy variance,
and show how it can be adapted to filter out the off-diagonal
components of a density operator with respect to the energy
basis.

More concretely, we apply to the initial density matrix
a Gaussian operator that filters out large eigenvalues of the
Hamiltonian commutator. In the limit of vanishing width of
the Gaussian, the result will converge to the diagonal ensem-
ble, in the most generic case, when there are no degeneracies
in the spectrum. Notice that if there were degenerate energy
levels, the procedure would leave untouched the coherences
in the corresponding energy subspace, and thus would still
lead to the correct limit of the time-averaged density oper-
ator. As described in [31], the filter can be approximated
as a sum of Chebyshev polynomials, and its application to
an initial vector can be numerically simulated using matrix
product states [32,33] (MPS) methods, at least for moderate
widths. Here we carry out these simulations for a spin chain
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in the nonintegrable regime, and investigate how the values of
local observables converge towards the thermal equilibrium.
For comparison, we also consider an integrable instance of
the same model, for which the observables may converge to
different nonthermal values, depending on the initial state.

The rest of the paper is organized as follows. In Sec. II
we review the filtering procedure and its application to the
problem of the diagonal ensemble. We also discuss some
properties of this specific application. Section III describes the
main elements of our numerical simulations. Our results for
the generic, nonintegrable case are shown in Sec. IV, where
we discuss how the application of the approximate filter to
this problem resembles and differs from that of reducing the
energy variance, and analyze the convergence of local ob-
servables to their thermal values. The distinct behavior of an
integrable instance is discussed in Sec. V. Finally, in Sec. VI
we summarize our findings and discuss potential extensions
of our work.

II. FILTERING THE DIAGONAL ENSEMBLE

Let us consider a system of size N governed by a (local)
Hamiltonian H, and a pure initial state, which can be written
in the energy eigenbasis as |Wo) = ), c,|E,), with the nor-
malization condition ), |ca|?> = 1. We are interested in the
long time average properties of the evolved state; i.e., given
any physical observable O = > Opu|E,)(Ex|, we want to
compute

n,m

1
Jim 2 [ arwionwo) = 16,20y = ulon( )0,
(M

where the first equality holds under the generic condition,
which we assume in the following, that the spectrum is non-
degenerate [34], and in the second one we have used the
definition of the diagonal ensemble

po(W0) =Y leul*|Ex) (Enl. )

If the system thermalizes, the diagonal expectation value
(O)p :=tr(ppO) will be equal to the expectation value in
the thermal equilibrium state, p,,(8) = e 7 /tr(e=#H), that
corresponds to the mean energy of the initial state. Thus, an
approximation to the diagonal ensemble would allow us to
probe whether a given state thermalizes or not.

In the energy eigenbasis, the density matrix for the initial
state can be written as pg = ), . ¢aCi|En) (En|. Filtering out
the off-diagonal matrix elements in this basis will result in
the diagonal ensemble (2). We thus define an (unnormalized)
Gaussian filter which acts on the mixed state as a superopera-
tor,

Fylp] = e 127 p], ?3)

where ﬁc is the commutator with the Hamiltonian, i.e.,
Hclp) = Hp — pH. Notice that F, is a completely positive
trace preserving map, i.e., a quantum channel. The effect
of this filter is to suppress the off-diagonal matrix elements
corresponding to pairs of states with different energies. As
the width o is reduced, and, for a generic, nondegenerate

Hamiltonian, the application of the filter will converge to the
desired result

Fy[p0] —> pp(Wo).
o—0

Notice that the filter would not affect the density operator
components in a degenerate energy subspace. Thus, if the
Hamiltonian has degenerate levels, the limit of the procedure
is block diagonal, corresponding to the long time limit of the
time average of the evolved state.

Mapping the basis operators to vectors [35] as |E,) (E,;| —
|E,E,), we can write the density matrix as a vector of di-
mension 22V, on which the filter acts as a linear operator, and
the problem becomes formally analogous to the energy filters
used in [31,36-38].

In this representation, the commutator corresponds to the
linear operator ﬁc =H®1—1®HT, which, if H is local,
is also a local Hamiltonian with eigenvectors |E,E,,) and cor-
responding eigenvalues E, — E,,, for n,m =1, 2N We
can then apply the filtering procedure for reducing the energy
variance from a state with given mean energy described in
[31]. For a product initial state |W), the (vectorized) initial
density matrix |pg) = |Wo) ® |WVp) is also a product, and the
scenario is very similar to the one discussed in that reference.

With respect to the Hamiltonian He, any physical state
has mean value (po|Hc|po) = tr(pg [H, pol) = 0. The filter
(3) preserves this property of the initial state while it reduces
the corresponding (effective energy) variance, (,0|I-7§|p) =
—tr([H, p]?), which measures precisely the off-diagonal part
of the density operator in the energy basis.

A. Chebyshev approximation of the filter

Formally, this filtering procedure is analogous to the one
described in [31], and some of the properties can be directly
translated to the current case. In particular, the Gaussian
filter F, can be approximated by a series of Chebyshev
polynomials.

Any piecewise continuous function f(x) defined in the
interval x € [—1, 1] can be approximated by a linear combina-
tion of the M lowest-degree Chebyshev polynomials [39]. In
particular, the corresponding series for the delta function trun-
cated to order M (and improved using the kernel polynomial
method) is known to approximate a Gaussian of width /7 /M.
We can thus use such series to order M o« N/o to approximate
the Gaussian filter F,. This sum has the form

LM/2]

Z( 20 M (alle), @)

where « is a rescaling constant to ensure that the spectrum
of aHc lies strictly within the interval [—1, 1]. We use He =
aHc for the rescaled Hamiltonian commutator in the rest of
the paper. T,,(x) is the m-th Chebyshev polynomial of the first
kind, defined by the recurrence relations T (x) =1,Ti(x)=x,
and T, (x) = 2xT,,(x) — T,,—1 (x), and ym are the Jackson
kernel coefficients [39],

M — m+1)cos.M—+1—i—smM—HcosM+1 5)

M+1

Vo =
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We will denote the result of applying the series expansion
to order M as

lom) == Qumlpo). (6)

Notice that this vector has a different normalization than |p, ),
because the sum in Qy; approximates a normalized Gaussian
distribution, unlike F, from (3).

The off-diagonal width of the operator p,, is determined by
the corresponding variance of Hc as

2._ (:OM|H3|,0M>. )
(oM o)

B. Properties of the diagonal filter

Notice that the filtering procedure described so far is
general, as it does not make any assumption on the spatial
dimension of the problem. In the following we will focus
on a one-dimensional problem, for which we can use tensor
networks in order to obtain numerical approximations. As
in [31], we can use matrix product state (MPS) techniques
[32,33] to simulate the application of this filter to an initial
state. In this way we construct a matrix product operator
(MPO) [40-42] approximation to the filtered ensemble. Also
here, for large system sizes and narrow filters, the required
bond dimension for the approximation can be bounded as D <
¢'v/ND\/° where ¢’ and Dy are O(1) constants. Accordingly,
the expression for the entanglement entropy,

S < k/8 +log~/N + const, (8)

corresponds now to a bound for the operator space entangle-
ment entropy (OSEE) [43].

The spectrum of Hc¢ exhibits, however, an exponential de-
generacy in the subspace of eigenvalue zero, which imposes a
significant difference. For each eigenstate |E,) of H, |E,E,)
is an eigenstate of Ho with zero eigenvalue. Thus, even if
the spectrum of H is nondegenerate and even if it fulfills the
stronger assumption of nondegenerate gaps, the “zero energy”
subspace of H¢ is always exponentially degenerate.

Hence the target diagonal ensemble states could in princi-
ple have arbitrarily small OSEE, even with vanishing width
o (an extreme case would be the maximally mixed state,
with zero OSSE). This is in contrast to the Hamiltonian fil-
tering, where the limit would generically have thermal (i.e.,
volume law) entanglement. Even if we expect that the general
relations between energy fluctuations and entropy or bond
dimension demonstrated in [31] still hold during the main part
of the filtering procedure, eventually, as the width becomes
negligible and the procedure converges to the diagonal ensem-
ble, the OSSE can converge to a nongeneric value that will
depend on the initial state.

The scenario we discuss here also exhibits another funda-
mental difference regarding physical observables. For a local
operator O, the expectation value is computed as

r(0Op) _ (Olp)

trp (Llp)’

where |O) and |1) are respectively the vectorized observable
and identity operators.

As an overlap between two vectors, this is a global quantity,
and no longer local in space. Therefore, the considerations in
[31] about the minimal entanglement of a subregion required
for local observables to converge to thermal values do not
immediately apply here.

C. Convergence of the off-diagonal components

The initial state is given by a physical density opera-
tor, normalized in trace, trpp = 1, and also Frobenius norm,
(polpo) = trpg = 1. The filter (3) preserves the former, but not
the latter. Instead, the norm of the filtered vector |p, ) indicates
the magnitude of the remaining off-diagonal components.

The state resulting from the application of the original
Gaussian filter F, on pp can be written as a sum of two
mutually orthogonal components,

100} = lpp) + D cuche™ T EICTIEE,). )

n,m#n

The first term is precisely the diagonal ensemble, and the sec-
ond one includes all off-diagonal components of the density
operator. Denoting them by |Ap) := |p,) — |pp), the (Frobe-
nius) norm of the off-diagonal components is

_ _ 2,2
(Aplap) = > lealPlewleE—E7" 0 (10)

n,m#n

The magnitude of these components may be estimated
using simple arguments. We consider as initial state py a pure
product state, for which the energy distribution, given by |c,|?
is peaked around the mean energy E, = tr(Hpp), and has
variance O(N). For large systems, this distribution behaves
as a Gaussian [44] and we can approximate the norm of the
vector |p, ) by a double integral over energies, from which we
obtain

k)

o
| 00) ~ —. 11
(0o 1 p5) N (11)

The norm of the diagonal component, equivalent to the
inverse participation ratio of the initial state, (op|pp) =
>, lea|* is independent of o . Typically, the number of energy
eigenstates contributing to the sum will be exponentially large
in the system size, unless the mean energy of the initial state
E, corresponds to a region of exponentially small density of
states. To see this, we can take again into account the afore-
mentioned distribution of the weights for our initial states, and
the fact that for large systems the density of states approaches
also a Gaussian distribution [44,45]. The inverse participation
ratio then decreases exponentially with the system size,

{pplpp) ~ 27V, (12)

Unless the width of the filter is exponentially small in N,
the norm of the filtered state is dominated by the off-diagonal
component, and we expect both of them to decrease propor-
tionally to the width, for fixed size N, according to (11).
Notice nevertheless that a bound on the (Frobenius) norm
of |[Ap) is not enough to extract conclusions about the con-
vergence of physical observables, a question that we explore
numerically in Sec. IV.
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III. SETUP FOR THE NUMERICAL SIMULATIONS

We use numerical simulations to explore some of the ques-
tions in the previous section. In particular, we investigate
whether the diagonal ensemble can be approximated by a
MPO, and how the physical observables approach the diago-
nal expectation values as we filter out the off-diagonal matrix
elements of the density matrix.

A. MPS approximation of the ensemble

We use matrix product operators (MPO) [40,41,46] to rep-
resent the density operators corresponding to the initial and
filtered states. Once vectorized, they are represented by MPS
with double physical indices, which can be manipulated using
standard tensor network methods [32,33,47,48].

We find a MPS approximation for the action of the filter (4)
on a given initial state. The method is completely analogous to
the one presented in [31] for filtering out energy fluctuations,
with the only difference that here the effective Hamiltonian
is the commutator superoperator Hc acting on the vectorized
density matrices. For a local Hamiltonian H, the commutator
H¢ can also be written as a MPO.

As in [31,38,49-52] we can then take advantage of the
fact that we do not need the full polynomials 7,,(H¢), which
in our case are operators acting on a 22V dimensional vector
space, but only the vectors resulting from their action on the
initial state 7;,(H¢)|po). The latter satisfy the same recurrence
relation as the polynomials and can be computed with lower
computational cost.

B. Model and initial states

We focus our study in the Ising spin chain with both longi-
tudinal and transverse fields,

Higng =1 ) Jollol ™ 4¢3 ol 0y ol (13)

If either g =0 or & = 0, the model becomes exactly solv-
able. For the remaining of this section we focus on
the generic, non-integrable case. We choose parameters
(J, g h) = (1, —1.05, 0.5), far from the integrability limit.
As initial states we consider product states in which
all spins are aligned in the same direction for both mod-
els. We denote such states by the direction in which the
spins are aligned, e.g., |[X£) =27V2(|0) £ [1)®V, |[Y+) =
27N2(10) £ i[1)®N, |Z+) = |0)®N, and |Z—) = [1)®V.

IV. NUMERICAL RESULTS

We have applied the procedure described in the previous
section to system sizes N € {20, 60}, using MPS with bond
dimensions 100 < D < 1500. Additionally, we cross-check
results for small system sizes N < 20 which can be explored
with exact diagonalization.

A. Scaling

We expect the off-diagonal width § of our simulations
to follow the scaling predicted in Ref. [31], namely 8% o
1/M?, for large enough number of terms in the approximation
of the filter, and provided that the truncation error is not

(p|HL Help)

FIG. 1. Scaling of the variance §> = (,oM|HgHC|pM), as a func-
tion of the Chebyshev truncation parameter M for different system
sizes N = 20-60 with bond dimension D = 1000 and initial state
|X+). Except for the smallest values of M, we find that our results
scale with the expected [31] 62 oc 1/M>.

significant. Thus, the decrease of the width with M provides
us with a check that our simulations are in the expected
regime. Figure 1 shows that this is indeed the case. The fig-
ure shows that, for all system sizes, the converged data are
well described by a power law fit 82 oc M~ (dotted lines)
with exponents —2.13, —1.98, —1.97, —1.95, —1.96 for N =
20, 30, 40, 50, 60, respectively.

A further check is provided by the norm of the filtered state
|ps). As described in Sec. IIC, {p,|p,) should decrease as
the inverse off-diagonal width. Since our algorithm applies

the normalized filter (4), Oy ~ —L_F,, we expect, for the

V2ro?
proper values of M and o,

1
(omlom) ~ —=. (14)
RN/

To directly probe this relation, we plot the vector norm of
our resulting state in Fig. 2, for system sizes N = 20-60, and
find that our data agree well with this prediction, except for
the smallest values of M.

%IQN :l20 T T T T T E
C DN =30 N .
S 102 O N =50 %oo >
ST EAN=6 Ao pT 3
s f »> 0 3
SO AAAéOO I>[>1>lﬁ>'? 00 7
E > & =
I ] Lo ol .

107 107!

1
oVN

FIG. 2. Relation between vector norm of off-diagonal compo-
nents and inverse off-diagonal width for system sizes N = 20-60 and
bond dimension, D = 1000, starting with initial state |X+).
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FIG. 3. Absolute error in local observables o, (upper) and o,
(lower figure) between exact diagonal ensemble values and Cheby-
shev filter results as a function of inverse off-diagonal width for
system sizes N = 8, 10, 12, 20, and 24 with the initial state |X+).
The insets indicate the log-log plots of the corresponding figures,
where we show the upper bounds with the straight dotted lines. The
slope for o, is —0.52 and it is —0.53 for o;.

B. Convergence of local observables

As the filtered state approaches the diagonal ensemble,
so will the values of physical observables. If the state ther-
malizes, such a limit will agree with the thermal value
corresponding to the initial energy, and thus comparing this to
the converged values can be used to probe thermalization of
the system. Here we are interested in the rate of convergence
of the physical expectation values.

For the problem of reducing the energy variance of a pure
state, it has been predicted that for chaotic systems [53] a
polynomial decrease of the variance with the system size is
required for all local observables to converge to their thermal
values. In Ref. [31] it was numerically observed for model
(13) that an energy variance decreasing as 1/log N or faster
was sufficient for convergence in the thermodynamic limit.
But as discussed in Sec. II, these conclusions do not need
to apply in our case, because the expectation value in the
mixed state does not have the same local structure. We thus
explore this question numerically by studying the local x
and z magnetizations in the middle of the chain, O = O’XZ/ 2l
and analyzing how the expectation values vary as the width

0.5[]; ; —
_[>j[>
__04F %?JO _
= F [>:>)
8 | ( r
\b/03: Obo-z? j__
| C Q 051 2 7
__02F ) 3
8 - ON=30 > ]
b rtenN=4 > .
— 0l o N=50 > A
C > N =60 L gl)
0_ 1 1 1 l v vl |
0.5 1 15
1/6
0.1 L e
N
c 107 gy, .
0.08—[>j[>?>a'%] % .............
o B 2L
= C OI>D 10 -]
20.06 —
S T SR
004 ‘e 051 2 -
S F ON=30 o .
L [Ceanv=w ) ]
002+ N=50 [},D —
- > N =60 op y
0_ 1 1 1 | 1 11 || LlJ (l)
0.5 1 15
1/6

FIG. 4. Absolute error in local observables o, (upper) and o,
(lower figure) between thermal values and numerical results based
on a Chebyshev filter as a function of inverse off-diagonal width
for system sizes N = 30-60 with the initial state |[X+). The insets
indicate the log-log plots of the corresponding figures, where we add
the upper bounds with the dotted lines and the data points belong to
N = 12 with lighter color as reference values taken from Fig. 3.

of the filter decreases. For systems of size N < 12 we can
compute the action of the filter exactly for any width, while
for larger systems, up to N < 60, we run MPS simulations up
to the narrowest filter widths that we can reliably reach with a
maximum bond dimension D = 1000.

For small systems, N < 24, we can compare the filtered
values to the exact compute the exact magnetizations in the
diagonal ensemble. For larger systems we do not have access
to either the evolved state at long times or the exact diagonal
ensemble, but we can approximate the thermal ensemble cor-
responding to the initial energy using MPO [40,41,54]. For
the cases we study, there are analytical and numerical argu-
ments in favor of thermalization [38,55], such that the thermal
expectation values should be very close to the diagonal ones.
Thus, for our analysis it is enough to use the thermal value
as reference, since we are only exploring the variation of the
expectation values, but our simulations for large systems do
not reach full convergence (see Sec. IV D for a more detailed
discussion of the numerical errors).

We plot the results for small and large system sizes in
Figs. 3 and 4 for initial state |[X4), and in Figs. 5 and 6 for
initial state |[Z+). In all cases we represent the absolute value
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FIG. 5. Absolute error in local observables o, (upper) and o,
(lower figure) between exact diagonal ensemble values and Cheby-
shev filter results, as a function of inverse off-diagonal width for
system sizes N = 8, 10, 12, and 20 with the initial state |Z+). The
insets indicate the log-log plots of the corresponding figures, where
we show the upper bounds with the grey dotted lines. The slope for
oy 18 —0.62(63) and it is —0.60(47) for o.

of the difference between the expectation values in |py) and
the diagonal (thermal, for large systems) values as a function
of the off-diagonal width §. In all cases, i.e., for the different
initial states and different sizes, we observe that this absolute
error, which is given exclusively by the off-diagonal part of
pum, decreases at least as fast as 1/ V/§ (see insets). Moreover,
the figures show that curves for different system sizes practi-
cally collapse on top of each other.

C. Entropy

Since we start with a product state | pg) and evolve it with a
local Hamiltonian H, the same arguments used in the case of
pure states [31,56] then imply that the OSEE can be bounded
as a function of the off-diagonal width and the system size as
given in Eq. (8).

Figure 7 (upper panel) shows that, indeed, the evolution of
the OSEE while filtering out the off-diagonal components of
the state satisfies a similar bound. The plot shows the OSEE
corresponding to the middle cut of the approximate filtered
state oy, as a function of the system size, for simulations
in which the number of Chebyshev terms was chosen as
different functions of the size M = f(N), corresponding to

0.5 T T .
0.4
=B 102k 1
- - 8] ER
£03F Ga) 103 F i H

: O 1 | E:
| C ]
/302:0N:30 @ 10° 100
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0 L L 1 | 1 |||| b_(}_(‘j]
0.5 1 2 3
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S 03fag,
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| 0‘2:_ o 10" 10" 103
o poN=30 @& .
~0.1p 8 N=40 [% -

L o N =50 o ]

o= ) Pom
0.5 1 152253
1/6

FIG. 6. Absolute error in local observables o, (upper) and o,
(lower figure) between thermal values and numerical results based
on a Chebyshev filter as a function of inverse off-diagonal width
for system sizes N = 30-60 with the initial state |[Z+). The insets
indicate the log-log plots of the corresponding figures, where we put
the upper bounds with the dotted lines and the data points belong to
N = 12 with lighter color as reference values taken from Fig. 5.

a width §(N) o« 1/M. We observe that for M VN, which
corresponds to § /N, the OSEE does not grow with the
system size, while for M o« N or M o« N log N (correspond-
ingly 6 ~ const or § o 1/logN), it increases as log N. For
faster growing M oc N2, also the increase in entropy is faster
(compatible with it growing at most as N, as predicted by the
argument in [31]).

The asymptotic universal scaling of the entropy can be
appreciated more explicitly in Fig. 7 (lower), which shows
that 25 « /N (D(])/ - 1) for all system sizes N > 20 with a
constant Dy = 2.76.

The limit of the filtering procedure when the width van-
ishes is a mixed state in the exponentially degenerate null
space of H¢. This subspace supports states with zero OSEE
(e.g., the maximally mixed state), and thus the final OSEE
is not generic, but will be determined by the initial state, in
contrast to the case of pure state filtering, where we could
generically expect that the entanglement entropy converges to
a thermal volume law. We can explore how the limit value
is approached during the filtering by analyzing the results for
small systems, as shown in Fig. 8. As illustrated in the figure
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FIG. 7. Upper figure: Operator space entanglement entropy of
the half chain as a function of logarithm of the system size, N, with
different truncation numbers of Chebyshev filter, M = f(N), and
bond dimension, D = 1000, for initial state |X+). Our data show
that the entropy grows with log N in all cases except that the line for
M = 54/N stays constant. Lower figure: Behavior of the exponential
of the entropy as predicted by Ref. [31] that we have shown in
Eq. (8). The dotted line indicates the linear fit where all data points
locate on the same line as expected for large system sizes. Dy from
fitting the data for all system size is 2.76(40) and the slope of the
fitis 1.

for different initial states and sizes N < 12, the entropy grows
with 1/§ for moderate widths, but it reaches a maximum after
a certain point, and then decreases towards the diagonal value.
If we examine how this final value depends on the system

o =maii e el e = AL B R IR
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FIG. 8. Relation between entropy and logarithm of 1/§ based on
exact calculation for N = 8, 10, 12 with initial state, | X +) (left) and
|Z+) (right figure).
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FIG. 9. Scaling of the bond dimension required to keep a con-
stant precision in the MPS approximation of T,,(Hc)|po), as a
function of the degree m for various values of the truncation error,
1072,1073,107*, 1075, and system sizes N = 20 (left) and N = 30
(right) for D = 500.

size, we observe that in all the cases studied the diagonal
OSEE increases almost linearly with the size, although the
values change considerably from one state to another, where
the slope of each initial state is 0.06(78), 0.89(17), 0.02(37)
for | X+), |Y+), |Z+), respectively.

D. Error analysis

In our strategy, for a fixed order M of the Chebyshev expan-
sion, the main source of error is the truncation error, namely
approximating the action of each Chebyshev polynomial on
the initial state by a MPS with limited bond dimension. We
can quantify this error for a given order m using as refer-
ence the best approximation found for the corresponding term
T,.(Hc)|po) (in our case, with D = 1000) and comparing it to
its truncated versions with smaller bond dimensions. In this
way we can extract the bond dimension required for fixed
precision. In previous works that used MPS approximations of
Chebyshev series [38,49-52] it was observed that the required
bond dimension for such terms increases polynomially with
the degree m. Our results, illustrated in Fig. 9, seem to agree
with such behavior, except for the smallest values of m. We
have also observed, as in the recent work [38], that for fixed
m the bond dimension required to maintain constant trunca-
tion error in T,,(Hc)|po) gets smaller for larger system sizes.
Notice, however, that for larger systems, also polynomials of
higher degree will be required to attain a constant width §,
since, as discussed in Sec. Il A, the order of the expansion
scales as M o« N/§.

V. INTEGRABLE CASE

The results in seSec.ction IV B are consistent with the
generic expectation that, for nonintegrable cases, the values of
local observables in the diagonal ensemble agree with those
in thermal equilibrium. But the presence of local conserved
quantities imposes constrains on the equilibration of observ-
ables. Thus, for integrable models, long time averages are
not expected to agree with the thermal ensemble. Instead, the
system could in such cases converge to a generalized Gibbs
ensemble [8] compatible with all conserved quantities.

We expect that, as the width of the filter decreases, our
method approximates the actual time averaged state in the
limit of infinite time. Hence local observables can converge to
values that differ from thermal equilibrium. In order to probe
this case, we have applied the method to an integrable choice
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FIG. 10. Expectation value of local observables o, at the middle
of the chain based on Chebyshev filter simulations for initial states
|X+) (upper) and |Z+) (lower figure) as a function of inverse off-
diagonal width for system sizes N = 10-50. Red, blue, and green
solid lines indicate the long time average values for N = 10, 12, 20
respectively. Red, blue, and green dashed lines indicate the thermal
values for the same system sizes N = 10, 12, 20 respectively, be-
longing to the same color map in the legend.

of parameters in Eq. (13), namely (J/, g, k) = (1, 1.05, 0.),
for various translationally invariant product states. We have
simulated system sizes up to N = 50, with bond dimension
up to D = 1000.

The scaling of variance and entropy with the filter width
in the integrable case does not substantially differ from those
described in Secs. IV A and IV C. However, local observables
can exhibit qualitative differences, as illustrated in Fig. 10.

Figure 10 shows the convergence of a local observable (o)
at the middle of the chain as a function of the inverse width
1/8, for two different initial states |X+) and |Z+). In both
cases, the limit of the time averaged observable noticeably
differs from the thermal value, as we have checked using
exact diagonalization for system sizes N < 20. Applying our
algorithm to these and also larger system sizes indeed suggests

convergence of the observable to values that are distinct from
thermal equilibrium (indicated by dashed horizontal lines).

VI. DISCUSSION

We have presented a method to approximate the diagonal
ensemble corresponding to a quantum many-body state. By
applying a Gaussian filter to the density operator, the off-
diagonal components in the energy basis are suppressed and,
in the limit of vanishing filter width, the result converges to
the ensemble that represents the long time average of the
time evolved state. For a Hamiltonian with nondegenerate
spectrum, this is the diagonal ensemble.

Numerically, the filter can be approximated by a Cheby-
shev polynomial series, and applied using MPS standard
techniques, in an analogous manner to what was already de-
scribed in Ref. [31] for an energy filter. In our case, we obtain
a MPO approximation to the filtered ensemble.

The method allows us to treat larger systems than exact di-
agonalization. However, our results for small systems indicate
that the operator space entanglement entropy of the diagonal
ensemble scales as a volume law, which limits the system
sizes for which the MPO can provide a reliable approxima-
tion. Still, we are able to simulate the effect of filters with
moderate off-diagonal width and to analyze the convergence
of local observables towards the thermal equilibrium.

We have applied this method to a nonintegrable spin chain
and several out-of-equilibrium product initial states for system
sizes up to N = 60. We have numerically observed that local
observables converge towards their thermal values as a power
of the inverse off-diagonal width. Remarkably, this behavior
is mostly independent of the system size. Even for moderate
off-diagonal widths, the method provides in this way insight
beyond exact diagonalization. In the future, it can be thus used
to explore other one-dimensional models.

It is worth noticing that our procedure does not directly tar-
get the diagonal ensemble, but the limit of the time-averaged
state. In an integrable case this can be a generalized Gibbs en-
semble, and differ considerably from the thermal equilibrium
one (see, e.g., [14,15,57]). For an integrable instance of the
model, we have explicitly shown how local observables in the
filtered state can indeed converge to values far from thermal
equilibrium. A detailed analysis of integrable cases requires,
however, more precise simulations than the ones shown here,
and is left for future investigation.
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